1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 48 #include <rdma/ib_verbs.h> 49 #include <rdma/ib_cache.h> 50 #include <rdma/ib_addr.h> 51 #include <rdma/rw.h> 52 53 #include "core_priv.h" 54 55 static const char * const ib_events[] = { 56 [IB_EVENT_CQ_ERR] = "CQ error", 57 [IB_EVENT_QP_FATAL] = "QP fatal error", 58 [IB_EVENT_QP_REQ_ERR] = "QP request error", 59 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 60 [IB_EVENT_COMM_EST] = "communication established", 61 [IB_EVENT_SQ_DRAINED] = "send queue drained", 62 [IB_EVENT_PATH_MIG] = "path migration successful", 63 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 64 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 65 [IB_EVENT_PORT_ACTIVE] = "port active", 66 [IB_EVENT_PORT_ERR] = "port error", 67 [IB_EVENT_LID_CHANGE] = "LID change", 68 [IB_EVENT_PKEY_CHANGE] = "P_key change", 69 [IB_EVENT_SM_CHANGE] = "SM change", 70 [IB_EVENT_SRQ_ERR] = "SRQ error", 71 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 72 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 73 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 74 [IB_EVENT_GID_CHANGE] = "GID changed", 75 }; 76 77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 78 { 79 size_t index = event; 80 81 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 82 ib_events[index] : "unrecognized event"; 83 } 84 EXPORT_SYMBOL(ib_event_msg); 85 86 static const char * const wc_statuses[] = { 87 [IB_WC_SUCCESS] = "success", 88 [IB_WC_LOC_LEN_ERR] = "local length error", 89 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 90 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 91 [IB_WC_LOC_PROT_ERR] = "local protection error", 92 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 93 [IB_WC_MW_BIND_ERR] = "memory management operation error", 94 [IB_WC_BAD_RESP_ERR] = "bad response error", 95 [IB_WC_LOC_ACCESS_ERR] = "local access error", 96 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 97 [IB_WC_REM_ACCESS_ERR] = "remote access error", 98 [IB_WC_REM_OP_ERR] = "remote operation error", 99 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 100 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 101 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 102 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 103 [IB_WC_REM_ABORT_ERR] = "operation aborted", 104 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 105 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 106 [IB_WC_FATAL_ERR] = "fatal error", 107 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 108 [IB_WC_GENERAL_ERR] = "general error", 109 }; 110 111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 112 { 113 size_t index = status; 114 115 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 116 wc_statuses[index] : "unrecognized status"; 117 } 118 EXPORT_SYMBOL(ib_wc_status_msg); 119 120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 121 { 122 switch (rate) { 123 case IB_RATE_2_5_GBPS: return 1; 124 case IB_RATE_5_GBPS: return 2; 125 case IB_RATE_10_GBPS: return 4; 126 case IB_RATE_20_GBPS: return 8; 127 case IB_RATE_30_GBPS: return 12; 128 case IB_RATE_40_GBPS: return 16; 129 case IB_RATE_60_GBPS: return 24; 130 case IB_RATE_80_GBPS: return 32; 131 case IB_RATE_120_GBPS: return 48; 132 default: return -1; 133 } 134 } 135 EXPORT_SYMBOL(ib_rate_to_mult); 136 137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 138 { 139 switch (mult) { 140 case 1: return IB_RATE_2_5_GBPS; 141 case 2: return IB_RATE_5_GBPS; 142 case 4: return IB_RATE_10_GBPS; 143 case 8: return IB_RATE_20_GBPS; 144 case 12: return IB_RATE_30_GBPS; 145 case 16: return IB_RATE_40_GBPS; 146 case 24: return IB_RATE_60_GBPS; 147 case 32: return IB_RATE_80_GBPS; 148 case 48: return IB_RATE_120_GBPS; 149 default: return IB_RATE_PORT_CURRENT; 150 } 151 } 152 EXPORT_SYMBOL(mult_to_ib_rate); 153 154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 155 { 156 switch (rate) { 157 case IB_RATE_2_5_GBPS: return 2500; 158 case IB_RATE_5_GBPS: return 5000; 159 case IB_RATE_10_GBPS: return 10000; 160 case IB_RATE_20_GBPS: return 20000; 161 case IB_RATE_30_GBPS: return 30000; 162 case IB_RATE_40_GBPS: return 40000; 163 case IB_RATE_60_GBPS: return 60000; 164 case IB_RATE_80_GBPS: return 80000; 165 case IB_RATE_120_GBPS: return 120000; 166 case IB_RATE_14_GBPS: return 14062; 167 case IB_RATE_56_GBPS: return 56250; 168 case IB_RATE_112_GBPS: return 112500; 169 case IB_RATE_168_GBPS: return 168750; 170 case IB_RATE_25_GBPS: return 25781; 171 case IB_RATE_100_GBPS: return 103125; 172 case IB_RATE_200_GBPS: return 206250; 173 case IB_RATE_300_GBPS: return 309375; 174 default: return -1; 175 } 176 } 177 EXPORT_SYMBOL(ib_rate_to_mbps); 178 179 __attribute_const__ enum rdma_transport_type 180 rdma_node_get_transport(enum rdma_node_type node_type) 181 { 182 switch (node_type) { 183 case RDMA_NODE_IB_CA: 184 case RDMA_NODE_IB_SWITCH: 185 case RDMA_NODE_IB_ROUTER: 186 return RDMA_TRANSPORT_IB; 187 case RDMA_NODE_RNIC: 188 return RDMA_TRANSPORT_IWARP; 189 case RDMA_NODE_USNIC: 190 return RDMA_TRANSPORT_USNIC; 191 case RDMA_NODE_USNIC_UDP: 192 return RDMA_TRANSPORT_USNIC_UDP; 193 default: 194 BUG(); 195 return 0; 196 } 197 } 198 EXPORT_SYMBOL(rdma_node_get_transport); 199 200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 201 { 202 if (device->get_link_layer) 203 return device->get_link_layer(device, port_num); 204 205 switch (rdma_node_get_transport(device->node_type)) { 206 case RDMA_TRANSPORT_IB: 207 return IB_LINK_LAYER_INFINIBAND; 208 case RDMA_TRANSPORT_IWARP: 209 case RDMA_TRANSPORT_USNIC: 210 case RDMA_TRANSPORT_USNIC_UDP: 211 return IB_LINK_LAYER_ETHERNET; 212 default: 213 return IB_LINK_LAYER_UNSPECIFIED; 214 } 215 } 216 EXPORT_SYMBOL(rdma_port_get_link_layer); 217 218 /* Protection domains */ 219 220 /** 221 * ib_alloc_pd - Allocates an unused protection domain. 222 * @device: The device on which to allocate the protection domain. 223 * 224 * A protection domain object provides an association between QPs, shared 225 * receive queues, address handles, memory regions, and memory windows. 226 * 227 * Every PD has a local_dma_lkey which can be used as the lkey value for local 228 * memory operations. 229 */ 230 struct ib_pd *ib_alloc_pd(struct ib_device *device) 231 { 232 struct ib_pd *pd; 233 234 pd = device->alloc_pd(device, NULL, NULL); 235 if (IS_ERR(pd)) 236 return pd; 237 238 pd->device = device; 239 pd->uobject = NULL; 240 pd->local_mr = NULL; 241 atomic_set(&pd->usecnt, 0); 242 243 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 244 pd->local_dma_lkey = device->local_dma_lkey; 245 else { 246 struct ib_mr *mr; 247 248 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE); 249 if (IS_ERR(mr)) { 250 ib_dealloc_pd(pd); 251 return (struct ib_pd *)mr; 252 } 253 254 pd->local_mr = mr; 255 pd->local_dma_lkey = pd->local_mr->lkey; 256 } 257 return pd; 258 } 259 EXPORT_SYMBOL(ib_alloc_pd); 260 261 /** 262 * ib_dealloc_pd - Deallocates a protection domain. 263 * @pd: The protection domain to deallocate. 264 * 265 * It is an error to call this function while any resources in the pd still 266 * exist. The caller is responsible to synchronously destroy them and 267 * guarantee no new allocations will happen. 268 */ 269 void ib_dealloc_pd(struct ib_pd *pd) 270 { 271 int ret; 272 273 if (pd->local_mr) { 274 ret = ib_dereg_mr(pd->local_mr); 275 WARN_ON(ret); 276 pd->local_mr = NULL; 277 } 278 279 /* uverbs manipulates usecnt with proper locking, while the kabi 280 requires the caller to guarantee we can't race here. */ 281 WARN_ON(atomic_read(&pd->usecnt)); 282 283 /* Making delalloc_pd a void return is a WIP, no driver should return 284 an error here. */ 285 ret = pd->device->dealloc_pd(pd); 286 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 287 } 288 EXPORT_SYMBOL(ib_dealloc_pd); 289 290 /* Address handles */ 291 292 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr) 293 { 294 struct ib_ah *ah; 295 296 ah = pd->device->create_ah(pd, ah_attr); 297 298 if (!IS_ERR(ah)) { 299 ah->device = pd->device; 300 ah->pd = pd; 301 ah->uobject = NULL; 302 atomic_inc(&pd->usecnt); 303 } 304 305 return ah; 306 } 307 EXPORT_SYMBOL(ib_create_ah); 308 309 static int ib_get_header_version(const union rdma_network_hdr *hdr) 310 { 311 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 312 struct iphdr ip4h_checked; 313 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 314 315 /* If it's IPv6, the version must be 6, otherwise, the first 316 * 20 bytes (before the IPv4 header) are garbled. 317 */ 318 if (ip6h->version != 6) 319 return (ip4h->version == 4) ? 4 : 0; 320 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 321 322 /* RoCE v2 requires no options, thus header length 323 * must be 5 words 324 */ 325 if (ip4h->ihl != 5) 326 return 6; 327 328 /* Verify checksum. 329 * We can't write on scattered buffers so we need to copy to 330 * temp buffer. 331 */ 332 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 333 ip4h_checked.check = 0; 334 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 335 /* if IPv4 header checksum is OK, believe it */ 336 if (ip4h->check == ip4h_checked.check) 337 return 4; 338 return 6; 339 } 340 341 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 342 u8 port_num, 343 const struct ib_grh *grh) 344 { 345 int grh_version; 346 347 if (rdma_protocol_ib(device, port_num)) 348 return RDMA_NETWORK_IB; 349 350 grh_version = ib_get_header_version((union rdma_network_hdr *)grh); 351 352 if (grh_version == 4) 353 return RDMA_NETWORK_IPV4; 354 355 if (grh->next_hdr == IPPROTO_UDP) 356 return RDMA_NETWORK_IPV6; 357 358 return RDMA_NETWORK_ROCE_V1; 359 } 360 361 struct find_gid_index_context { 362 u16 vlan_id; 363 enum ib_gid_type gid_type; 364 }; 365 366 static bool find_gid_index(const union ib_gid *gid, 367 const struct ib_gid_attr *gid_attr, 368 void *context) 369 { 370 struct find_gid_index_context *ctx = 371 (struct find_gid_index_context *)context; 372 373 if (ctx->gid_type != gid_attr->gid_type) 374 return false; 375 376 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 377 (is_vlan_dev(gid_attr->ndev) && 378 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 379 return false; 380 381 return true; 382 } 383 384 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 385 u16 vlan_id, const union ib_gid *sgid, 386 enum ib_gid_type gid_type, 387 u16 *gid_index) 388 { 389 struct find_gid_index_context context = {.vlan_id = vlan_id, 390 .gid_type = gid_type}; 391 392 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 393 &context, gid_index); 394 } 395 396 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr, 397 enum rdma_network_type net_type, 398 union ib_gid *sgid, union ib_gid *dgid) 399 { 400 struct sockaddr_in src_in; 401 struct sockaddr_in dst_in; 402 __be32 src_saddr, dst_saddr; 403 404 if (!sgid || !dgid) 405 return -EINVAL; 406 407 if (net_type == RDMA_NETWORK_IPV4) { 408 memcpy(&src_in.sin_addr.s_addr, 409 &hdr->roce4grh.saddr, 4); 410 memcpy(&dst_in.sin_addr.s_addr, 411 &hdr->roce4grh.daddr, 4); 412 src_saddr = src_in.sin_addr.s_addr; 413 dst_saddr = dst_in.sin_addr.s_addr; 414 ipv6_addr_set_v4mapped(src_saddr, 415 (struct in6_addr *)sgid); 416 ipv6_addr_set_v4mapped(dst_saddr, 417 (struct in6_addr *)dgid); 418 return 0; 419 } else if (net_type == RDMA_NETWORK_IPV6 || 420 net_type == RDMA_NETWORK_IB) { 421 *dgid = hdr->ibgrh.dgid; 422 *sgid = hdr->ibgrh.sgid; 423 return 0; 424 } else { 425 return -EINVAL; 426 } 427 } 428 429 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 430 const struct ib_wc *wc, const struct ib_grh *grh, 431 struct ib_ah_attr *ah_attr) 432 { 433 u32 flow_class; 434 u16 gid_index; 435 int ret; 436 enum rdma_network_type net_type = RDMA_NETWORK_IB; 437 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 438 int hoplimit = 0xff; 439 union ib_gid dgid; 440 union ib_gid sgid; 441 442 memset(ah_attr, 0, sizeof *ah_attr); 443 if (rdma_cap_eth_ah(device, port_num)) { 444 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 445 net_type = wc->network_hdr_type; 446 else 447 net_type = ib_get_net_type_by_grh(device, port_num, grh); 448 gid_type = ib_network_to_gid_type(net_type); 449 } 450 ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 451 &sgid, &dgid); 452 if (ret) 453 return ret; 454 455 if (rdma_protocol_roce(device, port_num)) { 456 int if_index = 0; 457 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 458 wc->vlan_id : 0xffff; 459 struct net_device *idev; 460 struct net_device *resolved_dev; 461 462 if (!(wc->wc_flags & IB_WC_GRH)) 463 return -EPROTOTYPE; 464 465 if (!device->get_netdev) 466 return -EOPNOTSUPP; 467 468 idev = device->get_netdev(device, port_num); 469 if (!idev) 470 return -ENODEV; 471 472 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, 473 ah_attr->dmac, 474 wc->wc_flags & IB_WC_WITH_VLAN ? 475 NULL : &vlan_id, 476 &if_index, &hoplimit); 477 if (ret) { 478 dev_put(idev); 479 return ret; 480 } 481 482 resolved_dev = dev_get_by_index(&init_net, if_index); 483 if (resolved_dev->flags & IFF_LOOPBACK) { 484 dev_put(resolved_dev); 485 resolved_dev = idev; 486 dev_hold(resolved_dev); 487 } 488 rcu_read_lock(); 489 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, 490 resolved_dev)) 491 ret = -EHOSTUNREACH; 492 rcu_read_unlock(); 493 dev_put(idev); 494 dev_put(resolved_dev); 495 if (ret) 496 return ret; 497 498 ret = get_sgid_index_from_eth(device, port_num, vlan_id, 499 &dgid, gid_type, &gid_index); 500 if (ret) 501 return ret; 502 } 503 504 ah_attr->dlid = wc->slid; 505 ah_attr->sl = wc->sl; 506 ah_attr->src_path_bits = wc->dlid_path_bits; 507 ah_attr->port_num = port_num; 508 509 if (wc->wc_flags & IB_WC_GRH) { 510 ah_attr->ah_flags = IB_AH_GRH; 511 ah_attr->grh.dgid = sgid; 512 513 if (!rdma_cap_eth_ah(device, port_num)) { 514 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 515 ret = ib_find_cached_gid_by_port(device, &dgid, 516 IB_GID_TYPE_IB, 517 port_num, NULL, 518 &gid_index); 519 if (ret) 520 return ret; 521 } else { 522 gid_index = 0; 523 } 524 } 525 526 ah_attr->grh.sgid_index = (u8) gid_index; 527 flow_class = be32_to_cpu(grh->version_tclass_flow); 528 ah_attr->grh.flow_label = flow_class & 0xFFFFF; 529 ah_attr->grh.hop_limit = hoplimit; 530 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF; 531 } 532 return 0; 533 } 534 EXPORT_SYMBOL(ib_init_ah_from_wc); 535 536 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 537 const struct ib_grh *grh, u8 port_num) 538 { 539 struct ib_ah_attr ah_attr; 540 int ret; 541 542 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); 543 if (ret) 544 return ERR_PTR(ret); 545 546 return ib_create_ah(pd, &ah_attr); 547 } 548 EXPORT_SYMBOL(ib_create_ah_from_wc); 549 550 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr) 551 { 552 return ah->device->modify_ah ? 553 ah->device->modify_ah(ah, ah_attr) : 554 -ENOSYS; 555 } 556 EXPORT_SYMBOL(ib_modify_ah); 557 558 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr) 559 { 560 return ah->device->query_ah ? 561 ah->device->query_ah(ah, ah_attr) : 562 -ENOSYS; 563 } 564 EXPORT_SYMBOL(ib_query_ah); 565 566 int ib_destroy_ah(struct ib_ah *ah) 567 { 568 struct ib_pd *pd; 569 int ret; 570 571 pd = ah->pd; 572 ret = ah->device->destroy_ah(ah); 573 if (!ret) 574 atomic_dec(&pd->usecnt); 575 576 return ret; 577 } 578 EXPORT_SYMBOL(ib_destroy_ah); 579 580 /* Shared receive queues */ 581 582 struct ib_srq *ib_create_srq(struct ib_pd *pd, 583 struct ib_srq_init_attr *srq_init_attr) 584 { 585 struct ib_srq *srq; 586 587 if (!pd->device->create_srq) 588 return ERR_PTR(-ENOSYS); 589 590 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 591 592 if (!IS_ERR(srq)) { 593 srq->device = pd->device; 594 srq->pd = pd; 595 srq->uobject = NULL; 596 srq->event_handler = srq_init_attr->event_handler; 597 srq->srq_context = srq_init_attr->srq_context; 598 srq->srq_type = srq_init_attr->srq_type; 599 if (srq->srq_type == IB_SRQT_XRC) { 600 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 601 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq; 602 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 603 atomic_inc(&srq->ext.xrc.cq->usecnt); 604 } 605 atomic_inc(&pd->usecnt); 606 atomic_set(&srq->usecnt, 0); 607 } 608 609 return srq; 610 } 611 EXPORT_SYMBOL(ib_create_srq); 612 613 int ib_modify_srq(struct ib_srq *srq, 614 struct ib_srq_attr *srq_attr, 615 enum ib_srq_attr_mask srq_attr_mask) 616 { 617 return srq->device->modify_srq ? 618 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 619 -ENOSYS; 620 } 621 EXPORT_SYMBOL(ib_modify_srq); 622 623 int ib_query_srq(struct ib_srq *srq, 624 struct ib_srq_attr *srq_attr) 625 { 626 return srq->device->query_srq ? 627 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 628 } 629 EXPORT_SYMBOL(ib_query_srq); 630 631 int ib_destroy_srq(struct ib_srq *srq) 632 { 633 struct ib_pd *pd; 634 enum ib_srq_type srq_type; 635 struct ib_xrcd *uninitialized_var(xrcd); 636 struct ib_cq *uninitialized_var(cq); 637 int ret; 638 639 if (atomic_read(&srq->usecnt)) 640 return -EBUSY; 641 642 pd = srq->pd; 643 srq_type = srq->srq_type; 644 if (srq_type == IB_SRQT_XRC) { 645 xrcd = srq->ext.xrc.xrcd; 646 cq = srq->ext.xrc.cq; 647 } 648 649 ret = srq->device->destroy_srq(srq); 650 if (!ret) { 651 atomic_dec(&pd->usecnt); 652 if (srq_type == IB_SRQT_XRC) { 653 atomic_dec(&xrcd->usecnt); 654 atomic_dec(&cq->usecnt); 655 } 656 } 657 658 return ret; 659 } 660 EXPORT_SYMBOL(ib_destroy_srq); 661 662 /* Queue pairs */ 663 664 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 665 { 666 struct ib_qp *qp = context; 667 unsigned long flags; 668 669 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 670 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 671 if (event->element.qp->event_handler) 672 event->element.qp->event_handler(event, event->element.qp->qp_context); 673 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 674 } 675 676 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 677 { 678 mutex_lock(&xrcd->tgt_qp_mutex); 679 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 680 mutex_unlock(&xrcd->tgt_qp_mutex); 681 } 682 683 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 684 void (*event_handler)(struct ib_event *, void *), 685 void *qp_context) 686 { 687 struct ib_qp *qp; 688 unsigned long flags; 689 690 qp = kzalloc(sizeof *qp, GFP_KERNEL); 691 if (!qp) 692 return ERR_PTR(-ENOMEM); 693 694 qp->real_qp = real_qp; 695 atomic_inc(&real_qp->usecnt); 696 qp->device = real_qp->device; 697 qp->event_handler = event_handler; 698 qp->qp_context = qp_context; 699 qp->qp_num = real_qp->qp_num; 700 qp->qp_type = real_qp->qp_type; 701 702 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 703 list_add(&qp->open_list, &real_qp->open_list); 704 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 705 706 return qp; 707 } 708 709 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 710 struct ib_qp_open_attr *qp_open_attr) 711 { 712 struct ib_qp *qp, *real_qp; 713 714 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 715 return ERR_PTR(-EINVAL); 716 717 qp = ERR_PTR(-EINVAL); 718 mutex_lock(&xrcd->tgt_qp_mutex); 719 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 720 if (real_qp->qp_num == qp_open_attr->qp_num) { 721 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 722 qp_open_attr->qp_context); 723 break; 724 } 725 } 726 mutex_unlock(&xrcd->tgt_qp_mutex); 727 return qp; 728 } 729 EXPORT_SYMBOL(ib_open_qp); 730 731 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 732 struct ib_qp_init_attr *qp_init_attr) 733 { 734 struct ib_qp *real_qp = qp; 735 736 qp->event_handler = __ib_shared_qp_event_handler; 737 qp->qp_context = qp; 738 qp->pd = NULL; 739 qp->send_cq = qp->recv_cq = NULL; 740 qp->srq = NULL; 741 qp->xrcd = qp_init_attr->xrcd; 742 atomic_inc(&qp_init_attr->xrcd->usecnt); 743 INIT_LIST_HEAD(&qp->open_list); 744 745 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 746 qp_init_attr->qp_context); 747 if (!IS_ERR(qp)) 748 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 749 else 750 real_qp->device->destroy_qp(real_qp); 751 return qp; 752 } 753 754 struct ib_qp *ib_create_qp(struct ib_pd *pd, 755 struct ib_qp_init_attr *qp_init_attr) 756 { 757 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 758 struct ib_qp *qp; 759 int ret; 760 761 if (qp_init_attr->rwq_ind_tbl && 762 (qp_init_attr->recv_cq || 763 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 764 qp_init_attr->cap.max_recv_sge)) 765 return ERR_PTR(-EINVAL); 766 767 /* 768 * If the callers is using the RDMA API calculate the resources 769 * needed for the RDMA READ/WRITE operations. 770 * 771 * Note that these callers need to pass in a port number. 772 */ 773 if (qp_init_attr->cap.max_rdma_ctxs) 774 rdma_rw_init_qp(device, qp_init_attr); 775 776 qp = device->create_qp(pd, qp_init_attr, NULL); 777 if (IS_ERR(qp)) 778 return qp; 779 780 qp->device = device; 781 qp->real_qp = qp; 782 qp->uobject = NULL; 783 qp->qp_type = qp_init_attr->qp_type; 784 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 785 786 atomic_set(&qp->usecnt, 0); 787 qp->mrs_used = 0; 788 spin_lock_init(&qp->mr_lock); 789 INIT_LIST_HEAD(&qp->rdma_mrs); 790 INIT_LIST_HEAD(&qp->sig_mrs); 791 792 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 793 return ib_create_xrc_qp(qp, qp_init_attr); 794 795 qp->event_handler = qp_init_attr->event_handler; 796 qp->qp_context = qp_init_attr->qp_context; 797 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 798 qp->recv_cq = NULL; 799 qp->srq = NULL; 800 } else { 801 qp->recv_cq = qp_init_attr->recv_cq; 802 if (qp_init_attr->recv_cq) 803 atomic_inc(&qp_init_attr->recv_cq->usecnt); 804 qp->srq = qp_init_attr->srq; 805 if (qp->srq) 806 atomic_inc(&qp_init_attr->srq->usecnt); 807 } 808 809 qp->pd = pd; 810 qp->send_cq = qp_init_attr->send_cq; 811 qp->xrcd = NULL; 812 813 atomic_inc(&pd->usecnt); 814 if (qp_init_attr->send_cq) 815 atomic_inc(&qp_init_attr->send_cq->usecnt); 816 if (qp_init_attr->rwq_ind_tbl) 817 atomic_inc(&qp->rwq_ind_tbl->usecnt); 818 819 if (qp_init_attr->cap.max_rdma_ctxs) { 820 ret = rdma_rw_init_mrs(qp, qp_init_attr); 821 if (ret) { 822 pr_err("failed to init MR pool ret= %d\n", ret); 823 ib_destroy_qp(qp); 824 qp = ERR_PTR(ret); 825 } 826 } 827 828 /* 829 * Note: all hw drivers guarantee that max_send_sge is lower than 830 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 831 * max_send_sge <= max_sge_rd. 832 */ 833 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 834 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 835 device->attrs.max_sge_rd); 836 837 return qp; 838 } 839 EXPORT_SYMBOL(ib_create_qp); 840 841 static const struct { 842 int valid; 843 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 844 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 845 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 846 [IB_QPS_RESET] = { 847 [IB_QPS_RESET] = { .valid = 1 }, 848 [IB_QPS_INIT] = { 849 .valid = 1, 850 .req_param = { 851 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 852 IB_QP_PORT | 853 IB_QP_QKEY), 854 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 855 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 856 IB_QP_PORT | 857 IB_QP_ACCESS_FLAGS), 858 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 859 IB_QP_PORT | 860 IB_QP_ACCESS_FLAGS), 861 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 862 IB_QP_PORT | 863 IB_QP_ACCESS_FLAGS), 864 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 865 IB_QP_PORT | 866 IB_QP_ACCESS_FLAGS), 867 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 868 IB_QP_QKEY), 869 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 870 IB_QP_QKEY), 871 } 872 }, 873 }, 874 [IB_QPS_INIT] = { 875 [IB_QPS_RESET] = { .valid = 1 }, 876 [IB_QPS_ERR] = { .valid = 1 }, 877 [IB_QPS_INIT] = { 878 .valid = 1, 879 .opt_param = { 880 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 881 IB_QP_PORT | 882 IB_QP_QKEY), 883 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 884 IB_QP_PORT | 885 IB_QP_ACCESS_FLAGS), 886 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 887 IB_QP_PORT | 888 IB_QP_ACCESS_FLAGS), 889 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 890 IB_QP_PORT | 891 IB_QP_ACCESS_FLAGS), 892 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 893 IB_QP_PORT | 894 IB_QP_ACCESS_FLAGS), 895 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 896 IB_QP_QKEY), 897 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 898 IB_QP_QKEY), 899 } 900 }, 901 [IB_QPS_RTR] = { 902 .valid = 1, 903 .req_param = { 904 [IB_QPT_UC] = (IB_QP_AV | 905 IB_QP_PATH_MTU | 906 IB_QP_DEST_QPN | 907 IB_QP_RQ_PSN), 908 [IB_QPT_RC] = (IB_QP_AV | 909 IB_QP_PATH_MTU | 910 IB_QP_DEST_QPN | 911 IB_QP_RQ_PSN | 912 IB_QP_MAX_DEST_RD_ATOMIC | 913 IB_QP_MIN_RNR_TIMER), 914 [IB_QPT_XRC_INI] = (IB_QP_AV | 915 IB_QP_PATH_MTU | 916 IB_QP_DEST_QPN | 917 IB_QP_RQ_PSN), 918 [IB_QPT_XRC_TGT] = (IB_QP_AV | 919 IB_QP_PATH_MTU | 920 IB_QP_DEST_QPN | 921 IB_QP_RQ_PSN | 922 IB_QP_MAX_DEST_RD_ATOMIC | 923 IB_QP_MIN_RNR_TIMER), 924 }, 925 .opt_param = { 926 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 927 IB_QP_QKEY), 928 [IB_QPT_UC] = (IB_QP_ALT_PATH | 929 IB_QP_ACCESS_FLAGS | 930 IB_QP_PKEY_INDEX), 931 [IB_QPT_RC] = (IB_QP_ALT_PATH | 932 IB_QP_ACCESS_FLAGS | 933 IB_QP_PKEY_INDEX), 934 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 935 IB_QP_ACCESS_FLAGS | 936 IB_QP_PKEY_INDEX), 937 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 938 IB_QP_ACCESS_FLAGS | 939 IB_QP_PKEY_INDEX), 940 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 941 IB_QP_QKEY), 942 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 943 IB_QP_QKEY), 944 }, 945 }, 946 }, 947 [IB_QPS_RTR] = { 948 [IB_QPS_RESET] = { .valid = 1 }, 949 [IB_QPS_ERR] = { .valid = 1 }, 950 [IB_QPS_RTS] = { 951 .valid = 1, 952 .req_param = { 953 [IB_QPT_UD] = IB_QP_SQ_PSN, 954 [IB_QPT_UC] = IB_QP_SQ_PSN, 955 [IB_QPT_RC] = (IB_QP_TIMEOUT | 956 IB_QP_RETRY_CNT | 957 IB_QP_RNR_RETRY | 958 IB_QP_SQ_PSN | 959 IB_QP_MAX_QP_RD_ATOMIC), 960 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 961 IB_QP_RETRY_CNT | 962 IB_QP_RNR_RETRY | 963 IB_QP_SQ_PSN | 964 IB_QP_MAX_QP_RD_ATOMIC), 965 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 966 IB_QP_SQ_PSN), 967 [IB_QPT_SMI] = IB_QP_SQ_PSN, 968 [IB_QPT_GSI] = IB_QP_SQ_PSN, 969 }, 970 .opt_param = { 971 [IB_QPT_UD] = (IB_QP_CUR_STATE | 972 IB_QP_QKEY), 973 [IB_QPT_UC] = (IB_QP_CUR_STATE | 974 IB_QP_ALT_PATH | 975 IB_QP_ACCESS_FLAGS | 976 IB_QP_PATH_MIG_STATE), 977 [IB_QPT_RC] = (IB_QP_CUR_STATE | 978 IB_QP_ALT_PATH | 979 IB_QP_ACCESS_FLAGS | 980 IB_QP_MIN_RNR_TIMER | 981 IB_QP_PATH_MIG_STATE), 982 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 983 IB_QP_ALT_PATH | 984 IB_QP_ACCESS_FLAGS | 985 IB_QP_PATH_MIG_STATE), 986 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 987 IB_QP_ALT_PATH | 988 IB_QP_ACCESS_FLAGS | 989 IB_QP_MIN_RNR_TIMER | 990 IB_QP_PATH_MIG_STATE), 991 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 992 IB_QP_QKEY), 993 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 994 IB_QP_QKEY), 995 } 996 } 997 }, 998 [IB_QPS_RTS] = { 999 [IB_QPS_RESET] = { .valid = 1 }, 1000 [IB_QPS_ERR] = { .valid = 1 }, 1001 [IB_QPS_RTS] = { 1002 .valid = 1, 1003 .opt_param = { 1004 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1005 IB_QP_QKEY), 1006 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1007 IB_QP_ACCESS_FLAGS | 1008 IB_QP_ALT_PATH | 1009 IB_QP_PATH_MIG_STATE), 1010 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1011 IB_QP_ACCESS_FLAGS | 1012 IB_QP_ALT_PATH | 1013 IB_QP_PATH_MIG_STATE | 1014 IB_QP_MIN_RNR_TIMER), 1015 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1016 IB_QP_ACCESS_FLAGS | 1017 IB_QP_ALT_PATH | 1018 IB_QP_PATH_MIG_STATE), 1019 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1020 IB_QP_ACCESS_FLAGS | 1021 IB_QP_ALT_PATH | 1022 IB_QP_PATH_MIG_STATE | 1023 IB_QP_MIN_RNR_TIMER), 1024 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1025 IB_QP_QKEY), 1026 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1027 IB_QP_QKEY), 1028 } 1029 }, 1030 [IB_QPS_SQD] = { 1031 .valid = 1, 1032 .opt_param = { 1033 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1034 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1035 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1036 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1037 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1038 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1039 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1040 } 1041 }, 1042 }, 1043 [IB_QPS_SQD] = { 1044 [IB_QPS_RESET] = { .valid = 1 }, 1045 [IB_QPS_ERR] = { .valid = 1 }, 1046 [IB_QPS_RTS] = { 1047 .valid = 1, 1048 .opt_param = { 1049 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1050 IB_QP_QKEY), 1051 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1052 IB_QP_ALT_PATH | 1053 IB_QP_ACCESS_FLAGS | 1054 IB_QP_PATH_MIG_STATE), 1055 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1056 IB_QP_ALT_PATH | 1057 IB_QP_ACCESS_FLAGS | 1058 IB_QP_MIN_RNR_TIMER | 1059 IB_QP_PATH_MIG_STATE), 1060 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1061 IB_QP_ALT_PATH | 1062 IB_QP_ACCESS_FLAGS | 1063 IB_QP_PATH_MIG_STATE), 1064 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1065 IB_QP_ALT_PATH | 1066 IB_QP_ACCESS_FLAGS | 1067 IB_QP_MIN_RNR_TIMER | 1068 IB_QP_PATH_MIG_STATE), 1069 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1070 IB_QP_QKEY), 1071 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1072 IB_QP_QKEY), 1073 } 1074 }, 1075 [IB_QPS_SQD] = { 1076 .valid = 1, 1077 .opt_param = { 1078 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1079 IB_QP_QKEY), 1080 [IB_QPT_UC] = (IB_QP_AV | 1081 IB_QP_ALT_PATH | 1082 IB_QP_ACCESS_FLAGS | 1083 IB_QP_PKEY_INDEX | 1084 IB_QP_PATH_MIG_STATE), 1085 [IB_QPT_RC] = (IB_QP_PORT | 1086 IB_QP_AV | 1087 IB_QP_TIMEOUT | 1088 IB_QP_RETRY_CNT | 1089 IB_QP_RNR_RETRY | 1090 IB_QP_MAX_QP_RD_ATOMIC | 1091 IB_QP_MAX_DEST_RD_ATOMIC | 1092 IB_QP_ALT_PATH | 1093 IB_QP_ACCESS_FLAGS | 1094 IB_QP_PKEY_INDEX | 1095 IB_QP_MIN_RNR_TIMER | 1096 IB_QP_PATH_MIG_STATE), 1097 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1098 IB_QP_AV | 1099 IB_QP_TIMEOUT | 1100 IB_QP_RETRY_CNT | 1101 IB_QP_RNR_RETRY | 1102 IB_QP_MAX_QP_RD_ATOMIC | 1103 IB_QP_ALT_PATH | 1104 IB_QP_ACCESS_FLAGS | 1105 IB_QP_PKEY_INDEX | 1106 IB_QP_PATH_MIG_STATE), 1107 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1108 IB_QP_AV | 1109 IB_QP_TIMEOUT | 1110 IB_QP_MAX_DEST_RD_ATOMIC | 1111 IB_QP_ALT_PATH | 1112 IB_QP_ACCESS_FLAGS | 1113 IB_QP_PKEY_INDEX | 1114 IB_QP_MIN_RNR_TIMER | 1115 IB_QP_PATH_MIG_STATE), 1116 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1117 IB_QP_QKEY), 1118 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1119 IB_QP_QKEY), 1120 } 1121 } 1122 }, 1123 [IB_QPS_SQE] = { 1124 [IB_QPS_RESET] = { .valid = 1 }, 1125 [IB_QPS_ERR] = { .valid = 1 }, 1126 [IB_QPS_RTS] = { 1127 .valid = 1, 1128 .opt_param = { 1129 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1130 IB_QP_QKEY), 1131 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1132 IB_QP_ACCESS_FLAGS), 1133 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1134 IB_QP_QKEY), 1135 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1136 IB_QP_QKEY), 1137 } 1138 } 1139 }, 1140 [IB_QPS_ERR] = { 1141 [IB_QPS_RESET] = { .valid = 1 }, 1142 [IB_QPS_ERR] = { .valid = 1 } 1143 } 1144 }; 1145 1146 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1147 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1148 enum rdma_link_layer ll) 1149 { 1150 enum ib_qp_attr_mask req_param, opt_param; 1151 1152 if (cur_state < 0 || cur_state > IB_QPS_ERR || 1153 next_state < 0 || next_state > IB_QPS_ERR) 1154 return 0; 1155 1156 if (mask & IB_QP_CUR_STATE && 1157 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1158 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1159 return 0; 1160 1161 if (!qp_state_table[cur_state][next_state].valid) 1162 return 0; 1163 1164 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1165 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1166 1167 if ((mask & req_param) != req_param) 1168 return 0; 1169 1170 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1171 return 0; 1172 1173 return 1; 1174 } 1175 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1176 1177 int ib_resolve_eth_dmac(struct ib_qp *qp, 1178 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1179 { 1180 int ret = 0; 1181 1182 if (*qp_attr_mask & IB_QP_AV) { 1183 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) || 1184 qp_attr->ah_attr.port_num > rdma_end_port(qp->device)) 1185 return -EINVAL; 1186 1187 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num)) 1188 return 0; 1189 1190 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) { 1191 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw, 1192 qp_attr->ah_attr.dmac); 1193 } else { 1194 union ib_gid sgid; 1195 struct ib_gid_attr sgid_attr; 1196 int ifindex; 1197 int hop_limit; 1198 1199 ret = ib_query_gid(qp->device, 1200 qp_attr->ah_attr.port_num, 1201 qp_attr->ah_attr.grh.sgid_index, 1202 &sgid, &sgid_attr); 1203 1204 if (ret || !sgid_attr.ndev) { 1205 if (!ret) 1206 ret = -ENXIO; 1207 goto out; 1208 } 1209 1210 ifindex = sgid_attr.ndev->ifindex; 1211 1212 ret = rdma_addr_find_l2_eth_by_grh(&sgid, 1213 &qp_attr->ah_attr.grh.dgid, 1214 qp_attr->ah_attr.dmac, 1215 NULL, &ifindex, &hop_limit); 1216 1217 dev_put(sgid_attr.ndev); 1218 1219 qp_attr->ah_attr.grh.hop_limit = hop_limit; 1220 } 1221 } 1222 out: 1223 return ret; 1224 } 1225 EXPORT_SYMBOL(ib_resolve_eth_dmac); 1226 1227 1228 int ib_modify_qp(struct ib_qp *qp, 1229 struct ib_qp_attr *qp_attr, 1230 int qp_attr_mask) 1231 { 1232 int ret; 1233 1234 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask); 1235 if (ret) 1236 return ret; 1237 1238 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1239 } 1240 EXPORT_SYMBOL(ib_modify_qp); 1241 1242 int ib_query_qp(struct ib_qp *qp, 1243 struct ib_qp_attr *qp_attr, 1244 int qp_attr_mask, 1245 struct ib_qp_init_attr *qp_init_attr) 1246 { 1247 return qp->device->query_qp ? 1248 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1249 -ENOSYS; 1250 } 1251 EXPORT_SYMBOL(ib_query_qp); 1252 1253 int ib_close_qp(struct ib_qp *qp) 1254 { 1255 struct ib_qp *real_qp; 1256 unsigned long flags; 1257 1258 real_qp = qp->real_qp; 1259 if (real_qp == qp) 1260 return -EINVAL; 1261 1262 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1263 list_del(&qp->open_list); 1264 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1265 1266 atomic_dec(&real_qp->usecnt); 1267 kfree(qp); 1268 1269 return 0; 1270 } 1271 EXPORT_SYMBOL(ib_close_qp); 1272 1273 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1274 { 1275 struct ib_xrcd *xrcd; 1276 struct ib_qp *real_qp; 1277 int ret; 1278 1279 real_qp = qp->real_qp; 1280 xrcd = real_qp->xrcd; 1281 1282 mutex_lock(&xrcd->tgt_qp_mutex); 1283 ib_close_qp(qp); 1284 if (atomic_read(&real_qp->usecnt) == 0) 1285 list_del(&real_qp->xrcd_list); 1286 else 1287 real_qp = NULL; 1288 mutex_unlock(&xrcd->tgt_qp_mutex); 1289 1290 if (real_qp) { 1291 ret = ib_destroy_qp(real_qp); 1292 if (!ret) 1293 atomic_dec(&xrcd->usecnt); 1294 else 1295 __ib_insert_xrcd_qp(xrcd, real_qp); 1296 } 1297 1298 return 0; 1299 } 1300 1301 int ib_destroy_qp(struct ib_qp *qp) 1302 { 1303 struct ib_pd *pd; 1304 struct ib_cq *scq, *rcq; 1305 struct ib_srq *srq; 1306 struct ib_rwq_ind_table *ind_tbl; 1307 int ret; 1308 1309 WARN_ON_ONCE(qp->mrs_used > 0); 1310 1311 if (atomic_read(&qp->usecnt)) 1312 return -EBUSY; 1313 1314 if (qp->real_qp != qp) 1315 return __ib_destroy_shared_qp(qp); 1316 1317 pd = qp->pd; 1318 scq = qp->send_cq; 1319 rcq = qp->recv_cq; 1320 srq = qp->srq; 1321 ind_tbl = qp->rwq_ind_tbl; 1322 1323 if (!qp->uobject) 1324 rdma_rw_cleanup_mrs(qp); 1325 1326 ret = qp->device->destroy_qp(qp); 1327 if (!ret) { 1328 if (pd) 1329 atomic_dec(&pd->usecnt); 1330 if (scq) 1331 atomic_dec(&scq->usecnt); 1332 if (rcq) 1333 atomic_dec(&rcq->usecnt); 1334 if (srq) 1335 atomic_dec(&srq->usecnt); 1336 if (ind_tbl) 1337 atomic_dec(&ind_tbl->usecnt); 1338 } 1339 1340 return ret; 1341 } 1342 EXPORT_SYMBOL(ib_destroy_qp); 1343 1344 /* Completion queues */ 1345 1346 struct ib_cq *ib_create_cq(struct ib_device *device, 1347 ib_comp_handler comp_handler, 1348 void (*event_handler)(struct ib_event *, void *), 1349 void *cq_context, 1350 const struct ib_cq_init_attr *cq_attr) 1351 { 1352 struct ib_cq *cq; 1353 1354 cq = device->create_cq(device, cq_attr, NULL, NULL); 1355 1356 if (!IS_ERR(cq)) { 1357 cq->device = device; 1358 cq->uobject = NULL; 1359 cq->comp_handler = comp_handler; 1360 cq->event_handler = event_handler; 1361 cq->cq_context = cq_context; 1362 atomic_set(&cq->usecnt, 0); 1363 } 1364 1365 return cq; 1366 } 1367 EXPORT_SYMBOL(ib_create_cq); 1368 1369 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1370 { 1371 return cq->device->modify_cq ? 1372 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1373 } 1374 EXPORT_SYMBOL(ib_modify_cq); 1375 1376 int ib_destroy_cq(struct ib_cq *cq) 1377 { 1378 if (atomic_read(&cq->usecnt)) 1379 return -EBUSY; 1380 1381 return cq->device->destroy_cq(cq); 1382 } 1383 EXPORT_SYMBOL(ib_destroy_cq); 1384 1385 int ib_resize_cq(struct ib_cq *cq, int cqe) 1386 { 1387 return cq->device->resize_cq ? 1388 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1389 } 1390 EXPORT_SYMBOL(ib_resize_cq); 1391 1392 /* Memory regions */ 1393 1394 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags) 1395 { 1396 struct ib_mr *mr; 1397 int err; 1398 1399 err = ib_check_mr_access(mr_access_flags); 1400 if (err) 1401 return ERR_PTR(err); 1402 1403 mr = pd->device->get_dma_mr(pd, mr_access_flags); 1404 1405 if (!IS_ERR(mr)) { 1406 mr->device = pd->device; 1407 mr->pd = pd; 1408 mr->uobject = NULL; 1409 atomic_inc(&pd->usecnt); 1410 mr->need_inval = false; 1411 } 1412 1413 return mr; 1414 } 1415 EXPORT_SYMBOL(ib_get_dma_mr); 1416 1417 int ib_dereg_mr(struct ib_mr *mr) 1418 { 1419 struct ib_pd *pd = mr->pd; 1420 int ret; 1421 1422 ret = mr->device->dereg_mr(mr); 1423 if (!ret) 1424 atomic_dec(&pd->usecnt); 1425 1426 return ret; 1427 } 1428 EXPORT_SYMBOL(ib_dereg_mr); 1429 1430 /** 1431 * ib_alloc_mr() - Allocates a memory region 1432 * @pd: protection domain associated with the region 1433 * @mr_type: memory region type 1434 * @max_num_sg: maximum sg entries available for registration. 1435 * 1436 * Notes: 1437 * Memory registeration page/sg lists must not exceed max_num_sg. 1438 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1439 * max_num_sg * used_page_size. 1440 * 1441 */ 1442 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1443 enum ib_mr_type mr_type, 1444 u32 max_num_sg) 1445 { 1446 struct ib_mr *mr; 1447 1448 if (!pd->device->alloc_mr) 1449 return ERR_PTR(-ENOSYS); 1450 1451 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1452 if (!IS_ERR(mr)) { 1453 mr->device = pd->device; 1454 mr->pd = pd; 1455 mr->uobject = NULL; 1456 atomic_inc(&pd->usecnt); 1457 mr->need_inval = false; 1458 } 1459 1460 return mr; 1461 } 1462 EXPORT_SYMBOL(ib_alloc_mr); 1463 1464 /* "Fast" memory regions */ 1465 1466 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1467 int mr_access_flags, 1468 struct ib_fmr_attr *fmr_attr) 1469 { 1470 struct ib_fmr *fmr; 1471 1472 if (!pd->device->alloc_fmr) 1473 return ERR_PTR(-ENOSYS); 1474 1475 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1476 if (!IS_ERR(fmr)) { 1477 fmr->device = pd->device; 1478 fmr->pd = pd; 1479 atomic_inc(&pd->usecnt); 1480 } 1481 1482 return fmr; 1483 } 1484 EXPORT_SYMBOL(ib_alloc_fmr); 1485 1486 int ib_unmap_fmr(struct list_head *fmr_list) 1487 { 1488 struct ib_fmr *fmr; 1489 1490 if (list_empty(fmr_list)) 1491 return 0; 1492 1493 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1494 return fmr->device->unmap_fmr(fmr_list); 1495 } 1496 EXPORT_SYMBOL(ib_unmap_fmr); 1497 1498 int ib_dealloc_fmr(struct ib_fmr *fmr) 1499 { 1500 struct ib_pd *pd; 1501 int ret; 1502 1503 pd = fmr->pd; 1504 ret = fmr->device->dealloc_fmr(fmr); 1505 if (!ret) 1506 atomic_dec(&pd->usecnt); 1507 1508 return ret; 1509 } 1510 EXPORT_SYMBOL(ib_dealloc_fmr); 1511 1512 /* Multicast groups */ 1513 1514 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1515 { 1516 int ret; 1517 1518 if (!qp->device->attach_mcast) 1519 return -ENOSYS; 1520 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD) 1521 return -EINVAL; 1522 1523 ret = qp->device->attach_mcast(qp, gid, lid); 1524 if (!ret) 1525 atomic_inc(&qp->usecnt); 1526 return ret; 1527 } 1528 EXPORT_SYMBOL(ib_attach_mcast); 1529 1530 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1531 { 1532 int ret; 1533 1534 if (!qp->device->detach_mcast) 1535 return -ENOSYS; 1536 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD) 1537 return -EINVAL; 1538 1539 ret = qp->device->detach_mcast(qp, gid, lid); 1540 if (!ret) 1541 atomic_dec(&qp->usecnt); 1542 return ret; 1543 } 1544 EXPORT_SYMBOL(ib_detach_mcast); 1545 1546 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) 1547 { 1548 struct ib_xrcd *xrcd; 1549 1550 if (!device->alloc_xrcd) 1551 return ERR_PTR(-ENOSYS); 1552 1553 xrcd = device->alloc_xrcd(device, NULL, NULL); 1554 if (!IS_ERR(xrcd)) { 1555 xrcd->device = device; 1556 xrcd->inode = NULL; 1557 atomic_set(&xrcd->usecnt, 0); 1558 mutex_init(&xrcd->tgt_qp_mutex); 1559 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1560 } 1561 1562 return xrcd; 1563 } 1564 EXPORT_SYMBOL(ib_alloc_xrcd); 1565 1566 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1567 { 1568 struct ib_qp *qp; 1569 int ret; 1570 1571 if (atomic_read(&xrcd->usecnt)) 1572 return -EBUSY; 1573 1574 while (!list_empty(&xrcd->tgt_qp_list)) { 1575 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1576 ret = ib_destroy_qp(qp); 1577 if (ret) 1578 return ret; 1579 } 1580 1581 return xrcd->device->dealloc_xrcd(xrcd); 1582 } 1583 EXPORT_SYMBOL(ib_dealloc_xrcd); 1584 1585 /** 1586 * ib_create_wq - Creates a WQ associated with the specified protection 1587 * domain. 1588 * @pd: The protection domain associated with the WQ. 1589 * @wq_init_attr: A list of initial attributes required to create the 1590 * WQ. If WQ creation succeeds, then the attributes are updated to 1591 * the actual capabilities of the created WQ. 1592 * 1593 * wq_init_attr->max_wr and wq_init_attr->max_sge determine 1594 * the requested size of the WQ, and set to the actual values allocated 1595 * on return. 1596 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 1597 * at least as large as the requested values. 1598 */ 1599 struct ib_wq *ib_create_wq(struct ib_pd *pd, 1600 struct ib_wq_init_attr *wq_attr) 1601 { 1602 struct ib_wq *wq; 1603 1604 if (!pd->device->create_wq) 1605 return ERR_PTR(-ENOSYS); 1606 1607 wq = pd->device->create_wq(pd, wq_attr, NULL); 1608 if (!IS_ERR(wq)) { 1609 wq->event_handler = wq_attr->event_handler; 1610 wq->wq_context = wq_attr->wq_context; 1611 wq->wq_type = wq_attr->wq_type; 1612 wq->cq = wq_attr->cq; 1613 wq->device = pd->device; 1614 wq->pd = pd; 1615 wq->uobject = NULL; 1616 atomic_inc(&pd->usecnt); 1617 atomic_inc(&wq_attr->cq->usecnt); 1618 atomic_set(&wq->usecnt, 0); 1619 } 1620 return wq; 1621 } 1622 EXPORT_SYMBOL(ib_create_wq); 1623 1624 /** 1625 * ib_destroy_wq - Destroys the specified WQ. 1626 * @wq: The WQ to destroy. 1627 */ 1628 int ib_destroy_wq(struct ib_wq *wq) 1629 { 1630 int err; 1631 struct ib_cq *cq = wq->cq; 1632 struct ib_pd *pd = wq->pd; 1633 1634 if (atomic_read(&wq->usecnt)) 1635 return -EBUSY; 1636 1637 err = wq->device->destroy_wq(wq); 1638 if (!err) { 1639 atomic_dec(&pd->usecnt); 1640 atomic_dec(&cq->usecnt); 1641 } 1642 return err; 1643 } 1644 EXPORT_SYMBOL(ib_destroy_wq); 1645 1646 /** 1647 * ib_modify_wq - Modifies the specified WQ. 1648 * @wq: The WQ to modify. 1649 * @wq_attr: On input, specifies the WQ attributes to modify. 1650 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 1651 * are being modified. 1652 * On output, the current values of selected WQ attributes are returned. 1653 */ 1654 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 1655 u32 wq_attr_mask) 1656 { 1657 int err; 1658 1659 if (!wq->device->modify_wq) 1660 return -ENOSYS; 1661 1662 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); 1663 return err; 1664 } 1665 EXPORT_SYMBOL(ib_modify_wq); 1666 1667 /* 1668 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 1669 * @device: The device on which to create the rwq indirection table. 1670 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 1671 * create the Indirection Table. 1672 * 1673 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 1674 * than the created ib_rwq_ind_table object and the caller is responsible 1675 * for its memory allocation/free. 1676 */ 1677 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 1678 struct ib_rwq_ind_table_init_attr *init_attr) 1679 { 1680 struct ib_rwq_ind_table *rwq_ind_table; 1681 int i; 1682 u32 table_size; 1683 1684 if (!device->create_rwq_ind_table) 1685 return ERR_PTR(-ENOSYS); 1686 1687 table_size = (1 << init_attr->log_ind_tbl_size); 1688 rwq_ind_table = device->create_rwq_ind_table(device, 1689 init_attr, NULL); 1690 if (IS_ERR(rwq_ind_table)) 1691 return rwq_ind_table; 1692 1693 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 1694 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 1695 rwq_ind_table->device = device; 1696 rwq_ind_table->uobject = NULL; 1697 atomic_set(&rwq_ind_table->usecnt, 0); 1698 1699 for (i = 0; i < table_size; i++) 1700 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 1701 1702 return rwq_ind_table; 1703 } 1704 EXPORT_SYMBOL(ib_create_rwq_ind_table); 1705 1706 /* 1707 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 1708 * @wq_ind_table: The Indirection Table to destroy. 1709 */ 1710 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 1711 { 1712 int err, i; 1713 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 1714 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 1715 1716 if (atomic_read(&rwq_ind_table->usecnt)) 1717 return -EBUSY; 1718 1719 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); 1720 if (!err) { 1721 for (i = 0; i < table_size; i++) 1722 atomic_dec(&ind_tbl[i]->usecnt); 1723 } 1724 1725 return err; 1726 } 1727 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 1728 1729 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1730 struct ib_flow_attr *flow_attr, 1731 int domain) 1732 { 1733 struct ib_flow *flow_id; 1734 if (!qp->device->create_flow) 1735 return ERR_PTR(-ENOSYS); 1736 1737 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1738 if (!IS_ERR(flow_id)) 1739 atomic_inc(&qp->usecnt); 1740 return flow_id; 1741 } 1742 EXPORT_SYMBOL(ib_create_flow); 1743 1744 int ib_destroy_flow(struct ib_flow *flow_id) 1745 { 1746 int err; 1747 struct ib_qp *qp = flow_id->qp; 1748 1749 err = qp->device->destroy_flow(flow_id); 1750 if (!err) 1751 atomic_dec(&qp->usecnt); 1752 return err; 1753 } 1754 EXPORT_SYMBOL(ib_destroy_flow); 1755 1756 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 1757 struct ib_mr_status *mr_status) 1758 { 1759 return mr->device->check_mr_status ? 1760 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 1761 } 1762 EXPORT_SYMBOL(ib_check_mr_status); 1763 1764 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 1765 int state) 1766 { 1767 if (!device->set_vf_link_state) 1768 return -ENOSYS; 1769 1770 return device->set_vf_link_state(device, vf, port, state); 1771 } 1772 EXPORT_SYMBOL(ib_set_vf_link_state); 1773 1774 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 1775 struct ifla_vf_info *info) 1776 { 1777 if (!device->get_vf_config) 1778 return -ENOSYS; 1779 1780 return device->get_vf_config(device, vf, port, info); 1781 } 1782 EXPORT_SYMBOL(ib_get_vf_config); 1783 1784 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 1785 struct ifla_vf_stats *stats) 1786 { 1787 if (!device->get_vf_stats) 1788 return -ENOSYS; 1789 1790 return device->get_vf_stats(device, vf, port, stats); 1791 } 1792 EXPORT_SYMBOL(ib_get_vf_stats); 1793 1794 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 1795 int type) 1796 { 1797 if (!device->set_vf_guid) 1798 return -ENOSYS; 1799 1800 return device->set_vf_guid(device, vf, port, guid, type); 1801 } 1802 EXPORT_SYMBOL(ib_set_vf_guid); 1803 1804 /** 1805 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 1806 * and set it the memory region. 1807 * @mr: memory region 1808 * @sg: dma mapped scatterlist 1809 * @sg_nents: number of entries in sg 1810 * @sg_offset: offset in bytes into sg 1811 * @page_size: page vector desired page size 1812 * 1813 * Constraints: 1814 * - The first sg element is allowed to have an offset. 1815 * - Each sg element must be aligned to page_size (or physically 1816 * contiguous to the previous element). In case an sg element has a 1817 * non contiguous offset, the mapping prefix will not include it. 1818 * - The last sg element is allowed to have length less than page_size. 1819 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 1820 * then only max_num_sg entries will be mapped. 1821 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS_REG, non of these 1822 * constraints holds and the page_size argument is ignored. 1823 * 1824 * Returns the number of sg elements that were mapped to the memory region. 1825 * 1826 * After this completes successfully, the memory region 1827 * is ready for registration. 1828 */ 1829 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 1830 unsigned int *sg_offset, unsigned int page_size) 1831 { 1832 if (unlikely(!mr->device->map_mr_sg)) 1833 return -ENOSYS; 1834 1835 mr->page_size = page_size; 1836 1837 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 1838 } 1839 EXPORT_SYMBOL(ib_map_mr_sg); 1840 1841 /** 1842 * ib_sg_to_pages() - Convert the largest prefix of a sg list 1843 * to a page vector 1844 * @mr: memory region 1845 * @sgl: dma mapped scatterlist 1846 * @sg_nents: number of entries in sg 1847 * @sg_offset_p: IN: start offset in bytes into sg 1848 * OUT: offset in bytes for element n of the sg of the first 1849 * byte that has not been processed where n is the return 1850 * value of this function. 1851 * @set_page: driver page assignment function pointer 1852 * 1853 * Core service helper for drivers to convert the largest 1854 * prefix of given sg list to a page vector. The sg list 1855 * prefix converted is the prefix that meet the requirements 1856 * of ib_map_mr_sg. 1857 * 1858 * Returns the number of sg elements that were assigned to 1859 * a page vector. 1860 */ 1861 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 1862 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 1863 { 1864 struct scatterlist *sg; 1865 u64 last_end_dma_addr = 0; 1866 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 1867 unsigned int last_page_off = 0; 1868 u64 page_mask = ~((u64)mr->page_size - 1); 1869 int i, ret; 1870 1871 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 1872 return -EINVAL; 1873 1874 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 1875 mr->length = 0; 1876 1877 for_each_sg(sgl, sg, sg_nents, i) { 1878 u64 dma_addr = sg_dma_address(sg) + sg_offset; 1879 u64 prev_addr = dma_addr; 1880 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 1881 u64 end_dma_addr = dma_addr + dma_len; 1882 u64 page_addr = dma_addr & page_mask; 1883 1884 /* 1885 * For the second and later elements, check whether either the 1886 * end of element i-1 or the start of element i is not aligned 1887 * on a page boundary. 1888 */ 1889 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 1890 /* Stop mapping if there is a gap. */ 1891 if (last_end_dma_addr != dma_addr) 1892 break; 1893 1894 /* 1895 * Coalesce this element with the last. If it is small 1896 * enough just update mr->length. Otherwise start 1897 * mapping from the next page. 1898 */ 1899 goto next_page; 1900 } 1901 1902 do { 1903 ret = set_page(mr, page_addr); 1904 if (unlikely(ret < 0)) { 1905 sg_offset = prev_addr - sg_dma_address(sg); 1906 mr->length += prev_addr - dma_addr; 1907 if (sg_offset_p) 1908 *sg_offset_p = sg_offset; 1909 return i || sg_offset ? i : ret; 1910 } 1911 prev_addr = page_addr; 1912 next_page: 1913 page_addr += mr->page_size; 1914 } while (page_addr < end_dma_addr); 1915 1916 mr->length += dma_len; 1917 last_end_dma_addr = end_dma_addr; 1918 last_page_off = end_dma_addr & ~page_mask; 1919 1920 sg_offset = 0; 1921 } 1922 1923 if (sg_offset_p) 1924 *sg_offset_p = 0; 1925 return i; 1926 } 1927 EXPORT_SYMBOL(ib_sg_to_pages); 1928 1929 struct ib_drain_cqe { 1930 struct ib_cqe cqe; 1931 struct completion done; 1932 }; 1933 1934 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 1935 { 1936 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 1937 cqe); 1938 1939 complete(&cqe->done); 1940 } 1941 1942 /* 1943 * Post a WR and block until its completion is reaped for the SQ. 1944 */ 1945 static void __ib_drain_sq(struct ib_qp *qp) 1946 { 1947 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 1948 struct ib_drain_cqe sdrain; 1949 struct ib_send_wr swr = {}, *bad_swr; 1950 int ret; 1951 1952 if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) { 1953 WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT, 1954 "IB_POLL_DIRECT poll_ctx not supported for drain\n"); 1955 return; 1956 } 1957 1958 swr.wr_cqe = &sdrain.cqe; 1959 sdrain.cqe.done = ib_drain_qp_done; 1960 init_completion(&sdrain.done); 1961 1962 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 1963 if (ret) { 1964 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 1965 return; 1966 } 1967 1968 ret = ib_post_send(qp, &swr, &bad_swr); 1969 if (ret) { 1970 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 1971 return; 1972 } 1973 1974 wait_for_completion(&sdrain.done); 1975 } 1976 1977 /* 1978 * Post a WR and block until its completion is reaped for the RQ. 1979 */ 1980 static void __ib_drain_rq(struct ib_qp *qp) 1981 { 1982 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 1983 struct ib_drain_cqe rdrain; 1984 struct ib_recv_wr rwr = {}, *bad_rwr; 1985 int ret; 1986 1987 if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) { 1988 WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT, 1989 "IB_POLL_DIRECT poll_ctx not supported for drain\n"); 1990 return; 1991 } 1992 1993 rwr.wr_cqe = &rdrain.cqe; 1994 rdrain.cqe.done = ib_drain_qp_done; 1995 init_completion(&rdrain.done); 1996 1997 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 1998 if (ret) { 1999 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2000 return; 2001 } 2002 2003 ret = ib_post_recv(qp, &rwr, &bad_rwr); 2004 if (ret) { 2005 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2006 return; 2007 } 2008 2009 wait_for_completion(&rdrain.done); 2010 } 2011 2012 /** 2013 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2014 * application. 2015 * @qp: queue pair to drain 2016 * 2017 * If the device has a provider-specific drain function, then 2018 * call that. Otherwise call the generic drain function 2019 * __ib_drain_sq(). 2020 * 2021 * The caller must: 2022 * 2023 * ensure there is room in the CQ and SQ for the drain work request and 2024 * completion. 2025 * 2026 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be 2027 * IB_POLL_DIRECT. 2028 * 2029 * ensure that there are no other contexts that are posting WRs concurrently. 2030 * Otherwise the drain is not guaranteed. 2031 */ 2032 void ib_drain_sq(struct ib_qp *qp) 2033 { 2034 if (qp->device->drain_sq) 2035 qp->device->drain_sq(qp); 2036 else 2037 __ib_drain_sq(qp); 2038 } 2039 EXPORT_SYMBOL(ib_drain_sq); 2040 2041 /** 2042 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2043 * application. 2044 * @qp: queue pair to drain 2045 * 2046 * If the device has a provider-specific drain function, then 2047 * call that. Otherwise call the generic drain function 2048 * __ib_drain_rq(). 2049 * 2050 * The caller must: 2051 * 2052 * ensure there is room in the CQ and RQ for the drain work request and 2053 * completion. 2054 * 2055 * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be 2056 * IB_POLL_DIRECT. 2057 * 2058 * ensure that there are no other contexts that are posting WRs concurrently. 2059 * Otherwise the drain is not guaranteed. 2060 */ 2061 void ib_drain_rq(struct ib_qp *qp) 2062 { 2063 if (qp->device->drain_rq) 2064 qp->device->drain_rq(qp); 2065 else 2066 __ib_drain_rq(qp); 2067 } 2068 EXPORT_SYMBOL(ib_drain_rq); 2069 2070 /** 2071 * ib_drain_qp() - Block until all CQEs have been consumed by the 2072 * application on both the RQ and SQ. 2073 * @qp: queue pair to drain 2074 * 2075 * The caller must: 2076 * 2077 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2078 * and completions. 2079 * 2080 * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be 2081 * IB_POLL_DIRECT. 2082 * 2083 * ensure that there are no other contexts that are posting WRs concurrently. 2084 * Otherwise the drain is not guaranteed. 2085 */ 2086 void ib_drain_qp(struct ib_qp *qp) 2087 { 2088 ib_drain_sq(qp); 2089 if (!qp->srq) 2090 ib_drain_rq(qp); 2091 } 2092 EXPORT_SYMBOL(ib_drain_qp); 2093