1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static const char * const ib_events[] = { 57 [IB_EVENT_CQ_ERR] = "CQ error", 58 [IB_EVENT_QP_FATAL] = "QP fatal error", 59 [IB_EVENT_QP_REQ_ERR] = "QP request error", 60 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 61 [IB_EVENT_COMM_EST] = "communication established", 62 [IB_EVENT_SQ_DRAINED] = "send queue drained", 63 [IB_EVENT_PATH_MIG] = "path migration successful", 64 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 65 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 66 [IB_EVENT_PORT_ACTIVE] = "port active", 67 [IB_EVENT_PORT_ERR] = "port error", 68 [IB_EVENT_LID_CHANGE] = "LID change", 69 [IB_EVENT_PKEY_CHANGE] = "P_key change", 70 [IB_EVENT_SM_CHANGE] = "SM change", 71 [IB_EVENT_SRQ_ERR] = "SRQ error", 72 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 73 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 74 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 75 [IB_EVENT_GID_CHANGE] = "GID changed", 76 }; 77 78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 79 { 80 size_t index = event; 81 82 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 83 ib_events[index] : "unrecognized event"; 84 } 85 EXPORT_SYMBOL(ib_event_msg); 86 87 static const char * const wc_statuses[] = { 88 [IB_WC_SUCCESS] = "success", 89 [IB_WC_LOC_LEN_ERR] = "local length error", 90 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 91 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 92 [IB_WC_LOC_PROT_ERR] = "local protection error", 93 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 94 [IB_WC_MW_BIND_ERR] = "memory management operation error", 95 [IB_WC_BAD_RESP_ERR] = "bad response error", 96 [IB_WC_LOC_ACCESS_ERR] = "local access error", 97 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 98 [IB_WC_REM_ACCESS_ERR] = "remote access error", 99 [IB_WC_REM_OP_ERR] = "remote operation error", 100 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 101 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 102 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 103 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 104 [IB_WC_REM_ABORT_ERR] = "operation aborted", 105 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 106 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 107 [IB_WC_FATAL_ERR] = "fatal error", 108 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 109 [IB_WC_GENERAL_ERR] = "general error", 110 }; 111 112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 113 { 114 size_t index = status; 115 116 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 117 wc_statuses[index] : "unrecognized status"; 118 } 119 EXPORT_SYMBOL(ib_wc_status_msg); 120 121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 122 { 123 switch (rate) { 124 case IB_RATE_2_5_GBPS: return 1; 125 case IB_RATE_5_GBPS: return 2; 126 case IB_RATE_10_GBPS: return 4; 127 case IB_RATE_20_GBPS: return 8; 128 case IB_RATE_30_GBPS: return 12; 129 case IB_RATE_40_GBPS: return 16; 130 case IB_RATE_60_GBPS: return 24; 131 case IB_RATE_80_GBPS: return 32; 132 case IB_RATE_120_GBPS: return 48; 133 default: return -1; 134 } 135 } 136 EXPORT_SYMBOL(ib_rate_to_mult); 137 138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 139 { 140 switch (mult) { 141 case 1: return IB_RATE_2_5_GBPS; 142 case 2: return IB_RATE_5_GBPS; 143 case 4: return IB_RATE_10_GBPS; 144 case 8: return IB_RATE_20_GBPS; 145 case 12: return IB_RATE_30_GBPS; 146 case 16: return IB_RATE_40_GBPS; 147 case 24: return IB_RATE_60_GBPS; 148 case 32: return IB_RATE_80_GBPS; 149 case 48: return IB_RATE_120_GBPS; 150 default: return IB_RATE_PORT_CURRENT; 151 } 152 } 153 EXPORT_SYMBOL(mult_to_ib_rate); 154 155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 156 { 157 switch (rate) { 158 case IB_RATE_2_5_GBPS: return 2500; 159 case IB_RATE_5_GBPS: return 5000; 160 case IB_RATE_10_GBPS: return 10000; 161 case IB_RATE_20_GBPS: return 20000; 162 case IB_RATE_30_GBPS: return 30000; 163 case IB_RATE_40_GBPS: return 40000; 164 case IB_RATE_60_GBPS: return 60000; 165 case IB_RATE_80_GBPS: return 80000; 166 case IB_RATE_120_GBPS: return 120000; 167 case IB_RATE_14_GBPS: return 14062; 168 case IB_RATE_56_GBPS: return 56250; 169 case IB_RATE_112_GBPS: return 112500; 170 case IB_RATE_168_GBPS: return 168750; 171 case IB_RATE_25_GBPS: return 25781; 172 case IB_RATE_100_GBPS: return 103125; 173 case IB_RATE_200_GBPS: return 206250; 174 case IB_RATE_300_GBPS: return 309375; 175 default: return -1; 176 } 177 } 178 EXPORT_SYMBOL(ib_rate_to_mbps); 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(enum rdma_node_type node_type) 182 { 183 switch (node_type) { 184 case RDMA_NODE_IB_CA: 185 case RDMA_NODE_IB_SWITCH: 186 case RDMA_NODE_IB_ROUTER: 187 return RDMA_TRANSPORT_IB; 188 case RDMA_NODE_RNIC: 189 return RDMA_TRANSPORT_IWARP; 190 case RDMA_NODE_USNIC: 191 return RDMA_TRANSPORT_USNIC; 192 case RDMA_NODE_USNIC_UDP: 193 return RDMA_TRANSPORT_USNIC_UDP; 194 default: 195 BUG(); 196 return 0; 197 } 198 } 199 EXPORT_SYMBOL(rdma_node_get_transport); 200 201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 202 { 203 if (device->get_link_layer) 204 return device->get_link_layer(device, port_num); 205 206 switch (rdma_node_get_transport(device->node_type)) { 207 case RDMA_TRANSPORT_IB: 208 return IB_LINK_LAYER_INFINIBAND; 209 case RDMA_TRANSPORT_IWARP: 210 case RDMA_TRANSPORT_USNIC: 211 case RDMA_TRANSPORT_USNIC_UDP: 212 return IB_LINK_LAYER_ETHERNET; 213 default: 214 return IB_LINK_LAYER_UNSPECIFIED; 215 } 216 } 217 EXPORT_SYMBOL(rdma_port_get_link_layer); 218 219 /* Protection domains */ 220 221 /** 222 * ib_alloc_pd - Allocates an unused protection domain. 223 * @device: The device on which to allocate the protection domain. 224 * 225 * A protection domain object provides an association between QPs, shared 226 * receive queues, address handles, memory regions, and memory windows. 227 * 228 * Every PD has a local_dma_lkey which can be used as the lkey value for local 229 * memory operations. 230 */ 231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 232 const char *caller) 233 { 234 struct ib_pd *pd; 235 int mr_access_flags = 0; 236 237 pd = device->alloc_pd(device, NULL, NULL); 238 if (IS_ERR(pd)) 239 return pd; 240 241 pd->device = device; 242 pd->uobject = NULL; 243 pd->__internal_mr = NULL; 244 atomic_set(&pd->usecnt, 0); 245 pd->flags = flags; 246 247 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 248 pd->local_dma_lkey = device->local_dma_lkey; 249 else 250 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 251 252 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 253 pr_warn("%s: enabling unsafe global rkey\n", caller); 254 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 255 } 256 257 if (mr_access_flags) { 258 struct ib_mr *mr; 259 260 mr = pd->device->get_dma_mr(pd, mr_access_flags); 261 if (IS_ERR(mr)) { 262 ib_dealloc_pd(pd); 263 return ERR_CAST(mr); 264 } 265 266 mr->device = pd->device; 267 mr->pd = pd; 268 mr->uobject = NULL; 269 mr->need_inval = false; 270 271 pd->__internal_mr = mr; 272 273 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 274 pd->local_dma_lkey = pd->__internal_mr->lkey; 275 276 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 277 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 278 } 279 280 return pd; 281 } 282 EXPORT_SYMBOL(__ib_alloc_pd); 283 284 /** 285 * ib_dealloc_pd - Deallocates a protection domain. 286 * @pd: The protection domain to deallocate. 287 * 288 * It is an error to call this function while any resources in the pd still 289 * exist. The caller is responsible to synchronously destroy them and 290 * guarantee no new allocations will happen. 291 */ 292 void ib_dealloc_pd(struct ib_pd *pd) 293 { 294 int ret; 295 296 if (pd->__internal_mr) { 297 ret = pd->device->dereg_mr(pd->__internal_mr); 298 WARN_ON(ret); 299 pd->__internal_mr = NULL; 300 } 301 302 /* uverbs manipulates usecnt with proper locking, while the kabi 303 requires the caller to guarantee we can't race here. */ 304 WARN_ON(atomic_read(&pd->usecnt)); 305 306 /* Making delalloc_pd a void return is a WIP, no driver should return 307 an error here. */ 308 ret = pd->device->dealloc_pd(pd); 309 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 310 } 311 EXPORT_SYMBOL(ib_dealloc_pd); 312 313 /* Address handles */ 314 315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) 316 { 317 struct ib_ah *ah; 318 319 ah = pd->device->create_ah(pd, ah_attr, NULL); 320 321 if (!IS_ERR(ah)) { 322 ah->device = pd->device; 323 ah->pd = pd; 324 ah->uobject = NULL; 325 ah->type = ah_attr->type; 326 atomic_inc(&pd->usecnt); 327 } 328 329 return ah; 330 } 331 EXPORT_SYMBOL(rdma_create_ah); 332 333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 334 { 335 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 336 struct iphdr ip4h_checked; 337 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 338 339 /* If it's IPv6, the version must be 6, otherwise, the first 340 * 20 bytes (before the IPv4 header) are garbled. 341 */ 342 if (ip6h->version != 6) 343 return (ip4h->version == 4) ? 4 : 0; 344 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 345 346 /* RoCE v2 requires no options, thus header length 347 * must be 5 words 348 */ 349 if (ip4h->ihl != 5) 350 return 6; 351 352 /* Verify checksum. 353 * We can't write on scattered buffers so we need to copy to 354 * temp buffer. 355 */ 356 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 357 ip4h_checked.check = 0; 358 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 359 /* if IPv4 header checksum is OK, believe it */ 360 if (ip4h->check == ip4h_checked.check) 361 return 4; 362 return 6; 363 } 364 EXPORT_SYMBOL(ib_get_rdma_header_version); 365 366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 367 u8 port_num, 368 const struct ib_grh *grh) 369 { 370 int grh_version; 371 372 if (rdma_protocol_ib(device, port_num)) 373 return RDMA_NETWORK_IB; 374 375 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 376 377 if (grh_version == 4) 378 return RDMA_NETWORK_IPV4; 379 380 if (grh->next_hdr == IPPROTO_UDP) 381 return RDMA_NETWORK_IPV6; 382 383 return RDMA_NETWORK_ROCE_V1; 384 } 385 386 struct find_gid_index_context { 387 u16 vlan_id; 388 enum ib_gid_type gid_type; 389 }; 390 391 static bool find_gid_index(const union ib_gid *gid, 392 const struct ib_gid_attr *gid_attr, 393 void *context) 394 { 395 struct find_gid_index_context *ctx = 396 (struct find_gid_index_context *)context; 397 398 if (ctx->gid_type != gid_attr->gid_type) 399 return false; 400 401 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 402 (is_vlan_dev(gid_attr->ndev) && 403 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 404 return false; 405 406 return true; 407 } 408 409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 410 u16 vlan_id, const union ib_gid *sgid, 411 enum ib_gid_type gid_type, 412 u16 *gid_index) 413 { 414 struct find_gid_index_context context = {.vlan_id = vlan_id, 415 .gid_type = gid_type}; 416 417 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 418 &context, gid_index); 419 } 420 421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 422 enum rdma_network_type net_type, 423 union ib_gid *sgid, union ib_gid *dgid) 424 { 425 struct sockaddr_in src_in; 426 struct sockaddr_in dst_in; 427 __be32 src_saddr, dst_saddr; 428 429 if (!sgid || !dgid) 430 return -EINVAL; 431 432 if (net_type == RDMA_NETWORK_IPV4) { 433 memcpy(&src_in.sin_addr.s_addr, 434 &hdr->roce4grh.saddr, 4); 435 memcpy(&dst_in.sin_addr.s_addr, 436 &hdr->roce4grh.daddr, 4); 437 src_saddr = src_in.sin_addr.s_addr; 438 dst_saddr = dst_in.sin_addr.s_addr; 439 ipv6_addr_set_v4mapped(src_saddr, 440 (struct in6_addr *)sgid); 441 ipv6_addr_set_v4mapped(dst_saddr, 442 (struct in6_addr *)dgid); 443 return 0; 444 } else if (net_type == RDMA_NETWORK_IPV6 || 445 net_type == RDMA_NETWORK_IB) { 446 *dgid = hdr->ibgrh.dgid; 447 *sgid = hdr->ibgrh.sgid; 448 return 0; 449 } else { 450 return -EINVAL; 451 } 452 } 453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 454 455 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 456 const struct ib_wc *wc, const struct ib_grh *grh, 457 struct rdma_ah_attr *ah_attr) 458 { 459 u32 flow_class; 460 u16 gid_index; 461 int ret; 462 enum rdma_network_type net_type = RDMA_NETWORK_IB; 463 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 464 int hoplimit = 0xff; 465 union ib_gid dgid; 466 union ib_gid sgid; 467 468 memset(ah_attr, 0, sizeof *ah_attr); 469 ah_attr->type = rdma_ah_find_type(device, port_num); 470 if (rdma_cap_eth_ah(device, port_num)) { 471 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 472 net_type = wc->network_hdr_type; 473 else 474 net_type = ib_get_net_type_by_grh(device, port_num, grh); 475 gid_type = ib_network_to_gid_type(net_type); 476 } 477 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 478 &sgid, &dgid); 479 if (ret) 480 return ret; 481 482 if (rdma_protocol_roce(device, port_num)) { 483 int if_index = 0; 484 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 485 wc->vlan_id : 0xffff; 486 struct net_device *idev; 487 struct net_device *resolved_dev; 488 489 if (!(wc->wc_flags & IB_WC_GRH)) 490 return -EPROTOTYPE; 491 492 if (!device->get_netdev) 493 return -EOPNOTSUPP; 494 495 idev = device->get_netdev(device, port_num); 496 if (!idev) 497 return -ENODEV; 498 499 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, 500 ah_attr->roce.dmac, 501 wc->wc_flags & IB_WC_WITH_VLAN ? 502 NULL : &vlan_id, 503 &if_index, &hoplimit); 504 if (ret) { 505 dev_put(idev); 506 return ret; 507 } 508 509 resolved_dev = dev_get_by_index(&init_net, if_index); 510 if (resolved_dev->flags & IFF_LOOPBACK) { 511 dev_put(resolved_dev); 512 resolved_dev = idev; 513 dev_hold(resolved_dev); 514 } 515 rcu_read_lock(); 516 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, 517 resolved_dev)) 518 ret = -EHOSTUNREACH; 519 rcu_read_unlock(); 520 dev_put(idev); 521 dev_put(resolved_dev); 522 if (ret) 523 return ret; 524 525 ret = get_sgid_index_from_eth(device, port_num, vlan_id, 526 &dgid, gid_type, &gid_index); 527 if (ret) 528 return ret; 529 } 530 531 rdma_ah_set_dlid(ah_attr, wc->slid); 532 rdma_ah_set_sl(ah_attr, wc->sl); 533 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 534 rdma_ah_set_port_num(ah_attr, port_num); 535 536 if (wc->wc_flags & IB_WC_GRH) { 537 if (!rdma_cap_eth_ah(device, port_num)) { 538 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 539 ret = ib_find_cached_gid_by_port(device, &dgid, 540 IB_GID_TYPE_IB, 541 port_num, NULL, 542 &gid_index); 543 if (ret) 544 return ret; 545 } else { 546 gid_index = 0; 547 } 548 } 549 550 flow_class = be32_to_cpu(grh->version_tclass_flow); 551 rdma_ah_set_grh(ah_attr, &sgid, 552 flow_class & 0xFFFFF, 553 (u8)gid_index, hoplimit, 554 (flow_class >> 20) & 0xFF); 555 556 } 557 return 0; 558 } 559 EXPORT_SYMBOL(ib_init_ah_from_wc); 560 561 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 562 const struct ib_grh *grh, u8 port_num) 563 { 564 struct rdma_ah_attr ah_attr; 565 int ret; 566 567 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); 568 if (ret) 569 return ERR_PTR(ret); 570 571 return rdma_create_ah(pd, &ah_attr); 572 } 573 EXPORT_SYMBOL(ib_create_ah_from_wc); 574 575 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 576 { 577 if (ah->type != ah_attr->type) 578 return -EINVAL; 579 580 return ah->device->modify_ah ? 581 ah->device->modify_ah(ah, ah_attr) : 582 -ENOSYS; 583 } 584 EXPORT_SYMBOL(rdma_modify_ah); 585 586 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 587 { 588 return ah->device->query_ah ? 589 ah->device->query_ah(ah, ah_attr) : 590 -ENOSYS; 591 } 592 EXPORT_SYMBOL(rdma_query_ah); 593 594 int rdma_destroy_ah(struct ib_ah *ah) 595 { 596 struct ib_pd *pd; 597 int ret; 598 599 pd = ah->pd; 600 ret = ah->device->destroy_ah(ah); 601 if (!ret) 602 atomic_dec(&pd->usecnt); 603 604 return ret; 605 } 606 EXPORT_SYMBOL(rdma_destroy_ah); 607 608 /* Shared receive queues */ 609 610 struct ib_srq *ib_create_srq(struct ib_pd *pd, 611 struct ib_srq_init_attr *srq_init_attr) 612 { 613 struct ib_srq *srq; 614 615 if (!pd->device->create_srq) 616 return ERR_PTR(-ENOSYS); 617 618 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 619 620 if (!IS_ERR(srq)) { 621 srq->device = pd->device; 622 srq->pd = pd; 623 srq->uobject = NULL; 624 srq->event_handler = srq_init_attr->event_handler; 625 srq->srq_context = srq_init_attr->srq_context; 626 srq->srq_type = srq_init_attr->srq_type; 627 if (srq->srq_type == IB_SRQT_XRC) { 628 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 629 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq; 630 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 631 atomic_inc(&srq->ext.xrc.cq->usecnt); 632 } 633 atomic_inc(&pd->usecnt); 634 atomic_set(&srq->usecnt, 0); 635 } 636 637 return srq; 638 } 639 EXPORT_SYMBOL(ib_create_srq); 640 641 int ib_modify_srq(struct ib_srq *srq, 642 struct ib_srq_attr *srq_attr, 643 enum ib_srq_attr_mask srq_attr_mask) 644 { 645 return srq->device->modify_srq ? 646 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 647 -ENOSYS; 648 } 649 EXPORT_SYMBOL(ib_modify_srq); 650 651 int ib_query_srq(struct ib_srq *srq, 652 struct ib_srq_attr *srq_attr) 653 { 654 return srq->device->query_srq ? 655 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 656 } 657 EXPORT_SYMBOL(ib_query_srq); 658 659 int ib_destroy_srq(struct ib_srq *srq) 660 { 661 struct ib_pd *pd; 662 enum ib_srq_type srq_type; 663 struct ib_xrcd *uninitialized_var(xrcd); 664 struct ib_cq *uninitialized_var(cq); 665 int ret; 666 667 if (atomic_read(&srq->usecnt)) 668 return -EBUSY; 669 670 pd = srq->pd; 671 srq_type = srq->srq_type; 672 if (srq_type == IB_SRQT_XRC) { 673 xrcd = srq->ext.xrc.xrcd; 674 cq = srq->ext.xrc.cq; 675 } 676 677 ret = srq->device->destroy_srq(srq); 678 if (!ret) { 679 atomic_dec(&pd->usecnt); 680 if (srq_type == IB_SRQT_XRC) { 681 atomic_dec(&xrcd->usecnt); 682 atomic_dec(&cq->usecnt); 683 } 684 } 685 686 return ret; 687 } 688 EXPORT_SYMBOL(ib_destroy_srq); 689 690 /* Queue pairs */ 691 692 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 693 { 694 struct ib_qp *qp = context; 695 unsigned long flags; 696 697 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 698 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 699 if (event->element.qp->event_handler) 700 event->element.qp->event_handler(event, event->element.qp->qp_context); 701 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 702 } 703 704 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 705 { 706 mutex_lock(&xrcd->tgt_qp_mutex); 707 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 708 mutex_unlock(&xrcd->tgt_qp_mutex); 709 } 710 711 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 712 void (*event_handler)(struct ib_event *, void *), 713 void *qp_context) 714 { 715 struct ib_qp *qp; 716 unsigned long flags; 717 int err; 718 719 qp = kzalloc(sizeof *qp, GFP_KERNEL); 720 if (!qp) 721 return ERR_PTR(-ENOMEM); 722 723 qp->real_qp = real_qp; 724 err = ib_open_shared_qp_security(qp, real_qp->device); 725 if (err) { 726 kfree(qp); 727 return ERR_PTR(err); 728 } 729 730 qp->real_qp = real_qp; 731 atomic_inc(&real_qp->usecnt); 732 qp->device = real_qp->device; 733 qp->event_handler = event_handler; 734 qp->qp_context = qp_context; 735 qp->qp_num = real_qp->qp_num; 736 qp->qp_type = real_qp->qp_type; 737 738 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 739 list_add(&qp->open_list, &real_qp->open_list); 740 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 741 742 return qp; 743 } 744 745 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 746 struct ib_qp_open_attr *qp_open_attr) 747 { 748 struct ib_qp *qp, *real_qp; 749 750 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 751 return ERR_PTR(-EINVAL); 752 753 qp = ERR_PTR(-EINVAL); 754 mutex_lock(&xrcd->tgt_qp_mutex); 755 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 756 if (real_qp->qp_num == qp_open_attr->qp_num) { 757 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 758 qp_open_attr->qp_context); 759 break; 760 } 761 } 762 mutex_unlock(&xrcd->tgt_qp_mutex); 763 return qp; 764 } 765 EXPORT_SYMBOL(ib_open_qp); 766 767 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 768 struct ib_qp_init_attr *qp_init_attr) 769 { 770 struct ib_qp *real_qp = qp; 771 772 qp->event_handler = __ib_shared_qp_event_handler; 773 qp->qp_context = qp; 774 qp->pd = NULL; 775 qp->send_cq = qp->recv_cq = NULL; 776 qp->srq = NULL; 777 qp->xrcd = qp_init_attr->xrcd; 778 atomic_inc(&qp_init_attr->xrcd->usecnt); 779 INIT_LIST_HEAD(&qp->open_list); 780 781 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 782 qp_init_attr->qp_context); 783 if (!IS_ERR(qp)) 784 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 785 else 786 real_qp->device->destroy_qp(real_qp); 787 return qp; 788 } 789 790 struct ib_qp *ib_create_qp(struct ib_pd *pd, 791 struct ib_qp_init_attr *qp_init_attr) 792 { 793 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 794 struct ib_qp *qp; 795 int ret; 796 797 if (qp_init_attr->rwq_ind_tbl && 798 (qp_init_attr->recv_cq || 799 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 800 qp_init_attr->cap.max_recv_sge)) 801 return ERR_PTR(-EINVAL); 802 803 /* 804 * If the callers is using the RDMA API calculate the resources 805 * needed for the RDMA READ/WRITE operations. 806 * 807 * Note that these callers need to pass in a port number. 808 */ 809 if (qp_init_attr->cap.max_rdma_ctxs) 810 rdma_rw_init_qp(device, qp_init_attr); 811 812 qp = device->create_qp(pd, qp_init_attr, NULL); 813 if (IS_ERR(qp)) 814 return qp; 815 816 ret = ib_create_qp_security(qp, device); 817 if (ret) { 818 ib_destroy_qp(qp); 819 return ERR_PTR(ret); 820 } 821 822 qp->device = device; 823 qp->real_qp = qp; 824 qp->uobject = NULL; 825 qp->qp_type = qp_init_attr->qp_type; 826 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 827 828 atomic_set(&qp->usecnt, 0); 829 qp->mrs_used = 0; 830 spin_lock_init(&qp->mr_lock); 831 INIT_LIST_HEAD(&qp->rdma_mrs); 832 INIT_LIST_HEAD(&qp->sig_mrs); 833 834 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 835 return ib_create_xrc_qp(qp, qp_init_attr); 836 837 qp->event_handler = qp_init_attr->event_handler; 838 qp->qp_context = qp_init_attr->qp_context; 839 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 840 qp->recv_cq = NULL; 841 qp->srq = NULL; 842 } else { 843 qp->recv_cq = qp_init_attr->recv_cq; 844 if (qp_init_attr->recv_cq) 845 atomic_inc(&qp_init_attr->recv_cq->usecnt); 846 qp->srq = qp_init_attr->srq; 847 if (qp->srq) 848 atomic_inc(&qp_init_attr->srq->usecnt); 849 } 850 851 qp->pd = pd; 852 qp->send_cq = qp_init_attr->send_cq; 853 qp->xrcd = NULL; 854 855 atomic_inc(&pd->usecnt); 856 if (qp_init_attr->send_cq) 857 atomic_inc(&qp_init_attr->send_cq->usecnt); 858 if (qp_init_attr->rwq_ind_tbl) 859 atomic_inc(&qp->rwq_ind_tbl->usecnt); 860 861 if (qp_init_attr->cap.max_rdma_ctxs) { 862 ret = rdma_rw_init_mrs(qp, qp_init_attr); 863 if (ret) { 864 pr_err("failed to init MR pool ret= %d\n", ret); 865 ib_destroy_qp(qp); 866 return ERR_PTR(ret); 867 } 868 } 869 870 /* 871 * Note: all hw drivers guarantee that max_send_sge is lower than 872 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 873 * max_send_sge <= max_sge_rd. 874 */ 875 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 876 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 877 device->attrs.max_sge_rd); 878 879 return qp; 880 } 881 EXPORT_SYMBOL(ib_create_qp); 882 883 static const struct { 884 int valid; 885 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 886 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 887 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 888 [IB_QPS_RESET] = { 889 [IB_QPS_RESET] = { .valid = 1 }, 890 [IB_QPS_INIT] = { 891 .valid = 1, 892 .req_param = { 893 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 894 IB_QP_PORT | 895 IB_QP_QKEY), 896 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 897 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 898 IB_QP_PORT | 899 IB_QP_ACCESS_FLAGS), 900 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 901 IB_QP_PORT | 902 IB_QP_ACCESS_FLAGS), 903 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 904 IB_QP_PORT | 905 IB_QP_ACCESS_FLAGS), 906 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 907 IB_QP_PORT | 908 IB_QP_ACCESS_FLAGS), 909 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 910 IB_QP_QKEY), 911 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 912 IB_QP_QKEY), 913 } 914 }, 915 }, 916 [IB_QPS_INIT] = { 917 [IB_QPS_RESET] = { .valid = 1 }, 918 [IB_QPS_ERR] = { .valid = 1 }, 919 [IB_QPS_INIT] = { 920 .valid = 1, 921 .opt_param = { 922 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 923 IB_QP_PORT | 924 IB_QP_QKEY), 925 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 926 IB_QP_PORT | 927 IB_QP_ACCESS_FLAGS), 928 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 929 IB_QP_PORT | 930 IB_QP_ACCESS_FLAGS), 931 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 932 IB_QP_PORT | 933 IB_QP_ACCESS_FLAGS), 934 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 935 IB_QP_PORT | 936 IB_QP_ACCESS_FLAGS), 937 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 938 IB_QP_QKEY), 939 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 940 IB_QP_QKEY), 941 } 942 }, 943 [IB_QPS_RTR] = { 944 .valid = 1, 945 .req_param = { 946 [IB_QPT_UC] = (IB_QP_AV | 947 IB_QP_PATH_MTU | 948 IB_QP_DEST_QPN | 949 IB_QP_RQ_PSN), 950 [IB_QPT_RC] = (IB_QP_AV | 951 IB_QP_PATH_MTU | 952 IB_QP_DEST_QPN | 953 IB_QP_RQ_PSN | 954 IB_QP_MAX_DEST_RD_ATOMIC | 955 IB_QP_MIN_RNR_TIMER), 956 [IB_QPT_XRC_INI] = (IB_QP_AV | 957 IB_QP_PATH_MTU | 958 IB_QP_DEST_QPN | 959 IB_QP_RQ_PSN), 960 [IB_QPT_XRC_TGT] = (IB_QP_AV | 961 IB_QP_PATH_MTU | 962 IB_QP_DEST_QPN | 963 IB_QP_RQ_PSN | 964 IB_QP_MAX_DEST_RD_ATOMIC | 965 IB_QP_MIN_RNR_TIMER), 966 }, 967 .opt_param = { 968 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 969 IB_QP_QKEY), 970 [IB_QPT_UC] = (IB_QP_ALT_PATH | 971 IB_QP_ACCESS_FLAGS | 972 IB_QP_PKEY_INDEX), 973 [IB_QPT_RC] = (IB_QP_ALT_PATH | 974 IB_QP_ACCESS_FLAGS | 975 IB_QP_PKEY_INDEX), 976 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 977 IB_QP_ACCESS_FLAGS | 978 IB_QP_PKEY_INDEX), 979 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 980 IB_QP_ACCESS_FLAGS | 981 IB_QP_PKEY_INDEX), 982 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 983 IB_QP_QKEY), 984 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 985 IB_QP_QKEY), 986 }, 987 }, 988 }, 989 [IB_QPS_RTR] = { 990 [IB_QPS_RESET] = { .valid = 1 }, 991 [IB_QPS_ERR] = { .valid = 1 }, 992 [IB_QPS_RTS] = { 993 .valid = 1, 994 .req_param = { 995 [IB_QPT_UD] = IB_QP_SQ_PSN, 996 [IB_QPT_UC] = IB_QP_SQ_PSN, 997 [IB_QPT_RC] = (IB_QP_TIMEOUT | 998 IB_QP_RETRY_CNT | 999 IB_QP_RNR_RETRY | 1000 IB_QP_SQ_PSN | 1001 IB_QP_MAX_QP_RD_ATOMIC), 1002 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1003 IB_QP_RETRY_CNT | 1004 IB_QP_RNR_RETRY | 1005 IB_QP_SQ_PSN | 1006 IB_QP_MAX_QP_RD_ATOMIC), 1007 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1008 IB_QP_SQ_PSN), 1009 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1010 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1011 }, 1012 .opt_param = { 1013 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1014 IB_QP_QKEY), 1015 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1016 IB_QP_ALT_PATH | 1017 IB_QP_ACCESS_FLAGS | 1018 IB_QP_PATH_MIG_STATE), 1019 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1020 IB_QP_ALT_PATH | 1021 IB_QP_ACCESS_FLAGS | 1022 IB_QP_MIN_RNR_TIMER | 1023 IB_QP_PATH_MIG_STATE), 1024 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1025 IB_QP_ALT_PATH | 1026 IB_QP_ACCESS_FLAGS | 1027 IB_QP_PATH_MIG_STATE), 1028 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1029 IB_QP_ALT_PATH | 1030 IB_QP_ACCESS_FLAGS | 1031 IB_QP_MIN_RNR_TIMER | 1032 IB_QP_PATH_MIG_STATE), 1033 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1034 IB_QP_QKEY), 1035 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1036 IB_QP_QKEY), 1037 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1038 } 1039 } 1040 }, 1041 [IB_QPS_RTS] = { 1042 [IB_QPS_RESET] = { .valid = 1 }, 1043 [IB_QPS_ERR] = { .valid = 1 }, 1044 [IB_QPS_RTS] = { 1045 .valid = 1, 1046 .opt_param = { 1047 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1048 IB_QP_QKEY), 1049 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1050 IB_QP_ACCESS_FLAGS | 1051 IB_QP_ALT_PATH | 1052 IB_QP_PATH_MIG_STATE), 1053 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1054 IB_QP_ACCESS_FLAGS | 1055 IB_QP_ALT_PATH | 1056 IB_QP_PATH_MIG_STATE | 1057 IB_QP_MIN_RNR_TIMER), 1058 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1059 IB_QP_ACCESS_FLAGS | 1060 IB_QP_ALT_PATH | 1061 IB_QP_PATH_MIG_STATE), 1062 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1063 IB_QP_ACCESS_FLAGS | 1064 IB_QP_ALT_PATH | 1065 IB_QP_PATH_MIG_STATE | 1066 IB_QP_MIN_RNR_TIMER), 1067 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1068 IB_QP_QKEY), 1069 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1070 IB_QP_QKEY), 1071 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1072 } 1073 }, 1074 [IB_QPS_SQD] = { 1075 .valid = 1, 1076 .opt_param = { 1077 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1078 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1079 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1080 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1081 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1082 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1083 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1084 } 1085 }, 1086 }, 1087 [IB_QPS_SQD] = { 1088 [IB_QPS_RESET] = { .valid = 1 }, 1089 [IB_QPS_ERR] = { .valid = 1 }, 1090 [IB_QPS_RTS] = { 1091 .valid = 1, 1092 .opt_param = { 1093 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1094 IB_QP_QKEY), 1095 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1096 IB_QP_ALT_PATH | 1097 IB_QP_ACCESS_FLAGS | 1098 IB_QP_PATH_MIG_STATE), 1099 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1100 IB_QP_ALT_PATH | 1101 IB_QP_ACCESS_FLAGS | 1102 IB_QP_MIN_RNR_TIMER | 1103 IB_QP_PATH_MIG_STATE), 1104 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1105 IB_QP_ALT_PATH | 1106 IB_QP_ACCESS_FLAGS | 1107 IB_QP_PATH_MIG_STATE), 1108 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1109 IB_QP_ALT_PATH | 1110 IB_QP_ACCESS_FLAGS | 1111 IB_QP_MIN_RNR_TIMER | 1112 IB_QP_PATH_MIG_STATE), 1113 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1114 IB_QP_QKEY), 1115 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1116 IB_QP_QKEY), 1117 } 1118 }, 1119 [IB_QPS_SQD] = { 1120 .valid = 1, 1121 .opt_param = { 1122 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1123 IB_QP_QKEY), 1124 [IB_QPT_UC] = (IB_QP_AV | 1125 IB_QP_ALT_PATH | 1126 IB_QP_ACCESS_FLAGS | 1127 IB_QP_PKEY_INDEX | 1128 IB_QP_PATH_MIG_STATE), 1129 [IB_QPT_RC] = (IB_QP_PORT | 1130 IB_QP_AV | 1131 IB_QP_TIMEOUT | 1132 IB_QP_RETRY_CNT | 1133 IB_QP_RNR_RETRY | 1134 IB_QP_MAX_QP_RD_ATOMIC | 1135 IB_QP_MAX_DEST_RD_ATOMIC | 1136 IB_QP_ALT_PATH | 1137 IB_QP_ACCESS_FLAGS | 1138 IB_QP_PKEY_INDEX | 1139 IB_QP_MIN_RNR_TIMER | 1140 IB_QP_PATH_MIG_STATE), 1141 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1142 IB_QP_AV | 1143 IB_QP_TIMEOUT | 1144 IB_QP_RETRY_CNT | 1145 IB_QP_RNR_RETRY | 1146 IB_QP_MAX_QP_RD_ATOMIC | 1147 IB_QP_ALT_PATH | 1148 IB_QP_ACCESS_FLAGS | 1149 IB_QP_PKEY_INDEX | 1150 IB_QP_PATH_MIG_STATE), 1151 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1152 IB_QP_AV | 1153 IB_QP_TIMEOUT | 1154 IB_QP_MAX_DEST_RD_ATOMIC | 1155 IB_QP_ALT_PATH | 1156 IB_QP_ACCESS_FLAGS | 1157 IB_QP_PKEY_INDEX | 1158 IB_QP_MIN_RNR_TIMER | 1159 IB_QP_PATH_MIG_STATE), 1160 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1161 IB_QP_QKEY), 1162 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1163 IB_QP_QKEY), 1164 } 1165 } 1166 }, 1167 [IB_QPS_SQE] = { 1168 [IB_QPS_RESET] = { .valid = 1 }, 1169 [IB_QPS_ERR] = { .valid = 1 }, 1170 [IB_QPS_RTS] = { 1171 .valid = 1, 1172 .opt_param = { 1173 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1174 IB_QP_QKEY), 1175 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1176 IB_QP_ACCESS_FLAGS), 1177 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1178 IB_QP_QKEY), 1179 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1180 IB_QP_QKEY), 1181 } 1182 } 1183 }, 1184 [IB_QPS_ERR] = { 1185 [IB_QPS_RESET] = { .valid = 1 }, 1186 [IB_QPS_ERR] = { .valid = 1 } 1187 } 1188 }; 1189 1190 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1191 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1192 enum rdma_link_layer ll) 1193 { 1194 enum ib_qp_attr_mask req_param, opt_param; 1195 1196 if (cur_state < 0 || cur_state > IB_QPS_ERR || 1197 next_state < 0 || next_state > IB_QPS_ERR) 1198 return 0; 1199 1200 if (mask & IB_QP_CUR_STATE && 1201 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1202 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1203 return 0; 1204 1205 if (!qp_state_table[cur_state][next_state].valid) 1206 return 0; 1207 1208 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1209 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1210 1211 if ((mask & req_param) != req_param) 1212 return 0; 1213 1214 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1215 return 0; 1216 1217 return 1; 1218 } 1219 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1220 1221 int ib_resolve_eth_dmac(struct ib_device *device, 1222 struct rdma_ah_attr *ah_attr) 1223 { 1224 int ret = 0; 1225 struct ib_global_route *grh; 1226 1227 if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) 1228 return -EINVAL; 1229 1230 if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE) 1231 return 0; 1232 1233 grh = rdma_ah_retrieve_grh(ah_attr); 1234 1235 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) { 1236 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 1237 ah_attr->roce.dmac); 1238 } else { 1239 union ib_gid sgid; 1240 struct ib_gid_attr sgid_attr; 1241 int ifindex; 1242 int hop_limit; 1243 1244 ret = ib_query_gid(device, 1245 rdma_ah_get_port_num(ah_attr), 1246 grh->sgid_index, 1247 &sgid, &sgid_attr); 1248 1249 if (ret || !sgid_attr.ndev) { 1250 if (!ret) 1251 ret = -ENXIO; 1252 goto out; 1253 } 1254 1255 ifindex = sgid_attr.ndev->ifindex; 1256 1257 ret = 1258 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, 1259 ah_attr->roce.dmac, 1260 NULL, &ifindex, &hop_limit); 1261 1262 dev_put(sgid_attr.ndev); 1263 1264 grh->hop_limit = hop_limit; 1265 } 1266 out: 1267 return ret; 1268 } 1269 EXPORT_SYMBOL(ib_resolve_eth_dmac); 1270 1271 int ib_modify_qp(struct ib_qp *qp, 1272 struct ib_qp_attr *qp_attr, 1273 int qp_attr_mask) 1274 { 1275 1276 if (qp_attr_mask & IB_QP_AV) { 1277 int ret; 1278 1279 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr); 1280 if (ret) 1281 return ret; 1282 } 1283 1284 return ib_security_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1285 } 1286 EXPORT_SYMBOL(ib_modify_qp); 1287 1288 int ib_query_qp(struct ib_qp *qp, 1289 struct ib_qp_attr *qp_attr, 1290 int qp_attr_mask, 1291 struct ib_qp_init_attr *qp_init_attr) 1292 { 1293 return qp->device->query_qp ? 1294 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1295 -ENOSYS; 1296 } 1297 EXPORT_SYMBOL(ib_query_qp); 1298 1299 int ib_close_qp(struct ib_qp *qp) 1300 { 1301 struct ib_qp *real_qp; 1302 unsigned long flags; 1303 1304 real_qp = qp->real_qp; 1305 if (real_qp == qp) 1306 return -EINVAL; 1307 1308 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1309 list_del(&qp->open_list); 1310 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1311 1312 atomic_dec(&real_qp->usecnt); 1313 ib_close_shared_qp_security(qp->qp_sec); 1314 kfree(qp); 1315 1316 return 0; 1317 } 1318 EXPORT_SYMBOL(ib_close_qp); 1319 1320 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1321 { 1322 struct ib_xrcd *xrcd; 1323 struct ib_qp *real_qp; 1324 int ret; 1325 1326 real_qp = qp->real_qp; 1327 xrcd = real_qp->xrcd; 1328 1329 mutex_lock(&xrcd->tgt_qp_mutex); 1330 ib_close_qp(qp); 1331 if (atomic_read(&real_qp->usecnt) == 0) 1332 list_del(&real_qp->xrcd_list); 1333 else 1334 real_qp = NULL; 1335 mutex_unlock(&xrcd->tgt_qp_mutex); 1336 1337 if (real_qp) { 1338 ret = ib_destroy_qp(real_qp); 1339 if (!ret) 1340 atomic_dec(&xrcd->usecnt); 1341 else 1342 __ib_insert_xrcd_qp(xrcd, real_qp); 1343 } 1344 1345 return 0; 1346 } 1347 1348 int ib_destroy_qp(struct ib_qp *qp) 1349 { 1350 struct ib_pd *pd; 1351 struct ib_cq *scq, *rcq; 1352 struct ib_srq *srq; 1353 struct ib_rwq_ind_table *ind_tbl; 1354 struct ib_qp_security *sec; 1355 int ret; 1356 1357 WARN_ON_ONCE(qp->mrs_used > 0); 1358 1359 if (atomic_read(&qp->usecnt)) 1360 return -EBUSY; 1361 1362 if (qp->real_qp != qp) 1363 return __ib_destroy_shared_qp(qp); 1364 1365 pd = qp->pd; 1366 scq = qp->send_cq; 1367 rcq = qp->recv_cq; 1368 srq = qp->srq; 1369 ind_tbl = qp->rwq_ind_tbl; 1370 sec = qp->qp_sec; 1371 if (sec) 1372 ib_destroy_qp_security_begin(sec); 1373 1374 if (!qp->uobject) 1375 rdma_rw_cleanup_mrs(qp); 1376 1377 ret = qp->device->destroy_qp(qp); 1378 if (!ret) { 1379 if (pd) 1380 atomic_dec(&pd->usecnt); 1381 if (scq) 1382 atomic_dec(&scq->usecnt); 1383 if (rcq) 1384 atomic_dec(&rcq->usecnt); 1385 if (srq) 1386 atomic_dec(&srq->usecnt); 1387 if (ind_tbl) 1388 atomic_dec(&ind_tbl->usecnt); 1389 if (sec) 1390 ib_destroy_qp_security_end(sec); 1391 } else { 1392 if (sec) 1393 ib_destroy_qp_security_abort(sec); 1394 } 1395 1396 return ret; 1397 } 1398 EXPORT_SYMBOL(ib_destroy_qp); 1399 1400 /* Completion queues */ 1401 1402 struct ib_cq *ib_create_cq(struct ib_device *device, 1403 ib_comp_handler comp_handler, 1404 void (*event_handler)(struct ib_event *, void *), 1405 void *cq_context, 1406 const struct ib_cq_init_attr *cq_attr) 1407 { 1408 struct ib_cq *cq; 1409 1410 cq = device->create_cq(device, cq_attr, NULL, NULL); 1411 1412 if (!IS_ERR(cq)) { 1413 cq->device = device; 1414 cq->uobject = NULL; 1415 cq->comp_handler = comp_handler; 1416 cq->event_handler = event_handler; 1417 cq->cq_context = cq_context; 1418 atomic_set(&cq->usecnt, 0); 1419 } 1420 1421 return cq; 1422 } 1423 EXPORT_SYMBOL(ib_create_cq); 1424 1425 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1426 { 1427 return cq->device->modify_cq ? 1428 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1429 } 1430 EXPORT_SYMBOL(ib_modify_cq); 1431 1432 int ib_destroy_cq(struct ib_cq *cq) 1433 { 1434 if (atomic_read(&cq->usecnt)) 1435 return -EBUSY; 1436 1437 return cq->device->destroy_cq(cq); 1438 } 1439 EXPORT_SYMBOL(ib_destroy_cq); 1440 1441 int ib_resize_cq(struct ib_cq *cq, int cqe) 1442 { 1443 return cq->device->resize_cq ? 1444 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1445 } 1446 EXPORT_SYMBOL(ib_resize_cq); 1447 1448 /* Memory regions */ 1449 1450 int ib_dereg_mr(struct ib_mr *mr) 1451 { 1452 struct ib_pd *pd = mr->pd; 1453 int ret; 1454 1455 ret = mr->device->dereg_mr(mr); 1456 if (!ret) 1457 atomic_dec(&pd->usecnt); 1458 1459 return ret; 1460 } 1461 EXPORT_SYMBOL(ib_dereg_mr); 1462 1463 /** 1464 * ib_alloc_mr() - Allocates a memory region 1465 * @pd: protection domain associated with the region 1466 * @mr_type: memory region type 1467 * @max_num_sg: maximum sg entries available for registration. 1468 * 1469 * Notes: 1470 * Memory registeration page/sg lists must not exceed max_num_sg. 1471 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1472 * max_num_sg * used_page_size. 1473 * 1474 */ 1475 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1476 enum ib_mr_type mr_type, 1477 u32 max_num_sg) 1478 { 1479 struct ib_mr *mr; 1480 1481 if (!pd->device->alloc_mr) 1482 return ERR_PTR(-ENOSYS); 1483 1484 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1485 if (!IS_ERR(mr)) { 1486 mr->device = pd->device; 1487 mr->pd = pd; 1488 mr->uobject = NULL; 1489 atomic_inc(&pd->usecnt); 1490 mr->need_inval = false; 1491 } 1492 1493 return mr; 1494 } 1495 EXPORT_SYMBOL(ib_alloc_mr); 1496 1497 /* "Fast" memory regions */ 1498 1499 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1500 int mr_access_flags, 1501 struct ib_fmr_attr *fmr_attr) 1502 { 1503 struct ib_fmr *fmr; 1504 1505 if (!pd->device->alloc_fmr) 1506 return ERR_PTR(-ENOSYS); 1507 1508 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1509 if (!IS_ERR(fmr)) { 1510 fmr->device = pd->device; 1511 fmr->pd = pd; 1512 atomic_inc(&pd->usecnt); 1513 } 1514 1515 return fmr; 1516 } 1517 EXPORT_SYMBOL(ib_alloc_fmr); 1518 1519 int ib_unmap_fmr(struct list_head *fmr_list) 1520 { 1521 struct ib_fmr *fmr; 1522 1523 if (list_empty(fmr_list)) 1524 return 0; 1525 1526 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1527 return fmr->device->unmap_fmr(fmr_list); 1528 } 1529 EXPORT_SYMBOL(ib_unmap_fmr); 1530 1531 int ib_dealloc_fmr(struct ib_fmr *fmr) 1532 { 1533 struct ib_pd *pd; 1534 int ret; 1535 1536 pd = fmr->pd; 1537 ret = fmr->device->dealloc_fmr(fmr); 1538 if (!ret) 1539 atomic_dec(&pd->usecnt); 1540 1541 return ret; 1542 } 1543 EXPORT_SYMBOL(ib_dealloc_fmr); 1544 1545 /* Multicast groups */ 1546 1547 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1548 { 1549 int ret; 1550 1551 if (!qp->device->attach_mcast) 1552 return -ENOSYS; 1553 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || 1554 lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 1555 lid == be16_to_cpu(IB_LID_PERMISSIVE)) 1556 return -EINVAL; 1557 1558 ret = qp->device->attach_mcast(qp, gid, lid); 1559 if (!ret) 1560 atomic_inc(&qp->usecnt); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(ib_attach_mcast); 1564 1565 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1566 { 1567 int ret; 1568 1569 if (!qp->device->detach_mcast) 1570 return -ENOSYS; 1571 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || 1572 lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 1573 lid == be16_to_cpu(IB_LID_PERMISSIVE)) 1574 return -EINVAL; 1575 1576 ret = qp->device->detach_mcast(qp, gid, lid); 1577 if (!ret) 1578 atomic_dec(&qp->usecnt); 1579 return ret; 1580 } 1581 EXPORT_SYMBOL(ib_detach_mcast); 1582 1583 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) 1584 { 1585 struct ib_xrcd *xrcd; 1586 1587 if (!device->alloc_xrcd) 1588 return ERR_PTR(-ENOSYS); 1589 1590 xrcd = device->alloc_xrcd(device, NULL, NULL); 1591 if (!IS_ERR(xrcd)) { 1592 xrcd->device = device; 1593 xrcd->inode = NULL; 1594 atomic_set(&xrcd->usecnt, 0); 1595 mutex_init(&xrcd->tgt_qp_mutex); 1596 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1597 } 1598 1599 return xrcd; 1600 } 1601 EXPORT_SYMBOL(ib_alloc_xrcd); 1602 1603 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1604 { 1605 struct ib_qp *qp; 1606 int ret; 1607 1608 if (atomic_read(&xrcd->usecnt)) 1609 return -EBUSY; 1610 1611 while (!list_empty(&xrcd->tgt_qp_list)) { 1612 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1613 ret = ib_destroy_qp(qp); 1614 if (ret) 1615 return ret; 1616 } 1617 1618 return xrcd->device->dealloc_xrcd(xrcd); 1619 } 1620 EXPORT_SYMBOL(ib_dealloc_xrcd); 1621 1622 /** 1623 * ib_create_wq - Creates a WQ associated with the specified protection 1624 * domain. 1625 * @pd: The protection domain associated with the WQ. 1626 * @wq_init_attr: A list of initial attributes required to create the 1627 * WQ. If WQ creation succeeds, then the attributes are updated to 1628 * the actual capabilities of the created WQ. 1629 * 1630 * wq_init_attr->max_wr and wq_init_attr->max_sge determine 1631 * the requested size of the WQ, and set to the actual values allocated 1632 * on return. 1633 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 1634 * at least as large as the requested values. 1635 */ 1636 struct ib_wq *ib_create_wq(struct ib_pd *pd, 1637 struct ib_wq_init_attr *wq_attr) 1638 { 1639 struct ib_wq *wq; 1640 1641 if (!pd->device->create_wq) 1642 return ERR_PTR(-ENOSYS); 1643 1644 wq = pd->device->create_wq(pd, wq_attr, NULL); 1645 if (!IS_ERR(wq)) { 1646 wq->event_handler = wq_attr->event_handler; 1647 wq->wq_context = wq_attr->wq_context; 1648 wq->wq_type = wq_attr->wq_type; 1649 wq->cq = wq_attr->cq; 1650 wq->device = pd->device; 1651 wq->pd = pd; 1652 wq->uobject = NULL; 1653 atomic_inc(&pd->usecnt); 1654 atomic_inc(&wq_attr->cq->usecnt); 1655 atomic_set(&wq->usecnt, 0); 1656 } 1657 return wq; 1658 } 1659 EXPORT_SYMBOL(ib_create_wq); 1660 1661 /** 1662 * ib_destroy_wq - Destroys the specified WQ. 1663 * @wq: The WQ to destroy. 1664 */ 1665 int ib_destroy_wq(struct ib_wq *wq) 1666 { 1667 int err; 1668 struct ib_cq *cq = wq->cq; 1669 struct ib_pd *pd = wq->pd; 1670 1671 if (atomic_read(&wq->usecnt)) 1672 return -EBUSY; 1673 1674 err = wq->device->destroy_wq(wq); 1675 if (!err) { 1676 atomic_dec(&pd->usecnt); 1677 atomic_dec(&cq->usecnt); 1678 } 1679 return err; 1680 } 1681 EXPORT_SYMBOL(ib_destroy_wq); 1682 1683 /** 1684 * ib_modify_wq - Modifies the specified WQ. 1685 * @wq: The WQ to modify. 1686 * @wq_attr: On input, specifies the WQ attributes to modify. 1687 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 1688 * are being modified. 1689 * On output, the current values of selected WQ attributes are returned. 1690 */ 1691 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 1692 u32 wq_attr_mask) 1693 { 1694 int err; 1695 1696 if (!wq->device->modify_wq) 1697 return -ENOSYS; 1698 1699 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); 1700 return err; 1701 } 1702 EXPORT_SYMBOL(ib_modify_wq); 1703 1704 /* 1705 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 1706 * @device: The device on which to create the rwq indirection table. 1707 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 1708 * create the Indirection Table. 1709 * 1710 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 1711 * than the created ib_rwq_ind_table object and the caller is responsible 1712 * for its memory allocation/free. 1713 */ 1714 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 1715 struct ib_rwq_ind_table_init_attr *init_attr) 1716 { 1717 struct ib_rwq_ind_table *rwq_ind_table; 1718 int i; 1719 u32 table_size; 1720 1721 if (!device->create_rwq_ind_table) 1722 return ERR_PTR(-ENOSYS); 1723 1724 table_size = (1 << init_attr->log_ind_tbl_size); 1725 rwq_ind_table = device->create_rwq_ind_table(device, 1726 init_attr, NULL); 1727 if (IS_ERR(rwq_ind_table)) 1728 return rwq_ind_table; 1729 1730 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 1731 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 1732 rwq_ind_table->device = device; 1733 rwq_ind_table->uobject = NULL; 1734 atomic_set(&rwq_ind_table->usecnt, 0); 1735 1736 for (i = 0; i < table_size; i++) 1737 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 1738 1739 return rwq_ind_table; 1740 } 1741 EXPORT_SYMBOL(ib_create_rwq_ind_table); 1742 1743 /* 1744 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 1745 * @wq_ind_table: The Indirection Table to destroy. 1746 */ 1747 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 1748 { 1749 int err, i; 1750 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 1751 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 1752 1753 if (atomic_read(&rwq_ind_table->usecnt)) 1754 return -EBUSY; 1755 1756 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); 1757 if (!err) { 1758 for (i = 0; i < table_size; i++) 1759 atomic_dec(&ind_tbl[i]->usecnt); 1760 } 1761 1762 return err; 1763 } 1764 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 1765 1766 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1767 struct ib_flow_attr *flow_attr, 1768 int domain) 1769 { 1770 struct ib_flow *flow_id; 1771 if (!qp->device->create_flow) 1772 return ERR_PTR(-ENOSYS); 1773 1774 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1775 if (!IS_ERR(flow_id)) { 1776 atomic_inc(&qp->usecnt); 1777 flow_id->qp = qp; 1778 } 1779 return flow_id; 1780 } 1781 EXPORT_SYMBOL(ib_create_flow); 1782 1783 int ib_destroy_flow(struct ib_flow *flow_id) 1784 { 1785 int err; 1786 struct ib_qp *qp = flow_id->qp; 1787 1788 err = qp->device->destroy_flow(flow_id); 1789 if (!err) 1790 atomic_dec(&qp->usecnt); 1791 return err; 1792 } 1793 EXPORT_SYMBOL(ib_destroy_flow); 1794 1795 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 1796 struct ib_mr_status *mr_status) 1797 { 1798 return mr->device->check_mr_status ? 1799 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 1800 } 1801 EXPORT_SYMBOL(ib_check_mr_status); 1802 1803 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 1804 int state) 1805 { 1806 if (!device->set_vf_link_state) 1807 return -ENOSYS; 1808 1809 return device->set_vf_link_state(device, vf, port, state); 1810 } 1811 EXPORT_SYMBOL(ib_set_vf_link_state); 1812 1813 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 1814 struct ifla_vf_info *info) 1815 { 1816 if (!device->get_vf_config) 1817 return -ENOSYS; 1818 1819 return device->get_vf_config(device, vf, port, info); 1820 } 1821 EXPORT_SYMBOL(ib_get_vf_config); 1822 1823 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 1824 struct ifla_vf_stats *stats) 1825 { 1826 if (!device->get_vf_stats) 1827 return -ENOSYS; 1828 1829 return device->get_vf_stats(device, vf, port, stats); 1830 } 1831 EXPORT_SYMBOL(ib_get_vf_stats); 1832 1833 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 1834 int type) 1835 { 1836 if (!device->set_vf_guid) 1837 return -ENOSYS; 1838 1839 return device->set_vf_guid(device, vf, port, guid, type); 1840 } 1841 EXPORT_SYMBOL(ib_set_vf_guid); 1842 1843 /** 1844 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 1845 * and set it the memory region. 1846 * @mr: memory region 1847 * @sg: dma mapped scatterlist 1848 * @sg_nents: number of entries in sg 1849 * @sg_offset: offset in bytes into sg 1850 * @page_size: page vector desired page size 1851 * 1852 * Constraints: 1853 * - The first sg element is allowed to have an offset. 1854 * - Each sg element must either be aligned to page_size or virtually 1855 * contiguous to the previous element. In case an sg element has a 1856 * non-contiguous offset, the mapping prefix will not include it. 1857 * - The last sg element is allowed to have length less than page_size. 1858 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 1859 * then only max_num_sg entries will be mapped. 1860 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 1861 * constraints holds and the page_size argument is ignored. 1862 * 1863 * Returns the number of sg elements that were mapped to the memory region. 1864 * 1865 * After this completes successfully, the memory region 1866 * is ready for registration. 1867 */ 1868 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 1869 unsigned int *sg_offset, unsigned int page_size) 1870 { 1871 if (unlikely(!mr->device->map_mr_sg)) 1872 return -ENOSYS; 1873 1874 mr->page_size = page_size; 1875 1876 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 1877 } 1878 EXPORT_SYMBOL(ib_map_mr_sg); 1879 1880 /** 1881 * ib_sg_to_pages() - Convert the largest prefix of a sg list 1882 * to a page vector 1883 * @mr: memory region 1884 * @sgl: dma mapped scatterlist 1885 * @sg_nents: number of entries in sg 1886 * @sg_offset_p: IN: start offset in bytes into sg 1887 * OUT: offset in bytes for element n of the sg of the first 1888 * byte that has not been processed where n is the return 1889 * value of this function. 1890 * @set_page: driver page assignment function pointer 1891 * 1892 * Core service helper for drivers to convert the largest 1893 * prefix of given sg list to a page vector. The sg list 1894 * prefix converted is the prefix that meet the requirements 1895 * of ib_map_mr_sg. 1896 * 1897 * Returns the number of sg elements that were assigned to 1898 * a page vector. 1899 */ 1900 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 1901 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 1902 { 1903 struct scatterlist *sg; 1904 u64 last_end_dma_addr = 0; 1905 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 1906 unsigned int last_page_off = 0; 1907 u64 page_mask = ~((u64)mr->page_size - 1); 1908 int i, ret; 1909 1910 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 1911 return -EINVAL; 1912 1913 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 1914 mr->length = 0; 1915 1916 for_each_sg(sgl, sg, sg_nents, i) { 1917 u64 dma_addr = sg_dma_address(sg) + sg_offset; 1918 u64 prev_addr = dma_addr; 1919 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 1920 u64 end_dma_addr = dma_addr + dma_len; 1921 u64 page_addr = dma_addr & page_mask; 1922 1923 /* 1924 * For the second and later elements, check whether either the 1925 * end of element i-1 or the start of element i is not aligned 1926 * on a page boundary. 1927 */ 1928 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 1929 /* Stop mapping if there is a gap. */ 1930 if (last_end_dma_addr != dma_addr) 1931 break; 1932 1933 /* 1934 * Coalesce this element with the last. If it is small 1935 * enough just update mr->length. Otherwise start 1936 * mapping from the next page. 1937 */ 1938 goto next_page; 1939 } 1940 1941 do { 1942 ret = set_page(mr, page_addr); 1943 if (unlikely(ret < 0)) { 1944 sg_offset = prev_addr - sg_dma_address(sg); 1945 mr->length += prev_addr - dma_addr; 1946 if (sg_offset_p) 1947 *sg_offset_p = sg_offset; 1948 return i || sg_offset ? i : ret; 1949 } 1950 prev_addr = page_addr; 1951 next_page: 1952 page_addr += mr->page_size; 1953 } while (page_addr < end_dma_addr); 1954 1955 mr->length += dma_len; 1956 last_end_dma_addr = end_dma_addr; 1957 last_page_off = end_dma_addr & ~page_mask; 1958 1959 sg_offset = 0; 1960 } 1961 1962 if (sg_offset_p) 1963 *sg_offset_p = 0; 1964 return i; 1965 } 1966 EXPORT_SYMBOL(ib_sg_to_pages); 1967 1968 struct ib_drain_cqe { 1969 struct ib_cqe cqe; 1970 struct completion done; 1971 }; 1972 1973 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 1974 { 1975 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 1976 cqe); 1977 1978 complete(&cqe->done); 1979 } 1980 1981 /* 1982 * Post a WR and block until its completion is reaped for the SQ. 1983 */ 1984 static void __ib_drain_sq(struct ib_qp *qp) 1985 { 1986 struct ib_cq *cq = qp->send_cq; 1987 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 1988 struct ib_drain_cqe sdrain; 1989 struct ib_send_wr swr = {}, *bad_swr; 1990 int ret; 1991 1992 swr.wr_cqe = &sdrain.cqe; 1993 sdrain.cqe.done = ib_drain_qp_done; 1994 init_completion(&sdrain.done); 1995 1996 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 1997 if (ret) { 1998 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 1999 return; 2000 } 2001 2002 ret = ib_post_send(qp, &swr, &bad_swr); 2003 if (ret) { 2004 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2005 return; 2006 } 2007 2008 if (cq->poll_ctx == IB_POLL_DIRECT) 2009 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2010 ib_process_cq_direct(cq, -1); 2011 else 2012 wait_for_completion(&sdrain.done); 2013 } 2014 2015 /* 2016 * Post a WR and block until its completion is reaped for the RQ. 2017 */ 2018 static void __ib_drain_rq(struct ib_qp *qp) 2019 { 2020 struct ib_cq *cq = qp->recv_cq; 2021 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2022 struct ib_drain_cqe rdrain; 2023 struct ib_recv_wr rwr = {}, *bad_rwr; 2024 int ret; 2025 2026 rwr.wr_cqe = &rdrain.cqe; 2027 rdrain.cqe.done = ib_drain_qp_done; 2028 init_completion(&rdrain.done); 2029 2030 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2031 if (ret) { 2032 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2033 return; 2034 } 2035 2036 ret = ib_post_recv(qp, &rwr, &bad_rwr); 2037 if (ret) { 2038 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2039 return; 2040 } 2041 2042 if (cq->poll_ctx == IB_POLL_DIRECT) 2043 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2044 ib_process_cq_direct(cq, -1); 2045 else 2046 wait_for_completion(&rdrain.done); 2047 } 2048 2049 /** 2050 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2051 * application. 2052 * @qp: queue pair to drain 2053 * 2054 * If the device has a provider-specific drain function, then 2055 * call that. Otherwise call the generic drain function 2056 * __ib_drain_sq(). 2057 * 2058 * The caller must: 2059 * 2060 * ensure there is room in the CQ and SQ for the drain work request and 2061 * completion. 2062 * 2063 * allocate the CQ using ib_alloc_cq(). 2064 * 2065 * ensure that there are no other contexts that are posting WRs concurrently. 2066 * Otherwise the drain is not guaranteed. 2067 */ 2068 void ib_drain_sq(struct ib_qp *qp) 2069 { 2070 if (qp->device->drain_sq) 2071 qp->device->drain_sq(qp); 2072 else 2073 __ib_drain_sq(qp); 2074 } 2075 EXPORT_SYMBOL(ib_drain_sq); 2076 2077 /** 2078 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2079 * application. 2080 * @qp: queue pair to drain 2081 * 2082 * If the device has a provider-specific drain function, then 2083 * call that. Otherwise call the generic drain function 2084 * __ib_drain_rq(). 2085 * 2086 * The caller must: 2087 * 2088 * ensure there is room in the CQ and RQ for the drain work request and 2089 * completion. 2090 * 2091 * allocate the CQ using ib_alloc_cq(). 2092 * 2093 * ensure that there are no other contexts that are posting WRs concurrently. 2094 * Otherwise the drain is not guaranteed. 2095 */ 2096 void ib_drain_rq(struct ib_qp *qp) 2097 { 2098 if (qp->device->drain_rq) 2099 qp->device->drain_rq(qp); 2100 else 2101 __ib_drain_rq(qp); 2102 } 2103 EXPORT_SYMBOL(ib_drain_rq); 2104 2105 /** 2106 * ib_drain_qp() - Block until all CQEs have been consumed by the 2107 * application on both the RQ and SQ. 2108 * @qp: queue pair to drain 2109 * 2110 * The caller must: 2111 * 2112 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2113 * and completions. 2114 * 2115 * allocate the CQs using ib_alloc_cq(). 2116 * 2117 * ensure that there are no other contexts that are posting WRs concurrently. 2118 * Otherwise the drain is not guaranteed. 2119 */ 2120 void ib_drain_qp(struct ib_qp *qp) 2121 { 2122 ib_drain_sq(qp); 2123 if (!qp->srq) 2124 ib_drain_rq(qp); 2125 } 2126 EXPORT_SYMBOL(ib_drain_qp); 2127