xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision 24ce659d)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 #include <trace/events/rdma_core.h>
56 
57 static int ib_resolve_eth_dmac(struct ib_device *device,
58 			       struct rdma_ah_attr *ah_attr);
59 
60 static const char * const ib_events[] = {
61 	[IB_EVENT_CQ_ERR]		= "CQ error",
62 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
63 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
64 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
65 	[IB_EVENT_COMM_EST]		= "communication established",
66 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
67 	[IB_EVENT_PATH_MIG]		= "path migration successful",
68 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
69 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
70 	[IB_EVENT_PORT_ACTIVE]		= "port active",
71 	[IB_EVENT_PORT_ERR]		= "port error",
72 	[IB_EVENT_LID_CHANGE]		= "LID change",
73 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
74 	[IB_EVENT_SM_CHANGE]		= "SM change",
75 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
76 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
77 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
78 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
79 	[IB_EVENT_GID_CHANGE]		= "GID changed",
80 };
81 
82 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
83 {
84 	size_t index = event;
85 
86 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
87 			ib_events[index] : "unrecognized event";
88 }
89 EXPORT_SYMBOL(ib_event_msg);
90 
91 static const char * const wc_statuses[] = {
92 	[IB_WC_SUCCESS]			= "success",
93 	[IB_WC_LOC_LEN_ERR]		= "local length error",
94 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
95 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
96 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
97 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
98 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
99 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
100 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
101 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
102 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
103 	[IB_WC_REM_OP_ERR]		= "remote operation error",
104 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
105 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
106 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
107 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
108 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
109 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
110 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
111 	[IB_WC_FATAL_ERR]		= "fatal error",
112 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
113 	[IB_WC_GENERAL_ERR]		= "general error",
114 };
115 
116 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
117 {
118 	size_t index = status;
119 
120 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
121 			wc_statuses[index] : "unrecognized status";
122 }
123 EXPORT_SYMBOL(ib_wc_status_msg);
124 
125 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
126 {
127 	switch (rate) {
128 	case IB_RATE_2_5_GBPS: return   1;
129 	case IB_RATE_5_GBPS:   return   2;
130 	case IB_RATE_10_GBPS:  return   4;
131 	case IB_RATE_20_GBPS:  return   8;
132 	case IB_RATE_30_GBPS:  return  12;
133 	case IB_RATE_40_GBPS:  return  16;
134 	case IB_RATE_60_GBPS:  return  24;
135 	case IB_RATE_80_GBPS:  return  32;
136 	case IB_RATE_120_GBPS: return  48;
137 	case IB_RATE_14_GBPS:  return   6;
138 	case IB_RATE_56_GBPS:  return  22;
139 	case IB_RATE_112_GBPS: return  45;
140 	case IB_RATE_168_GBPS: return  67;
141 	case IB_RATE_25_GBPS:  return  10;
142 	case IB_RATE_100_GBPS: return  40;
143 	case IB_RATE_200_GBPS: return  80;
144 	case IB_RATE_300_GBPS: return 120;
145 	case IB_RATE_28_GBPS:  return  11;
146 	case IB_RATE_50_GBPS:  return  20;
147 	case IB_RATE_400_GBPS: return 160;
148 	case IB_RATE_600_GBPS: return 240;
149 	default:	       return  -1;
150 	}
151 }
152 EXPORT_SYMBOL(ib_rate_to_mult);
153 
154 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
155 {
156 	switch (mult) {
157 	case 1:   return IB_RATE_2_5_GBPS;
158 	case 2:   return IB_RATE_5_GBPS;
159 	case 4:   return IB_RATE_10_GBPS;
160 	case 8:   return IB_RATE_20_GBPS;
161 	case 12:  return IB_RATE_30_GBPS;
162 	case 16:  return IB_RATE_40_GBPS;
163 	case 24:  return IB_RATE_60_GBPS;
164 	case 32:  return IB_RATE_80_GBPS;
165 	case 48:  return IB_RATE_120_GBPS;
166 	case 6:   return IB_RATE_14_GBPS;
167 	case 22:  return IB_RATE_56_GBPS;
168 	case 45:  return IB_RATE_112_GBPS;
169 	case 67:  return IB_RATE_168_GBPS;
170 	case 10:  return IB_RATE_25_GBPS;
171 	case 40:  return IB_RATE_100_GBPS;
172 	case 80:  return IB_RATE_200_GBPS;
173 	case 120: return IB_RATE_300_GBPS;
174 	case 11:  return IB_RATE_28_GBPS;
175 	case 20:  return IB_RATE_50_GBPS;
176 	case 160: return IB_RATE_400_GBPS;
177 	case 240: return IB_RATE_600_GBPS;
178 	default:  return IB_RATE_PORT_CURRENT;
179 	}
180 }
181 EXPORT_SYMBOL(mult_to_ib_rate);
182 
183 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
184 {
185 	switch (rate) {
186 	case IB_RATE_2_5_GBPS: return 2500;
187 	case IB_RATE_5_GBPS:   return 5000;
188 	case IB_RATE_10_GBPS:  return 10000;
189 	case IB_RATE_20_GBPS:  return 20000;
190 	case IB_RATE_30_GBPS:  return 30000;
191 	case IB_RATE_40_GBPS:  return 40000;
192 	case IB_RATE_60_GBPS:  return 60000;
193 	case IB_RATE_80_GBPS:  return 80000;
194 	case IB_RATE_120_GBPS: return 120000;
195 	case IB_RATE_14_GBPS:  return 14062;
196 	case IB_RATE_56_GBPS:  return 56250;
197 	case IB_RATE_112_GBPS: return 112500;
198 	case IB_RATE_168_GBPS: return 168750;
199 	case IB_RATE_25_GBPS:  return 25781;
200 	case IB_RATE_100_GBPS: return 103125;
201 	case IB_RATE_200_GBPS: return 206250;
202 	case IB_RATE_300_GBPS: return 309375;
203 	case IB_RATE_28_GBPS:  return 28125;
204 	case IB_RATE_50_GBPS:  return 53125;
205 	case IB_RATE_400_GBPS: return 425000;
206 	case IB_RATE_600_GBPS: return 637500;
207 	default:	       return -1;
208 	}
209 }
210 EXPORT_SYMBOL(ib_rate_to_mbps);
211 
212 __attribute_const__ enum rdma_transport_type
213 rdma_node_get_transport(unsigned int node_type)
214 {
215 
216 	if (node_type == RDMA_NODE_USNIC)
217 		return RDMA_TRANSPORT_USNIC;
218 	if (node_type == RDMA_NODE_USNIC_UDP)
219 		return RDMA_TRANSPORT_USNIC_UDP;
220 	if (node_type == RDMA_NODE_RNIC)
221 		return RDMA_TRANSPORT_IWARP;
222 	if (node_type == RDMA_NODE_UNSPECIFIED)
223 		return RDMA_TRANSPORT_UNSPECIFIED;
224 
225 	return RDMA_TRANSPORT_IB;
226 }
227 EXPORT_SYMBOL(rdma_node_get_transport);
228 
229 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
230 {
231 	enum rdma_transport_type lt;
232 	if (device->ops.get_link_layer)
233 		return device->ops.get_link_layer(device, port_num);
234 
235 	lt = rdma_node_get_transport(device->node_type);
236 	if (lt == RDMA_TRANSPORT_IB)
237 		return IB_LINK_LAYER_INFINIBAND;
238 
239 	return IB_LINK_LAYER_ETHERNET;
240 }
241 EXPORT_SYMBOL(rdma_port_get_link_layer);
242 
243 /* Protection domains */
244 
245 /**
246  * ib_alloc_pd - Allocates an unused protection domain.
247  * @device: The device on which to allocate the protection domain.
248  * @flags: protection domain flags
249  * @caller: caller's build-time module name
250  *
251  * A protection domain object provides an association between QPs, shared
252  * receive queues, address handles, memory regions, and memory windows.
253  *
254  * Every PD has a local_dma_lkey which can be used as the lkey value for local
255  * memory operations.
256  */
257 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
258 		const char *caller)
259 {
260 	struct ib_pd *pd;
261 	int mr_access_flags = 0;
262 	int ret;
263 
264 	pd = rdma_zalloc_drv_obj(device, ib_pd);
265 	if (!pd)
266 		return ERR_PTR(-ENOMEM);
267 
268 	pd->device = device;
269 	pd->uobject = NULL;
270 	pd->__internal_mr = NULL;
271 	atomic_set(&pd->usecnt, 0);
272 	pd->flags = flags;
273 
274 	pd->res.type = RDMA_RESTRACK_PD;
275 	rdma_restrack_set_task(&pd->res, caller);
276 
277 	ret = device->ops.alloc_pd(pd, NULL);
278 	if (ret) {
279 		kfree(pd);
280 		return ERR_PTR(ret);
281 	}
282 	rdma_restrack_kadd(&pd->res);
283 
284 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
285 		pd->local_dma_lkey = device->local_dma_lkey;
286 	else
287 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
288 
289 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
290 		pr_warn("%s: enabling unsafe global rkey\n", caller);
291 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
292 	}
293 
294 	if (mr_access_flags) {
295 		struct ib_mr *mr;
296 
297 		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
298 		if (IS_ERR(mr)) {
299 			ib_dealloc_pd(pd);
300 			return ERR_CAST(mr);
301 		}
302 
303 		mr->device	= pd->device;
304 		mr->pd		= pd;
305 		mr->type        = IB_MR_TYPE_DMA;
306 		mr->uobject	= NULL;
307 		mr->need_inval	= false;
308 
309 		pd->__internal_mr = mr;
310 
311 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
312 			pd->local_dma_lkey = pd->__internal_mr->lkey;
313 
314 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
315 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
316 	}
317 
318 	return pd;
319 }
320 EXPORT_SYMBOL(__ib_alloc_pd);
321 
322 /**
323  * ib_dealloc_pd_user - Deallocates a protection domain.
324  * @pd: The protection domain to deallocate.
325  * @udata: Valid user data or NULL for kernel object
326  *
327  * It is an error to call this function while any resources in the pd still
328  * exist.  The caller is responsible to synchronously destroy them and
329  * guarantee no new allocations will happen.
330  */
331 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
332 {
333 	int ret;
334 
335 	if (pd->__internal_mr) {
336 		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
337 		WARN_ON(ret);
338 		pd->__internal_mr = NULL;
339 	}
340 
341 	/* uverbs manipulates usecnt with proper locking, while the kabi
342 	   requires the caller to guarantee we can't race here. */
343 	WARN_ON(atomic_read(&pd->usecnt));
344 
345 	rdma_restrack_del(&pd->res);
346 	pd->device->ops.dealloc_pd(pd, udata);
347 	kfree(pd);
348 }
349 EXPORT_SYMBOL(ib_dealloc_pd_user);
350 
351 /* Address handles */
352 
353 /**
354  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355  * @dest:       Pointer to destination ah_attr. Contents of the destination
356  *              pointer is assumed to be invalid and attribute are overwritten.
357  * @src:        Pointer to source ah_attr.
358  */
359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
360 		       const struct rdma_ah_attr *src)
361 {
362 	*dest = *src;
363 	if (dest->grh.sgid_attr)
364 		rdma_hold_gid_attr(dest->grh.sgid_attr);
365 }
366 EXPORT_SYMBOL(rdma_copy_ah_attr);
367 
368 /**
369  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370  * @old:        Pointer to existing ah_attr which needs to be replaced.
371  *              old is assumed to be valid or zero'd
372  * @new:        Pointer to the new ah_attr.
373  *
374  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375  * old the ah_attr is valid; after that it copies the new attribute and holds
376  * the reference to the replaced ah_attr.
377  */
378 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
379 			  const struct rdma_ah_attr *new)
380 {
381 	rdma_destroy_ah_attr(old);
382 	*old = *new;
383 	if (old->grh.sgid_attr)
384 		rdma_hold_gid_attr(old->grh.sgid_attr);
385 }
386 EXPORT_SYMBOL(rdma_replace_ah_attr);
387 
388 /**
389  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390  * @dest:       Pointer to destination ah_attr to copy to.
391  *              dest is assumed to be valid or zero'd
392  * @src:        Pointer to the new ah_attr.
393  *
394  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395  * if it is valid. This also transfers ownership of internal references from
396  * src to dest, making src invalid in the process. No new reference of the src
397  * ah_attr is taken.
398  */
399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
400 {
401 	rdma_destroy_ah_attr(dest);
402 	*dest = *src;
403 	src->grh.sgid_attr = NULL;
404 }
405 EXPORT_SYMBOL(rdma_move_ah_attr);
406 
407 /*
408  * Validate that the rdma_ah_attr is valid for the device before passing it
409  * off to the driver.
410  */
411 static int rdma_check_ah_attr(struct ib_device *device,
412 			      struct rdma_ah_attr *ah_attr)
413 {
414 	if (!rdma_is_port_valid(device, ah_attr->port_num))
415 		return -EINVAL;
416 
417 	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
418 	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
419 	    !(ah_attr->ah_flags & IB_AH_GRH))
420 		return -EINVAL;
421 
422 	if (ah_attr->grh.sgid_attr) {
423 		/*
424 		 * Make sure the passed sgid_attr is consistent with the
425 		 * parameters
426 		 */
427 		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
428 		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
429 			return -EINVAL;
430 	}
431 	return 0;
432 }
433 
434 /*
435  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436  * On success the caller is responsible to call rdma_unfill_sgid_attr().
437  */
438 static int rdma_fill_sgid_attr(struct ib_device *device,
439 			       struct rdma_ah_attr *ah_attr,
440 			       const struct ib_gid_attr **old_sgid_attr)
441 {
442 	const struct ib_gid_attr *sgid_attr;
443 	struct ib_global_route *grh;
444 	int ret;
445 
446 	*old_sgid_attr = ah_attr->grh.sgid_attr;
447 
448 	ret = rdma_check_ah_attr(device, ah_attr);
449 	if (ret)
450 		return ret;
451 
452 	if (!(ah_attr->ah_flags & IB_AH_GRH))
453 		return 0;
454 
455 	grh = rdma_ah_retrieve_grh(ah_attr);
456 	if (grh->sgid_attr)
457 		return 0;
458 
459 	sgid_attr =
460 		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
461 	if (IS_ERR(sgid_attr))
462 		return PTR_ERR(sgid_attr);
463 
464 	/* Move ownerhip of the kref into the ah_attr */
465 	grh->sgid_attr = sgid_attr;
466 	return 0;
467 }
468 
469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
470 				  const struct ib_gid_attr *old_sgid_attr)
471 {
472 	/*
473 	 * Fill didn't change anything, the caller retains ownership of
474 	 * whatever it passed
475 	 */
476 	if (ah_attr->grh.sgid_attr == old_sgid_attr)
477 		return;
478 
479 	/*
480 	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481 	 * doesn't see any change in the rdma_ah_attr. If we get here
482 	 * old_sgid_attr is NULL.
483 	 */
484 	rdma_destroy_ah_attr(ah_attr);
485 }
486 
487 static const struct ib_gid_attr *
488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
489 		      const struct ib_gid_attr *old_attr)
490 {
491 	if (old_attr)
492 		rdma_put_gid_attr(old_attr);
493 	if (ah_attr->ah_flags & IB_AH_GRH) {
494 		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
495 		return ah_attr->grh.sgid_attr;
496 	}
497 	return NULL;
498 }
499 
500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
501 				     struct rdma_ah_attr *ah_attr,
502 				     u32 flags,
503 				     struct ib_udata *udata)
504 {
505 	struct ib_device *device = pd->device;
506 	struct ib_ah *ah;
507 	int ret;
508 
509 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
510 
511 	if (!device->ops.create_ah)
512 		return ERR_PTR(-EOPNOTSUPP);
513 
514 	ah = rdma_zalloc_drv_obj_gfp(
515 		device, ib_ah,
516 		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
517 	if (!ah)
518 		return ERR_PTR(-ENOMEM);
519 
520 	ah->device = device;
521 	ah->pd = pd;
522 	ah->type = ah_attr->type;
523 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
524 
525 	ret = device->ops.create_ah(ah, ah_attr, flags, udata);
526 	if (ret) {
527 		kfree(ah);
528 		return ERR_PTR(ret);
529 	}
530 
531 	atomic_inc(&pd->usecnt);
532 	return ah;
533 }
534 
535 /**
536  * rdma_create_ah - Creates an address handle for the
537  * given address vector.
538  * @pd: The protection domain associated with the address handle.
539  * @ah_attr: The attributes of the address vector.
540  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
541  *
542  * It returns 0 on success and returns appropriate error code on error.
543  * The address handle is used to reference a local or global destination
544  * in all UD QP post sends.
545  */
546 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
547 			     u32 flags)
548 {
549 	const struct ib_gid_attr *old_sgid_attr;
550 	struct ib_ah *ah;
551 	int ret;
552 
553 	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
554 	if (ret)
555 		return ERR_PTR(ret);
556 
557 	ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
558 
559 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
560 	return ah;
561 }
562 EXPORT_SYMBOL(rdma_create_ah);
563 
564 /**
565  * rdma_create_user_ah - Creates an address handle for the
566  * given address vector.
567  * It resolves destination mac address for ah attribute of RoCE type.
568  * @pd: The protection domain associated with the address handle.
569  * @ah_attr: The attributes of the address vector.
570  * @udata: pointer to user's input output buffer information need by
571  *         provider driver.
572  *
573  * It returns 0 on success and returns appropriate error code on error.
574  * The address handle is used to reference a local or global destination
575  * in all UD QP post sends.
576  */
577 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
578 				  struct rdma_ah_attr *ah_attr,
579 				  struct ib_udata *udata)
580 {
581 	const struct ib_gid_attr *old_sgid_attr;
582 	struct ib_ah *ah;
583 	int err;
584 
585 	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
586 	if (err)
587 		return ERR_PTR(err);
588 
589 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
590 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
591 		if (err) {
592 			ah = ERR_PTR(err);
593 			goto out;
594 		}
595 	}
596 
597 	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
598 
599 out:
600 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
601 	return ah;
602 }
603 EXPORT_SYMBOL(rdma_create_user_ah);
604 
605 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
606 {
607 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
608 	struct iphdr ip4h_checked;
609 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
610 
611 	/* If it's IPv6, the version must be 6, otherwise, the first
612 	 * 20 bytes (before the IPv4 header) are garbled.
613 	 */
614 	if (ip6h->version != 6)
615 		return (ip4h->version == 4) ? 4 : 0;
616 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
617 
618 	/* RoCE v2 requires no options, thus header length
619 	 * must be 5 words
620 	 */
621 	if (ip4h->ihl != 5)
622 		return 6;
623 
624 	/* Verify checksum.
625 	 * We can't write on scattered buffers so we need to copy to
626 	 * temp buffer.
627 	 */
628 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
629 	ip4h_checked.check = 0;
630 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
631 	/* if IPv4 header checksum is OK, believe it */
632 	if (ip4h->check == ip4h_checked.check)
633 		return 4;
634 	return 6;
635 }
636 EXPORT_SYMBOL(ib_get_rdma_header_version);
637 
638 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
639 						     u8 port_num,
640 						     const struct ib_grh *grh)
641 {
642 	int grh_version;
643 
644 	if (rdma_protocol_ib(device, port_num))
645 		return RDMA_NETWORK_IB;
646 
647 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
648 
649 	if (grh_version == 4)
650 		return RDMA_NETWORK_IPV4;
651 
652 	if (grh->next_hdr == IPPROTO_UDP)
653 		return RDMA_NETWORK_IPV6;
654 
655 	return RDMA_NETWORK_ROCE_V1;
656 }
657 
658 struct find_gid_index_context {
659 	u16 vlan_id;
660 	enum ib_gid_type gid_type;
661 };
662 
663 static bool find_gid_index(const union ib_gid *gid,
664 			   const struct ib_gid_attr *gid_attr,
665 			   void *context)
666 {
667 	struct find_gid_index_context *ctx = context;
668 	u16 vlan_id = 0xffff;
669 	int ret;
670 
671 	if (ctx->gid_type != gid_attr->gid_type)
672 		return false;
673 
674 	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
675 	if (ret)
676 		return false;
677 
678 	return ctx->vlan_id == vlan_id;
679 }
680 
681 static const struct ib_gid_attr *
682 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
683 		       u16 vlan_id, const union ib_gid *sgid,
684 		       enum ib_gid_type gid_type)
685 {
686 	struct find_gid_index_context context = {.vlan_id = vlan_id,
687 						 .gid_type = gid_type};
688 
689 	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
690 				       &context);
691 }
692 
693 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
694 			      enum rdma_network_type net_type,
695 			      union ib_gid *sgid, union ib_gid *dgid)
696 {
697 	struct sockaddr_in  src_in;
698 	struct sockaddr_in  dst_in;
699 	__be32 src_saddr, dst_saddr;
700 
701 	if (!sgid || !dgid)
702 		return -EINVAL;
703 
704 	if (net_type == RDMA_NETWORK_IPV4) {
705 		memcpy(&src_in.sin_addr.s_addr,
706 		       &hdr->roce4grh.saddr, 4);
707 		memcpy(&dst_in.sin_addr.s_addr,
708 		       &hdr->roce4grh.daddr, 4);
709 		src_saddr = src_in.sin_addr.s_addr;
710 		dst_saddr = dst_in.sin_addr.s_addr;
711 		ipv6_addr_set_v4mapped(src_saddr,
712 				       (struct in6_addr *)sgid);
713 		ipv6_addr_set_v4mapped(dst_saddr,
714 				       (struct in6_addr *)dgid);
715 		return 0;
716 	} else if (net_type == RDMA_NETWORK_IPV6 ||
717 		   net_type == RDMA_NETWORK_IB) {
718 		*dgid = hdr->ibgrh.dgid;
719 		*sgid = hdr->ibgrh.sgid;
720 		return 0;
721 	} else {
722 		return -EINVAL;
723 	}
724 }
725 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
726 
727 /* Resolve destination mac address and hop limit for unicast destination
728  * GID entry, considering the source GID entry as well.
729  * ah_attribute must have have valid port_num, sgid_index.
730  */
731 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
732 				       struct rdma_ah_attr *ah_attr)
733 {
734 	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
735 	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
736 	int hop_limit = 0xff;
737 	int ret = 0;
738 
739 	/* If destination is link local and source GID is RoCEv1,
740 	 * IP stack is not used.
741 	 */
742 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
743 	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
744 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
745 				ah_attr->roce.dmac);
746 		return ret;
747 	}
748 
749 	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
750 					   ah_attr->roce.dmac,
751 					   sgid_attr, &hop_limit);
752 
753 	grh->hop_limit = hop_limit;
754 	return ret;
755 }
756 
757 /*
758  * This function initializes address handle attributes from the incoming packet.
759  * Incoming packet has dgid of the receiver node on which this code is
760  * getting executed and, sgid contains the GID of the sender.
761  *
762  * When resolving mac address of destination, the arrived dgid is used
763  * as sgid and, sgid is used as dgid because sgid contains destinations
764  * GID whom to respond to.
765  *
766  * On success the caller is responsible to call rdma_destroy_ah_attr on the
767  * attr.
768  */
769 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
770 			    const struct ib_wc *wc, const struct ib_grh *grh,
771 			    struct rdma_ah_attr *ah_attr)
772 {
773 	u32 flow_class;
774 	int ret;
775 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
776 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
777 	const struct ib_gid_attr *sgid_attr;
778 	int hoplimit = 0xff;
779 	union ib_gid dgid;
780 	union ib_gid sgid;
781 
782 	might_sleep();
783 
784 	memset(ah_attr, 0, sizeof *ah_attr);
785 	ah_attr->type = rdma_ah_find_type(device, port_num);
786 	if (rdma_cap_eth_ah(device, port_num)) {
787 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
788 			net_type = wc->network_hdr_type;
789 		else
790 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
791 		gid_type = ib_network_to_gid_type(net_type);
792 	}
793 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
794 					&sgid, &dgid);
795 	if (ret)
796 		return ret;
797 
798 	rdma_ah_set_sl(ah_attr, wc->sl);
799 	rdma_ah_set_port_num(ah_attr, port_num);
800 
801 	if (rdma_protocol_roce(device, port_num)) {
802 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
803 				wc->vlan_id : 0xffff;
804 
805 		if (!(wc->wc_flags & IB_WC_GRH))
806 			return -EPROTOTYPE;
807 
808 		sgid_attr = get_sgid_attr_from_eth(device, port_num,
809 						   vlan_id, &dgid,
810 						   gid_type);
811 		if (IS_ERR(sgid_attr))
812 			return PTR_ERR(sgid_attr);
813 
814 		flow_class = be32_to_cpu(grh->version_tclass_flow);
815 		rdma_move_grh_sgid_attr(ah_attr,
816 					&sgid,
817 					flow_class & 0xFFFFF,
818 					hoplimit,
819 					(flow_class >> 20) & 0xFF,
820 					sgid_attr);
821 
822 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
823 		if (ret)
824 			rdma_destroy_ah_attr(ah_attr);
825 
826 		return ret;
827 	} else {
828 		rdma_ah_set_dlid(ah_attr, wc->slid);
829 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
830 
831 		if ((wc->wc_flags & IB_WC_GRH) == 0)
832 			return 0;
833 
834 		if (dgid.global.interface_id !=
835 					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
836 			sgid_attr = rdma_find_gid_by_port(
837 				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
838 		} else
839 			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
840 
841 		if (IS_ERR(sgid_attr))
842 			return PTR_ERR(sgid_attr);
843 		flow_class = be32_to_cpu(grh->version_tclass_flow);
844 		rdma_move_grh_sgid_attr(ah_attr,
845 					&sgid,
846 					flow_class & 0xFFFFF,
847 					hoplimit,
848 					(flow_class >> 20) & 0xFF,
849 					sgid_attr);
850 
851 		return 0;
852 	}
853 }
854 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
855 
856 /**
857  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
858  * of the reference
859  *
860  * @attr:	Pointer to AH attribute structure
861  * @dgid:	Destination GID
862  * @flow_label:	Flow label
863  * @hop_limit:	Hop limit
864  * @traffic_class: traffic class
865  * @sgid_attr:	Pointer to SGID attribute
866  *
867  * This takes ownership of the sgid_attr reference. The caller must ensure
868  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
869  * calling this function.
870  */
871 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
872 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
873 			     const struct ib_gid_attr *sgid_attr)
874 {
875 	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
876 			traffic_class);
877 	attr->grh.sgid_attr = sgid_attr;
878 }
879 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
880 
881 /**
882  * rdma_destroy_ah_attr - Release reference to SGID attribute of
883  * ah attribute.
884  * @ah_attr: Pointer to ah attribute
885  *
886  * Release reference to the SGID attribute of the ah attribute if it is
887  * non NULL. It is safe to call this multiple times, and safe to call it on
888  * a zero initialized ah_attr.
889  */
890 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
891 {
892 	if (ah_attr->grh.sgid_attr) {
893 		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
894 		ah_attr->grh.sgid_attr = NULL;
895 	}
896 }
897 EXPORT_SYMBOL(rdma_destroy_ah_attr);
898 
899 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
900 				   const struct ib_grh *grh, u8 port_num)
901 {
902 	struct rdma_ah_attr ah_attr;
903 	struct ib_ah *ah;
904 	int ret;
905 
906 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
907 	if (ret)
908 		return ERR_PTR(ret);
909 
910 	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
911 
912 	rdma_destroy_ah_attr(&ah_attr);
913 	return ah;
914 }
915 EXPORT_SYMBOL(ib_create_ah_from_wc);
916 
917 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
918 {
919 	const struct ib_gid_attr *old_sgid_attr;
920 	int ret;
921 
922 	if (ah->type != ah_attr->type)
923 		return -EINVAL;
924 
925 	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
926 	if (ret)
927 		return ret;
928 
929 	ret = ah->device->ops.modify_ah ?
930 		ah->device->ops.modify_ah(ah, ah_attr) :
931 		-EOPNOTSUPP;
932 
933 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
934 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
935 	return ret;
936 }
937 EXPORT_SYMBOL(rdma_modify_ah);
938 
939 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
940 {
941 	ah_attr->grh.sgid_attr = NULL;
942 
943 	return ah->device->ops.query_ah ?
944 		ah->device->ops.query_ah(ah, ah_attr) :
945 		-EOPNOTSUPP;
946 }
947 EXPORT_SYMBOL(rdma_query_ah);
948 
949 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
950 {
951 	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
952 	struct ib_pd *pd;
953 
954 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
955 
956 	pd = ah->pd;
957 
958 	ah->device->ops.destroy_ah(ah, flags);
959 	atomic_dec(&pd->usecnt);
960 	if (sgid_attr)
961 		rdma_put_gid_attr(sgid_attr);
962 
963 	kfree(ah);
964 	return 0;
965 }
966 EXPORT_SYMBOL(rdma_destroy_ah_user);
967 
968 /* Shared receive queues */
969 
970 struct ib_srq *ib_create_srq(struct ib_pd *pd,
971 			     struct ib_srq_init_attr *srq_init_attr)
972 {
973 	struct ib_srq *srq;
974 	int ret;
975 
976 	if (!pd->device->ops.create_srq)
977 		return ERR_PTR(-EOPNOTSUPP);
978 
979 	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
980 	if (!srq)
981 		return ERR_PTR(-ENOMEM);
982 
983 	srq->device = pd->device;
984 	srq->pd = pd;
985 	srq->event_handler = srq_init_attr->event_handler;
986 	srq->srq_context = srq_init_attr->srq_context;
987 	srq->srq_type = srq_init_attr->srq_type;
988 
989 	if (ib_srq_has_cq(srq->srq_type)) {
990 		srq->ext.cq = srq_init_attr->ext.cq;
991 		atomic_inc(&srq->ext.cq->usecnt);
992 	}
993 	if (srq->srq_type == IB_SRQT_XRC) {
994 		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
995 		atomic_inc(&srq->ext.xrc.xrcd->usecnt);
996 	}
997 	atomic_inc(&pd->usecnt);
998 
999 	ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
1000 	if (ret) {
1001 		atomic_dec(&srq->pd->usecnt);
1002 		if (srq->srq_type == IB_SRQT_XRC)
1003 			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1004 		if (ib_srq_has_cq(srq->srq_type))
1005 			atomic_dec(&srq->ext.cq->usecnt);
1006 		kfree(srq);
1007 		return ERR_PTR(ret);
1008 	}
1009 
1010 	return srq;
1011 }
1012 EXPORT_SYMBOL(ib_create_srq);
1013 
1014 int ib_modify_srq(struct ib_srq *srq,
1015 		  struct ib_srq_attr *srq_attr,
1016 		  enum ib_srq_attr_mask srq_attr_mask)
1017 {
1018 	return srq->device->ops.modify_srq ?
1019 		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1020 					    NULL) : -EOPNOTSUPP;
1021 }
1022 EXPORT_SYMBOL(ib_modify_srq);
1023 
1024 int ib_query_srq(struct ib_srq *srq,
1025 		 struct ib_srq_attr *srq_attr)
1026 {
1027 	return srq->device->ops.query_srq ?
1028 		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1029 }
1030 EXPORT_SYMBOL(ib_query_srq);
1031 
1032 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1033 {
1034 	if (atomic_read(&srq->usecnt))
1035 		return -EBUSY;
1036 
1037 	srq->device->ops.destroy_srq(srq, udata);
1038 
1039 	atomic_dec(&srq->pd->usecnt);
1040 	if (srq->srq_type == IB_SRQT_XRC)
1041 		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1042 	if (ib_srq_has_cq(srq->srq_type))
1043 		atomic_dec(&srq->ext.cq->usecnt);
1044 	kfree(srq);
1045 
1046 	return 0;
1047 }
1048 EXPORT_SYMBOL(ib_destroy_srq_user);
1049 
1050 /* Queue pairs */
1051 
1052 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1053 {
1054 	struct ib_qp *qp = context;
1055 	unsigned long flags;
1056 
1057 	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1058 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1059 		if (event->element.qp->event_handler)
1060 			event->element.qp->event_handler(event, event->element.qp->qp_context);
1061 	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1062 }
1063 
1064 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1065 {
1066 	mutex_lock(&xrcd->tgt_qp_mutex);
1067 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1068 	mutex_unlock(&xrcd->tgt_qp_mutex);
1069 }
1070 
1071 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1072 				  void (*event_handler)(struct ib_event *, void *),
1073 				  void *qp_context)
1074 {
1075 	struct ib_qp *qp;
1076 	unsigned long flags;
1077 	int err;
1078 
1079 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1080 	if (!qp)
1081 		return ERR_PTR(-ENOMEM);
1082 
1083 	qp->real_qp = real_qp;
1084 	err = ib_open_shared_qp_security(qp, real_qp->device);
1085 	if (err) {
1086 		kfree(qp);
1087 		return ERR_PTR(err);
1088 	}
1089 
1090 	qp->real_qp = real_qp;
1091 	atomic_inc(&real_qp->usecnt);
1092 	qp->device = real_qp->device;
1093 	qp->event_handler = event_handler;
1094 	qp->qp_context = qp_context;
1095 	qp->qp_num = real_qp->qp_num;
1096 	qp->qp_type = real_qp->qp_type;
1097 
1098 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1099 	list_add(&qp->open_list, &real_qp->open_list);
1100 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1101 
1102 	return qp;
1103 }
1104 
1105 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1106 			 struct ib_qp_open_attr *qp_open_attr)
1107 {
1108 	struct ib_qp *qp, *real_qp;
1109 
1110 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1111 		return ERR_PTR(-EINVAL);
1112 
1113 	qp = ERR_PTR(-EINVAL);
1114 	mutex_lock(&xrcd->tgt_qp_mutex);
1115 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1116 		if (real_qp->qp_num == qp_open_attr->qp_num) {
1117 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1118 					  qp_open_attr->qp_context);
1119 			break;
1120 		}
1121 	}
1122 	mutex_unlock(&xrcd->tgt_qp_mutex);
1123 	return qp;
1124 }
1125 EXPORT_SYMBOL(ib_open_qp);
1126 
1127 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1128 					struct ib_qp_init_attr *qp_init_attr)
1129 {
1130 	struct ib_qp *real_qp = qp;
1131 
1132 	qp->event_handler = __ib_shared_qp_event_handler;
1133 	qp->qp_context = qp;
1134 	qp->pd = NULL;
1135 	qp->send_cq = qp->recv_cq = NULL;
1136 	qp->srq = NULL;
1137 	qp->xrcd = qp_init_attr->xrcd;
1138 	atomic_inc(&qp_init_attr->xrcd->usecnt);
1139 	INIT_LIST_HEAD(&qp->open_list);
1140 
1141 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1142 			  qp_init_attr->qp_context);
1143 	if (IS_ERR(qp))
1144 		return qp;
1145 
1146 	__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1147 	return qp;
1148 }
1149 
1150 /**
1151  * ib_create_qp - Creates a kernel QP associated with the specified protection
1152  *   domain.
1153  * @pd: The protection domain associated with the QP.
1154  * @qp_init_attr: A list of initial attributes required to create the
1155  *   QP.  If QP creation succeeds, then the attributes are updated to
1156  *   the actual capabilities of the created QP.
1157  *
1158  * NOTE: for user qp use ib_create_qp_user with valid udata!
1159  */
1160 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1161 			   struct ib_qp_init_attr *qp_init_attr)
1162 {
1163 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1164 	struct ib_qp *qp;
1165 	int ret;
1166 
1167 	if (qp_init_attr->rwq_ind_tbl &&
1168 	    (qp_init_attr->recv_cq ||
1169 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1170 	    qp_init_attr->cap.max_recv_sge))
1171 		return ERR_PTR(-EINVAL);
1172 
1173 	if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1174 	    !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1175 		return ERR_PTR(-EINVAL);
1176 
1177 	/*
1178 	 * If the callers is using the RDMA API calculate the resources
1179 	 * needed for the RDMA READ/WRITE operations.
1180 	 *
1181 	 * Note that these callers need to pass in a port number.
1182 	 */
1183 	if (qp_init_attr->cap.max_rdma_ctxs)
1184 		rdma_rw_init_qp(device, qp_init_attr);
1185 
1186 	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1187 	if (IS_ERR(qp))
1188 		return qp;
1189 
1190 	ret = ib_create_qp_security(qp, device);
1191 	if (ret)
1192 		goto err;
1193 
1194 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1195 		struct ib_qp *xrc_qp =
1196 			create_xrc_qp_user(qp, qp_init_attr);
1197 
1198 		if (IS_ERR(xrc_qp)) {
1199 			ret = PTR_ERR(xrc_qp);
1200 			goto err;
1201 		}
1202 		return xrc_qp;
1203 	}
1204 
1205 	qp->event_handler = qp_init_attr->event_handler;
1206 	qp->qp_context = qp_init_attr->qp_context;
1207 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1208 		qp->recv_cq = NULL;
1209 		qp->srq = NULL;
1210 	} else {
1211 		qp->recv_cq = qp_init_attr->recv_cq;
1212 		if (qp_init_attr->recv_cq)
1213 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
1214 		qp->srq = qp_init_attr->srq;
1215 		if (qp->srq)
1216 			atomic_inc(&qp_init_attr->srq->usecnt);
1217 	}
1218 
1219 	qp->send_cq = qp_init_attr->send_cq;
1220 	qp->xrcd    = NULL;
1221 
1222 	atomic_inc(&pd->usecnt);
1223 	if (qp_init_attr->send_cq)
1224 		atomic_inc(&qp_init_attr->send_cq->usecnt);
1225 	if (qp_init_attr->rwq_ind_tbl)
1226 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1227 
1228 	if (qp_init_attr->cap.max_rdma_ctxs) {
1229 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1230 		if (ret)
1231 			goto err;
1232 	}
1233 
1234 	/*
1235 	 * Note: all hw drivers guarantee that max_send_sge is lower than
1236 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1237 	 * max_send_sge <= max_sge_rd.
1238 	 */
1239 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1240 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1241 				 device->attrs.max_sge_rd);
1242 	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1243 		qp->integrity_en = true;
1244 
1245 	return qp;
1246 
1247 err:
1248 	ib_destroy_qp(qp);
1249 	return ERR_PTR(ret);
1250 
1251 }
1252 EXPORT_SYMBOL(ib_create_qp);
1253 
1254 static const struct {
1255 	int			valid;
1256 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1257 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1258 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1259 	[IB_QPS_RESET] = {
1260 		[IB_QPS_RESET] = { .valid = 1 },
1261 		[IB_QPS_INIT]  = {
1262 			.valid = 1,
1263 			.req_param = {
1264 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1265 						IB_QP_PORT			|
1266 						IB_QP_QKEY),
1267 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1268 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1269 						IB_QP_PORT			|
1270 						IB_QP_ACCESS_FLAGS),
1271 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1272 						IB_QP_PORT			|
1273 						IB_QP_ACCESS_FLAGS),
1274 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1275 						IB_QP_PORT			|
1276 						IB_QP_ACCESS_FLAGS),
1277 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1278 						IB_QP_PORT			|
1279 						IB_QP_ACCESS_FLAGS),
1280 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1281 						IB_QP_QKEY),
1282 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1283 						IB_QP_QKEY),
1284 			}
1285 		},
1286 	},
1287 	[IB_QPS_INIT]  = {
1288 		[IB_QPS_RESET] = { .valid = 1 },
1289 		[IB_QPS_ERR] =   { .valid = 1 },
1290 		[IB_QPS_INIT]  = {
1291 			.valid = 1,
1292 			.opt_param = {
1293 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1294 						IB_QP_PORT			|
1295 						IB_QP_QKEY),
1296 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1297 						IB_QP_PORT			|
1298 						IB_QP_ACCESS_FLAGS),
1299 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1300 						IB_QP_PORT			|
1301 						IB_QP_ACCESS_FLAGS),
1302 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1303 						IB_QP_PORT			|
1304 						IB_QP_ACCESS_FLAGS),
1305 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1306 						IB_QP_PORT			|
1307 						IB_QP_ACCESS_FLAGS),
1308 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1309 						IB_QP_QKEY),
1310 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1311 						IB_QP_QKEY),
1312 			}
1313 		},
1314 		[IB_QPS_RTR]   = {
1315 			.valid = 1,
1316 			.req_param = {
1317 				[IB_QPT_UC]  = (IB_QP_AV			|
1318 						IB_QP_PATH_MTU			|
1319 						IB_QP_DEST_QPN			|
1320 						IB_QP_RQ_PSN),
1321 				[IB_QPT_RC]  = (IB_QP_AV			|
1322 						IB_QP_PATH_MTU			|
1323 						IB_QP_DEST_QPN			|
1324 						IB_QP_RQ_PSN			|
1325 						IB_QP_MAX_DEST_RD_ATOMIC	|
1326 						IB_QP_MIN_RNR_TIMER),
1327 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1328 						IB_QP_PATH_MTU			|
1329 						IB_QP_DEST_QPN			|
1330 						IB_QP_RQ_PSN),
1331 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1332 						IB_QP_PATH_MTU			|
1333 						IB_QP_DEST_QPN			|
1334 						IB_QP_RQ_PSN			|
1335 						IB_QP_MAX_DEST_RD_ATOMIC	|
1336 						IB_QP_MIN_RNR_TIMER),
1337 			},
1338 			.opt_param = {
1339 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1340 						 IB_QP_QKEY),
1341 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1342 						 IB_QP_ACCESS_FLAGS		|
1343 						 IB_QP_PKEY_INDEX),
1344 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1345 						 IB_QP_ACCESS_FLAGS		|
1346 						 IB_QP_PKEY_INDEX),
1347 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1348 						 IB_QP_ACCESS_FLAGS		|
1349 						 IB_QP_PKEY_INDEX),
1350 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1351 						 IB_QP_ACCESS_FLAGS		|
1352 						 IB_QP_PKEY_INDEX),
1353 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1354 						 IB_QP_QKEY),
1355 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1356 						 IB_QP_QKEY),
1357 			 },
1358 		},
1359 	},
1360 	[IB_QPS_RTR]   = {
1361 		[IB_QPS_RESET] = { .valid = 1 },
1362 		[IB_QPS_ERR] =   { .valid = 1 },
1363 		[IB_QPS_RTS]   = {
1364 			.valid = 1,
1365 			.req_param = {
1366 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1367 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1368 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1369 						IB_QP_RETRY_CNT			|
1370 						IB_QP_RNR_RETRY			|
1371 						IB_QP_SQ_PSN			|
1372 						IB_QP_MAX_QP_RD_ATOMIC),
1373 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1374 						IB_QP_RETRY_CNT			|
1375 						IB_QP_RNR_RETRY			|
1376 						IB_QP_SQ_PSN			|
1377 						IB_QP_MAX_QP_RD_ATOMIC),
1378 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1379 						IB_QP_SQ_PSN),
1380 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1381 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1382 			},
1383 			.opt_param = {
1384 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1385 						 IB_QP_QKEY),
1386 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1387 						 IB_QP_ALT_PATH			|
1388 						 IB_QP_ACCESS_FLAGS		|
1389 						 IB_QP_PATH_MIG_STATE),
1390 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1391 						 IB_QP_ALT_PATH			|
1392 						 IB_QP_ACCESS_FLAGS		|
1393 						 IB_QP_MIN_RNR_TIMER		|
1394 						 IB_QP_PATH_MIG_STATE),
1395 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1396 						 IB_QP_ALT_PATH			|
1397 						 IB_QP_ACCESS_FLAGS		|
1398 						 IB_QP_PATH_MIG_STATE),
1399 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1400 						 IB_QP_ALT_PATH			|
1401 						 IB_QP_ACCESS_FLAGS		|
1402 						 IB_QP_MIN_RNR_TIMER		|
1403 						 IB_QP_PATH_MIG_STATE),
1404 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1405 						 IB_QP_QKEY),
1406 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1407 						 IB_QP_QKEY),
1408 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1409 			 }
1410 		}
1411 	},
1412 	[IB_QPS_RTS]   = {
1413 		[IB_QPS_RESET] = { .valid = 1 },
1414 		[IB_QPS_ERR] =   { .valid = 1 },
1415 		[IB_QPS_RTS]   = {
1416 			.valid = 1,
1417 			.opt_param = {
1418 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1419 						IB_QP_QKEY),
1420 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1421 						IB_QP_ACCESS_FLAGS		|
1422 						IB_QP_ALT_PATH			|
1423 						IB_QP_PATH_MIG_STATE),
1424 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1425 						IB_QP_ACCESS_FLAGS		|
1426 						IB_QP_ALT_PATH			|
1427 						IB_QP_PATH_MIG_STATE		|
1428 						IB_QP_MIN_RNR_TIMER),
1429 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1430 						IB_QP_ACCESS_FLAGS		|
1431 						IB_QP_ALT_PATH			|
1432 						IB_QP_PATH_MIG_STATE),
1433 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1434 						IB_QP_ACCESS_FLAGS		|
1435 						IB_QP_ALT_PATH			|
1436 						IB_QP_PATH_MIG_STATE		|
1437 						IB_QP_MIN_RNR_TIMER),
1438 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1439 						IB_QP_QKEY),
1440 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1441 						IB_QP_QKEY),
1442 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1443 			}
1444 		},
1445 		[IB_QPS_SQD]   = {
1446 			.valid = 1,
1447 			.opt_param = {
1448 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1449 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1450 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1451 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1452 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1453 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1454 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1455 			}
1456 		},
1457 	},
1458 	[IB_QPS_SQD]   = {
1459 		[IB_QPS_RESET] = { .valid = 1 },
1460 		[IB_QPS_ERR] =   { .valid = 1 },
1461 		[IB_QPS_RTS]   = {
1462 			.valid = 1,
1463 			.opt_param = {
1464 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1465 						IB_QP_QKEY),
1466 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1467 						IB_QP_ALT_PATH			|
1468 						IB_QP_ACCESS_FLAGS		|
1469 						IB_QP_PATH_MIG_STATE),
1470 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1471 						IB_QP_ALT_PATH			|
1472 						IB_QP_ACCESS_FLAGS		|
1473 						IB_QP_MIN_RNR_TIMER		|
1474 						IB_QP_PATH_MIG_STATE),
1475 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1476 						IB_QP_ALT_PATH			|
1477 						IB_QP_ACCESS_FLAGS		|
1478 						IB_QP_PATH_MIG_STATE),
1479 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1480 						IB_QP_ALT_PATH			|
1481 						IB_QP_ACCESS_FLAGS		|
1482 						IB_QP_MIN_RNR_TIMER		|
1483 						IB_QP_PATH_MIG_STATE),
1484 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1485 						IB_QP_QKEY),
1486 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1487 						IB_QP_QKEY),
1488 			}
1489 		},
1490 		[IB_QPS_SQD]   = {
1491 			.valid = 1,
1492 			.opt_param = {
1493 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1494 						IB_QP_QKEY),
1495 				[IB_QPT_UC]  = (IB_QP_AV			|
1496 						IB_QP_ALT_PATH			|
1497 						IB_QP_ACCESS_FLAGS		|
1498 						IB_QP_PKEY_INDEX		|
1499 						IB_QP_PATH_MIG_STATE),
1500 				[IB_QPT_RC]  = (IB_QP_PORT			|
1501 						IB_QP_AV			|
1502 						IB_QP_TIMEOUT			|
1503 						IB_QP_RETRY_CNT			|
1504 						IB_QP_RNR_RETRY			|
1505 						IB_QP_MAX_QP_RD_ATOMIC		|
1506 						IB_QP_MAX_DEST_RD_ATOMIC	|
1507 						IB_QP_ALT_PATH			|
1508 						IB_QP_ACCESS_FLAGS		|
1509 						IB_QP_PKEY_INDEX		|
1510 						IB_QP_MIN_RNR_TIMER		|
1511 						IB_QP_PATH_MIG_STATE),
1512 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1513 						IB_QP_AV			|
1514 						IB_QP_TIMEOUT			|
1515 						IB_QP_RETRY_CNT			|
1516 						IB_QP_RNR_RETRY			|
1517 						IB_QP_MAX_QP_RD_ATOMIC		|
1518 						IB_QP_ALT_PATH			|
1519 						IB_QP_ACCESS_FLAGS		|
1520 						IB_QP_PKEY_INDEX		|
1521 						IB_QP_PATH_MIG_STATE),
1522 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1523 						IB_QP_AV			|
1524 						IB_QP_TIMEOUT			|
1525 						IB_QP_MAX_DEST_RD_ATOMIC	|
1526 						IB_QP_ALT_PATH			|
1527 						IB_QP_ACCESS_FLAGS		|
1528 						IB_QP_PKEY_INDEX		|
1529 						IB_QP_MIN_RNR_TIMER		|
1530 						IB_QP_PATH_MIG_STATE),
1531 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1532 						IB_QP_QKEY),
1533 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1534 						IB_QP_QKEY),
1535 			}
1536 		}
1537 	},
1538 	[IB_QPS_SQE]   = {
1539 		[IB_QPS_RESET] = { .valid = 1 },
1540 		[IB_QPS_ERR] =   { .valid = 1 },
1541 		[IB_QPS_RTS]   = {
1542 			.valid = 1,
1543 			.opt_param = {
1544 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1545 						IB_QP_QKEY),
1546 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1547 						IB_QP_ACCESS_FLAGS),
1548 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1549 						IB_QP_QKEY),
1550 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1551 						IB_QP_QKEY),
1552 			}
1553 		}
1554 	},
1555 	[IB_QPS_ERR] = {
1556 		[IB_QPS_RESET] = { .valid = 1 },
1557 		[IB_QPS_ERR] =   { .valid = 1 }
1558 	}
1559 };
1560 
1561 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1562 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1563 {
1564 	enum ib_qp_attr_mask req_param, opt_param;
1565 
1566 	if (mask & IB_QP_CUR_STATE  &&
1567 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1568 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1569 		return false;
1570 
1571 	if (!qp_state_table[cur_state][next_state].valid)
1572 		return false;
1573 
1574 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1575 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1576 
1577 	if ((mask & req_param) != req_param)
1578 		return false;
1579 
1580 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1581 		return false;
1582 
1583 	return true;
1584 }
1585 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1586 
1587 /**
1588  * ib_resolve_eth_dmac - Resolve destination mac address
1589  * @device:		Device to consider
1590  * @ah_attr:		address handle attribute which describes the
1591  *			source and destination parameters
1592  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1593  * returns 0 on success or appropriate error code. It initializes the
1594  * necessary ah_attr fields when call is successful.
1595  */
1596 static int ib_resolve_eth_dmac(struct ib_device *device,
1597 			       struct rdma_ah_attr *ah_attr)
1598 {
1599 	int ret = 0;
1600 
1601 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1602 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1603 			__be32 addr = 0;
1604 
1605 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1606 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1607 		} else {
1608 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1609 					(char *)ah_attr->roce.dmac);
1610 		}
1611 	} else {
1612 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1613 	}
1614 	return ret;
1615 }
1616 
1617 static bool is_qp_type_connected(const struct ib_qp *qp)
1618 {
1619 	return (qp->qp_type == IB_QPT_UC ||
1620 		qp->qp_type == IB_QPT_RC ||
1621 		qp->qp_type == IB_QPT_XRC_INI ||
1622 		qp->qp_type == IB_QPT_XRC_TGT);
1623 }
1624 
1625 /**
1626  * IB core internal function to perform QP attributes modification.
1627  */
1628 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1629 			 int attr_mask, struct ib_udata *udata)
1630 {
1631 	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1632 	const struct ib_gid_attr *old_sgid_attr_av;
1633 	const struct ib_gid_attr *old_sgid_attr_alt_av;
1634 	int ret;
1635 
1636 	if (attr_mask & IB_QP_AV) {
1637 		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1638 					  &old_sgid_attr_av);
1639 		if (ret)
1640 			return ret;
1641 	}
1642 	if (attr_mask & IB_QP_ALT_PATH) {
1643 		/*
1644 		 * FIXME: This does not track the migration state, so if the
1645 		 * user loads a new alternate path after the HW has migrated
1646 		 * from primary->alternate we will keep the wrong
1647 		 * references. This is OK for IB because the reference
1648 		 * counting does not serve any functional purpose.
1649 		 */
1650 		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1651 					  &old_sgid_attr_alt_av);
1652 		if (ret)
1653 			goto out_av;
1654 
1655 		/*
1656 		 * Today the core code can only handle alternate paths and APM
1657 		 * for IB. Ban them in roce mode.
1658 		 */
1659 		if (!(rdma_protocol_ib(qp->device,
1660 				       attr->alt_ah_attr.port_num) &&
1661 		      rdma_protocol_ib(qp->device, port))) {
1662 			ret = EINVAL;
1663 			goto out;
1664 		}
1665 	}
1666 
1667 	/*
1668 	 * If the user provided the qp_attr then we have to resolve it. Kernel
1669 	 * users have to provide already resolved rdma_ah_attr's
1670 	 */
1671 	if (udata && (attr_mask & IB_QP_AV) &&
1672 	    attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1673 	    is_qp_type_connected(qp)) {
1674 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1675 		if (ret)
1676 			goto out;
1677 	}
1678 
1679 	if (rdma_ib_or_roce(qp->device, port)) {
1680 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1681 			dev_warn(&qp->device->dev,
1682 				 "%s rq_psn overflow, masking to 24 bits\n",
1683 				 __func__);
1684 			attr->rq_psn &= 0xffffff;
1685 		}
1686 
1687 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1688 			dev_warn(&qp->device->dev,
1689 				 " %s sq_psn overflow, masking to 24 bits\n",
1690 				 __func__);
1691 			attr->sq_psn &= 0xffffff;
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Bind this qp to a counter automatically based on the rdma counter
1697 	 * rules. This only set in RST2INIT with port specified
1698 	 */
1699 	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1700 	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1701 		rdma_counter_bind_qp_auto(qp, attr->port_num);
1702 
1703 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1704 	if (ret)
1705 		goto out;
1706 
1707 	if (attr_mask & IB_QP_PORT)
1708 		qp->port = attr->port_num;
1709 	if (attr_mask & IB_QP_AV)
1710 		qp->av_sgid_attr =
1711 			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1712 	if (attr_mask & IB_QP_ALT_PATH)
1713 		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1714 			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1715 
1716 out:
1717 	if (attr_mask & IB_QP_ALT_PATH)
1718 		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1719 out_av:
1720 	if (attr_mask & IB_QP_AV)
1721 		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1722 	return ret;
1723 }
1724 
1725 /**
1726  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1727  * @ib_qp: The QP to modify.
1728  * @attr: On input, specifies the QP attributes to modify.  On output,
1729  *   the current values of selected QP attributes are returned.
1730  * @attr_mask: A bit-mask used to specify which attributes of the QP
1731  *   are being modified.
1732  * @udata: pointer to user's input output buffer information
1733  *   are being modified.
1734  * It returns 0 on success and returns appropriate error code on error.
1735  */
1736 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1737 			    int attr_mask, struct ib_udata *udata)
1738 {
1739 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1740 }
1741 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1742 
1743 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1744 {
1745 	int rc;
1746 	u32 netdev_speed;
1747 	struct net_device *netdev;
1748 	struct ethtool_link_ksettings lksettings;
1749 
1750 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1751 		return -EINVAL;
1752 
1753 	netdev = ib_device_get_netdev(dev, port_num);
1754 	if (!netdev)
1755 		return -ENODEV;
1756 
1757 	rtnl_lock();
1758 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1759 	rtnl_unlock();
1760 
1761 	dev_put(netdev);
1762 
1763 	if (!rc) {
1764 		netdev_speed = lksettings.base.speed;
1765 	} else {
1766 		netdev_speed = SPEED_1000;
1767 		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1768 			netdev_speed);
1769 	}
1770 
1771 	if (netdev_speed <= SPEED_1000) {
1772 		*width = IB_WIDTH_1X;
1773 		*speed = IB_SPEED_SDR;
1774 	} else if (netdev_speed <= SPEED_10000) {
1775 		*width = IB_WIDTH_1X;
1776 		*speed = IB_SPEED_FDR10;
1777 	} else if (netdev_speed <= SPEED_20000) {
1778 		*width = IB_WIDTH_4X;
1779 		*speed = IB_SPEED_DDR;
1780 	} else if (netdev_speed <= SPEED_25000) {
1781 		*width = IB_WIDTH_1X;
1782 		*speed = IB_SPEED_EDR;
1783 	} else if (netdev_speed <= SPEED_40000) {
1784 		*width = IB_WIDTH_4X;
1785 		*speed = IB_SPEED_FDR10;
1786 	} else {
1787 		*width = IB_WIDTH_4X;
1788 		*speed = IB_SPEED_EDR;
1789 	}
1790 
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(ib_get_eth_speed);
1794 
1795 int ib_modify_qp(struct ib_qp *qp,
1796 		 struct ib_qp_attr *qp_attr,
1797 		 int qp_attr_mask)
1798 {
1799 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1800 }
1801 EXPORT_SYMBOL(ib_modify_qp);
1802 
1803 int ib_query_qp(struct ib_qp *qp,
1804 		struct ib_qp_attr *qp_attr,
1805 		int qp_attr_mask,
1806 		struct ib_qp_init_attr *qp_init_attr)
1807 {
1808 	qp_attr->ah_attr.grh.sgid_attr = NULL;
1809 	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1810 
1811 	return qp->device->ops.query_qp ?
1812 		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1813 					 qp_init_attr) : -EOPNOTSUPP;
1814 }
1815 EXPORT_SYMBOL(ib_query_qp);
1816 
1817 int ib_close_qp(struct ib_qp *qp)
1818 {
1819 	struct ib_qp *real_qp;
1820 	unsigned long flags;
1821 
1822 	real_qp = qp->real_qp;
1823 	if (real_qp == qp)
1824 		return -EINVAL;
1825 
1826 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1827 	list_del(&qp->open_list);
1828 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1829 
1830 	atomic_dec(&real_qp->usecnt);
1831 	if (qp->qp_sec)
1832 		ib_close_shared_qp_security(qp->qp_sec);
1833 	kfree(qp);
1834 
1835 	return 0;
1836 }
1837 EXPORT_SYMBOL(ib_close_qp);
1838 
1839 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1840 {
1841 	struct ib_xrcd *xrcd;
1842 	struct ib_qp *real_qp;
1843 	int ret;
1844 
1845 	real_qp = qp->real_qp;
1846 	xrcd = real_qp->xrcd;
1847 
1848 	mutex_lock(&xrcd->tgt_qp_mutex);
1849 	ib_close_qp(qp);
1850 	if (atomic_read(&real_qp->usecnt) == 0)
1851 		list_del(&real_qp->xrcd_list);
1852 	else
1853 		real_qp = NULL;
1854 	mutex_unlock(&xrcd->tgt_qp_mutex);
1855 
1856 	if (real_qp) {
1857 		ret = ib_destroy_qp(real_qp);
1858 		if (!ret)
1859 			atomic_dec(&xrcd->usecnt);
1860 		else
1861 			__ib_insert_xrcd_qp(xrcd, real_qp);
1862 	}
1863 
1864 	return 0;
1865 }
1866 
1867 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1868 {
1869 	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1870 	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1871 	struct ib_pd *pd;
1872 	struct ib_cq *scq, *rcq;
1873 	struct ib_srq *srq;
1874 	struct ib_rwq_ind_table *ind_tbl;
1875 	struct ib_qp_security *sec;
1876 	int ret;
1877 
1878 	WARN_ON_ONCE(qp->mrs_used > 0);
1879 
1880 	if (atomic_read(&qp->usecnt))
1881 		return -EBUSY;
1882 
1883 	if (qp->real_qp != qp)
1884 		return __ib_destroy_shared_qp(qp);
1885 
1886 	pd   = qp->pd;
1887 	scq  = qp->send_cq;
1888 	rcq  = qp->recv_cq;
1889 	srq  = qp->srq;
1890 	ind_tbl = qp->rwq_ind_tbl;
1891 	sec  = qp->qp_sec;
1892 	if (sec)
1893 		ib_destroy_qp_security_begin(sec);
1894 
1895 	if (!qp->uobject)
1896 		rdma_rw_cleanup_mrs(qp);
1897 
1898 	rdma_counter_unbind_qp(qp, true);
1899 	rdma_restrack_del(&qp->res);
1900 	ret = qp->device->ops.destroy_qp(qp, udata);
1901 	if (!ret) {
1902 		if (alt_path_sgid_attr)
1903 			rdma_put_gid_attr(alt_path_sgid_attr);
1904 		if (av_sgid_attr)
1905 			rdma_put_gid_attr(av_sgid_attr);
1906 		if (pd)
1907 			atomic_dec(&pd->usecnt);
1908 		if (scq)
1909 			atomic_dec(&scq->usecnt);
1910 		if (rcq)
1911 			atomic_dec(&rcq->usecnt);
1912 		if (srq)
1913 			atomic_dec(&srq->usecnt);
1914 		if (ind_tbl)
1915 			atomic_dec(&ind_tbl->usecnt);
1916 		if (sec)
1917 			ib_destroy_qp_security_end(sec);
1918 	} else {
1919 		if (sec)
1920 			ib_destroy_qp_security_abort(sec);
1921 	}
1922 
1923 	return ret;
1924 }
1925 EXPORT_SYMBOL(ib_destroy_qp_user);
1926 
1927 /* Completion queues */
1928 
1929 struct ib_cq *__ib_create_cq(struct ib_device *device,
1930 			     ib_comp_handler comp_handler,
1931 			     void (*event_handler)(struct ib_event *, void *),
1932 			     void *cq_context,
1933 			     const struct ib_cq_init_attr *cq_attr,
1934 			     const char *caller)
1935 {
1936 	struct ib_cq *cq;
1937 	int ret;
1938 
1939 	cq = rdma_zalloc_drv_obj(device, ib_cq);
1940 	if (!cq)
1941 		return ERR_PTR(-ENOMEM);
1942 
1943 	cq->device = device;
1944 	cq->uobject = NULL;
1945 	cq->comp_handler = comp_handler;
1946 	cq->event_handler = event_handler;
1947 	cq->cq_context = cq_context;
1948 	atomic_set(&cq->usecnt, 0);
1949 	cq->res.type = RDMA_RESTRACK_CQ;
1950 	rdma_restrack_set_task(&cq->res, caller);
1951 
1952 	ret = device->ops.create_cq(cq, cq_attr, NULL);
1953 	if (ret) {
1954 		kfree(cq);
1955 		return ERR_PTR(ret);
1956 	}
1957 
1958 	rdma_restrack_kadd(&cq->res);
1959 	return cq;
1960 }
1961 EXPORT_SYMBOL(__ib_create_cq);
1962 
1963 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1964 {
1965 	return cq->device->ops.modify_cq ?
1966 		cq->device->ops.modify_cq(cq, cq_count,
1967 					  cq_period) : -EOPNOTSUPP;
1968 }
1969 EXPORT_SYMBOL(rdma_set_cq_moderation);
1970 
1971 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
1972 {
1973 	if (atomic_read(&cq->usecnt))
1974 		return -EBUSY;
1975 
1976 	rdma_restrack_del(&cq->res);
1977 	cq->device->ops.destroy_cq(cq, udata);
1978 	kfree(cq);
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL(ib_destroy_cq_user);
1982 
1983 int ib_resize_cq(struct ib_cq *cq, int cqe)
1984 {
1985 	return cq->device->ops.resize_cq ?
1986 		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1987 }
1988 EXPORT_SYMBOL(ib_resize_cq);
1989 
1990 /* Memory regions */
1991 
1992 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1993 			     u64 virt_addr, int access_flags)
1994 {
1995 	struct ib_mr *mr;
1996 
1997 	if (access_flags & IB_ACCESS_ON_DEMAND) {
1998 		if (!(pd->device->attrs.device_cap_flags &
1999 		      IB_DEVICE_ON_DEMAND_PAGING)) {
2000 			pr_debug("ODP support not available\n");
2001 			return ERR_PTR(-EINVAL);
2002 		}
2003 	}
2004 
2005 	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2006 					 access_flags, NULL);
2007 
2008 	if (IS_ERR(mr))
2009 		return mr;
2010 
2011 	mr->device = pd->device;
2012 	mr->pd = pd;
2013 	mr->dm = NULL;
2014 	atomic_inc(&pd->usecnt);
2015 	mr->res.type = RDMA_RESTRACK_MR;
2016 	rdma_restrack_kadd(&mr->res);
2017 
2018 	return mr;
2019 }
2020 EXPORT_SYMBOL(ib_reg_user_mr);
2021 
2022 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2023 		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2024 {
2025 	if (!pd->device->ops.advise_mr)
2026 		return -EOPNOTSUPP;
2027 
2028 	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2029 					 NULL);
2030 }
2031 EXPORT_SYMBOL(ib_advise_mr);
2032 
2033 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2034 {
2035 	struct ib_pd *pd = mr->pd;
2036 	struct ib_dm *dm = mr->dm;
2037 	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2038 	int ret;
2039 
2040 	trace_mr_dereg(mr);
2041 	rdma_restrack_del(&mr->res);
2042 	ret = mr->device->ops.dereg_mr(mr, udata);
2043 	if (!ret) {
2044 		atomic_dec(&pd->usecnt);
2045 		if (dm)
2046 			atomic_dec(&dm->usecnt);
2047 		kfree(sig_attrs);
2048 	}
2049 
2050 	return ret;
2051 }
2052 EXPORT_SYMBOL(ib_dereg_mr_user);
2053 
2054 /**
2055  * ib_alloc_mr_user() - Allocates a memory region
2056  * @pd:            protection domain associated with the region
2057  * @mr_type:       memory region type
2058  * @max_num_sg:    maximum sg entries available for registration.
2059  * @udata:	   user data or null for kernel objects
2060  *
2061  * Notes:
2062  * Memory registeration page/sg lists must not exceed max_num_sg.
2063  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2064  * max_num_sg * used_page_size.
2065  *
2066  */
2067 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
2068 			       u32 max_num_sg, struct ib_udata *udata)
2069 {
2070 	struct ib_mr *mr;
2071 
2072 	if (!pd->device->ops.alloc_mr) {
2073 		mr = ERR_PTR(-EOPNOTSUPP);
2074 		goto out;
2075 	}
2076 
2077 	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2078 		WARN_ON_ONCE(1);
2079 		mr = ERR_PTR(-EINVAL);
2080 		goto out;
2081 	}
2082 
2083 	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
2084 	if (!IS_ERR(mr)) {
2085 		mr->device  = pd->device;
2086 		mr->pd      = pd;
2087 		mr->dm      = NULL;
2088 		mr->uobject = NULL;
2089 		atomic_inc(&pd->usecnt);
2090 		mr->need_inval = false;
2091 		mr->res.type = RDMA_RESTRACK_MR;
2092 		rdma_restrack_kadd(&mr->res);
2093 		mr->type = mr_type;
2094 		mr->sig_attrs = NULL;
2095 	}
2096 
2097 out:
2098 	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2099 	return mr;
2100 }
2101 EXPORT_SYMBOL(ib_alloc_mr_user);
2102 
2103 /**
2104  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2105  * @pd:                      protection domain associated with the region
2106  * @max_num_data_sg:         maximum data sg entries available for registration
2107  * @max_num_meta_sg:         maximum metadata sg entries available for
2108  *                           registration
2109  *
2110  * Notes:
2111  * Memory registration page/sg lists must not exceed max_num_sg,
2112  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2113  *
2114  */
2115 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2116 				    u32 max_num_data_sg,
2117 				    u32 max_num_meta_sg)
2118 {
2119 	struct ib_mr *mr;
2120 	struct ib_sig_attrs *sig_attrs;
2121 
2122 	if (!pd->device->ops.alloc_mr_integrity ||
2123 	    !pd->device->ops.map_mr_sg_pi) {
2124 		mr = ERR_PTR(-EOPNOTSUPP);
2125 		goto out;
2126 	}
2127 
2128 	if (!max_num_meta_sg) {
2129 		mr = ERR_PTR(-EINVAL);
2130 		goto out;
2131 	}
2132 
2133 	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2134 	if (!sig_attrs) {
2135 		mr = ERR_PTR(-ENOMEM);
2136 		goto out;
2137 	}
2138 
2139 	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2140 						max_num_meta_sg);
2141 	if (IS_ERR(mr)) {
2142 		kfree(sig_attrs);
2143 		goto out;
2144 	}
2145 
2146 	mr->device = pd->device;
2147 	mr->pd = pd;
2148 	mr->dm = NULL;
2149 	mr->uobject = NULL;
2150 	atomic_inc(&pd->usecnt);
2151 	mr->need_inval = false;
2152 	mr->res.type = RDMA_RESTRACK_MR;
2153 	rdma_restrack_kadd(&mr->res);
2154 	mr->type = IB_MR_TYPE_INTEGRITY;
2155 	mr->sig_attrs = sig_attrs;
2156 
2157 out:
2158 	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2159 	return mr;
2160 }
2161 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2162 
2163 /* "Fast" memory regions */
2164 
2165 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2166 			    int mr_access_flags,
2167 			    struct ib_fmr_attr *fmr_attr)
2168 {
2169 	struct ib_fmr *fmr;
2170 
2171 	if (!pd->device->ops.alloc_fmr)
2172 		return ERR_PTR(-EOPNOTSUPP);
2173 
2174 	fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2175 	if (!IS_ERR(fmr)) {
2176 		fmr->device = pd->device;
2177 		fmr->pd     = pd;
2178 		atomic_inc(&pd->usecnt);
2179 	}
2180 
2181 	return fmr;
2182 }
2183 EXPORT_SYMBOL(ib_alloc_fmr);
2184 
2185 int ib_unmap_fmr(struct list_head *fmr_list)
2186 {
2187 	struct ib_fmr *fmr;
2188 
2189 	if (list_empty(fmr_list))
2190 		return 0;
2191 
2192 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2193 	return fmr->device->ops.unmap_fmr(fmr_list);
2194 }
2195 EXPORT_SYMBOL(ib_unmap_fmr);
2196 
2197 int ib_dealloc_fmr(struct ib_fmr *fmr)
2198 {
2199 	struct ib_pd *pd;
2200 	int ret;
2201 
2202 	pd = fmr->pd;
2203 	ret = fmr->device->ops.dealloc_fmr(fmr);
2204 	if (!ret)
2205 		atomic_dec(&pd->usecnt);
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(ib_dealloc_fmr);
2210 
2211 /* Multicast groups */
2212 
2213 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2214 {
2215 	struct ib_qp_init_attr init_attr = {};
2216 	struct ib_qp_attr attr = {};
2217 	int num_eth_ports = 0;
2218 	int port;
2219 
2220 	/* If QP state >= init, it is assigned to a port and we can check this
2221 	 * port only.
2222 	 */
2223 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2224 		if (attr.qp_state >= IB_QPS_INIT) {
2225 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2226 			    IB_LINK_LAYER_INFINIBAND)
2227 				return true;
2228 			goto lid_check;
2229 		}
2230 	}
2231 
2232 	/* Can't get a quick answer, iterate over all ports */
2233 	for (port = 0; port < qp->device->phys_port_cnt; port++)
2234 		if (rdma_port_get_link_layer(qp->device, port) !=
2235 		    IB_LINK_LAYER_INFINIBAND)
2236 			num_eth_ports++;
2237 
2238 	/* If we have at lease one Ethernet port, RoCE annex declares that
2239 	 * multicast LID should be ignored. We can't tell at this step if the
2240 	 * QP belongs to an IB or Ethernet port.
2241 	 */
2242 	if (num_eth_ports)
2243 		return true;
2244 
2245 	/* If all the ports are IB, we can check according to IB spec. */
2246 lid_check:
2247 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2248 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2249 }
2250 
2251 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2252 {
2253 	int ret;
2254 
2255 	if (!qp->device->ops.attach_mcast)
2256 		return -EOPNOTSUPP;
2257 
2258 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2259 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2260 		return -EINVAL;
2261 
2262 	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2263 	if (!ret)
2264 		atomic_inc(&qp->usecnt);
2265 	return ret;
2266 }
2267 EXPORT_SYMBOL(ib_attach_mcast);
2268 
2269 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2270 {
2271 	int ret;
2272 
2273 	if (!qp->device->ops.detach_mcast)
2274 		return -EOPNOTSUPP;
2275 
2276 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2277 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2278 		return -EINVAL;
2279 
2280 	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2281 	if (!ret)
2282 		atomic_dec(&qp->usecnt);
2283 	return ret;
2284 }
2285 EXPORT_SYMBOL(ib_detach_mcast);
2286 
2287 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2288 {
2289 	struct ib_xrcd *xrcd;
2290 
2291 	if (!device->ops.alloc_xrcd)
2292 		return ERR_PTR(-EOPNOTSUPP);
2293 
2294 	xrcd = device->ops.alloc_xrcd(device, NULL);
2295 	if (!IS_ERR(xrcd)) {
2296 		xrcd->device = device;
2297 		xrcd->inode = NULL;
2298 		atomic_set(&xrcd->usecnt, 0);
2299 		mutex_init(&xrcd->tgt_qp_mutex);
2300 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2301 	}
2302 
2303 	return xrcd;
2304 }
2305 EXPORT_SYMBOL(__ib_alloc_xrcd);
2306 
2307 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
2308 {
2309 	struct ib_qp *qp;
2310 	int ret;
2311 
2312 	if (atomic_read(&xrcd->usecnt))
2313 		return -EBUSY;
2314 
2315 	while (!list_empty(&xrcd->tgt_qp_list)) {
2316 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2317 		ret = ib_destroy_qp(qp);
2318 		if (ret)
2319 			return ret;
2320 	}
2321 	mutex_destroy(&xrcd->tgt_qp_mutex);
2322 
2323 	return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2324 }
2325 EXPORT_SYMBOL(ib_dealloc_xrcd);
2326 
2327 /**
2328  * ib_create_wq - Creates a WQ associated with the specified protection
2329  * domain.
2330  * @pd: The protection domain associated with the WQ.
2331  * @wq_attr: A list of initial attributes required to create the
2332  * WQ. If WQ creation succeeds, then the attributes are updated to
2333  * the actual capabilities of the created WQ.
2334  *
2335  * wq_attr->max_wr and wq_attr->max_sge determine
2336  * the requested size of the WQ, and set to the actual values allocated
2337  * on return.
2338  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2339  * at least as large as the requested values.
2340  */
2341 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2342 			   struct ib_wq_init_attr *wq_attr)
2343 {
2344 	struct ib_wq *wq;
2345 
2346 	if (!pd->device->ops.create_wq)
2347 		return ERR_PTR(-EOPNOTSUPP);
2348 
2349 	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2350 	if (!IS_ERR(wq)) {
2351 		wq->event_handler = wq_attr->event_handler;
2352 		wq->wq_context = wq_attr->wq_context;
2353 		wq->wq_type = wq_attr->wq_type;
2354 		wq->cq = wq_attr->cq;
2355 		wq->device = pd->device;
2356 		wq->pd = pd;
2357 		wq->uobject = NULL;
2358 		atomic_inc(&pd->usecnt);
2359 		atomic_inc(&wq_attr->cq->usecnt);
2360 		atomic_set(&wq->usecnt, 0);
2361 	}
2362 	return wq;
2363 }
2364 EXPORT_SYMBOL(ib_create_wq);
2365 
2366 /**
2367  * ib_destroy_wq - Destroys the specified user WQ.
2368  * @wq: The WQ to destroy.
2369  * @udata: Valid user data
2370  */
2371 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2372 {
2373 	struct ib_cq *cq = wq->cq;
2374 	struct ib_pd *pd = wq->pd;
2375 
2376 	if (atomic_read(&wq->usecnt))
2377 		return -EBUSY;
2378 
2379 	wq->device->ops.destroy_wq(wq, udata);
2380 	atomic_dec(&pd->usecnt);
2381 	atomic_dec(&cq->usecnt);
2382 
2383 	return 0;
2384 }
2385 EXPORT_SYMBOL(ib_destroy_wq);
2386 
2387 /**
2388  * ib_modify_wq - Modifies the specified WQ.
2389  * @wq: The WQ to modify.
2390  * @wq_attr: On input, specifies the WQ attributes to modify.
2391  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2392  *   are being modified.
2393  * On output, the current values of selected WQ attributes are returned.
2394  */
2395 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2396 		 u32 wq_attr_mask)
2397 {
2398 	int err;
2399 
2400 	if (!wq->device->ops.modify_wq)
2401 		return -EOPNOTSUPP;
2402 
2403 	err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2404 	return err;
2405 }
2406 EXPORT_SYMBOL(ib_modify_wq);
2407 
2408 /*
2409  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2410  * @device: The device on which to create the rwq indirection table.
2411  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2412  * create the Indirection Table.
2413  *
2414  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2415  *	than the created ib_rwq_ind_table object and the caller is responsible
2416  *	for its memory allocation/free.
2417  */
2418 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2419 						 struct ib_rwq_ind_table_init_attr *init_attr)
2420 {
2421 	struct ib_rwq_ind_table *rwq_ind_table;
2422 	int i;
2423 	u32 table_size;
2424 
2425 	if (!device->ops.create_rwq_ind_table)
2426 		return ERR_PTR(-EOPNOTSUPP);
2427 
2428 	table_size = (1 << init_attr->log_ind_tbl_size);
2429 	rwq_ind_table = device->ops.create_rwq_ind_table(device,
2430 							 init_attr, NULL);
2431 	if (IS_ERR(rwq_ind_table))
2432 		return rwq_ind_table;
2433 
2434 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2435 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2436 	rwq_ind_table->device = device;
2437 	rwq_ind_table->uobject = NULL;
2438 	atomic_set(&rwq_ind_table->usecnt, 0);
2439 
2440 	for (i = 0; i < table_size; i++)
2441 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2442 
2443 	return rwq_ind_table;
2444 }
2445 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2446 
2447 /*
2448  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2449  * @wq_ind_table: The Indirection Table to destroy.
2450 */
2451 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2452 {
2453 	int err, i;
2454 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2455 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2456 
2457 	if (atomic_read(&rwq_ind_table->usecnt))
2458 		return -EBUSY;
2459 
2460 	err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2461 	if (!err) {
2462 		for (i = 0; i < table_size; i++)
2463 			atomic_dec(&ind_tbl[i]->usecnt);
2464 	}
2465 
2466 	return err;
2467 }
2468 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2469 
2470 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2471 		       struct ib_mr_status *mr_status)
2472 {
2473 	if (!mr->device->ops.check_mr_status)
2474 		return -EOPNOTSUPP;
2475 
2476 	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2477 }
2478 EXPORT_SYMBOL(ib_check_mr_status);
2479 
2480 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2481 			 int state)
2482 {
2483 	if (!device->ops.set_vf_link_state)
2484 		return -EOPNOTSUPP;
2485 
2486 	return device->ops.set_vf_link_state(device, vf, port, state);
2487 }
2488 EXPORT_SYMBOL(ib_set_vf_link_state);
2489 
2490 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2491 		     struct ifla_vf_info *info)
2492 {
2493 	if (!device->ops.get_vf_config)
2494 		return -EOPNOTSUPP;
2495 
2496 	return device->ops.get_vf_config(device, vf, port, info);
2497 }
2498 EXPORT_SYMBOL(ib_get_vf_config);
2499 
2500 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2501 		    struct ifla_vf_stats *stats)
2502 {
2503 	if (!device->ops.get_vf_stats)
2504 		return -EOPNOTSUPP;
2505 
2506 	return device->ops.get_vf_stats(device, vf, port, stats);
2507 }
2508 EXPORT_SYMBOL(ib_get_vf_stats);
2509 
2510 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2511 		   int type)
2512 {
2513 	if (!device->ops.set_vf_guid)
2514 		return -EOPNOTSUPP;
2515 
2516 	return device->ops.set_vf_guid(device, vf, port, guid, type);
2517 }
2518 EXPORT_SYMBOL(ib_set_vf_guid);
2519 
2520 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2521 		   struct ifla_vf_guid *node_guid,
2522 		   struct ifla_vf_guid *port_guid)
2523 {
2524 	if (!device->ops.get_vf_guid)
2525 		return -EOPNOTSUPP;
2526 
2527 	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2528 }
2529 EXPORT_SYMBOL(ib_get_vf_guid);
2530 /**
2531  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2532  *     information) and set an appropriate memory region for registration.
2533  * @mr:             memory region
2534  * @data_sg:        dma mapped scatterlist for data
2535  * @data_sg_nents:  number of entries in data_sg
2536  * @data_sg_offset: offset in bytes into data_sg
2537  * @meta_sg:        dma mapped scatterlist for metadata
2538  * @meta_sg_nents:  number of entries in meta_sg
2539  * @meta_sg_offset: offset in bytes into meta_sg
2540  * @page_size:      page vector desired page size
2541  *
2542  * Constraints:
2543  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2544  *
2545  * Return: 0 on success.
2546  *
2547  * After this completes successfully, the  memory region
2548  * is ready for registration.
2549  */
2550 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2551 		    int data_sg_nents, unsigned int *data_sg_offset,
2552 		    struct scatterlist *meta_sg, int meta_sg_nents,
2553 		    unsigned int *meta_sg_offset, unsigned int page_size)
2554 {
2555 	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2556 		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2557 		return -EOPNOTSUPP;
2558 
2559 	mr->page_size = page_size;
2560 
2561 	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2562 					    data_sg_offset, meta_sg,
2563 					    meta_sg_nents, meta_sg_offset);
2564 }
2565 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2566 
2567 /**
2568  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2569  *     and set it the memory region.
2570  * @mr:            memory region
2571  * @sg:            dma mapped scatterlist
2572  * @sg_nents:      number of entries in sg
2573  * @sg_offset:     offset in bytes into sg
2574  * @page_size:     page vector desired page size
2575  *
2576  * Constraints:
2577  * - The first sg element is allowed to have an offset.
2578  * - Each sg element must either be aligned to page_size or virtually
2579  *   contiguous to the previous element. In case an sg element has a
2580  *   non-contiguous offset, the mapping prefix will not include it.
2581  * - The last sg element is allowed to have length less than page_size.
2582  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2583  *   then only max_num_sg entries will be mapped.
2584  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2585  *   constraints holds and the page_size argument is ignored.
2586  *
2587  * Returns the number of sg elements that were mapped to the memory region.
2588  *
2589  * After this completes successfully, the  memory region
2590  * is ready for registration.
2591  */
2592 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2593 		 unsigned int *sg_offset, unsigned int page_size)
2594 {
2595 	if (unlikely(!mr->device->ops.map_mr_sg))
2596 		return -EOPNOTSUPP;
2597 
2598 	mr->page_size = page_size;
2599 
2600 	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2601 }
2602 EXPORT_SYMBOL(ib_map_mr_sg);
2603 
2604 /**
2605  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2606  *     to a page vector
2607  * @mr:            memory region
2608  * @sgl:           dma mapped scatterlist
2609  * @sg_nents:      number of entries in sg
2610  * @sg_offset_p:   IN:  start offset in bytes into sg
2611  *                 OUT: offset in bytes for element n of the sg of the first
2612  *                      byte that has not been processed where n is the return
2613  *                      value of this function.
2614  * @set_page:      driver page assignment function pointer
2615  *
2616  * Core service helper for drivers to convert the largest
2617  * prefix of given sg list to a page vector. The sg list
2618  * prefix converted is the prefix that meet the requirements
2619  * of ib_map_mr_sg.
2620  *
2621  * Returns the number of sg elements that were assigned to
2622  * a page vector.
2623  */
2624 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2625 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2626 {
2627 	struct scatterlist *sg;
2628 	u64 last_end_dma_addr = 0;
2629 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2630 	unsigned int last_page_off = 0;
2631 	u64 page_mask = ~((u64)mr->page_size - 1);
2632 	int i, ret;
2633 
2634 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2635 		return -EINVAL;
2636 
2637 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2638 	mr->length = 0;
2639 
2640 	for_each_sg(sgl, sg, sg_nents, i) {
2641 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2642 		u64 prev_addr = dma_addr;
2643 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2644 		u64 end_dma_addr = dma_addr + dma_len;
2645 		u64 page_addr = dma_addr & page_mask;
2646 
2647 		/*
2648 		 * For the second and later elements, check whether either the
2649 		 * end of element i-1 or the start of element i is not aligned
2650 		 * on a page boundary.
2651 		 */
2652 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2653 			/* Stop mapping if there is a gap. */
2654 			if (last_end_dma_addr != dma_addr)
2655 				break;
2656 
2657 			/*
2658 			 * Coalesce this element with the last. If it is small
2659 			 * enough just update mr->length. Otherwise start
2660 			 * mapping from the next page.
2661 			 */
2662 			goto next_page;
2663 		}
2664 
2665 		do {
2666 			ret = set_page(mr, page_addr);
2667 			if (unlikely(ret < 0)) {
2668 				sg_offset = prev_addr - sg_dma_address(sg);
2669 				mr->length += prev_addr - dma_addr;
2670 				if (sg_offset_p)
2671 					*sg_offset_p = sg_offset;
2672 				return i || sg_offset ? i : ret;
2673 			}
2674 			prev_addr = page_addr;
2675 next_page:
2676 			page_addr += mr->page_size;
2677 		} while (page_addr < end_dma_addr);
2678 
2679 		mr->length += dma_len;
2680 		last_end_dma_addr = end_dma_addr;
2681 		last_page_off = end_dma_addr & ~page_mask;
2682 
2683 		sg_offset = 0;
2684 	}
2685 
2686 	if (sg_offset_p)
2687 		*sg_offset_p = 0;
2688 	return i;
2689 }
2690 EXPORT_SYMBOL(ib_sg_to_pages);
2691 
2692 struct ib_drain_cqe {
2693 	struct ib_cqe cqe;
2694 	struct completion done;
2695 };
2696 
2697 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2698 {
2699 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2700 						cqe);
2701 
2702 	complete(&cqe->done);
2703 }
2704 
2705 /*
2706  * Post a WR and block until its completion is reaped for the SQ.
2707  */
2708 static void __ib_drain_sq(struct ib_qp *qp)
2709 {
2710 	struct ib_cq *cq = qp->send_cq;
2711 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2712 	struct ib_drain_cqe sdrain;
2713 	struct ib_rdma_wr swr = {
2714 		.wr = {
2715 			.next = NULL,
2716 			{ .wr_cqe	= &sdrain.cqe, },
2717 			.opcode	= IB_WR_RDMA_WRITE,
2718 		},
2719 	};
2720 	int ret;
2721 
2722 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2723 	if (ret) {
2724 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2725 		return;
2726 	}
2727 
2728 	sdrain.cqe.done = ib_drain_qp_done;
2729 	init_completion(&sdrain.done);
2730 
2731 	ret = ib_post_send(qp, &swr.wr, NULL);
2732 	if (ret) {
2733 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2734 		return;
2735 	}
2736 
2737 	if (cq->poll_ctx == IB_POLL_DIRECT)
2738 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2739 			ib_process_cq_direct(cq, -1);
2740 	else
2741 		wait_for_completion(&sdrain.done);
2742 }
2743 
2744 /*
2745  * Post a WR and block until its completion is reaped for the RQ.
2746  */
2747 static void __ib_drain_rq(struct ib_qp *qp)
2748 {
2749 	struct ib_cq *cq = qp->recv_cq;
2750 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2751 	struct ib_drain_cqe rdrain;
2752 	struct ib_recv_wr rwr = {};
2753 	int ret;
2754 
2755 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2756 	if (ret) {
2757 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2758 		return;
2759 	}
2760 
2761 	rwr.wr_cqe = &rdrain.cqe;
2762 	rdrain.cqe.done = ib_drain_qp_done;
2763 	init_completion(&rdrain.done);
2764 
2765 	ret = ib_post_recv(qp, &rwr, NULL);
2766 	if (ret) {
2767 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2768 		return;
2769 	}
2770 
2771 	if (cq->poll_ctx == IB_POLL_DIRECT)
2772 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2773 			ib_process_cq_direct(cq, -1);
2774 	else
2775 		wait_for_completion(&rdrain.done);
2776 }
2777 
2778 /**
2779  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2780  *		   application.
2781  * @qp:            queue pair to drain
2782  *
2783  * If the device has a provider-specific drain function, then
2784  * call that.  Otherwise call the generic drain function
2785  * __ib_drain_sq().
2786  *
2787  * The caller must:
2788  *
2789  * ensure there is room in the CQ and SQ for the drain work request and
2790  * completion.
2791  *
2792  * allocate the CQ using ib_alloc_cq().
2793  *
2794  * ensure that there are no other contexts that are posting WRs concurrently.
2795  * Otherwise the drain is not guaranteed.
2796  */
2797 void ib_drain_sq(struct ib_qp *qp)
2798 {
2799 	if (qp->device->ops.drain_sq)
2800 		qp->device->ops.drain_sq(qp);
2801 	else
2802 		__ib_drain_sq(qp);
2803 	trace_cq_drain_complete(qp->send_cq);
2804 }
2805 EXPORT_SYMBOL(ib_drain_sq);
2806 
2807 /**
2808  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2809  *		   application.
2810  * @qp:            queue pair to drain
2811  *
2812  * If the device has a provider-specific drain function, then
2813  * call that.  Otherwise call the generic drain function
2814  * __ib_drain_rq().
2815  *
2816  * The caller must:
2817  *
2818  * ensure there is room in the CQ and RQ for the drain work request and
2819  * completion.
2820  *
2821  * allocate the CQ using ib_alloc_cq().
2822  *
2823  * ensure that there are no other contexts that are posting WRs concurrently.
2824  * Otherwise the drain is not guaranteed.
2825  */
2826 void ib_drain_rq(struct ib_qp *qp)
2827 {
2828 	if (qp->device->ops.drain_rq)
2829 		qp->device->ops.drain_rq(qp);
2830 	else
2831 		__ib_drain_rq(qp);
2832 	trace_cq_drain_complete(qp->recv_cq);
2833 }
2834 EXPORT_SYMBOL(ib_drain_rq);
2835 
2836 /**
2837  * ib_drain_qp() - Block until all CQEs have been consumed by the
2838  *		   application on both the RQ and SQ.
2839  * @qp:            queue pair to drain
2840  *
2841  * The caller must:
2842  *
2843  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2844  * and completions.
2845  *
2846  * allocate the CQs using ib_alloc_cq().
2847  *
2848  * ensure that there are no other contexts that are posting WRs concurrently.
2849  * Otherwise the drain is not guaranteed.
2850  */
2851 void ib_drain_qp(struct ib_qp *qp)
2852 {
2853 	ib_drain_sq(qp);
2854 	if (!qp->srq)
2855 		ib_drain_rq(qp);
2856 }
2857 EXPORT_SYMBOL(ib_drain_qp);
2858 
2859 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2860 				     enum rdma_netdev_t type, const char *name,
2861 				     unsigned char name_assign_type,
2862 				     void (*setup)(struct net_device *))
2863 {
2864 	struct rdma_netdev_alloc_params params;
2865 	struct net_device *netdev;
2866 	int rc;
2867 
2868 	if (!device->ops.rdma_netdev_get_params)
2869 		return ERR_PTR(-EOPNOTSUPP);
2870 
2871 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2872 						&params);
2873 	if (rc)
2874 		return ERR_PTR(rc);
2875 
2876 	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2877 				  setup, params.txqs, params.rxqs);
2878 	if (!netdev)
2879 		return ERR_PTR(-ENOMEM);
2880 
2881 	return netdev;
2882 }
2883 EXPORT_SYMBOL(rdma_alloc_netdev);
2884 
2885 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2886 		     enum rdma_netdev_t type, const char *name,
2887 		     unsigned char name_assign_type,
2888 		     void (*setup)(struct net_device *),
2889 		     struct net_device *netdev)
2890 {
2891 	struct rdma_netdev_alloc_params params;
2892 	int rc;
2893 
2894 	if (!device->ops.rdma_netdev_get_params)
2895 		return -EOPNOTSUPP;
2896 
2897 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2898 						&params);
2899 	if (rc)
2900 		return rc;
2901 
2902 	return params.initialize_rdma_netdev(device, port_num,
2903 					     netdev, params.param);
2904 }
2905 EXPORT_SYMBOL(rdma_init_netdev);
2906 
2907 void __rdma_block_iter_start(struct ib_block_iter *biter,
2908 			     struct scatterlist *sglist, unsigned int nents,
2909 			     unsigned long pgsz)
2910 {
2911 	memset(biter, 0, sizeof(struct ib_block_iter));
2912 	biter->__sg = sglist;
2913 	biter->__sg_nents = nents;
2914 
2915 	/* Driver provides best block size to use */
2916 	biter->__pg_bit = __fls(pgsz);
2917 }
2918 EXPORT_SYMBOL(__rdma_block_iter_start);
2919 
2920 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2921 {
2922 	unsigned int block_offset;
2923 
2924 	if (!biter->__sg_nents || !biter->__sg)
2925 		return false;
2926 
2927 	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2928 	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2929 	biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2930 
2931 	if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2932 		biter->__sg_advance = 0;
2933 		biter->__sg = sg_next(biter->__sg);
2934 		biter->__sg_nents--;
2935 	}
2936 
2937 	return true;
2938 }
2939 EXPORT_SYMBOL(__rdma_block_iter_next);
2940