1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 default: return -1; 145 } 146 } 147 EXPORT_SYMBOL(ib_rate_to_mult); 148 149 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 150 { 151 switch (mult) { 152 case 1: return IB_RATE_2_5_GBPS; 153 case 2: return IB_RATE_5_GBPS; 154 case 4: return IB_RATE_10_GBPS; 155 case 8: return IB_RATE_20_GBPS; 156 case 12: return IB_RATE_30_GBPS; 157 case 16: return IB_RATE_40_GBPS; 158 case 24: return IB_RATE_60_GBPS; 159 case 32: return IB_RATE_80_GBPS; 160 case 48: return IB_RATE_120_GBPS; 161 case 6: return IB_RATE_14_GBPS; 162 case 22: return IB_RATE_56_GBPS; 163 case 45: return IB_RATE_112_GBPS; 164 case 67: return IB_RATE_168_GBPS; 165 case 10: return IB_RATE_25_GBPS; 166 case 40: return IB_RATE_100_GBPS; 167 case 80: return IB_RATE_200_GBPS; 168 case 120: return IB_RATE_300_GBPS; 169 default: return IB_RATE_PORT_CURRENT; 170 } 171 } 172 EXPORT_SYMBOL(mult_to_ib_rate); 173 174 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 175 { 176 switch (rate) { 177 case IB_RATE_2_5_GBPS: return 2500; 178 case IB_RATE_5_GBPS: return 5000; 179 case IB_RATE_10_GBPS: return 10000; 180 case IB_RATE_20_GBPS: return 20000; 181 case IB_RATE_30_GBPS: return 30000; 182 case IB_RATE_40_GBPS: return 40000; 183 case IB_RATE_60_GBPS: return 60000; 184 case IB_RATE_80_GBPS: return 80000; 185 case IB_RATE_120_GBPS: return 120000; 186 case IB_RATE_14_GBPS: return 14062; 187 case IB_RATE_56_GBPS: return 56250; 188 case IB_RATE_112_GBPS: return 112500; 189 case IB_RATE_168_GBPS: return 168750; 190 case IB_RATE_25_GBPS: return 25781; 191 case IB_RATE_100_GBPS: return 103125; 192 case IB_RATE_200_GBPS: return 206250; 193 case IB_RATE_300_GBPS: return 309375; 194 default: return -1; 195 } 196 } 197 EXPORT_SYMBOL(ib_rate_to_mbps); 198 199 __attribute_const__ enum rdma_transport_type 200 rdma_node_get_transport(enum rdma_node_type node_type) 201 { 202 203 if (node_type == RDMA_NODE_USNIC) 204 return RDMA_TRANSPORT_USNIC; 205 if (node_type == RDMA_NODE_USNIC_UDP) 206 return RDMA_TRANSPORT_USNIC_UDP; 207 if (node_type == RDMA_NODE_RNIC) 208 return RDMA_TRANSPORT_IWARP; 209 210 return RDMA_TRANSPORT_IB; 211 } 212 EXPORT_SYMBOL(rdma_node_get_transport); 213 214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 215 { 216 enum rdma_transport_type lt; 217 if (device->get_link_layer) 218 return device->get_link_layer(device, port_num); 219 220 lt = rdma_node_get_transport(device->node_type); 221 if (lt == RDMA_TRANSPORT_IB) 222 return IB_LINK_LAYER_INFINIBAND; 223 224 return IB_LINK_LAYER_ETHERNET; 225 } 226 EXPORT_SYMBOL(rdma_port_get_link_layer); 227 228 /* Protection domains */ 229 230 /** 231 * ib_alloc_pd - Allocates an unused protection domain. 232 * @device: The device on which to allocate the protection domain. 233 * 234 * A protection domain object provides an association between QPs, shared 235 * receive queues, address handles, memory regions, and memory windows. 236 * 237 * Every PD has a local_dma_lkey which can be used as the lkey value for local 238 * memory operations. 239 */ 240 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 241 const char *caller) 242 { 243 struct ib_pd *pd; 244 int mr_access_flags = 0; 245 246 pd = device->alloc_pd(device, NULL, NULL); 247 if (IS_ERR(pd)) 248 return pd; 249 250 pd->device = device; 251 pd->uobject = NULL; 252 pd->__internal_mr = NULL; 253 atomic_set(&pd->usecnt, 0); 254 pd->flags = flags; 255 256 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 257 pd->local_dma_lkey = device->local_dma_lkey; 258 else 259 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 260 261 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 262 pr_warn("%s: enabling unsafe global rkey\n", caller); 263 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 264 } 265 266 pd->res.type = RDMA_RESTRACK_PD; 267 pd->res.kern_name = caller; 268 rdma_restrack_add(&pd->res); 269 270 if (mr_access_flags) { 271 struct ib_mr *mr; 272 273 mr = pd->device->get_dma_mr(pd, mr_access_flags); 274 if (IS_ERR(mr)) { 275 ib_dealloc_pd(pd); 276 return ERR_CAST(mr); 277 } 278 279 mr->device = pd->device; 280 mr->pd = pd; 281 mr->uobject = NULL; 282 mr->need_inval = false; 283 284 pd->__internal_mr = mr; 285 286 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 287 pd->local_dma_lkey = pd->__internal_mr->lkey; 288 289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 290 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 291 } 292 293 return pd; 294 } 295 EXPORT_SYMBOL(__ib_alloc_pd); 296 297 /** 298 * ib_dealloc_pd - Deallocates a protection domain. 299 * @pd: The protection domain to deallocate. 300 * 301 * It is an error to call this function while any resources in the pd still 302 * exist. The caller is responsible to synchronously destroy them and 303 * guarantee no new allocations will happen. 304 */ 305 void ib_dealloc_pd(struct ib_pd *pd) 306 { 307 int ret; 308 309 if (pd->__internal_mr) { 310 ret = pd->device->dereg_mr(pd->__internal_mr); 311 WARN_ON(ret); 312 pd->__internal_mr = NULL; 313 } 314 315 /* uverbs manipulates usecnt with proper locking, while the kabi 316 requires the caller to guarantee we can't race here. */ 317 WARN_ON(atomic_read(&pd->usecnt)); 318 319 rdma_restrack_del(&pd->res); 320 /* Making delalloc_pd a void return is a WIP, no driver should return 321 an error here. */ 322 ret = pd->device->dealloc_pd(pd); 323 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 324 } 325 EXPORT_SYMBOL(ib_dealloc_pd); 326 327 /* Address handles */ 328 329 /** 330 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 331 * @dest: Pointer to destination ah_attr. Contents of the destination 332 * pointer is assumed to be invalid and attribute are overwritten. 333 * @src: Pointer to source ah_attr. 334 */ 335 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 336 const struct rdma_ah_attr *src) 337 { 338 *dest = *src; 339 if (dest->grh.sgid_attr) 340 rdma_hold_gid_attr(dest->grh.sgid_attr); 341 } 342 EXPORT_SYMBOL(rdma_copy_ah_attr); 343 344 /** 345 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 346 * @old: Pointer to existing ah_attr which needs to be replaced. 347 * old is assumed to be valid or zero'd 348 * @new: Pointer to the new ah_attr. 349 * 350 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 351 * old the ah_attr is valid; after that it copies the new attribute and holds 352 * the reference to the replaced ah_attr. 353 */ 354 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 355 const struct rdma_ah_attr *new) 356 { 357 rdma_destroy_ah_attr(old); 358 *old = *new; 359 if (old->grh.sgid_attr) 360 rdma_hold_gid_attr(old->grh.sgid_attr); 361 } 362 EXPORT_SYMBOL(rdma_replace_ah_attr); 363 364 /** 365 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 366 * @dest: Pointer to destination ah_attr to copy to. 367 * dest is assumed to be valid or zero'd 368 * @src: Pointer to the new ah_attr. 369 * 370 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 371 * if it is valid. This also transfers ownership of internal references from 372 * src to dest, making src invalid in the process. No new reference of the src 373 * ah_attr is taken. 374 */ 375 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 376 { 377 rdma_destroy_ah_attr(dest); 378 *dest = *src; 379 src->grh.sgid_attr = NULL; 380 } 381 EXPORT_SYMBOL(rdma_move_ah_attr); 382 383 /* 384 * Validate that the rdma_ah_attr is valid for the device before passing it 385 * off to the driver. 386 */ 387 static int rdma_check_ah_attr(struct ib_device *device, 388 struct rdma_ah_attr *ah_attr) 389 { 390 if (!rdma_is_port_valid(device, ah_attr->port_num)) 391 return -EINVAL; 392 393 if ((rdma_is_grh_required(device, ah_attr->port_num) || 394 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 395 !(ah_attr->ah_flags & IB_AH_GRH)) 396 return -EINVAL; 397 398 if (ah_attr->grh.sgid_attr) { 399 /* 400 * Make sure the passed sgid_attr is consistent with the 401 * parameters 402 */ 403 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 404 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 405 return -EINVAL; 406 } 407 return 0; 408 } 409 410 /* 411 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 412 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 413 */ 414 static int rdma_fill_sgid_attr(struct ib_device *device, 415 struct rdma_ah_attr *ah_attr, 416 const struct ib_gid_attr **old_sgid_attr) 417 { 418 const struct ib_gid_attr *sgid_attr; 419 struct ib_global_route *grh; 420 int ret; 421 422 *old_sgid_attr = ah_attr->grh.sgid_attr; 423 424 ret = rdma_check_ah_attr(device, ah_attr); 425 if (ret) 426 return ret; 427 428 if (!(ah_attr->ah_flags & IB_AH_GRH)) 429 return 0; 430 431 grh = rdma_ah_retrieve_grh(ah_attr); 432 if (grh->sgid_attr) 433 return 0; 434 435 sgid_attr = 436 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 437 if (IS_ERR(sgid_attr)) 438 return PTR_ERR(sgid_attr); 439 440 /* Move ownerhip of the kref into the ah_attr */ 441 grh->sgid_attr = sgid_attr; 442 return 0; 443 } 444 445 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 446 const struct ib_gid_attr *old_sgid_attr) 447 { 448 /* 449 * Fill didn't change anything, the caller retains ownership of 450 * whatever it passed 451 */ 452 if (ah_attr->grh.sgid_attr == old_sgid_attr) 453 return; 454 455 /* 456 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 457 * doesn't see any change in the rdma_ah_attr. If we get here 458 * old_sgid_attr is NULL. 459 */ 460 rdma_destroy_ah_attr(ah_attr); 461 } 462 463 static const struct ib_gid_attr * 464 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 465 const struct ib_gid_attr *old_attr) 466 { 467 if (old_attr) 468 rdma_put_gid_attr(old_attr); 469 if (ah_attr->ah_flags & IB_AH_GRH) { 470 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 471 return ah_attr->grh.sgid_attr; 472 } 473 return NULL; 474 } 475 476 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 477 struct rdma_ah_attr *ah_attr, 478 struct ib_udata *udata) 479 { 480 struct ib_ah *ah; 481 482 if (!pd->device->create_ah) 483 return ERR_PTR(-EOPNOTSUPP); 484 485 ah = pd->device->create_ah(pd, ah_attr, udata); 486 487 if (!IS_ERR(ah)) { 488 ah->device = pd->device; 489 ah->pd = pd; 490 ah->uobject = NULL; 491 ah->type = ah_attr->type; 492 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 493 494 atomic_inc(&pd->usecnt); 495 } 496 497 return ah; 498 } 499 500 /** 501 * rdma_create_ah - Creates an address handle for the 502 * given address vector. 503 * @pd: The protection domain associated with the address handle. 504 * @ah_attr: The attributes of the address vector. 505 * 506 * It returns 0 on success and returns appropriate error code on error. 507 * The address handle is used to reference a local or global destination 508 * in all UD QP post sends. 509 */ 510 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) 511 { 512 const struct ib_gid_attr *old_sgid_attr; 513 struct ib_ah *ah; 514 int ret; 515 516 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 517 if (ret) 518 return ERR_PTR(ret); 519 520 ah = _rdma_create_ah(pd, ah_attr, NULL); 521 522 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 523 return ah; 524 } 525 EXPORT_SYMBOL(rdma_create_ah); 526 527 /** 528 * rdma_create_user_ah - Creates an address handle for the 529 * given address vector. 530 * It resolves destination mac address for ah attribute of RoCE type. 531 * @pd: The protection domain associated with the address handle. 532 * @ah_attr: The attributes of the address vector. 533 * @udata: pointer to user's input output buffer information need by 534 * provider driver. 535 * 536 * It returns 0 on success and returns appropriate error code on error. 537 * The address handle is used to reference a local or global destination 538 * in all UD QP post sends. 539 */ 540 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 541 struct rdma_ah_attr *ah_attr, 542 struct ib_udata *udata) 543 { 544 const struct ib_gid_attr *old_sgid_attr; 545 struct ib_ah *ah; 546 int err; 547 548 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 549 if (err) 550 return ERR_PTR(err); 551 552 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 553 err = ib_resolve_eth_dmac(pd->device, ah_attr); 554 if (err) { 555 ah = ERR_PTR(err); 556 goto out; 557 } 558 } 559 560 ah = _rdma_create_ah(pd, ah_attr, udata); 561 562 out: 563 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 564 return ah; 565 } 566 EXPORT_SYMBOL(rdma_create_user_ah); 567 568 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 569 { 570 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 571 struct iphdr ip4h_checked; 572 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 573 574 /* If it's IPv6, the version must be 6, otherwise, the first 575 * 20 bytes (before the IPv4 header) are garbled. 576 */ 577 if (ip6h->version != 6) 578 return (ip4h->version == 4) ? 4 : 0; 579 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 580 581 /* RoCE v2 requires no options, thus header length 582 * must be 5 words 583 */ 584 if (ip4h->ihl != 5) 585 return 6; 586 587 /* Verify checksum. 588 * We can't write on scattered buffers so we need to copy to 589 * temp buffer. 590 */ 591 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 592 ip4h_checked.check = 0; 593 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 594 /* if IPv4 header checksum is OK, believe it */ 595 if (ip4h->check == ip4h_checked.check) 596 return 4; 597 return 6; 598 } 599 EXPORT_SYMBOL(ib_get_rdma_header_version); 600 601 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 602 u8 port_num, 603 const struct ib_grh *grh) 604 { 605 int grh_version; 606 607 if (rdma_protocol_ib(device, port_num)) 608 return RDMA_NETWORK_IB; 609 610 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 611 612 if (grh_version == 4) 613 return RDMA_NETWORK_IPV4; 614 615 if (grh->next_hdr == IPPROTO_UDP) 616 return RDMA_NETWORK_IPV6; 617 618 return RDMA_NETWORK_ROCE_V1; 619 } 620 621 struct find_gid_index_context { 622 u16 vlan_id; 623 enum ib_gid_type gid_type; 624 }; 625 626 static bool find_gid_index(const union ib_gid *gid, 627 const struct ib_gid_attr *gid_attr, 628 void *context) 629 { 630 struct find_gid_index_context *ctx = context; 631 632 if (ctx->gid_type != gid_attr->gid_type) 633 return false; 634 635 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 636 (is_vlan_dev(gid_attr->ndev) && 637 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 638 return false; 639 640 return true; 641 } 642 643 static const struct ib_gid_attr * 644 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 645 u16 vlan_id, const union ib_gid *sgid, 646 enum ib_gid_type gid_type) 647 { 648 struct find_gid_index_context context = {.vlan_id = vlan_id, 649 .gid_type = gid_type}; 650 651 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 652 &context); 653 } 654 655 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 656 enum rdma_network_type net_type, 657 union ib_gid *sgid, union ib_gid *dgid) 658 { 659 struct sockaddr_in src_in; 660 struct sockaddr_in dst_in; 661 __be32 src_saddr, dst_saddr; 662 663 if (!sgid || !dgid) 664 return -EINVAL; 665 666 if (net_type == RDMA_NETWORK_IPV4) { 667 memcpy(&src_in.sin_addr.s_addr, 668 &hdr->roce4grh.saddr, 4); 669 memcpy(&dst_in.sin_addr.s_addr, 670 &hdr->roce4grh.daddr, 4); 671 src_saddr = src_in.sin_addr.s_addr; 672 dst_saddr = dst_in.sin_addr.s_addr; 673 ipv6_addr_set_v4mapped(src_saddr, 674 (struct in6_addr *)sgid); 675 ipv6_addr_set_v4mapped(dst_saddr, 676 (struct in6_addr *)dgid); 677 return 0; 678 } else if (net_type == RDMA_NETWORK_IPV6 || 679 net_type == RDMA_NETWORK_IB) { 680 *dgid = hdr->ibgrh.dgid; 681 *sgid = hdr->ibgrh.sgid; 682 return 0; 683 } else { 684 return -EINVAL; 685 } 686 } 687 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 688 689 /* Resolve destination mac address and hop limit for unicast destination 690 * GID entry, considering the source GID entry as well. 691 * ah_attribute must have have valid port_num, sgid_index. 692 */ 693 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 694 struct rdma_ah_attr *ah_attr) 695 { 696 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 697 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 698 int hop_limit = 0xff; 699 int ret = 0; 700 701 /* If destination is link local and source GID is RoCEv1, 702 * IP stack is not used. 703 */ 704 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 705 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 706 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 707 ah_attr->roce.dmac); 708 return ret; 709 } 710 711 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 712 ah_attr->roce.dmac, 713 sgid_attr->ndev, &hop_limit); 714 715 grh->hop_limit = hop_limit; 716 return ret; 717 } 718 719 /* 720 * This function initializes address handle attributes from the incoming packet. 721 * Incoming packet has dgid of the receiver node on which this code is 722 * getting executed and, sgid contains the GID of the sender. 723 * 724 * When resolving mac address of destination, the arrived dgid is used 725 * as sgid and, sgid is used as dgid because sgid contains destinations 726 * GID whom to respond to. 727 * 728 * On success the caller is responsible to call rdma_destroy_ah_attr on the 729 * attr. 730 */ 731 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 732 const struct ib_wc *wc, const struct ib_grh *grh, 733 struct rdma_ah_attr *ah_attr) 734 { 735 u32 flow_class; 736 int ret; 737 enum rdma_network_type net_type = RDMA_NETWORK_IB; 738 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 739 const struct ib_gid_attr *sgid_attr; 740 int hoplimit = 0xff; 741 union ib_gid dgid; 742 union ib_gid sgid; 743 744 might_sleep(); 745 746 memset(ah_attr, 0, sizeof *ah_attr); 747 ah_attr->type = rdma_ah_find_type(device, port_num); 748 if (rdma_cap_eth_ah(device, port_num)) { 749 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 750 net_type = wc->network_hdr_type; 751 else 752 net_type = ib_get_net_type_by_grh(device, port_num, grh); 753 gid_type = ib_network_to_gid_type(net_type); 754 } 755 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 756 &sgid, &dgid); 757 if (ret) 758 return ret; 759 760 rdma_ah_set_sl(ah_attr, wc->sl); 761 rdma_ah_set_port_num(ah_attr, port_num); 762 763 if (rdma_protocol_roce(device, port_num)) { 764 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 765 wc->vlan_id : 0xffff; 766 767 if (!(wc->wc_flags & IB_WC_GRH)) 768 return -EPROTOTYPE; 769 770 sgid_attr = get_sgid_attr_from_eth(device, port_num, 771 vlan_id, &dgid, 772 gid_type); 773 if (IS_ERR(sgid_attr)) 774 return PTR_ERR(sgid_attr); 775 776 flow_class = be32_to_cpu(grh->version_tclass_flow); 777 rdma_move_grh_sgid_attr(ah_attr, 778 &sgid, 779 flow_class & 0xFFFFF, 780 hoplimit, 781 (flow_class >> 20) & 0xFF, 782 sgid_attr); 783 784 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 785 if (ret) 786 rdma_destroy_ah_attr(ah_attr); 787 788 return ret; 789 } else { 790 rdma_ah_set_dlid(ah_attr, wc->slid); 791 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 792 793 if ((wc->wc_flags & IB_WC_GRH) == 0) 794 return 0; 795 796 if (dgid.global.interface_id != 797 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 798 sgid_attr = rdma_find_gid_by_port( 799 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 800 } else 801 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 802 803 if (IS_ERR(sgid_attr)) 804 return PTR_ERR(sgid_attr); 805 flow_class = be32_to_cpu(grh->version_tclass_flow); 806 rdma_move_grh_sgid_attr(ah_attr, 807 &sgid, 808 flow_class & 0xFFFFF, 809 hoplimit, 810 (flow_class >> 20) & 0xFF, 811 sgid_attr); 812 813 return 0; 814 } 815 } 816 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 817 818 /** 819 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 820 * of the reference 821 * 822 * @attr: Pointer to AH attribute structure 823 * @dgid: Destination GID 824 * @flow_label: Flow label 825 * @hop_limit: Hop limit 826 * @traffic_class: traffic class 827 * @sgid_attr: Pointer to SGID attribute 828 * 829 * This takes ownership of the sgid_attr reference. The caller must ensure 830 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 831 * calling this function. 832 */ 833 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 834 u32 flow_label, u8 hop_limit, u8 traffic_class, 835 const struct ib_gid_attr *sgid_attr) 836 { 837 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 838 traffic_class); 839 attr->grh.sgid_attr = sgid_attr; 840 } 841 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 842 843 /** 844 * rdma_destroy_ah_attr - Release reference to SGID attribute of 845 * ah attribute. 846 * @ah_attr: Pointer to ah attribute 847 * 848 * Release reference to the SGID attribute of the ah attribute if it is 849 * non NULL. It is safe to call this multiple times, and safe to call it on 850 * a zero initialized ah_attr. 851 */ 852 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 853 { 854 if (ah_attr->grh.sgid_attr) { 855 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 856 ah_attr->grh.sgid_attr = NULL; 857 } 858 } 859 EXPORT_SYMBOL(rdma_destroy_ah_attr); 860 861 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 862 const struct ib_grh *grh, u8 port_num) 863 { 864 struct rdma_ah_attr ah_attr; 865 struct ib_ah *ah; 866 int ret; 867 868 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 869 if (ret) 870 return ERR_PTR(ret); 871 872 ah = rdma_create_ah(pd, &ah_attr); 873 874 rdma_destroy_ah_attr(&ah_attr); 875 return ah; 876 } 877 EXPORT_SYMBOL(ib_create_ah_from_wc); 878 879 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 880 { 881 const struct ib_gid_attr *old_sgid_attr; 882 int ret; 883 884 if (ah->type != ah_attr->type) 885 return -EINVAL; 886 887 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 888 if (ret) 889 return ret; 890 891 ret = ah->device->modify_ah ? 892 ah->device->modify_ah(ah, ah_attr) : 893 -EOPNOTSUPP; 894 895 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 896 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 897 return ret; 898 } 899 EXPORT_SYMBOL(rdma_modify_ah); 900 901 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 902 { 903 ah_attr->grh.sgid_attr = NULL; 904 905 return ah->device->query_ah ? 906 ah->device->query_ah(ah, ah_attr) : 907 -EOPNOTSUPP; 908 } 909 EXPORT_SYMBOL(rdma_query_ah); 910 911 int rdma_destroy_ah(struct ib_ah *ah) 912 { 913 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 914 struct ib_pd *pd; 915 int ret; 916 917 pd = ah->pd; 918 ret = ah->device->destroy_ah(ah); 919 if (!ret) { 920 atomic_dec(&pd->usecnt); 921 if (sgid_attr) 922 rdma_put_gid_attr(sgid_attr); 923 } 924 925 return ret; 926 } 927 EXPORT_SYMBOL(rdma_destroy_ah); 928 929 /* Shared receive queues */ 930 931 struct ib_srq *ib_create_srq(struct ib_pd *pd, 932 struct ib_srq_init_attr *srq_init_attr) 933 { 934 struct ib_srq *srq; 935 936 if (!pd->device->create_srq) 937 return ERR_PTR(-EOPNOTSUPP); 938 939 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 940 941 if (!IS_ERR(srq)) { 942 srq->device = pd->device; 943 srq->pd = pd; 944 srq->uobject = NULL; 945 srq->event_handler = srq_init_attr->event_handler; 946 srq->srq_context = srq_init_attr->srq_context; 947 srq->srq_type = srq_init_attr->srq_type; 948 if (ib_srq_has_cq(srq->srq_type)) { 949 srq->ext.cq = srq_init_attr->ext.cq; 950 atomic_inc(&srq->ext.cq->usecnt); 951 } 952 if (srq->srq_type == IB_SRQT_XRC) { 953 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 954 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 955 } 956 atomic_inc(&pd->usecnt); 957 atomic_set(&srq->usecnt, 0); 958 } 959 960 return srq; 961 } 962 EXPORT_SYMBOL(ib_create_srq); 963 964 int ib_modify_srq(struct ib_srq *srq, 965 struct ib_srq_attr *srq_attr, 966 enum ib_srq_attr_mask srq_attr_mask) 967 { 968 return srq->device->modify_srq ? 969 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 970 -EOPNOTSUPP; 971 } 972 EXPORT_SYMBOL(ib_modify_srq); 973 974 int ib_query_srq(struct ib_srq *srq, 975 struct ib_srq_attr *srq_attr) 976 { 977 return srq->device->query_srq ? 978 srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP; 979 } 980 EXPORT_SYMBOL(ib_query_srq); 981 982 int ib_destroy_srq(struct ib_srq *srq) 983 { 984 struct ib_pd *pd; 985 enum ib_srq_type srq_type; 986 struct ib_xrcd *uninitialized_var(xrcd); 987 struct ib_cq *uninitialized_var(cq); 988 int ret; 989 990 if (atomic_read(&srq->usecnt)) 991 return -EBUSY; 992 993 pd = srq->pd; 994 srq_type = srq->srq_type; 995 if (ib_srq_has_cq(srq_type)) 996 cq = srq->ext.cq; 997 if (srq_type == IB_SRQT_XRC) 998 xrcd = srq->ext.xrc.xrcd; 999 1000 ret = srq->device->destroy_srq(srq); 1001 if (!ret) { 1002 atomic_dec(&pd->usecnt); 1003 if (srq_type == IB_SRQT_XRC) 1004 atomic_dec(&xrcd->usecnt); 1005 if (ib_srq_has_cq(srq_type)) 1006 atomic_dec(&cq->usecnt); 1007 } 1008 1009 return ret; 1010 } 1011 EXPORT_SYMBOL(ib_destroy_srq); 1012 1013 /* Queue pairs */ 1014 1015 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1016 { 1017 struct ib_qp *qp = context; 1018 unsigned long flags; 1019 1020 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 1021 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1022 if (event->element.qp->event_handler) 1023 event->element.qp->event_handler(event, event->element.qp->qp_context); 1024 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 1025 } 1026 1027 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1028 { 1029 mutex_lock(&xrcd->tgt_qp_mutex); 1030 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1031 mutex_unlock(&xrcd->tgt_qp_mutex); 1032 } 1033 1034 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1035 void (*event_handler)(struct ib_event *, void *), 1036 void *qp_context) 1037 { 1038 struct ib_qp *qp; 1039 unsigned long flags; 1040 int err; 1041 1042 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1043 if (!qp) 1044 return ERR_PTR(-ENOMEM); 1045 1046 qp->real_qp = real_qp; 1047 err = ib_open_shared_qp_security(qp, real_qp->device); 1048 if (err) { 1049 kfree(qp); 1050 return ERR_PTR(err); 1051 } 1052 1053 qp->real_qp = real_qp; 1054 atomic_inc(&real_qp->usecnt); 1055 qp->device = real_qp->device; 1056 qp->event_handler = event_handler; 1057 qp->qp_context = qp_context; 1058 qp->qp_num = real_qp->qp_num; 1059 qp->qp_type = real_qp->qp_type; 1060 1061 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1062 list_add(&qp->open_list, &real_qp->open_list); 1063 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1064 1065 return qp; 1066 } 1067 1068 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1069 struct ib_qp_open_attr *qp_open_attr) 1070 { 1071 struct ib_qp *qp, *real_qp; 1072 1073 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1074 return ERR_PTR(-EINVAL); 1075 1076 qp = ERR_PTR(-EINVAL); 1077 mutex_lock(&xrcd->tgt_qp_mutex); 1078 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1079 if (real_qp->qp_num == qp_open_attr->qp_num) { 1080 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1081 qp_open_attr->qp_context); 1082 break; 1083 } 1084 } 1085 mutex_unlock(&xrcd->tgt_qp_mutex); 1086 return qp; 1087 } 1088 EXPORT_SYMBOL(ib_open_qp); 1089 1090 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 1091 struct ib_qp_init_attr *qp_init_attr) 1092 { 1093 struct ib_qp *real_qp = qp; 1094 1095 qp->event_handler = __ib_shared_qp_event_handler; 1096 qp->qp_context = qp; 1097 qp->pd = NULL; 1098 qp->send_cq = qp->recv_cq = NULL; 1099 qp->srq = NULL; 1100 qp->xrcd = qp_init_attr->xrcd; 1101 atomic_inc(&qp_init_attr->xrcd->usecnt); 1102 INIT_LIST_HEAD(&qp->open_list); 1103 1104 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1105 qp_init_attr->qp_context); 1106 if (!IS_ERR(qp)) 1107 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1108 else 1109 real_qp->device->destroy_qp(real_qp); 1110 return qp; 1111 } 1112 1113 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1114 struct ib_qp_init_attr *qp_init_attr) 1115 { 1116 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1117 struct ib_qp *qp; 1118 int ret; 1119 1120 if (qp_init_attr->rwq_ind_tbl && 1121 (qp_init_attr->recv_cq || 1122 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1123 qp_init_attr->cap.max_recv_sge)) 1124 return ERR_PTR(-EINVAL); 1125 1126 /* 1127 * If the callers is using the RDMA API calculate the resources 1128 * needed for the RDMA READ/WRITE operations. 1129 * 1130 * Note that these callers need to pass in a port number. 1131 */ 1132 if (qp_init_attr->cap.max_rdma_ctxs) 1133 rdma_rw_init_qp(device, qp_init_attr); 1134 1135 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1136 if (IS_ERR(qp)) 1137 return qp; 1138 1139 ret = ib_create_qp_security(qp, device); 1140 if (ret) { 1141 ib_destroy_qp(qp); 1142 return ERR_PTR(ret); 1143 } 1144 1145 qp->real_qp = qp; 1146 qp->qp_type = qp_init_attr->qp_type; 1147 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 1148 1149 atomic_set(&qp->usecnt, 0); 1150 qp->mrs_used = 0; 1151 spin_lock_init(&qp->mr_lock); 1152 INIT_LIST_HEAD(&qp->rdma_mrs); 1153 INIT_LIST_HEAD(&qp->sig_mrs); 1154 qp->port = 0; 1155 1156 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 1157 return ib_create_xrc_qp(qp, qp_init_attr); 1158 1159 qp->event_handler = qp_init_attr->event_handler; 1160 qp->qp_context = qp_init_attr->qp_context; 1161 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1162 qp->recv_cq = NULL; 1163 qp->srq = NULL; 1164 } else { 1165 qp->recv_cq = qp_init_attr->recv_cq; 1166 if (qp_init_attr->recv_cq) 1167 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1168 qp->srq = qp_init_attr->srq; 1169 if (qp->srq) 1170 atomic_inc(&qp_init_attr->srq->usecnt); 1171 } 1172 1173 qp->send_cq = qp_init_attr->send_cq; 1174 qp->xrcd = NULL; 1175 1176 atomic_inc(&pd->usecnt); 1177 if (qp_init_attr->send_cq) 1178 atomic_inc(&qp_init_attr->send_cq->usecnt); 1179 if (qp_init_attr->rwq_ind_tbl) 1180 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1181 1182 if (qp_init_attr->cap.max_rdma_ctxs) { 1183 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1184 if (ret) { 1185 pr_err("failed to init MR pool ret= %d\n", ret); 1186 ib_destroy_qp(qp); 1187 return ERR_PTR(ret); 1188 } 1189 } 1190 1191 /* 1192 * Note: all hw drivers guarantee that max_send_sge is lower than 1193 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1194 * max_send_sge <= max_sge_rd. 1195 */ 1196 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1197 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1198 device->attrs.max_sge_rd); 1199 1200 return qp; 1201 } 1202 EXPORT_SYMBOL(ib_create_qp); 1203 1204 static const struct { 1205 int valid; 1206 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1207 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1208 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1209 [IB_QPS_RESET] = { 1210 [IB_QPS_RESET] = { .valid = 1 }, 1211 [IB_QPS_INIT] = { 1212 .valid = 1, 1213 .req_param = { 1214 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1215 IB_QP_PORT | 1216 IB_QP_QKEY), 1217 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1218 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1219 IB_QP_PORT | 1220 IB_QP_ACCESS_FLAGS), 1221 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1222 IB_QP_PORT | 1223 IB_QP_ACCESS_FLAGS), 1224 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1225 IB_QP_PORT | 1226 IB_QP_ACCESS_FLAGS), 1227 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1228 IB_QP_PORT | 1229 IB_QP_ACCESS_FLAGS), 1230 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1231 IB_QP_QKEY), 1232 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1233 IB_QP_QKEY), 1234 } 1235 }, 1236 }, 1237 [IB_QPS_INIT] = { 1238 [IB_QPS_RESET] = { .valid = 1 }, 1239 [IB_QPS_ERR] = { .valid = 1 }, 1240 [IB_QPS_INIT] = { 1241 .valid = 1, 1242 .opt_param = { 1243 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1244 IB_QP_PORT | 1245 IB_QP_QKEY), 1246 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1247 IB_QP_PORT | 1248 IB_QP_ACCESS_FLAGS), 1249 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1250 IB_QP_PORT | 1251 IB_QP_ACCESS_FLAGS), 1252 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1253 IB_QP_PORT | 1254 IB_QP_ACCESS_FLAGS), 1255 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1256 IB_QP_PORT | 1257 IB_QP_ACCESS_FLAGS), 1258 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1259 IB_QP_QKEY), 1260 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1261 IB_QP_QKEY), 1262 } 1263 }, 1264 [IB_QPS_RTR] = { 1265 .valid = 1, 1266 .req_param = { 1267 [IB_QPT_UC] = (IB_QP_AV | 1268 IB_QP_PATH_MTU | 1269 IB_QP_DEST_QPN | 1270 IB_QP_RQ_PSN), 1271 [IB_QPT_RC] = (IB_QP_AV | 1272 IB_QP_PATH_MTU | 1273 IB_QP_DEST_QPN | 1274 IB_QP_RQ_PSN | 1275 IB_QP_MAX_DEST_RD_ATOMIC | 1276 IB_QP_MIN_RNR_TIMER), 1277 [IB_QPT_XRC_INI] = (IB_QP_AV | 1278 IB_QP_PATH_MTU | 1279 IB_QP_DEST_QPN | 1280 IB_QP_RQ_PSN), 1281 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1282 IB_QP_PATH_MTU | 1283 IB_QP_DEST_QPN | 1284 IB_QP_RQ_PSN | 1285 IB_QP_MAX_DEST_RD_ATOMIC | 1286 IB_QP_MIN_RNR_TIMER), 1287 }, 1288 .opt_param = { 1289 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1290 IB_QP_QKEY), 1291 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1292 IB_QP_ACCESS_FLAGS | 1293 IB_QP_PKEY_INDEX), 1294 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1295 IB_QP_ACCESS_FLAGS | 1296 IB_QP_PKEY_INDEX), 1297 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1298 IB_QP_ACCESS_FLAGS | 1299 IB_QP_PKEY_INDEX), 1300 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1301 IB_QP_ACCESS_FLAGS | 1302 IB_QP_PKEY_INDEX), 1303 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1304 IB_QP_QKEY), 1305 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1306 IB_QP_QKEY), 1307 }, 1308 }, 1309 }, 1310 [IB_QPS_RTR] = { 1311 [IB_QPS_RESET] = { .valid = 1 }, 1312 [IB_QPS_ERR] = { .valid = 1 }, 1313 [IB_QPS_RTS] = { 1314 .valid = 1, 1315 .req_param = { 1316 [IB_QPT_UD] = IB_QP_SQ_PSN, 1317 [IB_QPT_UC] = IB_QP_SQ_PSN, 1318 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1319 IB_QP_RETRY_CNT | 1320 IB_QP_RNR_RETRY | 1321 IB_QP_SQ_PSN | 1322 IB_QP_MAX_QP_RD_ATOMIC), 1323 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1324 IB_QP_RETRY_CNT | 1325 IB_QP_RNR_RETRY | 1326 IB_QP_SQ_PSN | 1327 IB_QP_MAX_QP_RD_ATOMIC), 1328 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1329 IB_QP_SQ_PSN), 1330 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1331 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1332 }, 1333 .opt_param = { 1334 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1335 IB_QP_QKEY), 1336 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1337 IB_QP_ALT_PATH | 1338 IB_QP_ACCESS_FLAGS | 1339 IB_QP_PATH_MIG_STATE), 1340 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1341 IB_QP_ALT_PATH | 1342 IB_QP_ACCESS_FLAGS | 1343 IB_QP_MIN_RNR_TIMER | 1344 IB_QP_PATH_MIG_STATE), 1345 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1346 IB_QP_ALT_PATH | 1347 IB_QP_ACCESS_FLAGS | 1348 IB_QP_PATH_MIG_STATE), 1349 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1350 IB_QP_ALT_PATH | 1351 IB_QP_ACCESS_FLAGS | 1352 IB_QP_MIN_RNR_TIMER | 1353 IB_QP_PATH_MIG_STATE), 1354 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1355 IB_QP_QKEY), 1356 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1357 IB_QP_QKEY), 1358 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1359 } 1360 } 1361 }, 1362 [IB_QPS_RTS] = { 1363 [IB_QPS_RESET] = { .valid = 1 }, 1364 [IB_QPS_ERR] = { .valid = 1 }, 1365 [IB_QPS_RTS] = { 1366 .valid = 1, 1367 .opt_param = { 1368 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1369 IB_QP_QKEY), 1370 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1371 IB_QP_ACCESS_FLAGS | 1372 IB_QP_ALT_PATH | 1373 IB_QP_PATH_MIG_STATE), 1374 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1375 IB_QP_ACCESS_FLAGS | 1376 IB_QP_ALT_PATH | 1377 IB_QP_PATH_MIG_STATE | 1378 IB_QP_MIN_RNR_TIMER), 1379 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1380 IB_QP_ACCESS_FLAGS | 1381 IB_QP_ALT_PATH | 1382 IB_QP_PATH_MIG_STATE), 1383 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1384 IB_QP_ACCESS_FLAGS | 1385 IB_QP_ALT_PATH | 1386 IB_QP_PATH_MIG_STATE | 1387 IB_QP_MIN_RNR_TIMER), 1388 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1389 IB_QP_QKEY), 1390 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1391 IB_QP_QKEY), 1392 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1393 } 1394 }, 1395 [IB_QPS_SQD] = { 1396 .valid = 1, 1397 .opt_param = { 1398 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1399 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1400 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1401 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1402 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1403 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1404 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1405 } 1406 }, 1407 }, 1408 [IB_QPS_SQD] = { 1409 [IB_QPS_RESET] = { .valid = 1 }, 1410 [IB_QPS_ERR] = { .valid = 1 }, 1411 [IB_QPS_RTS] = { 1412 .valid = 1, 1413 .opt_param = { 1414 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1415 IB_QP_QKEY), 1416 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1417 IB_QP_ALT_PATH | 1418 IB_QP_ACCESS_FLAGS | 1419 IB_QP_PATH_MIG_STATE), 1420 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1421 IB_QP_ALT_PATH | 1422 IB_QP_ACCESS_FLAGS | 1423 IB_QP_MIN_RNR_TIMER | 1424 IB_QP_PATH_MIG_STATE), 1425 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1426 IB_QP_ALT_PATH | 1427 IB_QP_ACCESS_FLAGS | 1428 IB_QP_PATH_MIG_STATE), 1429 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1430 IB_QP_ALT_PATH | 1431 IB_QP_ACCESS_FLAGS | 1432 IB_QP_MIN_RNR_TIMER | 1433 IB_QP_PATH_MIG_STATE), 1434 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1435 IB_QP_QKEY), 1436 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1437 IB_QP_QKEY), 1438 } 1439 }, 1440 [IB_QPS_SQD] = { 1441 .valid = 1, 1442 .opt_param = { 1443 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1444 IB_QP_QKEY), 1445 [IB_QPT_UC] = (IB_QP_AV | 1446 IB_QP_ALT_PATH | 1447 IB_QP_ACCESS_FLAGS | 1448 IB_QP_PKEY_INDEX | 1449 IB_QP_PATH_MIG_STATE), 1450 [IB_QPT_RC] = (IB_QP_PORT | 1451 IB_QP_AV | 1452 IB_QP_TIMEOUT | 1453 IB_QP_RETRY_CNT | 1454 IB_QP_RNR_RETRY | 1455 IB_QP_MAX_QP_RD_ATOMIC | 1456 IB_QP_MAX_DEST_RD_ATOMIC | 1457 IB_QP_ALT_PATH | 1458 IB_QP_ACCESS_FLAGS | 1459 IB_QP_PKEY_INDEX | 1460 IB_QP_MIN_RNR_TIMER | 1461 IB_QP_PATH_MIG_STATE), 1462 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1463 IB_QP_AV | 1464 IB_QP_TIMEOUT | 1465 IB_QP_RETRY_CNT | 1466 IB_QP_RNR_RETRY | 1467 IB_QP_MAX_QP_RD_ATOMIC | 1468 IB_QP_ALT_PATH | 1469 IB_QP_ACCESS_FLAGS | 1470 IB_QP_PKEY_INDEX | 1471 IB_QP_PATH_MIG_STATE), 1472 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1473 IB_QP_AV | 1474 IB_QP_TIMEOUT | 1475 IB_QP_MAX_DEST_RD_ATOMIC | 1476 IB_QP_ALT_PATH | 1477 IB_QP_ACCESS_FLAGS | 1478 IB_QP_PKEY_INDEX | 1479 IB_QP_MIN_RNR_TIMER | 1480 IB_QP_PATH_MIG_STATE), 1481 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1482 IB_QP_QKEY), 1483 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1484 IB_QP_QKEY), 1485 } 1486 } 1487 }, 1488 [IB_QPS_SQE] = { 1489 [IB_QPS_RESET] = { .valid = 1 }, 1490 [IB_QPS_ERR] = { .valid = 1 }, 1491 [IB_QPS_RTS] = { 1492 .valid = 1, 1493 .opt_param = { 1494 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1495 IB_QP_QKEY), 1496 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1497 IB_QP_ACCESS_FLAGS), 1498 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1499 IB_QP_QKEY), 1500 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1501 IB_QP_QKEY), 1502 } 1503 } 1504 }, 1505 [IB_QPS_ERR] = { 1506 [IB_QPS_RESET] = { .valid = 1 }, 1507 [IB_QPS_ERR] = { .valid = 1 } 1508 } 1509 }; 1510 1511 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1512 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1513 enum rdma_link_layer ll) 1514 { 1515 enum ib_qp_attr_mask req_param, opt_param; 1516 1517 if (mask & IB_QP_CUR_STATE && 1518 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1519 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1520 return false; 1521 1522 if (!qp_state_table[cur_state][next_state].valid) 1523 return false; 1524 1525 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1526 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1527 1528 if ((mask & req_param) != req_param) 1529 return false; 1530 1531 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1532 return false; 1533 1534 return true; 1535 } 1536 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1537 1538 /** 1539 * ib_resolve_eth_dmac - Resolve destination mac address 1540 * @device: Device to consider 1541 * @ah_attr: address handle attribute which describes the 1542 * source and destination parameters 1543 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1544 * returns 0 on success or appropriate error code. It initializes the 1545 * necessary ah_attr fields when call is successful. 1546 */ 1547 static int ib_resolve_eth_dmac(struct ib_device *device, 1548 struct rdma_ah_attr *ah_attr) 1549 { 1550 int ret = 0; 1551 1552 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1553 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1554 __be32 addr = 0; 1555 1556 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1557 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1558 } else { 1559 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1560 (char *)ah_attr->roce.dmac); 1561 } 1562 } else { 1563 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1564 } 1565 return ret; 1566 } 1567 1568 static bool is_qp_type_connected(const struct ib_qp *qp) 1569 { 1570 return (qp->qp_type == IB_QPT_UC || 1571 qp->qp_type == IB_QPT_RC || 1572 qp->qp_type == IB_QPT_XRC_INI || 1573 qp->qp_type == IB_QPT_XRC_TGT); 1574 } 1575 1576 /** 1577 * IB core internal function to perform QP attributes modification. 1578 */ 1579 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1580 int attr_mask, struct ib_udata *udata) 1581 { 1582 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1583 const struct ib_gid_attr *old_sgid_attr_av; 1584 const struct ib_gid_attr *old_sgid_attr_alt_av; 1585 int ret; 1586 1587 if (attr_mask & IB_QP_AV) { 1588 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1589 &old_sgid_attr_av); 1590 if (ret) 1591 return ret; 1592 } 1593 if (attr_mask & IB_QP_ALT_PATH) { 1594 /* 1595 * FIXME: This does not track the migration state, so if the 1596 * user loads a new alternate path after the HW has migrated 1597 * from primary->alternate we will keep the wrong 1598 * references. This is OK for IB because the reference 1599 * counting does not serve any functional purpose. 1600 */ 1601 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1602 &old_sgid_attr_alt_av); 1603 if (ret) 1604 goto out_av; 1605 1606 /* 1607 * Today the core code can only handle alternate paths and APM 1608 * for IB. Ban them in roce mode. 1609 */ 1610 if (!(rdma_protocol_ib(qp->device, 1611 attr->alt_ah_attr.port_num) && 1612 rdma_protocol_ib(qp->device, port))) { 1613 ret = EINVAL; 1614 goto out; 1615 } 1616 } 1617 1618 /* 1619 * If the user provided the qp_attr then we have to resolve it. Kernel 1620 * users have to provide already resolved rdma_ah_attr's 1621 */ 1622 if (udata && (attr_mask & IB_QP_AV) && 1623 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1624 is_qp_type_connected(qp)) { 1625 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1626 if (ret) 1627 goto out; 1628 } 1629 1630 if (rdma_ib_or_roce(qp->device, port)) { 1631 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1632 pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n", 1633 __func__, qp->device->name); 1634 attr->rq_psn &= 0xffffff; 1635 } 1636 1637 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1638 pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n", 1639 __func__, qp->device->name); 1640 attr->sq_psn &= 0xffffff; 1641 } 1642 } 1643 1644 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1645 if (ret) 1646 goto out; 1647 1648 if (attr_mask & IB_QP_PORT) 1649 qp->port = attr->port_num; 1650 if (attr_mask & IB_QP_AV) 1651 qp->av_sgid_attr = 1652 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1653 if (attr_mask & IB_QP_ALT_PATH) 1654 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1655 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1656 1657 out: 1658 if (attr_mask & IB_QP_ALT_PATH) 1659 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1660 out_av: 1661 if (attr_mask & IB_QP_AV) 1662 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1663 return ret; 1664 } 1665 1666 /** 1667 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1668 * @ib_qp: The QP to modify. 1669 * @attr: On input, specifies the QP attributes to modify. On output, 1670 * the current values of selected QP attributes are returned. 1671 * @attr_mask: A bit-mask used to specify which attributes of the QP 1672 * are being modified. 1673 * @udata: pointer to user's input output buffer information 1674 * are being modified. 1675 * It returns 0 on success and returns appropriate error code on error. 1676 */ 1677 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1678 int attr_mask, struct ib_udata *udata) 1679 { 1680 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1681 } 1682 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1683 1684 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1685 { 1686 int rc; 1687 u32 netdev_speed; 1688 struct net_device *netdev; 1689 struct ethtool_link_ksettings lksettings; 1690 1691 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1692 return -EINVAL; 1693 1694 if (!dev->get_netdev) 1695 return -EOPNOTSUPP; 1696 1697 netdev = dev->get_netdev(dev, port_num); 1698 if (!netdev) 1699 return -ENODEV; 1700 1701 rtnl_lock(); 1702 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1703 rtnl_unlock(); 1704 1705 dev_put(netdev); 1706 1707 if (!rc) { 1708 netdev_speed = lksettings.base.speed; 1709 } else { 1710 netdev_speed = SPEED_1000; 1711 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1712 netdev_speed); 1713 } 1714 1715 if (netdev_speed <= SPEED_1000) { 1716 *width = IB_WIDTH_1X; 1717 *speed = IB_SPEED_SDR; 1718 } else if (netdev_speed <= SPEED_10000) { 1719 *width = IB_WIDTH_1X; 1720 *speed = IB_SPEED_FDR10; 1721 } else if (netdev_speed <= SPEED_20000) { 1722 *width = IB_WIDTH_4X; 1723 *speed = IB_SPEED_DDR; 1724 } else if (netdev_speed <= SPEED_25000) { 1725 *width = IB_WIDTH_1X; 1726 *speed = IB_SPEED_EDR; 1727 } else if (netdev_speed <= SPEED_40000) { 1728 *width = IB_WIDTH_4X; 1729 *speed = IB_SPEED_FDR10; 1730 } else { 1731 *width = IB_WIDTH_4X; 1732 *speed = IB_SPEED_EDR; 1733 } 1734 1735 return 0; 1736 } 1737 EXPORT_SYMBOL(ib_get_eth_speed); 1738 1739 int ib_modify_qp(struct ib_qp *qp, 1740 struct ib_qp_attr *qp_attr, 1741 int qp_attr_mask) 1742 { 1743 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1744 } 1745 EXPORT_SYMBOL(ib_modify_qp); 1746 1747 int ib_query_qp(struct ib_qp *qp, 1748 struct ib_qp_attr *qp_attr, 1749 int qp_attr_mask, 1750 struct ib_qp_init_attr *qp_init_attr) 1751 { 1752 qp_attr->ah_attr.grh.sgid_attr = NULL; 1753 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1754 1755 return qp->device->query_qp ? 1756 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1757 -EOPNOTSUPP; 1758 } 1759 EXPORT_SYMBOL(ib_query_qp); 1760 1761 int ib_close_qp(struct ib_qp *qp) 1762 { 1763 struct ib_qp *real_qp; 1764 unsigned long flags; 1765 1766 real_qp = qp->real_qp; 1767 if (real_qp == qp) 1768 return -EINVAL; 1769 1770 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1771 list_del(&qp->open_list); 1772 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1773 1774 atomic_dec(&real_qp->usecnt); 1775 if (qp->qp_sec) 1776 ib_close_shared_qp_security(qp->qp_sec); 1777 kfree(qp); 1778 1779 return 0; 1780 } 1781 EXPORT_SYMBOL(ib_close_qp); 1782 1783 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1784 { 1785 struct ib_xrcd *xrcd; 1786 struct ib_qp *real_qp; 1787 int ret; 1788 1789 real_qp = qp->real_qp; 1790 xrcd = real_qp->xrcd; 1791 1792 mutex_lock(&xrcd->tgt_qp_mutex); 1793 ib_close_qp(qp); 1794 if (atomic_read(&real_qp->usecnt) == 0) 1795 list_del(&real_qp->xrcd_list); 1796 else 1797 real_qp = NULL; 1798 mutex_unlock(&xrcd->tgt_qp_mutex); 1799 1800 if (real_qp) { 1801 ret = ib_destroy_qp(real_qp); 1802 if (!ret) 1803 atomic_dec(&xrcd->usecnt); 1804 else 1805 __ib_insert_xrcd_qp(xrcd, real_qp); 1806 } 1807 1808 return 0; 1809 } 1810 1811 int ib_destroy_qp(struct ib_qp *qp) 1812 { 1813 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1814 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1815 struct ib_pd *pd; 1816 struct ib_cq *scq, *rcq; 1817 struct ib_srq *srq; 1818 struct ib_rwq_ind_table *ind_tbl; 1819 struct ib_qp_security *sec; 1820 int ret; 1821 1822 WARN_ON_ONCE(qp->mrs_used > 0); 1823 1824 if (atomic_read(&qp->usecnt)) 1825 return -EBUSY; 1826 1827 if (qp->real_qp != qp) 1828 return __ib_destroy_shared_qp(qp); 1829 1830 pd = qp->pd; 1831 scq = qp->send_cq; 1832 rcq = qp->recv_cq; 1833 srq = qp->srq; 1834 ind_tbl = qp->rwq_ind_tbl; 1835 sec = qp->qp_sec; 1836 if (sec) 1837 ib_destroy_qp_security_begin(sec); 1838 1839 if (!qp->uobject) 1840 rdma_rw_cleanup_mrs(qp); 1841 1842 rdma_restrack_del(&qp->res); 1843 ret = qp->device->destroy_qp(qp); 1844 if (!ret) { 1845 if (alt_path_sgid_attr) 1846 rdma_put_gid_attr(alt_path_sgid_attr); 1847 if (av_sgid_attr) 1848 rdma_put_gid_attr(av_sgid_attr); 1849 if (pd) 1850 atomic_dec(&pd->usecnt); 1851 if (scq) 1852 atomic_dec(&scq->usecnt); 1853 if (rcq) 1854 atomic_dec(&rcq->usecnt); 1855 if (srq) 1856 atomic_dec(&srq->usecnt); 1857 if (ind_tbl) 1858 atomic_dec(&ind_tbl->usecnt); 1859 if (sec) 1860 ib_destroy_qp_security_end(sec); 1861 } else { 1862 if (sec) 1863 ib_destroy_qp_security_abort(sec); 1864 } 1865 1866 return ret; 1867 } 1868 EXPORT_SYMBOL(ib_destroy_qp); 1869 1870 /* Completion queues */ 1871 1872 struct ib_cq *__ib_create_cq(struct ib_device *device, 1873 ib_comp_handler comp_handler, 1874 void (*event_handler)(struct ib_event *, void *), 1875 void *cq_context, 1876 const struct ib_cq_init_attr *cq_attr, 1877 const char *caller) 1878 { 1879 struct ib_cq *cq; 1880 1881 cq = device->create_cq(device, cq_attr, NULL, NULL); 1882 1883 if (!IS_ERR(cq)) { 1884 cq->device = device; 1885 cq->uobject = NULL; 1886 cq->comp_handler = comp_handler; 1887 cq->event_handler = event_handler; 1888 cq->cq_context = cq_context; 1889 atomic_set(&cq->usecnt, 0); 1890 cq->res.type = RDMA_RESTRACK_CQ; 1891 cq->res.kern_name = caller; 1892 rdma_restrack_add(&cq->res); 1893 } 1894 1895 return cq; 1896 } 1897 EXPORT_SYMBOL(__ib_create_cq); 1898 1899 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1900 { 1901 return cq->device->modify_cq ? 1902 cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP; 1903 } 1904 EXPORT_SYMBOL(rdma_set_cq_moderation); 1905 1906 int ib_destroy_cq(struct ib_cq *cq) 1907 { 1908 if (atomic_read(&cq->usecnt)) 1909 return -EBUSY; 1910 1911 rdma_restrack_del(&cq->res); 1912 return cq->device->destroy_cq(cq); 1913 } 1914 EXPORT_SYMBOL(ib_destroy_cq); 1915 1916 int ib_resize_cq(struct ib_cq *cq, int cqe) 1917 { 1918 return cq->device->resize_cq ? 1919 cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1920 } 1921 EXPORT_SYMBOL(ib_resize_cq); 1922 1923 /* Memory regions */ 1924 1925 int ib_dereg_mr(struct ib_mr *mr) 1926 { 1927 struct ib_pd *pd = mr->pd; 1928 struct ib_dm *dm = mr->dm; 1929 int ret; 1930 1931 rdma_restrack_del(&mr->res); 1932 ret = mr->device->dereg_mr(mr); 1933 if (!ret) { 1934 atomic_dec(&pd->usecnt); 1935 if (dm) 1936 atomic_dec(&dm->usecnt); 1937 } 1938 1939 return ret; 1940 } 1941 EXPORT_SYMBOL(ib_dereg_mr); 1942 1943 /** 1944 * ib_alloc_mr() - Allocates a memory region 1945 * @pd: protection domain associated with the region 1946 * @mr_type: memory region type 1947 * @max_num_sg: maximum sg entries available for registration. 1948 * 1949 * Notes: 1950 * Memory registeration page/sg lists must not exceed max_num_sg. 1951 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1952 * max_num_sg * used_page_size. 1953 * 1954 */ 1955 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1956 enum ib_mr_type mr_type, 1957 u32 max_num_sg) 1958 { 1959 struct ib_mr *mr; 1960 1961 if (!pd->device->alloc_mr) 1962 return ERR_PTR(-EOPNOTSUPP); 1963 1964 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1965 if (!IS_ERR(mr)) { 1966 mr->device = pd->device; 1967 mr->pd = pd; 1968 mr->dm = NULL; 1969 mr->uobject = NULL; 1970 atomic_inc(&pd->usecnt); 1971 mr->need_inval = false; 1972 mr->res.type = RDMA_RESTRACK_MR; 1973 rdma_restrack_add(&mr->res); 1974 } 1975 1976 return mr; 1977 } 1978 EXPORT_SYMBOL(ib_alloc_mr); 1979 1980 /* "Fast" memory regions */ 1981 1982 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1983 int mr_access_flags, 1984 struct ib_fmr_attr *fmr_attr) 1985 { 1986 struct ib_fmr *fmr; 1987 1988 if (!pd->device->alloc_fmr) 1989 return ERR_PTR(-EOPNOTSUPP); 1990 1991 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1992 if (!IS_ERR(fmr)) { 1993 fmr->device = pd->device; 1994 fmr->pd = pd; 1995 atomic_inc(&pd->usecnt); 1996 } 1997 1998 return fmr; 1999 } 2000 EXPORT_SYMBOL(ib_alloc_fmr); 2001 2002 int ib_unmap_fmr(struct list_head *fmr_list) 2003 { 2004 struct ib_fmr *fmr; 2005 2006 if (list_empty(fmr_list)) 2007 return 0; 2008 2009 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2010 return fmr->device->unmap_fmr(fmr_list); 2011 } 2012 EXPORT_SYMBOL(ib_unmap_fmr); 2013 2014 int ib_dealloc_fmr(struct ib_fmr *fmr) 2015 { 2016 struct ib_pd *pd; 2017 int ret; 2018 2019 pd = fmr->pd; 2020 ret = fmr->device->dealloc_fmr(fmr); 2021 if (!ret) 2022 atomic_dec(&pd->usecnt); 2023 2024 return ret; 2025 } 2026 EXPORT_SYMBOL(ib_dealloc_fmr); 2027 2028 /* Multicast groups */ 2029 2030 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2031 { 2032 struct ib_qp_init_attr init_attr = {}; 2033 struct ib_qp_attr attr = {}; 2034 int num_eth_ports = 0; 2035 int port; 2036 2037 /* If QP state >= init, it is assigned to a port and we can check this 2038 * port only. 2039 */ 2040 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2041 if (attr.qp_state >= IB_QPS_INIT) { 2042 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2043 IB_LINK_LAYER_INFINIBAND) 2044 return true; 2045 goto lid_check; 2046 } 2047 } 2048 2049 /* Can't get a quick answer, iterate over all ports */ 2050 for (port = 0; port < qp->device->phys_port_cnt; port++) 2051 if (rdma_port_get_link_layer(qp->device, port) != 2052 IB_LINK_LAYER_INFINIBAND) 2053 num_eth_ports++; 2054 2055 /* If we have at lease one Ethernet port, RoCE annex declares that 2056 * multicast LID should be ignored. We can't tell at this step if the 2057 * QP belongs to an IB or Ethernet port. 2058 */ 2059 if (num_eth_ports) 2060 return true; 2061 2062 /* If all the ports are IB, we can check according to IB spec. */ 2063 lid_check: 2064 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2065 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2066 } 2067 2068 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2069 { 2070 int ret; 2071 2072 if (!qp->device->attach_mcast) 2073 return -EOPNOTSUPP; 2074 2075 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2076 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2077 return -EINVAL; 2078 2079 ret = qp->device->attach_mcast(qp, gid, lid); 2080 if (!ret) 2081 atomic_inc(&qp->usecnt); 2082 return ret; 2083 } 2084 EXPORT_SYMBOL(ib_attach_mcast); 2085 2086 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2087 { 2088 int ret; 2089 2090 if (!qp->device->detach_mcast) 2091 return -EOPNOTSUPP; 2092 2093 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2094 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2095 return -EINVAL; 2096 2097 ret = qp->device->detach_mcast(qp, gid, lid); 2098 if (!ret) 2099 atomic_dec(&qp->usecnt); 2100 return ret; 2101 } 2102 EXPORT_SYMBOL(ib_detach_mcast); 2103 2104 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2105 { 2106 struct ib_xrcd *xrcd; 2107 2108 if (!device->alloc_xrcd) 2109 return ERR_PTR(-EOPNOTSUPP); 2110 2111 xrcd = device->alloc_xrcd(device, NULL, NULL); 2112 if (!IS_ERR(xrcd)) { 2113 xrcd->device = device; 2114 xrcd->inode = NULL; 2115 atomic_set(&xrcd->usecnt, 0); 2116 mutex_init(&xrcd->tgt_qp_mutex); 2117 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2118 } 2119 2120 return xrcd; 2121 } 2122 EXPORT_SYMBOL(__ib_alloc_xrcd); 2123 2124 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 2125 { 2126 struct ib_qp *qp; 2127 int ret; 2128 2129 if (atomic_read(&xrcd->usecnt)) 2130 return -EBUSY; 2131 2132 while (!list_empty(&xrcd->tgt_qp_list)) { 2133 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2134 ret = ib_destroy_qp(qp); 2135 if (ret) 2136 return ret; 2137 } 2138 2139 return xrcd->device->dealloc_xrcd(xrcd); 2140 } 2141 EXPORT_SYMBOL(ib_dealloc_xrcd); 2142 2143 /** 2144 * ib_create_wq - Creates a WQ associated with the specified protection 2145 * domain. 2146 * @pd: The protection domain associated with the WQ. 2147 * @wq_attr: A list of initial attributes required to create the 2148 * WQ. If WQ creation succeeds, then the attributes are updated to 2149 * the actual capabilities of the created WQ. 2150 * 2151 * wq_attr->max_wr and wq_attr->max_sge determine 2152 * the requested size of the WQ, and set to the actual values allocated 2153 * on return. 2154 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2155 * at least as large as the requested values. 2156 */ 2157 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2158 struct ib_wq_init_attr *wq_attr) 2159 { 2160 struct ib_wq *wq; 2161 2162 if (!pd->device->create_wq) 2163 return ERR_PTR(-EOPNOTSUPP); 2164 2165 wq = pd->device->create_wq(pd, wq_attr, NULL); 2166 if (!IS_ERR(wq)) { 2167 wq->event_handler = wq_attr->event_handler; 2168 wq->wq_context = wq_attr->wq_context; 2169 wq->wq_type = wq_attr->wq_type; 2170 wq->cq = wq_attr->cq; 2171 wq->device = pd->device; 2172 wq->pd = pd; 2173 wq->uobject = NULL; 2174 atomic_inc(&pd->usecnt); 2175 atomic_inc(&wq_attr->cq->usecnt); 2176 atomic_set(&wq->usecnt, 0); 2177 } 2178 return wq; 2179 } 2180 EXPORT_SYMBOL(ib_create_wq); 2181 2182 /** 2183 * ib_destroy_wq - Destroys the specified WQ. 2184 * @wq: The WQ to destroy. 2185 */ 2186 int ib_destroy_wq(struct ib_wq *wq) 2187 { 2188 int err; 2189 struct ib_cq *cq = wq->cq; 2190 struct ib_pd *pd = wq->pd; 2191 2192 if (atomic_read(&wq->usecnt)) 2193 return -EBUSY; 2194 2195 err = wq->device->destroy_wq(wq); 2196 if (!err) { 2197 atomic_dec(&pd->usecnt); 2198 atomic_dec(&cq->usecnt); 2199 } 2200 return err; 2201 } 2202 EXPORT_SYMBOL(ib_destroy_wq); 2203 2204 /** 2205 * ib_modify_wq - Modifies the specified WQ. 2206 * @wq: The WQ to modify. 2207 * @wq_attr: On input, specifies the WQ attributes to modify. 2208 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2209 * are being modified. 2210 * On output, the current values of selected WQ attributes are returned. 2211 */ 2212 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2213 u32 wq_attr_mask) 2214 { 2215 int err; 2216 2217 if (!wq->device->modify_wq) 2218 return -EOPNOTSUPP; 2219 2220 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2221 return err; 2222 } 2223 EXPORT_SYMBOL(ib_modify_wq); 2224 2225 /* 2226 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2227 * @device: The device on which to create the rwq indirection table. 2228 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2229 * create the Indirection Table. 2230 * 2231 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2232 * than the created ib_rwq_ind_table object and the caller is responsible 2233 * for its memory allocation/free. 2234 */ 2235 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2236 struct ib_rwq_ind_table_init_attr *init_attr) 2237 { 2238 struct ib_rwq_ind_table *rwq_ind_table; 2239 int i; 2240 u32 table_size; 2241 2242 if (!device->create_rwq_ind_table) 2243 return ERR_PTR(-EOPNOTSUPP); 2244 2245 table_size = (1 << init_attr->log_ind_tbl_size); 2246 rwq_ind_table = device->create_rwq_ind_table(device, 2247 init_attr, NULL); 2248 if (IS_ERR(rwq_ind_table)) 2249 return rwq_ind_table; 2250 2251 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2252 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2253 rwq_ind_table->device = device; 2254 rwq_ind_table->uobject = NULL; 2255 atomic_set(&rwq_ind_table->usecnt, 0); 2256 2257 for (i = 0; i < table_size; i++) 2258 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2259 2260 return rwq_ind_table; 2261 } 2262 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2263 2264 /* 2265 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2266 * @wq_ind_table: The Indirection Table to destroy. 2267 */ 2268 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2269 { 2270 int err, i; 2271 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2272 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2273 2274 if (atomic_read(&rwq_ind_table->usecnt)) 2275 return -EBUSY; 2276 2277 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); 2278 if (!err) { 2279 for (i = 0; i < table_size; i++) 2280 atomic_dec(&ind_tbl[i]->usecnt); 2281 } 2282 2283 return err; 2284 } 2285 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2286 2287 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2288 struct ib_mr_status *mr_status) 2289 { 2290 return mr->device->check_mr_status ? 2291 mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP; 2292 } 2293 EXPORT_SYMBOL(ib_check_mr_status); 2294 2295 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2296 int state) 2297 { 2298 if (!device->set_vf_link_state) 2299 return -EOPNOTSUPP; 2300 2301 return device->set_vf_link_state(device, vf, port, state); 2302 } 2303 EXPORT_SYMBOL(ib_set_vf_link_state); 2304 2305 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2306 struct ifla_vf_info *info) 2307 { 2308 if (!device->get_vf_config) 2309 return -EOPNOTSUPP; 2310 2311 return device->get_vf_config(device, vf, port, info); 2312 } 2313 EXPORT_SYMBOL(ib_get_vf_config); 2314 2315 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2316 struct ifla_vf_stats *stats) 2317 { 2318 if (!device->get_vf_stats) 2319 return -EOPNOTSUPP; 2320 2321 return device->get_vf_stats(device, vf, port, stats); 2322 } 2323 EXPORT_SYMBOL(ib_get_vf_stats); 2324 2325 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2326 int type) 2327 { 2328 if (!device->set_vf_guid) 2329 return -EOPNOTSUPP; 2330 2331 return device->set_vf_guid(device, vf, port, guid, type); 2332 } 2333 EXPORT_SYMBOL(ib_set_vf_guid); 2334 2335 /** 2336 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2337 * and set it the memory region. 2338 * @mr: memory region 2339 * @sg: dma mapped scatterlist 2340 * @sg_nents: number of entries in sg 2341 * @sg_offset: offset in bytes into sg 2342 * @page_size: page vector desired page size 2343 * 2344 * Constraints: 2345 * - The first sg element is allowed to have an offset. 2346 * - Each sg element must either be aligned to page_size or virtually 2347 * contiguous to the previous element. In case an sg element has a 2348 * non-contiguous offset, the mapping prefix will not include it. 2349 * - The last sg element is allowed to have length less than page_size. 2350 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2351 * then only max_num_sg entries will be mapped. 2352 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2353 * constraints holds and the page_size argument is ignored. 2354 * 2355 * Returns the number of sg elements that were mapped to the memory region. 2356 * 2357 * After this completes successfully, the memory region 2358 * is ready for registration. 2359 */ 2360 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2361 unsigned int *sg_offset, unsigned int page_size) 2362 { 2363 if (unlikely(!mr->device->map_mr_sg)) 2364 return -EOPNOTSUPP; 2365 2366 mr->page_size = page_size; 2367 2368 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 2369 } 2370 EXPORT_SYMBOL(ib_map_mr_sg); 2371 2372 /** 2373 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2374 * to a page vector 2375 * @mr: memory region 2376 * @sgl: dma mapped scatterlist 2377 * @sg_nents: number of entries in sg 2378 * @sg_offset_p: IN: start offset in bytes into sg 2379 * OUT: offset in bytes for element n of the sg of the first 2380 * byte that has not been processed where n is the return 2381 * value of this function. 2382 * @set_page: driver page assignment function pointer 2383 * 2384 * Core service helper for drivers to convert the largest 2385 * prefix of given sg list to a page vector. The sg list 2386 * prefix converted is the prefix that meet the requirements 2387 * of ib_map_mr_sg. 2388 * 2389 * Returns the number of sg elements that were assigned to 2390 * a page vector. 2391 */ 2392 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2393 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2394 { 2395 struct scatterlist *sg; 2396 u64 last_end_dma_addr = 0; 2397 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2398 unsigned int last_page_off = 0; 2399 u64 page_mask = ~((u64)mr->page_size - 1); 2400 int i, ret; 2401 2402 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2403 return -EINVAL; 2404 2405 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2406 mr->length = 0; 2407 2408 for_each_sg(sgl, sg, sg_nents, i) { 2409 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2410 u64 prev_addr = dma_addr; 2411 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2412 u64 end_dma_addr = dma_addr + dma_len; 2413 u64 page_addr = dma_addr & page_mask; 2414 2415 /* 2416 * For the second and later elements, check whether either the 2417 * end of element i-1 or the start of element i is not aligned 2418 * on a page boundary. 2419 */ 2420 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2421 /* Stop mapping if there is a gap. */ 2422 if (last_end_dma_addr != dma_addr) 2423 break; 2424 2425 /* 2426 * Coalesce this element with the last. If it is small 2427 * enough just update mr->length. Otherwise start 2428 * mapping from the next page. 2429 */ 2430 goto next_page; 2431 } 2432 2433 do { 2434 ret = set_page(mr, page_addr); 2435 if (unlikely(ret < 0)) { 2436 sg_offset = prev_addr - sg_dma_address(sg); 2437 mr->length += prev_addr - dma_addr; 2438 if (sg_offset_p) 2439 *sg_offset_p = sg_offset; 2440 return i || sg_offset ? i : ret; 2441 } 2442 prev_addr = page_addr; 2443 next_page: 2444 page_addr += mr->page_size; 2445 } while (page_addr < end_dma_addr); 2446 2447 mr->length += dma_len; 2448 last_end_dma_addr = end_dma_addr; 2449 last_page_off = end_dma_addr & ~page_mask; 2450 2451 sg_offset = 0; 2452 } 2453 2454 if (sg_offset_p) 2455 *sg_offset_p = 0; 2456 return i; 2457 } 2458 EXPORT_SYMBOL(ib_sg_to_pages); 2459 2460 struct ib_drain_cqe { 2461 struct ib_cqe cqe; 2462 struct completion done; 2463 }; 2464 2465 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2466 { 2467 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2468 cqe); 2469 2470 complete(&cqe->done); 2471 } 2472 2473 /* 2474 * Post a WR and block until its completion is reaped for the SQ. 2475 */ 2476 static void __ib_drain_sq(struct ib_qp *qp) 2477 { 2478 struct ib_cq *cq = qp->send_cq; 2479 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2480 struct ib_drain_cqe sdrain; 2481 struct ib_rdma_wr swr = { 2482 .wr = { 2483 .next = NULL, 2484 { .wr_cqe = &sdrain.cqe, }, 2485 .opcode = IB_WR_RDMA_WRITE, 2486 }, 2487 }; 2488 int ret; 2489 2490 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2491 if (ret) { 2492 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2493 return; 2494 } 2495 2496 sdrain.cqe.done = ib_drain_qp_done; 2497 init_completion(&sdrain.done); 2498 2499 ret = ib_post_send(qp, &swr.wr, NULL); 2500 if (ret) { 2501 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2502 return; 2503 } 2504 2505 if (cq->poll_ctx == IB_POLL_DIRECT) 2506 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2507 ib_process_cq_direct(cq, -1); 2508 else 2509 wait_for_completion(&sdrain.done); 2510 } 2511 2512 /* 2513 * Post a WR and block until its completion is reaped for the RQ. 2514 */ 2515 static void __ib_drain_rq(struct ib_qp *qp) 2516 { 2517 struct ib_cq *cq = qp->recv_cq; 2518 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2519 struct ib_drain_cqe rdrain; 2520 struct ib_recv_wr rwr = {}; 2521 int ret; 2522 2523 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2524 if (ret) { 2525 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2526 return; 2527 } 2528 2529 rwr.wr_cqe = &rdrain.cqe; 2530 rdrain.cqe.done = ib_drain_qp_done; 2531 init_completion(&rdrain.done); 2532 2533 ret = ib_post_recv(qp, &rwr, NULL); 2534 if (ret) { 2535 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2536 return; 2537 } 2538 2539 if (cq->poll_ctx == IB_POLL_DIRECT) 2540 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2541 ib_process_cq_direct(cq, -1); 2542 else 2543 wait_for_completion(&rdrain.done); 2544 } 2545 2546 /** 2547 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2548 * application. 2549 * @qp: queue pair to drain 2550 * 2551 * If the device has a provider-specific drain function, then 2552 * call that. Otherwise call the generic drain function 2553 * __ib_drain_sq(). 2554 * 2555 * The caller must: 2556 * 2557 * ensure there is room in the CQ and SQ for the drain work request and 2558 * completion. 2559 * 2560 * allocate the CQ using ib_alloc_cq(). 2561 * 2562 * ensure that there are no other contexts that are posting WRs concurrently. 2563 * Otherwise the drain is not guaranteed. 2564 */ 2565 void ib_drain_sq(struct ib_qp *qp) 2566 { 2567 if (qp->device->drain_sq) 2568 qp->device->drain_sq(qp); 2569 else 2570 __ib_drain_sq(qp); 2571 } 2572 EXPORT_SYMBOL(ib_drain_sq); 2573 2574 /** 2575 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2576 * application. 2577 * @qp: queue pair to drain 2578 * 2579 * If the device has a provider-specific drain function, then 2580 * call that. Otherwise call the generic drain function 2581 * __ib_drain_rq(). 2582 * 2583 * The caller must: 2584 * 2585 * ensure there is room in the CQ and RQ for the drain work request and 2586 * completion. 2587 * 2588 * allocate the CQ using ib_alloc_cq(). 2589 * 2590 * ensure that there are no other contexts that are posting WRs concurrently. 2591 * Otherwise the drain is not guaranteed. 2592 */ 2593 void ib_drain_rq(struct ib_qp *qp) 2594 { 2595 if (qp->device->drain_rq) 2596 qp->device->drain_rq(qp); 2597 else 2598 __ib_drain_rq(qp); 2599 } 2600 EXPORT_SYMBOL(ib_drain_rq); 2601 2602 /** 2603 * ib_drain_qp() - Block until all CQEs have been consumed by the 2604 * application on both the RQ and SQ. 2605 * @qp: queue pair to drain 2606 * 2607 * The caller must: 2608 * 2609 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2610 * and completions. 2611 * 2612 * allocate the CQs using ib_alloc_cq(). 2613 * 2614 * ensure that there are no other contexts that are posting WRs concurrently. 2615 * Otherwise the drain is not guaranteed. 2616 */ 2617 void ib_drain_qp(struct ib_qp *qp) 2618 { 2619 ib_drain_sq(qp); 2620 if (!qp->srq) 2621 ib_drain_rq(qp); 2622 } 2623 EXPORT_SYMBOL(ib_drain_qp); 2624