1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 #include <rdma/lag.h> 54 55 #include "core_priv.h" 56 #include <trace/events/rdma_core.h> 57 58 static int ib_resolve_eth_dmac(struct ib_device *device, 59 struct rdma_ah_attr *ah_attr); 60 61 static const char * const ib_events[] = { 62 [IB_EVENT_CQ_ERR] = "CQ error", 63 [IB_EVENT_QP_FATAL] = "QP fatal error", 64 [IB_EVENT_QP_REQ_ERR] = "QP request error", 65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 66 [IB_EVENT_COMM_EST] = "communication established", 67 [IB_EVENT_SQ_DRAINED] = "send queue drained", 68 [IB_EVENT_PATH_MIG] = "path migration successful", 69 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 70 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 71 [IB_EVENT_PORT_ACTIVE] = "port active", 72 [IB_EVENT_PORT_ERR] = "port error", 73 [IB_EVENT_LID_CHANGE] = "LID change", 74 [IB_EVENT_PKEY_CHANGE] = "P_key change", 75 [IB_EVENT_SM_CHANGE] = "SM change", 76 [IB_EVENT_SRQ_ERR] = "SRQ error", 77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 80 [IB_EVENT_GID_CHANGE] = "GID changed", 81 }; 82 83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 84 { 85 size_t index = event; 86 87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 88 ib_events[index] : "unrecognized event"; 89 } 90 EXPORT_SYMBOL(ib_event_msg); 91 92 static const char * const wc_statuses[] = { 93 [IB_WC_SUCCESS] = "success", 94 [IB_WC_LOC_LEN_ERR] = "local length error", 95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 97 [IB_WC_LOC_PROT_ERR] = "local protection error", 98 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 99 [IB_WC_MW_BIND_ERR] = "memory bind operation error", 100 [IB_WC_BAD_RESP_ERR] = "bad response error", 101 [IB_WC_LOC_ACCESS_ERR] = "local access error", 102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error", 103 [IB_WC_REM_ACCESS_ERR] = "remote access error", 104 [IB_WC_REM_OP_ERR] = "remote operation error", 105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 109 [IB_WC_REM_ABORT_ERR] = "operation aborted", 110 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 112 [IB_WC_FATAL_ERR] = "fatal error", 113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 114 [IB_WC_GENERAL_ERR] = "general error", 115 }; 116 117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 118 { 119 size_t index = status; 120 121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 122 wc_statuses[index] : "unrecognized status"; 123 } 124 EXPORT_SYMBOL(ib_wc_status_msg); 125 126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 127 { 128 switch (rate) { 129 case IB_RATE_2_5_GBPS: return 1; 130 case IB_RATE_5_GBPS: return 2; 131 case IB_RATE_10_GBPS: return 4; 132 case IB_RATE_20_GBPS: return 8; 133 case IB_RATE_30_GBPS: return 12; 134 case IB_RATE_40_GBPS: return 16; 135 case IB_RATE_60_GBPS: return 24; 136 case IB_RATE_80_GBPS: return 32; 137 case IB_RATE_120_GBPS: return 48; 138 case IB_RATE_14_GBPS: return 6; 139 case IB_RATE_56_GBPS: return 22; 140 case IB_RATE_112_GBPS: return 45; 141 case IB_RATE_168_GBPS: return 67; 142 case IB_RATE_25_GBPS: return 10; 143 case IB_RATE_100_GBPS: return 40; 144 case IB_RATE_200_GBPS: return 80; 145 case IB_RATE_300_GBPS: return 120; 146 case IB_RATE_28_GBPS: return 11; 147 case IB_RATE_50_GBPS: return 20; 148 case IB_RATE_400_GBPS: return 160; 149 case IB_RATE_600_GBPS: return 240; 150 default: return -1; 151 } 152 } 153 EXPORT_SYMBOL(ib_rate_to_mult); 154 155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 156 { 157 switch (mult) { 158 case 1: return IB_RATE_2_5_GBPS; 159 case 2: return IB_RATE_5_GBPS; 160 case 4: return IB_RATE_10_GBPS; 161 case 8: return IB_RATE_20_GBPS; 162 case 12: return IB_RATE_30_GBPS; 163 case 16: return IB_RATE_40_GBPS; 164 case 24: return IB_RATE_60_GBPS; 165 case 32: return IB_RATE_80_GBPS; 166 case 48: return IB_RATE_120_GBPS; 167 case 6: return IB_RATE_14_GBPS; 168 case 22: return IB_RATE_56_GBPS; 169 case 45: return IB_RATE_112_GBPS; 170 case 67: return IB_RATE_168_GBPS; 171 case 10: return IB_RATE_25_GBPS; 172 case 40: return IB_RATE_100_GBPS; 173 case 80: return IB_RATE_200_GBPS; 174 case 120: return IB_RATE_300_GBPS; 175 case 11: return IB_RATE_28_GBPS; 176 case 20: return IB_RATE_50_GBPS; 177 case 160: return IB_RATE_400_GBPS; 178 case 240: return IB_RATE_600_GBPS; 179 default: return IB_RATE_PORT_CURRENT; 180 } 181 } 182 EXPORT_SYMBOL(mult_to_ib_rate); 183 184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 185 { 186 switch (rate) { 187 case IB_RATE_2_5_GBPS: return 2500; 188 case IB_RATE_5_GBPS: return 5000; 189 case IB_RATE_10_GBPS: return 10000; 190 case IB_RATE_20_GBPS: return 20000; 191 case IB_RATE_30_GBPS: return 30000; 192 case IB_RATE_40_GBPS: return 40000; 193 case IB_RATE_60_GBPS: return 60000; 194 case IB_RATE_80_GBPS: return 80000; 195 case IB_RATE_120_GBPS: return 120000; 196 case IB_RATE_14_GBPS: return 14062; 197 case IB_RATE_56_GBPS: return 56250; 198 case IB_RATE_112_GBPS: return 112500; 199 case IB_RATE_168_GBPS: return 168750; 200 case IB_RATE_25_GBPS: return 25781; 201 case IB_RATE_100_GBPS: return 103125; 202 case IB_RATE_200_GBPS: return 206250; 203 case IB_RATE_300_GBPS: return 309375; 204 case IB_RATE_28_GBPS: return 28125; 205 case IB_RATE_50_GBPS: return 53125; 206 case IB_RATE_400_GBPS: return 425000; 207 case IB_RATE_600_GBPS: return 637500; 208 default: return -1; 209 } 210 } 211 EXPORT_SYMBOL(ib_rate_to_mbps); 212 213 __attribute_const__ enum rdma_transport_type 214 rdma_node_get_transport(unsigned int node_type) 215 { 216 217 if (node_type == RDMA_NODE_USNIC) 218 return RDMA_TRANSPORT_USNIC; 219 if (node_type == RDMA_NODE_USNIC_UDP) 220 return RDMA_TRANSPORT_USNIC_UDP; 221 if (node_type == RDMA_NODE_RNIC) 222 return RDMA_TRANSPORT_IWARP; 223 if (node_type == RDMA_NODE_UNSPECIFIED) 224 return RDMA_TRANSPORT_UNSPECIFIED; 225 226 return RDMA_TRANSPORT_IB; 227 } 228 EXPORT_SYMBOL(rdma_node_get_transport); 229 230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 231 u32 port_num) 232 { 233 enum rdma_transport_type lt; 234 if (device->ops.get_link_layer) 235 return device->ops.get_link_layer(device, port_num); 236 237 lt = rdma_node_get_transport(device->node_type); 238 if (lt == RDMA_TRANSPORT_IB) 239 return IB_LINK_LAYER_INFINIBAND; 240 241 return IB_LINK_LAYER_ETHERNET; 242 } 243 EXPORT_SYMBOL(rdma_port_get_link_layer); 244 245 /* Protection domains */ 246 247 /** 248 * __ib_alloc_pd - Allocates an unused protection domain. 249 * @device: The device on which to allocate the protection domain. 250 * @flags: protection domain flags 251 * @caller: caller's build-time module name 252 * 253 * A protection domain object provides an association between QPs, shared 254 * receive queues, address handles, memory regions, and memory windows. 255 * 256 * Every PD has a local_dma_lkey which can be used as the lkey value for local 257 * memory operations. 258 */ 259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 260 const char *caller) 261 { 262 struct ib_pd *pd; 263 int mr_access_flags = 0; 264 int ret; 265 266 pd = rdma_zalloc_drv_obj(device, ib_pd); 267 if (!pd) 268 return ERR_PTR(-ENOMEM); 269 270 pd->device = device; 271 pd->flags = flags; 272 273 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); 274 rdma_restrack_set_name(&pd->res, caller); 275 276 ret = device->ops.alloc_pd(pd, NULL); 277 if (ret) { 278 rdma_restrack_put(&pd->res); 279 kfree(pd); 280 return ERR_PTR(ret); 281 } 282 rdma_restrack_add(&pd->res); 283 284 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 285 pd->local_dma_lkey = device->local_dma_lkey; 286 else 287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 288 289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 290 pr_warn("%s: enabling unsafe global rkey\n", caller); 291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 292 } 293 294 if (mr_access_flags) { 295 struct ib_mr *mr; 296 297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 298 if (IS_ERR(mr)) { 299 ib_dealloc_pd(pd); 300 return ERR_CAST(mr); 301 } 302 303 mr->device = pd->device; 304 mr->pd = pd; 305 mr->type = IB_MR_TYPE_DMA; 306 mr->uobject = NULL; 307 mr->need_inval = false; 308 309 pd->__internal_mr = mr; 310 311 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 312 pd->local_dma_lkey = pd->__internal_mr->lkey; 313 314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 315 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 316 } 317 318 return pd; 319 } 320 EXPORT_SYMBOL(__ib_alloc_pd); 321 322 /** 323 * ib_dealloc_pd_user - Deallocates a protection domain. 324 * @pd: The protection domain to deallocate. 325 * @udata: Valid user data or NULL for kernel object 326 * 327 * It is an error to call this function while any resources in the pd still 328 * exist. The caller is responsible to synchronously destroy them and 329 * guarantee no new allocations will happen. 330 */ 331 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 332 { 333 int ret; 334 335 if (pd->__internal_mr) { 336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 337 WARN_ON(ret); 338 pd->__internal_mr = NULL; 339 } 340 341 ret = pd->device->ops.dealloc_pd(pd, udata); 342 if (ret) 343 return ret; 344 345 rdma_restrack_del(&pd->res); 346 kfree(pd); 347 return ret; 348 } 349 EXPORT_SYMBOL(ib_dealloc_pd_user); 350 351 /* Address handles */ 352 353 /** 354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 355 * @dest: Pointer to destination ah_attr. Contents of the destination 356 * pointer is assumed to be invalid and attribute are overwritten. 357 * @src: Pointer to source ah_attr. 358 */ 359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 360 const struct rdma_ah_attr *src) 361 { 362 *dest = *src; 363 if (dest->grh.sgid_attr) 364 rdma_hold_gid_attr(dest->grh.sgid_attr); 365 } 366 EXPORT_SYMBOL(rdma_copy_ah_attr); 367 368 /** 369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 370 * @old: Pointer to existing ah_attr which needs to be replaced. 371 * old is assumed to be valid or zero'd 372 * @new: Pointer to the new ah_attr. 373 * 374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 375 * old the ah_attr is valid; after that it copies the new attribute and holds 376 * the reference to the replaced ah_attr. 377 */ 378 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 379 const struct rdma_ah_attr *new) 380 { 381 rdma_destroy_ah_attr(old); 382 *old = *new; 383 if (old->grh.sgid_attr) 384 rdma_hold_gid_attr(old->grh.sgid_attr); 385 } 386 EXPORT_SYMBOL(rdma_replace_ah_attr); 387 388 /** 389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 390 * @dest: Pointer to destination ah_attr to copy to. 391 * dest is assumed to be valid or zero'd 392 * @src: Pointer to the new ah_attr. 393 * 394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 395 * if it is valid. This also transfers ownership of internal references from 396 * src to dest, making src invalid in the process. No new reference of the src 397 * ah_attr is taken. 398 */ 399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 400 { 401 rdma_destroy_ah_attr(dest); 402 *dest = *src; 403 src->grh.sgid_attr = NULL; 404 } 405 EXPORT_SYMBOL(rdma_move_ah_attr); 406 407 /* 408 * Validate that the rdma_ah_attr is valid for the device before passing it 409 * off to the driver. 410 */ 411 static int rdma_check_ah_attr(struct ib_device *device, 412 struct rdma_ah_attr *ah_attr) 413 { 414 if (!rdma_is_port_valid(device, ah_attr->port_num)) 415 return -EINVAL; 416 417 if ((rdma_is_grh_required(device, ah_attr->port_num) || 418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 419 !(ah_attr->ah_flags & IB_AH_GRH)) 420 return -EINVAL; 421 422 if (ah_attr->grh.sgid_attr) { 423 /* 424 * Make sure the passed sgid_attr is consistent with the 425 * parameters 426 */ 427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 429 return -EINVAL; 430 } 431 return 0; 432 } 433 434 /* 435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 436 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 437 */ 438 static int rdma_fill_sgid_attr(struct ib_device *device, 439 struct rdma_ah_attr *ah_attr, 440 const struct ib_gid_attr **old_sgid_attr) 441 { 442 const struct ib_gid_attr *sgid_attr; 443 struct ib_global_route *grh; 444 int ret; 445 446 *old_sgid_attr = ah_attr->grh.sgid_attr; 447 448 ret = rdma_check_ah_attr(device, ah_attr); 449 if (ret) 450 return ret; 451 452 if (!(ah_attr->ah_flags & IB_AH_GRH)) 453 return 0; 454 455 grh = rdma_ah_retrieve_grh(ah_attr); 456 if (grh->sgid_attr) 457 return 0; 458 459 sgid_attr = 460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 461 if (IS_ERR(sgid_attr)) 462 return PTR_ERR(sgid_attr); 463 464 /* Move ownerhip of the kref into the ah_attr */ 465 grh->sgid_attr = sgid_attr; 466 return 0; 467 } 468 469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 470 const struct ib_gid_attr *old_sgid_attr) 471 { 472 /* 473 * Fill didn't change anything, the caller retains ownership of 474 * whatever it passed 475 */ 476 if (ah_attr->grh.sgid_attr == old_sgid_attr) 477 return; 478 479 /* 480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 481 * doesn't see any change in the rdma_ah_attr. If we get here 482 * old_sgid_attr is NULL. 483 */ 484 rdma_destroy_ah_attr(ah_attr); 485 } 486 487 static const struct ib_gid_attr * 488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 489 const struct ib_gid_attr *old_attr) 490 { 491 if (old_attr) 492 rdma_put_gid_attr(old_attr); 493 if (ah_attr->ah_flags & IB_AH_GRH) { 494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 495 return ah_attr->grh.sgid_attr; 496 } 497 return NULL; 498 } 499 500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 501 struct rdma_ah_attr *ah_attr, 502 u32 flags, 503 struct ib_udata *udata, 504 struct net_device *xmit_slave) 505 { 506 struct rdma_ah_init_attr init_attr = {}; 507 struct ib_device *device = pd->device; 508 struct ib_ah *ah; 509 int ret; 510 511 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 512 513 if (!udata && !device->ops.create_ah) 514 return ERR_PTR(-EOPNOTSUPP); 515 516 ah = rdma_zalloc_drv_obj_gfp( 517 device, ib_ah, 518 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 519 if (!ah) 520 return ERR_PTR(-ENOMEM); 521 522 ah->device = device; 523 ah->pd = pd; 524 ah->type = ah_attr->type; 525 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 526 init_attr.ah_attr = ah_attr; 527 init_attr.flags = flags; 528 init_attr.xmit_slave = xmit_slave; 529 530 if (udata) 531 ret = device->ops.create_user_ah(ah, &init_attr, udata); 532 else 533 ret = device->ops.create_ah(ah, &init_attr, NULL); 534 if (ret) { 535 kfree(ah); 536 return ERR_PTR(ret); 537 } 538 539 atomic_inc(&pd->usecnt); 540 return ah; 541 } 542 543 /** 544 * rdma_create_ah - Creates an address handle for the 545 * given address vector. 546 * @pd: The protection domain associated with the address handle. 547 * @ah_attr: The attributes of the address vector. 548 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 549 * 550 * It returns 0 on success and returns appropriate error code on error. 551 * The address handle is used to reference a local or global destination 552 * in all UD QP post sends. 553 */ 554 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 555 u32 flags) 556 { 557 const struct ib_gid_attr *old_sgid_attr; 558 struct net_device *slave; 559 struct ib_ah *ah; 560 int ret; 561 562 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 563 if (ret) 564 return ERR_PTR(ret); 565 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, 566 (flags & RDMA_CREATE_AH_SLEEPABLE) ? 567 GFP_KERNEL : GFP_ATOMIC); 568 if (IS_ERR(slave)) { 569 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 570 return (void *)slave; 571 } 572 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); 573 rdma_lag_put_ah_roce_slave(slave); 574 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 575 return ah; 576 } 577 EXPORT_SYMBOL(rdma_create_ah); 578 579 /** 580 * rdma_create_user_ah - Creates an address handle for the 581 * given address vector. 582 * It resolves destination mac address for ah attribute of RoCE type. 583 * @pd: The protection domain associated with the address handle. 584 * @ah_attr: The attributes of the address vector. 585 * @udata: pointer to user's input output buffer information need by 586 * provider driver. 587 * 588 * It returns 0 on success and returns appropriate error code on error. 589 * The address handle is used to reference a local or global destination 590 * in all UD QP post sends. 591 */ 592 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 593 struct rdma_ah_attr *ah_attr, 594 struct ib_udata *udata) 595 { 596 const struct ib_gid_attr *old_sgid_attr; 597 struct ib_ah *ah; 598 int err; 599 600 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 601 if (err) 602 return ERR_PTR(err); 603 604 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 605 err = ib_resolve_eth_dmac(pd->device, ah_attr); 606 if (err) { 607 ah = ERR_PTR(err); 608 goto out; 609 } 610 } 611 612 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, 613 udata, NULL); 614 615 out: 616 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 617 return ah; 618 } 619 EXPORT_SYMBOL(rdma_create_user_ah); 620 621 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 622 { 623 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 624 struct iphdr ip4h_checked; 625 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 626 627 /* If it's IPv6, the version must be 6, otherwise, the first 628 * 20 bytes (before the IPv4 header) are garbled. 629 */ 630 if (ip6h->version != 6) 631 return (ip4h->version == 4) ? 4 : 0; 632 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 633 634 /* RoCE v2 requires no options, thus header length 635 * must be 5 words 636 */ 637 if (ip4h->ihl != 5) 638 return 6; 639 640 /* Verify checksum. 641 * We can't write on scattered buffers so we need to copy to 642 * temp buffer. 643 */ 644 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 645 ip4h_checked.check = 0; 646 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 647 /* if IPv4 header checksum is OK, believe it */ 648 if (ip4h->check == ip4h_checked.check) 649 return 4; 650 return 6; 651 } 652 EXPORT_SYMBOL(ib_get_rdma_header_version); 653 654 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 655 u32 port_num, 656 const struct ib_grh *grh) 657 { 658 int grh_version; 659 660 if (rdma_protocol_ib(device, port_num)) 661 return RDMA_NETWORK_IB; 662 663 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 664 665 if (grh_version == 4) 666 return RDMA_NETWORK_IPV4; 667 668 if (grh->next_hdr == IPPROTO_UDP) 669 return RDMA_NETWORK_IPV6; 670 671 return RDMA_NETWORK_ROCE_V1; 672 } 673 674 struct find_gid_index_context { 675 u16 vlan_id; 676 enum ib_gid_type gid_type; 677 }; 678 679 static bool find_gid_index(const union ib_gid *gid, 680 const struct ib_gid_attr *gid_attr, 681 void *context) 682 { 683 struct find_gid_index_context *ctx = context; 684 u16 vlan_id = 0xffff; 685 int ret; 686 687 if (ctx->gid_type != gid_attr->gid_type) 688 return false; 689 690 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 691 if (ret) 692 return false; 693 694 return ctx->vlan_id == vlan_id; 695 } 696 697 static const struct ib_gid_attr * 698 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num, 699 u16 vlan_id, const union ib_gid *sgid, 700 enum ib_gid_type gid_type) 701 { 702 struct find_gid_index_context context = {.vlan_id = vlan_id, 703 .gid_type = gid_type}; 704 705 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 706 &context); 707 } 708 709 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 710 enum rdma_network_type net_type, 711 union ib_gid *sgid, union ib_gid *dgid) 712 { 713 struct sockaddr_in src_in; 714 struct sockaddr_in dst_in; 715 __be32 src_saddr, dst_saddr; 716 717 if (!sgid || !dgid) 718 return -EINVAL; 719 720 if (net_type == RDMA_NETWORK_IPV4) { 721 memcpy(&src_in.sin_addr.s_addr, 722 &hdr->roce4grh.saddr, 4); 723 memcpy(&dst_in.sin_addr.s_addr, 724 &hdr->roce4grh.daddr, 4); 725 src_saddr = src_in.sin_addr.s_addr; 726 dst_saddr = dst_in.sin_addr.s_addr; 727 ipv6_addr_set_v4mapped(src_saddr, 728 (struct in6_addr *)sgid); 729 ipv6_addr_set_v4mapped(dst_saddr, 730 (struct in6_addr *)dgid); 731 return 0; 732 } else if (net_type == RDMA_NETWORK_IPV6 || 733 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) { 734 *dgid = hdr->ibgrh.dgid; 735 *sgid = hdr->ibgrh.sgid; 736 return 0; 737 } else { 738 return -EINVAL; 739 } 740 } 741 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 742 743 /* Resolve destination mac address and hop limit for unicast destination 744 * GID entry, considering the source GID entry as well. 745 * ah_attribute must have have valid port_num, sgid_index. 746 */ 747 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 748 struct rdma_ah_attr *ah_attr) 749 { 750 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 751 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 752 int hop_limit = 0xff; 753 int ret = 0; 754 755 /* If destination is link local and source GID is RoCEv1, 756 * IP stack is not used. 757 */ 758 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 759 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 760 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 761 ah_attr->roce.dmac); 762 return ret; 763 } 764 765 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 766 ah_attr->roce.dmac, 767 sgid_attr, &hop_limit); 768 769 grh->hop_limit = hop_limit; 770 return ret; 771 } 772 773 /* 774 * This function initializes address handle attributes from the incoming packet. 775 * Incoming packet has dgid of the receiver node on which this code is 776 * getting executed and, sgid contains the GID of the sender. 777 * 778 * When resolving mac address of destination, the arrived dgid is used 779 * as sgid and, sgid is used as dgid because sgid contains destinations 780 * GID whom to respond to. 781 * 782 * On success the caller is responsible to call rdma_destroy_ah_attr on the 783 * attr. 784 */ 785 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 786 const struct ib_wc *wc, const struct ib_grh *grh, 787 struct rdma_ah_attr *ah_attr) 788 { 789 u32 flow_class; 790 int ret; 791 enum rdma_network_type net_type = RDMA_NETWORK_IB; 792 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 793 const struct ib_gid_attr *sgid_attr; 794 int hoplimit = 0xff; 795 union ib_gid dgid; 796 union ib_gid sgid; 797 798 might_sleep(); 799 800 memset(ah_attr, 0, sizeof *ah_attr); 801 ah_attr->type = rdma_ah_find_type(device, port_num); 802 if (rdma_cap_eth_ah(device, port_num)) { 803 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 804 net_type = wc->network_hdr_type; 805 else 806 net_type = ib_get_net_type_by_grh(device, port_num, grh); 807 gid_type = ib_network_to_gid_type(net_type); 808 } 809 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 810 &sgid, &dgid); 811 if (ret) 812 return ret; 813 814 rdma_ah_set_sl(ah_attr, wc->sl); 815 rdma_ah_set_port_num(ah_attr, port_num); 816 817 if (rdma_protocol_roce(device, port_num)) { 818 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 819 wc->vlan_id : 0xffff; 820 821 if (!(wc->wc_flags & IB_WC_GRH)) 822 return -EPROTOTYPE; 823 824 sgid_attr = get_sgid_attr_from_eth(device, port_num, 825 vlan_id, &dgid, 826 gid_type); 827 if (IS_ERR(sgid_attr)) 828 return PTR_ERR(sgid_attr); 829 830 flow_class = be32_to_cpu(grh->version_tclass_flow); 831 rdma_move_grh_sgid_attr(ah_attr, 832 &sgid, 833 flow_class & 0xFFFFF, 834 hoplimit, 835 (flow_class >> 20) & 0xFF, 836 sgid_attr); 837 838 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 839 if (ret) 840 rdma_destroy_ah_attr(ah_attr); 841 842 return ret; 843 } else { 844 rdma_ah_set_dlid(ah_attr, wc->slid); 845 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 846 847 if ((wc->wc_flags & IB_WC_GRH) == 0) 848 return 0; 849 850 if (dgid.global.interface_id != 851 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 852 sgid_attr = rdma_find_gid_by_port( 853 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 854 } else 855 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 856 857 if (IS_ERR(sgid_attr)) 858 return PTR_ERR(sgid_attr); 859 flow_class = be32_to_cpu(grh->version_tclass_flow); 860 rdma_move_grh_sgid_attr(ah_attr, 861 &sgid, 862 flow_class & 0xFFFFF, 863 hoplimit, 864 (flow_class >> 20) & 0xFF, 865 sgid_attr); 866 867 return 0; 868 } 869 } 870 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 871 872 /** 873 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 874 * of the reference 875 * 876 * @attr: Pointer to AH attribute structure 877 * @dgid: Destination GID 878 * @flow_label: Flow label 879 * @hop_limit: Hop limit 880 * @traffic_class: traffic class 881 * @sgid_attr: Pointer to SGID attribute 882 * 883 * This takes ownership of the sgid_attr reference. The caller must ensure 884 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 885 * calling this function. 886 */ 887 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 888 u32 flow_label, u8 hop_limit, u8 traffic_class, 889 const struct ib_gid_attr *sgid_attr) 890 { 891 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 892 traffic_class); 893 attr->grh.sgid_attr = sgid_attr; 894 } 895 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 896 897 /** 898 * rdma_destroy_ah_attr - Release reference to SGID attribute of 899 * ah attribute. 900 * @ah_attr: Pointer to ah attribute 901 * 902 * Release reference to the SGID attribute of the ah attribute if it is 903 * non NULL. It is safe to call this multiple times, and safe to call it on 904 * a zero initialized ah_attr. 905 */ 906 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 907 { 908 if (ah_attr->grh.sgid_attr) { 909 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 910 ah_attr->grh.sgid_attr = NULL; 911 } 912 } 913 EXPORT_SYMBOL(rdma_destroy_ah_attr); 914 915 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 916 const struct ib_grh *grh, u32 port_num) 917 { 918 struct rdma_ah_attr ah_attr; 919 struct ib_ah *ah; 920 int ret; 921 922 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 923 if (ret) 924 return ERR_PTR(ret); 925 926 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 927 928 rdma_destroy_ah_attr(&ah_attr); 929 return ah; 930 } 931 EXPORT_SYMBOL(ib_create_ah_from_wc); 932 933 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 934 { 935 const struct ib_gid_attr *old_sgid_attr; 936 int ret; 937 938 if (ah->type != ah_attr->type) 939 return -EINVAL; 940 941 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 942 if (ret) 943 return ret; 944 945 ret = ah->device->ops.modify_ah ? 946 ah->device->ops.modify_ah(ah, ah_attr) : 947 -EOPNOTSUPP; 948 949 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 950 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 951 return ret; 952 } 953 EXPORT_SYMBOL(rdma_modify_ah); 954 955 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 956 { 957 ah_attr->grh.sgid_attr = NULL; 958 959 return ah->device->ops.query_ah ? 960 ah->device->ops.query_ah(ah, ah_attr) : 961 -EOPNOTSUPP; 962 } 963 EXPORT_SYMBOL(rdma_query_ah); 964 965 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 966 { 967 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 968 struct ib_pd *pd; 969 int ret; 970 971 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 972 973 pd = ah->pd; 974 975 ret = ah->device->ops.destroy_ah(ah, flags); 976 if (ret) 977 return ret; 978 979 atomic_dec(&pd->usecnt); 980 if (sgid_attr) 981 rdma_put_gid_attr(sgid_attr); 982 983 kfree(ah); 984 return ret; 985 } 986 EXPORT_SYMBOL(rdma_destroy_ah_user); 987 988 /* Shared receive queues */ 989 990 /** 991 * ib_create_srq_user - Creates a SRQ associated with the specified protection 992 * domain. 993 * @pd: The protection domain associated with the SRQ. 994 * @srq_init_attr: A list of initial attributes required to create the 995 * SRQ. If SRQ creation succeeds, then the attributes are updated to 996 * the actual capabilities of the created SRQ. 997 * @uobject: uobject pointer if this is not a kernel SRQ 998 * @udata: udata pointer if this is not a kernel SRQ 999 * 1000 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1001 * requested size of the SRQ, and set to the actual values allocated 1002 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1003 * will always be at least as large as the requested values. 1004 */ 1005 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 1006 struct ib_srq_init_attr *srq_init_attr, 1007 struct ib_usrq_object *uobject, 1008 struct ib_udata *udata) 1009 { 1010 struct ib_srq *srq; 1011 int ret; 1012 1013 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 1014 if (!srq) 1015 return ERR_PTR(-ENOMEM); 1016 1017 srq->device = pd->device; 1018 srq->pd = pd; 1019 srq->event_handler = srq_init_attr->event_handler; 1020 srq->srq_context = srq_init_attr->srq_context; 1021 srq->srq_type = srq_init_attr->srq_type; 1022 srq->uobject = uobject; 1023 1024 if (ib_srq_has_cq(srq->srq_type)) { 1025 srq->ext.cq = srq_init_attr->ext.cq; 1026 atomic_inc(&srq->ext.cq->usecnt); 1027 } 1028 if (srq->srq_type == IB_SRQT_XRC) { 1029 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 1030 if (srq->ext.xrc.xrcd) 1031 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 1032 } 1033 atomic_inc(&pd->usecnt); 1034 1035 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ); 1036 rdma_restrack_parent_name(&srq->res, &pd->res); 1037 1038 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); 1039 if (ret) { 1040 rdma_restrack_put(&srq->res); 1041 atomic_dec(&srq->pd->usecnt); 1042 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1043 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1044 if (ib_srq_has_cq(srq->srq_type)) 1045 atomic_dec(&srq->ext.cq->usecnt); 1046 kfree(srq); 1047 return ERR_PTR(ret); 1048 } 1049 1050 rdma_restrack_add(&srq->res); 1051 1052 return srq; 1053 } 1054 EXPORT_SYMBOL(ib_create_srq_user); 1055 1056 int ib_modify_srq(struct ib_srq *srq, 1057 struct ib_srq_attr *srq_attr, 1058 enum ib_srq_attr_mask srq_attr_mask) 1059 { 1060 return srq->device->ops.modify_srq ? 1061 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1062 NULL) : -EOPNOTSUPP; 1063 } 1064 EXPORT_SYMBOL(ib_modify_srq); 1065 1066 int ib_query_srq(struct ib_srq *srq, 1067 struct ib_srq_attr *srq_attr) 1068 { 1069 return srq->device->ops.query_srq ? 1070 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1071 } 1072 EXPORT_SYMBOL(ib_query_srq); 1073 1074 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1075 { 1076 int ret; 1077 1078 if (atomic_read(&srq->usecnt)) 1079 return -EBUSY; 1080 1081 ret = srq->device->ops.destroy_srq(srq, udata); 1082 if (ret) 1083 return ret; 1084 1085 atomic_dec(&srq->pd->usecnt); 1086 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1087 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1088 if (ib_srq_has_cq(srq->srq_type)) 1089 atomic_dec(&srq->ext.cq->usecnt); 1090 rdma_restrack_del(&srq->res); 1091 kfree(srq); 1092 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(ib_destroy_srq_user); 1096 1097 /* Queue pairs */ 1098 1099 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1100 { 1101 struct ib_qp *qp = context; 1102 unsigned long flags; 1103 1104 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1105 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1106 if (event->element.qp->event_handler) 1107 event->element.qp->event_handler(event, event->element.qp->qp_context); 1108 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1109 } 1110 1111 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1112 void (*event_handler)(struct ib_event *, void *), 1113 void *qp_context) 1114 { 1115 struct ib_qp *qp; 1116 unsigned long flags; 1117 int err; 1118 1119 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1120 if (!qp) 1121 return ERR_PTR(-ENOMEM); 1122 1123 qp->real_qp = real_qp; 1124 err = ib_open_shared_qp_security(qp, real_qp->device); 1125 if (err) { 1126 kfree(qp); 1127 return ERR_PTR(err); 1128 } 1129 1130 qp->real_qp = real_qp; 1131 atomic_inc(&real_qp->usecnt); 1132 qp->device = real_qp->device; 1133 qp->event_handler = event_handler; 1134 qp->qp_context = qp_context; 1135 qp->qp_num = real_qp->qp_num; 1136 qp->qp_type = real_qp->qp_type; 1137 1138 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1139 list_add(&qp->open_list, &real_qp->open_list); 1140 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1141 1142 return qp; 1143 } 1144 1145 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1146 struct ib_qp_open_attr *qp_open_attr) 1147 { 1148 struct ib_qp *qp, *real_qp; 1149 1150 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1151 return ERR_PTR(-EINVAL); 1152 1153 down_read(&xrcd->tgt_qps_rwsem); 1154 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); 1155 if (!real_qp) { 1156 up_read(&xrcd->tgt_qps_rwsem); 1157 return ERR_PTR(-EINVAL); 1158 } 1159 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1160 qp_open_attr->qp_context); 1161 up_read(&xrcd->tgt_qps_rwsem); 1162 return qp; 1163 } 1164 EXPORT_SYMBOL(ib_open_qp); 1165 1166 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1167 struct ib_qp_init_attr *qp_init_attr) 1168 { 1169 struct ib_qp *real_qp = qp; 1170 int err; 1171 1172 qp->event_handler = __ib_shared_qp_event_handler; 1173 qp->qp_context = qp; 1174 qp->pd = NULL; 1175 qp->send_cq = qp->recv_cq = NULL; 1176 qp->srq = NULL; 1177 qp->xrcd = qp_init_attr->xrcd; 1178 atomic_inc(&qp_init_attr->xrcd->usecnt); 1179 INIT_LIST_HEAD(&qp->open_list); 1180 1181 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1182 qp_init_attr->qp_context); 1183 if (IS_ERR(qp)) 1184 return qp; 1185 1186 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, 1187 real_qp, GFP_KERNEL)); 1188 if (err) { 1189 ib_close_qp(qp); 1190 return ERR_PTR(err); 1191 } 1192 return qp; 1193 } 1194 1195 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd, 1196 struct ib_qp_init_attr *attr, 1197 struct ib_udata *udata, 1198 struct ib_uqp_object *uobj, const char *caller) 1199 { 1200 struct ib_udata dummy = {}; 1201 struct ib_qp *qp; 1202 int ret; 1203 1204 if (!dev->ops.create_qp) 1205 return ERR_PTR(-EOPNOTSUPP); 1206 1207 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp); 1208 if (!qp) 1209 return ERR_PTR(-ENOMEM); 1210 1211 qp->device = dev; 1212 qp->pd = pd; 1213 qp->uobject = uobj; 1214 qp->real_qp = qp; 1215 1216 qp->qp_type = attr->qp_type; 1217 qp->rwq_ind_tbl = attr->rwq_ind_tbl; 1218 qp->srq = attr->srq; 1219 qp->event_handler = attr->event_handler; 1220 qp->port = attr->port_num; 1221 qp->qp_context = attr->qp_context; 1222 1223 spin_lock_init(&qp->mr_lock); 1224 INIT_LIST_HEAD(&qp->rdma_mrs); 1225 INIT_LIST_HEAD(&qp->sig_mrs); 1226 1227 qp->send_cq = attr->send_cq; 1228 qp->recv_cq = attr->recv_cq; 1229 1230 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP); 1231 WARN_ONCE(!udata && !caller, "Missing kernel QP owner"); 1232 rdma_restrack_set_name(&qp->res, udata ? NULL : caller); 1233 ret = dev->ops.create_qp(qp, attr, udata); 1234 if (ret) 1235 goto err_create; 1236 1237 /* 1238 * TODO: The mlx4 internally overwrites send_cq and recv_cq. 1239 * Unfortunately, it is not an easy task to fix that driver. 1240 */ 1241 qp->send_cq = attr->send_cq; 1242 qp->recv_cq = attr->recv_cq; 1243 1244 ret = ib_create_qp_security(qp, dev); 1245 if (ret) 1246 goto err_security; 1247 1248 rdma_restrack_add(&qp->res); 1249 return qp; 1250 1251 err_security: 1252 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL); 1253 err_create: 1254 rdma_restrack_put(&qp->res); 1255 kfree(qp); 1256 return ERR_PTR(ret); 1257 1258 } 1259 1260 /** 1261 * ib_create_qp_user - Creates a QP associated with the specified protection 1262 * domain. 1263 * @dev: IB device 1264 * @pd: The protection domain associated with the QP. 1265 * @attr: A list of initial attributes required to create the 1266 * QP. If QP creation succeeds, then the attributes are updated to 1267 * the actual capabilities of the created QP. 1268 * @udata: User data 1269 * @uobj: uverbs obect 1270 * @caller: caller's build-time module name 1271 */ 1272 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd, 1273 struct ib_qp_init_attr *attr, 1274 struct ib_udata *udata, 1275 struct ib_uqp_object *uobj, const char *caller) 1276 { 1277 struct ib_qp *qp, *xrc_qp; 1278 1279 if (attr->qp_type == IB_QPT_XRC_TGT) 1280 qp = create_qp(dev, pd, attr, NULL, NULL, caller); 1281 else 1282 qp = create_qp(dev, pd, attr, udata, uobj, NULL); 1283 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp)) 1284 return qp; 1285 1286 xrc_qp = create_xrc_qp_user(qp, attr); 1287 if (IS_ERR(xrc_qp)) { 1288 ib_destroy_qp(qp); 1289 return xrc_qp; 1290 } 1291 1292 xrc_qp->uobject = uobj; 1293 return xrc_qp; 1294 } 1295 EXPORT_SYMBOL(ib_create_qp_user); 1296 1297 void ib_qp_usecnt_inc(struct ib_qp *qp) 1298 { 1299 if (qp->pd) 1300 atomic_inc(&qp->pd->usecnt); 1301 if (qp->send_cq) 1302 atomic_inc(&qp->send_cq->usecnt); 1303 if (qp->recv_cq) 1304 atomic_inc(&qp->recv_cq->usecnt); 1305 if (qp->srq) 1306 atomic_inc(&qp->srq->usecnt); 1307 if (qp->rwq_ind_tbl) 1308 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1309 } 1310 EXPORT_SYMBOL(ib_qp_usecnt_inc); 1311 1312 void ib_qp_usecnt_dec(struct ib_qp *qp) 1313 { 1314 if (qp->rwq_ind_tbl) 1315 atomic_dec(&qp->rwq_ind_tbl->usecnt); 1316 if (qp->srq) 1317 atomic_dec(&qp->srq->usecnt); 1318 if (qp->recv_cq) 1319 atomic_dec(&qp->recv_cq->usecnt); 1320 if (qp->send_cq) 1321 atomic_dec(&qp->send_cq->usecnt); 1322 if (qp->pd) 1323 atomic_dec(&qp->pd->usecnt); 1324 } 1325 EXPORT_SYMBOL(ib_qp_usecnt_dec); 1326 1327 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 1328 struct ib_qp_init_attr *qp_init_attr, 1329 const char *caller) 1330 { 1331 struct ib_device *device = pd->device; 1332 struct ib_qp *qp; 1333 int ret; 1334 1335 /* 1336 * If the callers is using the RDMA API calculate the resources 1337 * needed for the RDMA READ/WRITE operations. 1338 * 1339 * Note that these callers need to pass in a port number. 1340 */ 1341 if (qp_init_attr->cap.max_rdma_ctxs) 1342 rdma_rw_init_qp(device, qp_init_attr); 1343 1344 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller); 1345 if (IS_ERR(qp)) 1346 return qp; 1347 1348 ib_qp_usecnt_inc(qp); 1349 1350 if (qp_init_attr->cap.max_rdma_ctxs) { 1351 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1352 if (ret) 1353 goto err; 1354 } 1355 1356 /* 1357 * Note: all hw drivers guarantee that max_send_sge is lower than 1358 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1359 * max_send_sge <= max_sge_rd. 1360 */ 1361 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1362 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1363 device->attrs.max_sge_rd); 1364 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1365 qp->integrity_en = true; 1366 1367 return qp; 1368 1369 err: 1370 ib_destroy_qp(qp); 1371 return ERR_PTR(ret); 1372 1373 } 1374 EXPORT_SYMBOL(ib_create_qp_kernel); 1375 1376 static const struct { 1377 int valid; 1378 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1379 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1380 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1381 [IB_QPS_RESET] = { 1382 [IB_QPS_RESET] = { .valid = 1 }, 1383 [IB_QPS_INIT] = { 1384 .valid = 1, 1385 .req_param = { 1386 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1387 IB_QP_PORT | 1388 IB_QP_QKEY), 1389 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1390 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1391 IB_QP_PORT | 1392 IB_QP_ACCESS_FLAGS), 1393 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1394 IB_QP_PORT | 1395 IB_QP_ACCESS_FLAGS), 1396 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1397 IB_QP_PORT | 1398 IB_QP_ACCESS_FLAGS), 1399 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1400 IB_QP_PORT | 1401 IB_QP_ACCESS_FLAGS), 1402 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1403 IB_QP_QKEY), 1404 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1405 IB_QP_QKEY), 1406 } 1407 }, 1408 }, 1409 [IB_QPS_INIT] = { 1410 [IB_QPS_RESET] = { .valid = 1 }, 1411 [IB_QPS_ERR] = { .valid = 1 }, 1412 [IB_QPS_INIT] = { 1413 .valid = 1, 1414 .opt_param = { 1415 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1416 IB_QP_PORT | 1417 IB_QP_QKEY), 1418 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1419 IB_QP_PORT | 1420 IB_QP_ACCESS_FLAGS), 1421 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1422 IB_QP_PORT | 1423 IB_QP_ACCESS_FLAGS), 1424 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1425 IB_QP_PORT | 1426 IB_QP_ACCESS_FLAGS), 1427 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1428 IB_QP_PORT | 1429 IB_QP_ACCESS_FLAGS), 1430 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1431 IB_QP_QKEY), 1432 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1433 IB_QP_QKEY), 1434 } 1435 }, 1436 [IB_QPS_RTR] = { 1437 .valid = 1, 1438 .req_param = { 1439 [IB_QPT_UC] = (IB_QP_AV | 1440 IB_QP_PATH_MTU | 1441 IB_QP_DEST_QPN | 1442 IB_QP_RQ_PSN), 1443 [IB_QPT_RC] = (IB_QP_AV | 1444 IB_QP_PATH_MTU | 1445 IB_QP_DEST_QPN | 1446 IB_QP_RQ_PSN | 1447 IB_QP_MAX_DEST_RD_ATOMIC | 1448 IB_QP_MIN_RNR_TIMER), 1449 [IB_QPT_XRC_INI] = (IB_QP_AV | 1450 IB_QP_PATH_MTU | 1451 IB_QP_DEST_QPN | 1452 IB_QP_RQ_PSN), 1453 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1454 IB_QP_PATH_MTU | 1455 IB_QP_DEST_QPN | 1456 IB_QP_RQ_PSN | 1457 IB_QP_MAX_DEST_RD_ATOMIC | 1458 IB_QP_MIN_RNR_TIMER), 1459 }, 1460 .opt_param = { 1461 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1462 IB_QP_QKEY), 1463 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1464 IB_QP_ACCESS_FLAGS | 1465 IB_QP_PKEY_INDEX), 1466 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1467 IB_QP_ACCESS_FLAGS | 1468 IB_QP_PKEY_INDEX), 1469 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1470 IB_QP_ACCESS_FLAGS | 1471 IB_QP_PKEY_INDEX), 1472 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1473 IB_QP_ACCESS_FLAGS | 1474 IB_QP_PKEY_INDEX), 1475 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1476 IB_QP_QKEY), 1477 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1478 IB_QP_QKEY), 1479 }, 1480 }, 1481 }, 1482 [IB_QPS_RTR] = { 1483 [IB_QPS_RESET] = { .valid = 1 }, 1484 [IB_QPS_ERR] = { .valid = 1 }, 1485 [IB_QPS_RTS] = { 1486 .valid = 1, 1487 .req_param = { 1488 [IB_QPT_UD] = IB_QP_SQ_PSN, 1489 [IB_QPT_UC] = IB_QP_SQ_PSN, 1490 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1491 IB_QP_RETRY_CNT | 1492 IB_QP_RNR_RETRY | 1493 IB_QP_SQ_PSN | 1494 IB_QP_MAX_QP_RD_ATOMIC), 1495 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1496 IB_QP_RETRY_CNT | 1497 IB_QP_RNR_RETRY | 1498 IB_QP_SQ_PSN | 1499 IB_QP_MAX_QP_RD_ATOMIC), 1500 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1501 IB_QP_SQ_PSN), 1502 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1503 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1504 }, 1505 .opt_param = { 1506 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1507 IB_QP_QKEY), 1508 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1509 IB_QP_ALT_PATH | 1510 IB_QP_ACCESS_FLAGS | 1511 IB_QP_PATH_MIG_STATE), 1512 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1513 IB_QP_ALT_PATH | 1514 IB_QP_ACCESS_FLAGS | 1515 IB_QP_MIN_RNR_TIMER | 1516 IB_QP_PATH_MIG_STATE), 1517 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1518 IB_QP_ALT_PATH | 1519 IB_QP_ACCESS_FLAGS | 1520 IB_QP_PATH_MIG_STATE), 1521 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1522 IB_QP_ALT_PATH | 1523 IB_QP_ACCESS_FLAGS | 1524 IB_QP_MIN_RNR_TIMER | 1525 IB_QP_PATH_MIG_STATE), 1526 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1527 IB_QP_QKEY), 1528 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1529 IB_QP_QKEY), 1530 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1531 } 1532 } 1533 }, 1534 [IB_QPS_RTS] = { 1535 [IB_QPS_RESET] = { .valid = 1 }, 1536 [IB_QPS_ERR] = { .valid = 1 }, 1537 [IB_QPS_RTS] = { 1538 .valid = 1, 1539 .opt_param = { 1540 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1541 IB_QP_QKEY), 1542 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1543 IB_QP_ACCESS_FLAGS | 1544 IB_QP_ALT_PATH | 1545 IB_QP_PATH_MIG_STATE), 1546 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1547 IB_QP_ACCESS_FLAGS | 1548 IB_QP_ALT_PATH | 1549 IB_QP_PATH_MIG_STATE | 1550 IB_QP_MIN_RNR_TIMER), 1551 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1552 IB_QP_ACCESS_FLAGS | 1553 IB_QP_ALT_PATH | 1554 IB_QP_PATH_MIG_STATE), 1555 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1556 IB_QP_ACCESS_FLAGS | 1557 IB_QP_ALT_PATH | 1558 IB_QP_PATH_MIG_STATE | 1559 IB_QP_MIN_RNR_TIMER), 1560 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1561 IB_QP_QKEY), 1562 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1563 IB_QP_QKEY), 1564 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1565 } 1566 }, 1567 [IB_QPS_SQD] = { 1568 .valid = 1, 1569 .opt_param = { 1570 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1571 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1572 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1573 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1574 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1575 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1576 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1577 } 1578 }, 1579 }, 1580 [IB_QPS_SQD] = { 1581 [IB_QPS_RESET] = { .valid = 1 }, 1582 [IB_QPS_ERR] = { .valid = 1 }, 1583 [IB_QPS_RTS] = { 1584 .valid = 1, 1585 .opt_param = { 1586 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1587 IB_QP_QKEY), 1588 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1589 IB_QP_ALT_PATH | 1590 IB_QP_ACCESS_FLAGS | 1591 IB_QP_PATH_MIG_STATE), 1592 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1593 IB_QP_ALT_PATH | 1594 IB_QP_ACCESS_FLAGS | 1595 IB_QP_MIN_RNR_TIMER | 1596 IB_QP_PATH_MIG_STATE), 1597 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1598 IB_QP_ALT_PATH | 1599 IB_QP_ACCESS_FLAGS | 1600 IB_QP_PATH_MIG_STATE), 1601 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1602 IB_QP_ALT_PATH | 1603 IB_QP_ACCESS_FLAGS | 1604 IB_QP_MIN_RNR_TIMER | 1605 IB_QP_PATH_MIG_STATE), 1606 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1607 IB_QP_QKEY), 1608 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1609 IB_QP_QKEY), 1610 } 1611 }, 1612 [IB_QPS_SQD] = { 1613 .valid = 1, 1614 .opt_param = { 1615 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1616 IB_QP_QKEY), 1617 [IB_QPT_UC] = (IB_QP_AV | 1618 IB_QP_ALT_PATH | 1619 IB_QP_ACCESS_FLAGS | 1620 IB_QP_PKEY_INDEX | 1621 IB_QP_PATH_MIG_STATE), 1622 [IB_QPT_RC] = (IB_QP_PORT | 1623 IB_QP_AV | 1624 IB_QP_TIMEOUT | 1625 IB_QP_RETRY_CNT | 1626 IB_QP_RNR_RETRY | 1627 IB_QP_MAX_QP_RD_ATOMIC | 1628 IB_QP_MAX_DEST_RD_ATOMIC | 1629 IB_QP_ALT_PATH | 1630 IB_QP_ACCESS_FLAGS | 1631 IB_QP_PKEY_INDEX | 1632 IB_QP_MIN_RNR_TIMER | 1633 IB_QP_PATH_MIG_STATE), 1634 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1635 IB_QP_AV | 1636 IB_QP_TIMEOUT | 1637 IB_QP_RETRY_CNT | 1638 IB_QP_RNR_RETRY | 1639 IB_QP_MAX_QP_RD_ATOMIC | 1640 IB_QP_ALT_PATH | 1641 IB_QP_ACCESS_FLAGS | 1642 IB_QP_PKEY_INDEX | 1643 IB_QP_PATH_MIG_STATE), 1644 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1645 IB_QP_AV | 1646 IB_QP_TIMEOUT | 1647 IB_QP_MAX_DEST_RD_ATOMIC | 1648 IB_QP_ALT_PATH | 1649 IB_QP_ACCESS_FLAGS | 1650 IB_QP_PKEY_INDEX | 1651 IB_QP_MIN_RNR_TIMER | 1652 IB_QP_PATH_MIG_STATE), 1653 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1654 IB_QP_QKEY), 1655 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1656 IB_QP_QKEY), 1657 } 1658 } 1659 }, 1660 [IB_QPS_SQE] = { 1661 [IB_QPS_RESET] = { .valid = 1 }, 1662 [IB_QPS_ERR] = { .valid = 1 }, 1663 [IB_QPS_RTS] = { 1664 .valid = 1, 1665 .opt_param = { 1666 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1667 IB_QP_QKEY), 1668 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1669 IB_QP_ACCESS_FLAGS), 1670 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1671 IB_QP_QKEY), 1672 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1673 IB_QP_QKEY), 1674 } 1675 } 1676 }, 1677 [IB_QPS_ERR] = { 1678 [IB_QPS_RESET] = { .valid = 1 }, 1679 [IB_QPS_ERR] = { .valid = 1 } 1680 } 1681 }; 1682 1683 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1684 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1685 { 1686 enum ib_qp_attr_mask req_param, opt_param; 1687 1688 if (mask & IB_QP_CUR_STATE && 1689 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1690 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1691 return false; 1692 1693 if (!qp_state_table[cur_state][next_state].valid) 1694 return false; 1695 1696 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1697 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1698 1699 if ((mask & req_param) != req_param) 1700 return false; 1701 1702 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1703 return false; 1704 1705 return true; 1706 } 1707 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1708 1709 /** 1710 * ib_resolve_eth_dmac - Resolve destination mac address 1711 * @device: Device to consider 1712 * @ah_attr: address handle attribute which describes the 1713 * source and destination parameters 1714 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1715 * returns 0 on success or appropriate error code. It initializes the 1716 * necessary ah_attr fields when call is successful. 1717 */ 1718 static int ib_resolve_eth_dmac(struct ib_device *device, 1719 struct rdma_ah_attr *ah_attr) 1720 { 1721 int ret = 0; 1722 1723 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1724 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1725 __be32 addr = 0; 1726 1727 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1728 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1729 } else { 1730 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1731 (char *)ah_attr->roce.dmac); 1732 } 1733 } else { 1734 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1735 } 1736 return ret; 1737 } 1738 1739 static bool is_qp_type_connected(const struct ib_qp *qp) 1740 { 1741 return (qp->qp_type == IB_QPT_UC || 1742 qp->qp_type == IB_QPT_RC || 1743 qp->qp_type == IB_QPT_XRC_INI || 1744 qp->qp_type == IB_QPT_XRC_TGT); 1745 } 1746 1747 /* 1748 * IB core internal function to perform QP attributes modification. 1749 */ 1750 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1751 int attr_mask, struct ib_udata *udata) 1752 { 1753 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1754 const struct ib_gid_attr *old_sgid_attr_av; 1755 const struct ib_gid_attr *old_sgid_attr_alt_av; 1756 int ret; 1757 1758 attr->xmit_slave = NULL; 1759 if (attr_mask & IB_QP_AV) { 1760 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1761 &old_sgid_attr_av); 1762 if (ret) 1763 return ret; 1764 1765 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1766 is_qp_type_connected(qp)) { 1767 struct net_device *slave; 1768 1769 /* 1770 * If the user provided the qp_attr then we have to 1771 * resolve it. Kerne users have to provide already 1772 * resolved rdma_ah_attr's. 1773 */ 1774 if (udata) { 1775 ret = ib_resolve_eth_dmac(qp->device, 1776 &attr->ah_attr); 1777 if (ret) 1778 goto out_av; 1779 } 1780 slave = rdma_lag_get_ah_roce_slave(qp->device, 1781 &attr->ah_attr, 1782 GFP_KERNEL); 1783 if (IS_ERR(slave)) { 1784 ret = PTR_ERR(slave); 1785 goto out_av; 1786 } 1787 attr->xmit_slave = slave; 1788 } 1789 } 1790 if (attr_mask & IB_QP_ALT_PATH) { 1791 /* 1792 * FIXME: This does not track the migration state, so if the 1793 * user loads a new alternate path after the HW has migrated 1794 * from primary->alternate we will keep the wrong 1795 * references. This is OK for IB because the reference 1796 * counting does not serve any functional purpose. 1797 */ 1798 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1799 &old_sgid_attr_alt_av); 1800 if (ret) 1801 goto out_av; 1802 1803 /* 1804 * Today the core code can only handle alternate paths and APM 1805 * for IB. Ban them in roce mode. 1806 */ 1807 if (!(rdma_protocol_ib(qp->device, 1808 attr->alt_ah_attr.port_num) && 1809 rdma_protocol_ib(qp->device, port))) { 1810 ret = -EINVAL; 1811 goto out; 1812 } 1813 } 1814 1815 if (rdma_ib_or_roce(qp->device, port)) { 1816 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1817 dev_warn(&qp->device->dev, 1818 "%s rq_psn overflow, masking to 24 bits\n", 1819 __func__); 1820 attr->rq_psn &= 0xffffff; 1821 } 1822 1823 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1824 dev_warn(&qp->device->dev, 1825 " %s sq_psn overflow, masking to 24 bits\n", 1826 __func__); 1827 attr->sq_psn &= 0xffffff; 1828 } 1829 } 1830 1831 /* 1832 * Bind this qp to a counter automatically based on the rdma counter 1833 * rules. This only set in RST2INIT with port specified 1834 */ 1835 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1836 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1837 rdma_counter_bind_qp_auto(qp, attr->port_num); 1838 1839 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1840 if (ret) 1841 goto out; 1842 1843 if (attr_mask & IB_QP_PORT) 1844 qp->port = attr->port_num; 1845 if (attr_mask & IB_QP_AV) 1846 qp->av_sgid_attr = 1847 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1848 if (attr_mask & IB_QP_ALT_PATH) 1849 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1850 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1851 1852 out: 1853 if (attr_mask & IB_QP_ALT_PATH) 1854 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1855 out_av: 1856 if (attr_mask & IB_QP_AV) { 1857 rdma_lag_put_ah_roce_slave(attr->xmit_slave); 1858 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1859 } 1860 return ret; 1861 } 1862 1863 /** 1864 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1865 * @ib_qp: The QP to modify. 1866 * @attr: On input, specifies the QP attributes to modify. On output, 1867 * the current values of selected QP attributes are returned. 1868 * @attr_mask: A bit-mask used to specify which attributes of the QP 1869 * are being modified. 1870 * @udata: pointer to user's input output buffer information 1871 * are being modified. 1872 * It returns 0 on success and returns appropriate error code on error. 1873 */ 1874 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1875 int attr_mask, struct ib_udata *udata) 1876 { 1877 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1878 } 1879 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1880 1881 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width) 1882 { 1883 int rc; 1884 u32 netdev_speed; 1885 struct net_device *netdev; 1886 struct ethtool_link_ksettings lksettings; 1887 1888 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1889 return -EINVAL; 1890 1891 netdev = ib_device_get_netdev(dev, port_num); 1892 if (!netdev) 1893 return -ENODEV; 1894 1895 rtnl_lock(); 1896 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1897 rtnl_unlock(); 1898 1899 dev_put(netdev); 1900 1901 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { 1902 netdev_speed = lksettings.base.speed; 1903 } else { 1904 netdev_speed = SPEED_1000; 1905 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name, 1906 netdev_speed); 1907 } 1908 1909 if (netdev_speed <= SPEED_1000) { 1910 *width = IB_WIDTH_1X; 1911 *speed = IB_SPEED_SDR; 1912 } else if (netdev_speed <= SPEED_10000) { 1913 *width = IB_WIDTH_1X; 1914 *speed = IB_SPEED_FDR10; 1915 } else if (netdev_speed <= SPEED_20000) { 1916 *width = IB_WIDTH_4X; 1917 *speed = IB_SPEED_DDR; 1918 } else if (netdev_speed <= SPEED_25000) { 1919 *width = IB_WIDTH_1X; 1920 *speed = IB_SPEED_EDR; 1921 } else if (netdev_speed <= SPEED_40000) { 1922 *width = IB_WIDTH_4X; 1923 *speed = IB_SPEED_FDR10; 1924 } else { 1925 *width = IB_WIDTH_4X; 1926 *speed = IB_SPEED_EDR; 1927 } 1928 1929 return 0; 1930 } 1931 EXPORT_SYMBOL(ib_get_eth_speed); 1932 1933 int ib_modify_qp(struct ib_qp *qp, 1934 struct ib_qp_attr *qp_attr, 1935 int qp_attr_mask) 1936 { 1937 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1938 } 1939 EXPORT_SYMBOL(ib_modify_qp); 1940 1941 int ib_query_qp(struct ib_qp *qp, 1942 struct ib_qp_attr *qp_attr, 1943 int qp_attr_mask, 1944 struct ib_qp_init_attr *qp_init_attr) 1945 { 1946 qp_attr->ah_attr.grh.sgid_attr = NULL; 1947 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1948 1949 return qp->device->ops.query_qp ? 1950 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1951 qp_init_attr) : -EOPNOTSUPP; 1952 } 1953 EXPORT_SYMBOL(ib_query_qp); 1954 1955 int ib_close_qp(struct ib_qp *qp) 1956 { 1957 struct ib_qp *real_qp; 1958 unsigned long flags; 1959 1960 real_qp = qp->real_qp; 1961 if (real_qp == qp) 1962 return -EINVAL; 1963 1964 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1965 list_del(&qp->open_list); 1966 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1967 1968 atomic_dec(&real_qp->usecnt); 1969 if (qp->qp_sec) 1970 ib_close_shared_qp_security(qp->qp_sec); 1971 kfree(qp); 1972 1973 return 0; 1974 } 1975 EXPORT_SYMBOL(ib_close_qp); 1976 1977 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1978 { 1979 struct ib_xrcd *xrcd; 1980 struct ib_qp *real_qp; 1981 int ret; 1982 1983 real_qp = qp->real_qp; 1984 xrcd = real_qp->xrcd; 1985 down_write(&xrcd->tgt_qps_rwsem); 1986 ib_close_qp(qp); 1987 if (atomic_read(&real_qp->usecnt) == 0) 1988 xa_erase(&xrcd->tgt_qps, real_qp->qp_num); 1989 else 1990 real_qp = NULL; 1991 up_write(&xrcd->tgt_qps_rwsem); 1992 1993 if (real_qp) { 1994 ret = ib_destroy_qp(real_qp); 1995 if (!ret) 1996 atomic_dec(&xrcd->usecnt); 1997 } 1998 1999 return 0; 2000 } 2001 2002 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 2003 { 2004 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 2005 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 2006 struct ib_qp_security *sec; 2007 int ret; 2008 2009 WARN_ON_ONCE(qp->mrs_used > 0); 2010 2011 if (atomic_read(&qp->usecnt)) 2012 return -EBUSY; 2013 2014 if (qp->real_qp != qp) 2015 return __ib_destroy_shared_qp(qp); 2016 2017 sec = qp->qp_sec; 2018 if (sec) 2019 ib_destroy_qp_security_begin(sec); 2020 2021 if (!qp->uobject) 2022 rdma_rw_cleanup_mrs(qp); 2023 2024 rdma_counter_unbind_qp(qp, true); 2025 ret = qp->device->ops.destroy_qp(qp, udata); 2026 if (ret) { 2027 if (sec) 2028 ib_destroy_qp_security_abort(sec); 2029 return ret; 2030 } 2031 2032 if (alt_path_sgid_attr) 2033 rdma_put_gid_attr(alt_path_sgid_attr); 2034 if (av_sgid_attr) 2035 rdma_put_gid_attr(av_sgid_attr); 2036 2037 ib_qp_usecnt_dec(qp); 2038 if (sec) 2039 ib_destroy_qp_security_end(sec); 2040 2041 rdma_restrack_del(&qp->res); 2042 kfree(qp); 2043 return ret; 2044 } 2045 EXPORT_SYMBOL(ib_destroy_qp_user); 2046 2047 /* Completion queues */ 2048 2049 struct ib_cq *__ib_create_cq(struct ib_device *device, 2050 ib_comp_handler comp_handler, 2051 void (*event_handler)(struct ib_event *, void *), 2052 void *cq_context, 2053 const struct ib_cq_init_attr *cq_attr, 2054 const char *caller) 2055 { 2056 struct ib_cq *cq; 2057 int ret; 2058 2059 cq = rdma_zalloc_drv_obj(device, ib_cq); 2060 if (!cq) 2061 return ERR_PTR(-ENOMEM); 2062 2063 cq->device = device; 2064 cq->uobject = NULL; 2065 cq->comp_handler = comp_handler; 2066 cq->event_handler = event_handler; 2067 cq->cq_context = cq_context; 2068 atomic_set(&cq->usecnt, 0); 2069 2070 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); 2071 rdma_restrack_set_name(&cq->res, caller); 2072 2073 ret = device->ops.create_cq(cq, cq_attr, NULL); 2074 if (ret) { 2075 rdma_restrack_put(&cq->res); 2076 kfree(cq); 2077 return ERR_PTR(ret); 2078 } 2079 2080 rdma_restrack_add(&cq->res); 2081 return cq; 2082 } 2083 EXPORT_SYMBOL(__ib_create_cq); 2084 2085 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 2086 { 2087 if (cq->shared) 2088 return -EOPNOTSUPP; 2089 2090 return cq->device->ops.modify_cq ? 2091 cq->device->ops.modify_cq(cq, cq_count, 2092 cq_period) : -EOPNOTSUPP; 2093 } 2094 EXPORT_SYMBOL(rdma_set_cq_moderation); 2095 2096 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 2097 { 2098 int ret; 2099 2100 if (WARN_ON_ONCE(cq->shared)) 2101 return -EOPNOTSUPP; 2102 2103 if (atomic_read(&cq->usecnt)) 2104 return -EBUSY; 2105 2106 ret = cq->device->ops.destroy_cq(cq, udata); 2107 if (ret) 2108 return ret; 2109 2110 rdma_restrack_del(&cq->res); 2111 kfree(cq); 2112 return ret; 2113 } 2114 EXPORT_SYMBOL(ib_destroy_cq_user); 2115 2116 int ib_resize_cq(struct ib_cq *cq, int cqe) 2117 { 2118 if (cq->shared) 2119 return -EOPNOTSUPP; 2120 2121 return cq->device->ops.resize_cq ? 2122 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 2123 } 2124 EXPORT_SYMBOL(ib_resize_cq); 2125 2126 /* Memory regions */ 2127 2128 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 2129 u64 virt_addr, int access_flags) 2130 { 2131 struct ib_mr *mr; 2132 2133 if (access_flags & IB_ACCESS_ON_DEMAND) { 2134 if (!(pd->device->attrs.device_cap_flags & 2135 IB_DEVICE_ON_DEMAND_PAGING)) { 2136 pr_debug("ODP support not available\n"); 2137 return ERR_PTR(-EINVAL); 2138 } 2139 } 2140 2141 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2142 access_flags, NULL); 2143 2144 if (IS_ERR(mr)) 2145 return mr; 2146 2147 mr->device = pd->device; 2148 mr->type = IB_MR_TYPE_USER; 2149 mr->pd = pd; 2150 mr->dm = NULL; 2151 atomic_inc(&pd->usecnt); 2152 2153 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2154 rdma_restrack_parent_name(&mr->res, &pd->res); 2155 rdma_restrack_add(&mr->res); 2156 2157 return mr; 2158 } 2159 EXPORT_SYMBOL(ib_reg_user_mr); 2160 2161 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2162 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2163 { 2164 if (!pd->device->ops.advise_mr) 2165 return -EOPNOTSUPP; 2166 2167 if (!num_sge) 2168 return 0; 2169 2170 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2171 NULL); 2172 } 2173 EXPORT_SYMBOL(ib_advise_mr); 2174 2175 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2176 { 2177 struct ib_pd *pd = mr->pd; 2178 struct ib_dm *dm = mr->dm; 2179 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2180 int ret; 2181 2182 trace_mr_dereg(mr); 2183 rdma_restrack_del(&mr->res); 2184 ret = mr->device->ops.dereg_mr(mr, udata); 2185 if (!ret) { 2186 atomic_dec(&pd->usecnt); 2187 if (dm) 2188 atomic_dec(&dm->usecnt); 2189 kfree(sig_attrs); 2190 } 2191 2192 return ret; 2193 } 2194 EXPORT_SYMBOL(ib_dereg_mr_user); 2195 2196 /** 2197 * ib_alloc_mr() - Allocates a memory region 2198 * @pd: protection domain associated with the region 2199 * @mr_type: memory region type 2200 * @max_num_sg: maximum sg entries available for registration. 2201 * 2202 * Notes: 2203 * Memory registeration page/sg lists must not exceed max_num_sg. 2204 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2205 * max_num_sg * used_page_size. 2206 * 2207 */ 2208 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2209 u32 max_num_sg) 2210 { 2211 struct ib_mr *mr; 2212 2213 if (!pd->device->ops.alloc_mr) { 2214 mr = ERR_PTR(-EOPNOTSUPP); 2215 goto out; 2216 } 2217 2218 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2219 WARN_ON_ONCE(1); 2220 mr = ERR_PTR(-EINVAL); 2221 goto out; 2222 } 2223 2224 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 2225 if (IS_ERR(mr)) 2226 goto out; 2227 2228 mr->device = pd->device; 2229 mr->pd = pd; 2230 mr->dm = NULL; 2231 mr->uobject = NULL; 2232 atomic_inc(&pd->usecnt); 2233 mr->need_inval = false; 2234 mr->type = mr_type; 2235 mr->sig_attrs = NULL; 2236 2237 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2238 rdma_restrack_parent_name(&mr->res, &pd->res); 2239 rdma_restrack_add(&mr->res); 2240 out: 2241 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2242 return mr; 2243 } 2244 EXPORT_SYMBOL(ib_alloc_mr); 2245 2246 /** 2247 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2248 * @pd: protection domain associated with the region 2249 * @max_num_data_sg: maximum data sg entries available for registration 2250 * @max_num_meta_sg: maximum metadata sg entries available for 2251 * registration 2252 * 2253 * Notes: 2254 * Memory registration page/sg lists must not exceed max_num_sg, 2255 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2256 * 2257 */ 2258 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2259 u32 max_num_data_sg, 2260 u32 max_num_meta_sg) 2261 { 2262 struct ib_mr *mr; 2263 struct ib_sig_attrs *sig_attrs; 2264 2265 if (!pd->device->ops.alloc_mr_integrity || 2266 !pd->device->ops.map_mr_sg_pi) { 2267 mr = ERR_PTR(-EOPNOTSUPP); 2268 goto out; 2269 } 2270 2271 if (!max_num_meta_sg) { 2272 mr = ERR_PTR(-EINVAL); 2273 goto out; 2274 } 2275 2276 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2277 if (!sig_attrs) { 2278 mr = ERR_PTR(-ENOMEM); 2279 goto out; 2280 } 2281 2282 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2283 max_num_meta_sg); 2284 if (IS_ERR(mr)) { 2285 kfree(sig_attrs); 2286 goto out; 2287 } 2288 2289 mr->device = pd->device; 2290 mr->pd = pd; 2291 mr->dm = NULL; 2292 mr->uobject = NULL; 2293 atomic_inc(&pd->usecnt); 2294 mr->need_inval = false; 2295 mr->type = IB_MR_TYPE_INTEGRITY; 2296 mr->sig_attrs = sig_attrs; 2297 2298 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2299 rdma_restrack_parent_name(&mr->res, &pd->res); 2300 rdma_restrack_add(&mr->res); 2301 out: 2302 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2303 return mr; 2304 } 2305 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2306 2307 /* Multicast groups */ 2308 2309 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2310 { 2311 struct ib_qp_init_attr init_attr = {}; 2312 struct ib_qp_attr attr = {}; 2313 int num_eth_ports = 0; 2314 unsigned int port; 2315 2316 /* If QP state >= init, it is assigned to a port and we can check this 2317 * port only. 2318 */ 2319 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2320 if (attr.qp_state >= IB_QPS_INIT) { 2321 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2322 IB_LINK_LAYER_INFINIBAND) 2323 return true; 2324 goto lid_check; 2325 } 2326 } 2327 2328 /* Can't get a quick answer, iterate over all ports */ 2329 rdma_for_each_port(qp->device, port) 2330 if (rdma_port_get_link_layer(qp->device, port) != 2331 IB_LINK_LAYER_INFINIBAND) 2332 num_eth_ports++; 2333 2334 /* If we have at lease one Ethernet port, RoCE annex declares that 2335 * multicast LID should be ignored. We can't tell at this step if the 2336 * QP belongs to an IB or Ethernet port. 2337 */ 2338 if (num_eth_ports) 2339 return true; 2340 2341 /* If all the ports are IB, we can check according to IB spec. */ 2342 lid_check: 2343 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2344 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2345 } 2346 2347 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2348 { 2349 int ret; 2350 2351 if (!qp->device->ops.attach_mcast) 2352 return -EOPNOTSUPP; 2353 2354 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2355 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2356 return -EINVAL; 2357 2358 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2359 if (!ret) 2360 atomic_inc(&qp->usecnt); 2361 return ret; 2362 } 2363 EXPORT_SYMBOL(ib_attach_mcast); 2364 2365 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2366 { 2367 int ret; 2368 2369 if (!qp->device->ops.detach_mcast) 2370 return -EOPNOTSUPP; 2371 2372 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2373 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2374 return -EINVAL; 2375 2376 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2377 if (!ret) 2378 atomic_dec(&qp->usecnt); 2379 return ret; 2380 } 2381 EXPORT_SYMBOL(ib_detach_mcast); 2382 2383 /** 2384 * ib_alloc_xrcd_user - Allocates an XRC domain. 2385 * @device: The device on which to allocate the XRC domain. 2386 * @inode: inode to connect XRCD 2387 * @udata: Valid user data or NULL for kernel object 2388 */ 2389 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 2390 struct inode *inode, struct ib_udata *udata) 2391 { 2392 struct ib_xrcd *xrcd; 2393 int ret; 2394 2395 if (!device->ops.alloc_xrcd) 2396 return ERR_PTR(-EOPNOTSUPP); 2397 2398 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); 2399 if (!xrcd) 2400 return ERR_PTR(-ENOMEM); 2401 2402 xrcd->device = device; 2403 xrcd->inode = inode; 2404 atomic_set(&xrcd->usecnt, 0); 2405 init_rwsem(&xrcd->tgt_qps_rwsem); 2406 xa_init(&xrcd->tgt_qps); 2407 2408 ret = device->ops.alloc_xrcd(xrcd, udata); 2409 if (ret) 2410 goto err; 2411 return xrcd; 2412 err: 2413 kfree(xrcd); 2414 return ERR_PTR(ret); 2415 } 2416 EXPORT_SYMBOL(ib_alloc_xrcd_user); 2417 2418 /** 2419 * ib_dealloc_xrcd_user - Deallocates an XRC domain. 2420 * @xrcd: The XRC domain to deallocate. 2421 * @udata: Valid user data or NULL for kernel object 2422 */ 2423 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) 2424 { 2425 int ret; 2426 2427 if (atomic_read(&xrcd->usecnt)) 2428 return -EBUSY; 2429 2430 WARN_ON(!xa_empty(&xrcd->tgt_qps)); 2431 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2432 if (ret) 2433 return ret; 2434 kfree(xrcd); 2435 return ret; 2436 } 2437 EXPORT_SYMBOL(ib_dealloc_xrcd_user); 2438 2439 /** 2440 * ib_create_wq - Creates a WQ associated with the specified protection 2441 * domain. 2442 * @pd: The protection domain associated with the WQ. 2443 * @wq_attr: A list of initial attributes required to create the 2444 * WQ. If WQ creation succeeds, then the attributes are updated to 2445 * the actual capabilities of the created WQ. 2446 * 2447 * wq_attr->max_wr and wq_attr->max_sge determine 2448 * the requested size of the WQ, and set to the actual values allocated 2449 * on return. 2450 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2451 * at least as large as the requested values. 2452 */ 2453 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2454 struct ib_wq_init_attr *wq_attr) 2455 { 2456 struct ib_wq *wq; 2457 2458 if (!pd->device->ops.create_wq) 2459 return ERR_PTR(-EOPNOTSUPP); 2460 2461 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2462 if (!IS_ERR(wq)) { 2463 wq->event_handler = wq_attr->event_handler; 2464 wq->wq_context = wq_attr->wq_context; 2465 wq->wq_type = wq_attr->wq_type; 2466 wq->cq = wq_attr->cq; 2467 wq->device = pd->device; 2468 wq->pd = pd; 2469 wq->uobject = NULL; 2470 atomic_inc(&pd->usecnt); 2471 atomic_inc(&wq_attr->cq->usecnt); 2472 atomic_set(&wq->usecnt, 0); 2473 } 2474 return wq; 2475 } 2476 EXPORT_SYMBOL(ib_create_wq); 2477 2478 /** 2479 * ib_destroy_wq_user - Destroys the specified user WQ. 2480 * @wq: The WQ to destroy. 2481 * @udata: Valid user data 2482 */ 2483 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) 2484 { 2485 struct ib_cq *cq = wq->cq; 2486 struct ib_pd *pd = wq->pd; 2487 int ret; 2488 2489 if (atomic_read(&wq->usecnt)) 2490 return -EBUSY; 2491 2492 ret = wq->device->ops.destroy_wq(wq, udata); 2493 if (ret) 2494 return ret; 2495 2496 atomic_dec(&pd->usecnt); 2497 atomic_dec(&cq->usecnt); 2498 return ret; 2499 } 2500 EXPORT_SYMBOL(ib_destroy_wq_user); 2501 2502 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2503 struct ib_mr_status *mr_status) 2504 { 2505 if (!mr->device->ops.check_mr_status) 2506 return -EOPNOTSUPP; 2507 2508 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2509 } 2510 EXPORT_SYMBOL(ib_check_mr_status); 2511 2512 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 2513 int state) 2514 { 2515 if (!device->ops.set_vf_link_state) 2516 return -EOPNOTSUPP; 2517 2518 return device->ops.set_vf_link_state(device, vf, port, state); 2519 } 2520 EXPORT_SYMBOL(ib_set_vf_link_state); 2521 2522 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 2523 struct ifla_vf_info *info) 2524 { 2525 if (!device->ops.get_vf_config) 2526 return -EOPNOTSUPP; 2527 2528 return device->ops.get_vf_config(device, vf, port, info); 2529 } 2530 EXPORT_SYMBOL(ib_get_vf_config); 2531 2532 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 2533 struct ifla_vf_stats *stats) 2534 { 2535 if (!device->ops.get_vf_stats) 2536 return -EOPNOTSUPP; 2537 2538 return device->ops.get_vf_stats(device, vf, port, stats); 2539 } 2540 EXPORT_SYMBOL(ib_get_vf_stats); 2541 2542 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 2543 int type) 2544 { 2545 if (!device->ops.set_vf_guid) 2546 return -EOPNOTSUPP; 2547 2548 return device->ops.set_vf_guid(device, vf, port, guid, type); 2549 } 2550 EXPORT_SYMBOL(ib_set_vf_guid); 2551 2552 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 2553 struct ifla_vf_guid *node_guid, 2554 struct ifla_vf_guid *port_guid) 2555 { 2556 if (!device->ops.get_vf_guid) 2557 return -EOPNOTSUPP; 2558 2559 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2560 } 2561 EXPORT_SYMBOL(ib_get_vf_guid); 2562 /** 2563 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2564 * information) and set an appropriate memory region for registration. 2565 * @mr: memory region 2566 * @data_sg: dma mapped scatterlist for data 2567 * @data_sg_nents: number of entries in data_sg 2568 * @data_sg_offset: offset in bytes into data_sg 2569 * @meta_sg: dma mapped scatterlist for metadata 2570 * @meta_sg_nents: number of entries in meta_sg 2571 * @meta_sg_offset: offset in bytes into meta_sg 2572 * @page_size: page vector desired page size 2573 * 2574 * Constraints: 2575 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2576 * 2577 * Return: 0 on success. 2578 * 2579 * After this completes successfully, the memory region 2580 * is ready for registration. 2581 */ 2582 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2583 int data_sg_nents, unsigned int *data_sg_offset, 2584 struct scatterlist *meta_sg, int meta_sg_nents, 2585 unsigned int *meta_sg_offset, unsigned int page_size) 2586 { 2587 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2588 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2589 return -EOPNOTSUPP; 2590 2591 mr->page_size = page_size; 2592 2593 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2594 data_sg_offset, meta_sg, 2595 meta_sg_nents, meta_sg_offset); 2596 } 2597 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2598 2599 /** 2600 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2601 * and set it the memory region. 2602 * @mr: memory region 2603 * @sg: dma mapped scatterlist 2604 * @sg_nents: number of entries in sg 2605 * @sg_offset: offset in bytes into sg 2606 * @page_size: page vector desired page size 2607 * 2608 * Constraints: 2609 * 2610 * - The first sg element is allowed to have an offset. 2611 * - Each sg element must either be aligned to page_size or virtually 2612 * contiguous to the previous element. In case an sg element has a 2613 * non-contiguous offset, the mapping prefix will not include it. 2614 * - The last sg element is allowed to have length less than page_size. 2615 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2616 * then only max_num_sg entries will be mapped. 2617 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2618 * constraints holds and the page_size argument is ignored. 2619 * 2620 * Returns the number of sg elements that were mapped to the memory region. 2621 * 2622 * After this completes successfully, the memory region 2623 * is ready for registration. 2624 */ 2625 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2626 unsigned int *sg_offset, unsigned int page_size) 2627 { 2628 if (unlikely(!mr->device->ops.map_mr_sg)) 2629 return -EOPNOTSUPP; 2630 2631 mr->page_size = page_size; 2632 2633 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2634 } 2635 EXPORT_SYMBOL(ib_map_mr_sg); 2636 2637 /** 2638 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2639 * to a page vector 2640 * @mr: memory region 2641 * @sgl: dma mapped scatterlist 2642 * @sg_nents: number of entries in sg 2643 * @sg_offset_p: ==== ======================================================= 2644 * IN start offset in bytes into sg 2645 * OUT offset in bytes for element n of the sg of the first 2646 * byte that has not been processed where n is the return 2647 * value of this function. 2648 * ==== ======================================================= 2649 * @set_page: driver page assignment function pointer 2650 * 2651 * Core service helper for drivers to convert the largest 2652 * prefix of given sg list to a page vector. The sg list 2653 * prefix converted is the prefix that meet the requirements 2654 * of ib_map_mr_sg. 2655 * 2656 * Returns the number of sg elements that were assigned to 2657 * a page vector. 2658 */ 2659 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2660 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2661 { 2662 struct scatterlist *sg; 2663 u64 last_end_dma_addr = 0; 2664 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2665 unsigned int last_page_off = 0; 2666 u64 page_mask = ~((u64)mr->page_size - 1); 2667 int i, ret; 2668 2669 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2670 return -EINVAL; 2671 2672 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2673 mr->length = 0; 2674 2675 for_each_sg(sgl, sg, sg_nents, i) { 2676 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2677 u64 prev_addr = dma_addr; 2678 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2679 u64 end_dma_addr = dma_addr + dma_len; 2680 u64 page_addr = dma_addr & page_mask; 2681 2682 /* 2683 * For the second and later elements, check whether either the 2684 * end of element i-1 or the start of element i is not aligned 2685 * on a page boundary. 2686 */ 2687 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2688 /* Stop mapping if there is a gap. */ 2689 if (last_end_dma_addr != dma_addr) 2690 break; 2691 2692 /* 2693 * Coalesce this element with the last. If it is small 2694 * enough just update mr->length. Otherwise start 2695 * mapping from the next page. 2696 */ 2697 goto next_page; 2698 } 2699 2700 do { 2701 ret = set_page(mr, page_addr); 2702 if (unlikely(ret < 0)) { 2703 sg_offset = prev_addr - sg_dma_address(sg); 2704 mr->length += prev_addr - dma_addr; 2705 if (sg_offset_p) 2706 *sg_offset_p = sg_offset; 2707 return i || sg_offset ? i : ret; 2708 } 2709 prev_addr = page_addr; 2710 next_page: 2711 page_addr += mr->page_size; 2712 } while (page_addr < end_dma_addr); 2713 2714 mr->length += dma_len; 2715 last_end_dma_addr = end_dma_addr; 2716 last_page_off = end_dma_addr & ~page_mask; 2717 2718 sg_offset = 0; 2719 } 2720 2721 if (sg_offset_p) 2722 *sg_offset_p = 0; 2723 return i; 2724 } 2725 EXPORT_SYMBOL(ib_sg_to_pages); 2726 2727 struct ib_drain_cqe { 2728 struct ib_cqe cqe; 2729 struct completion done; 2730 }; 2731 2732 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2733 { 2734 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2735 cqe); 2736 2737 complete(&cqe->done); 2738 } 2739 2740 /* 2741 * Post a WR and block until its completion is reaped for the SQ. 2742 */ 2743 static void __ib_drain_sq(struct ib_qp *qp) 2744 { 2745 struct ib_cq *cq = qp->send_cq; 2746 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2747 struct ib_drain_cqe sdrain; 2748 struct ib_rdma_wr swr = { 2749 .wr = { 2750 .next = NULL, 2751 { .wr_cqe = &sdrain.cqe, }, 2752 .opcode = IB_WR_RDMA_WRITE, 2753 }, 2754 }; 2755 int ret; 2756 2757 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2758 if (ret) { 2759 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2760 return; 2761 } 2762 2763 sdrain.cqe.done = ib_drain_qp_done; 2764 init_completion(&sdrain.done); 2765 2766 ret = ib_post_send(qp, &swr.wr, NULL); 2767 if (ret) { 2768 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2769 return; 2770 } 2771 2772 if (cq->poll_ctx == IB_POLL_DIRECT) 2773 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2774 ib_process_cq_direct(cq, -1); 2775 else 2776 wait_for_completion(&sdrain.done); 2777 } 2778 2779 /* 2780 * Post a WR and block until its completion is reaped for the RQ. 2781 */ 2782 static void __ib_drain_rq(struct ib_qp *qp) 2783 { 2784 struct ib_cq *cq = qp->recv_cq; 2785 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2786 struct ib_drain_cqe rdrain; 2787 struct ib_recv_wr rwr = {}; 2788 int ret; 2789 2790 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2791 if (ret) { 2792 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2793 return; 2794 } 2795 2796 rwr.wr_cqe = &rdrain.cqe; 2797 rdrain.cqe.done = ib_drain_qp_done; 2798 init_completion(&rdrain.done); 2799 2800 ret = ib_post_recv(qp, &rwr, NULL); 2801 if (ret) { 2802 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2803 return; 2804 } 2805 2806 if (cq->poll_ctx == IB_POLL_DIRECT) 2807 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2808 ib_process_cq_direct(cq, -1); 2809 else 2810 wait_for_completion(&rdrain.done); 2811 } 2812 2813 /** 2814 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2815 * application. 2816 * @qp: queue pair to drain 2817 * 2818 * If the device has a provider-specific drain function, then 2819 * call that. Otherwise call the generic drain function 2820 * __ib_drain_sq(). 2821 * 2822 * The caller must: 2823 * 2824 * ensure there is room in the CQ and SQ for the drain work request and 2825 * completion. 2826 * 2827 * allocate the CQ using ib_alloc_cq(). 2828 * 2829 * ensure that there are no other contexts that are posting WRs concurrently. 2830 * Otherwise the drain is not guaranteed. 2831 */ 2832 void ib_drain_sq(struct ib_qp *qp) 2833 { 2834 if (qp->device->ops.drain_sq) 2835 qp->device->ops.drain_sq(qp); 2836 else 2837 __ib_drain_sq(qp); 2838 trace_cq_drain_complete(qp->send_cq); 2839 } 2840 EXPORT_SYMBOL(ib_drain_sq); 2841 2842 /** 2843 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2844 * application. 2845 * @qp: queue pair to drain 2846 * 2847 * If the device has a provider-specific drain function, then 2848 * call that. Otherwise call the generic drain function 2849 * __ib_drain_rq(). 2850 * 2851 * The caller must: 2852 * 2853 * ensure there is room in the CQ and RQ for the drain work request and 2854 * completion. 2855 * 2856 * allocate the CQ using ib_alloc_cq(). 2857 * 2858 * ensure that there are no other contexts that are posting WRs concurrently. 2859 * Otherwise the drain is not guaranteed. 2860 */ 2861 void ib_drain_rq(struct ib_qp *qp) 2862 { 2863 if (qp->device->ops.drain_rq) 2864 qp->device->ops.drain_rq(qp); 2865 else 2866 __ib_drain_rq(qp); 2867 trace_cq_drain_complete(qp->recv_cq); 2868 } 2869 EXPORT_SYMBOL(ib_drain_rq); 2870 2871 /** 2872 * ib_drain_qp() - Block until all CQEs have been consumed by the 2873 * application on both the RQ and SQ. 2874 * @qp: queue pair to drain 2875 * 2876 * The caller must: 2877 * 2878 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2879 * and completions. 2880 * 2881 * allocate the CQs using ib_alloc_cq(). 2882 * 2883 * ensure that there are no other contexts that are posting WRs concurrently. 2884 * Otherwise the drain is not guaranteed. 2885 */ 2886 void ib_drain_qp(struct ib_qp *qp) 2887 { 2888 ib_drain_sq(qp); 2889 if (!qp->srq) 2890 ib_drain_rq(qp); 2891 } 2892 EXPORT_SYMBOL(ib_drain_qp); 2893 2894 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 2895 enum rdma_netdev_t type, const char *name, 2896 unsigned char name_assign_type, 2897 void (*setup)(struct net_device *)) 2898 { 2899 struct rdma_netdev_alloc_params params; 2900 struct net_device *netdev; 2901 int rc; 2902 2903 if (!device->ops.rdma_netdev_get_params) 2904 return ERR_PTR(-EOPNOTSUPP); 2905 2906 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2907 ¶ms); 2908 if (rc) 2909 return ERR_PTR(rc); 2910 2911 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2912 setup, params.txqs, params.rxqs); 2913 if (!netdev) 2914 return ERR_PTR(-ENOMEM); 2915 2916 return netdev; 2917 } 2918 EXPORT_SYMBOL(rdma_alloc_netdev); 2919 2920 int rdma_init_netdev(struct ib_device *device, u32 port_num, 2921 enum rdma_netdev_t type, const char *name, 2922 unsigned char name_assign_type, 2923 void (*setup)(struct net_device *), 2924 struct net_device *netdev) 2925 { 2926 struct rdma_netdev_alloc_params params; 2927 int rc; 2928 2929 if (!device->ops.rdma_netdev_get_params) 2930 return -EOPNOTSUPP; 2931 2932 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2933 ¶ms); 2934 if (rc) 2935 return rc; 2936 2937 return params.initialize_rdma_netdev(device, port_num, 2938 netdev, params.param); 2939 } 2940 EXPORT_SYMBOL(rdma_init_netdev); 2941 2942 void __rdma_block_iter_start(struct ib_block_iter *biter, 2943 struct scatterlist *sglist, unsigned int nents, 2944 unsigned long pgsz) 2945 { 2946 memset(biter, 0, sizeof(struct ib_block_iter)); 2947 biter->__sg = sglist; 2948 biter->__sg_nents = nents; 2949 2950 /* Driver provides best block size to use */ 2951 biter->__pg_bit = __fls(pgsz); 2952 } 2953 EXPORT_SYMBOL(__rdma_block_iter_start); 2954 2955 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2956 { 2957 unsigned int block_offset; 2958 2959 if (!biter->__sg_nents || !biter->__sg) 2960 return false; 2961 2962 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2963 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2964 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2965 2966 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2967 biter->__sg_advance = 0; 2968 biter->__sg = sg_next(biter->__sg); 2969 biter->__sg_nents--; 2970 } 2971 2972 return true; 2973 } 2974 EXPORT_SYMBOL(__rdma_block_iter_next); 2975 2976 /** 2977 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 2978 * for the drivers. 2979 * @descs: array of static descriptors 2980 * @num_counters: number of elements in array 2981 * @lifespan: milliseconds between updates 2982 */ 2983 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 2984 const struct rdma_stat_desc *descs, int num_counters, 2985 unsigned long lifespan) 2986 { 2987 struct rdma_hw_stats *stats; 2988 2989 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL); 2990 if (!stats) 2991 return NULL; 2992 2993 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters), 2994 sizeof(*stats->is_disabled), GFP_KERNEL); 2995 if (!stats->is_disabled) 2996 goto err; 2997 2998 stats->descs = descs; 2999 stats->num_counters = num_counters; 3000 stats->lifespan = msecs_to_jiffies(lifespan); 3001 mutex_init(&stats->lock); 3002 3003 return stats; 3004 3005 err: 3006 kfree(stats); 3007 return NULL; 3008 } 3009 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct); 3010 3011 /** 3012 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats 3013 * @stats: statistics to release 3014 */ 3015 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats) 3016 { 3017 if (!stats) 3018 return; 3019 3020 kfree(stats->is_disabled); 3021 kfree(stats); 3022 } 3023 EXPORT_SYMBOL(rdma_free_hw_stats_struct); 3024