xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57 			       struct rdma_ah_attr *ah_attr);
58 
59 static const char * const ib_events[] = {
60 	[IB_EVENT_CQ_ERR]		= "CQ error",
61 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
62 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
63 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
64 	[IB_EVENT_COMM_EST]		= "communication established",
65 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
66 	[IB_EVENT_PATH_MIG]		= "path migration successful",
67 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
68 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
69 	[IB_EVENT_PORT_ACTIVE]		= "port active",
70 	[IB_EVENT_PORT_ERR]		= "port error",
71 	[IB_EVENT_LID_CHANGE]		= "LID change",
72 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
73 	[IB_EVENT_SM_CHANGE]		= "SM change",
74 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
75 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
76 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
77 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
78 	[IB_EVENT_GID_CHANGE]		= "GID changed",
79 };
80 
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83 	size_t index = event;
84 
85 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86 			ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89 
90 static const char * const wc_statuses[] = {
91 	[IB_WC_SUCCESS]			= "success",
92 	[IB_WC_LOC_LEN_ERR]		= "local length error",
93 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
94 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
95 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
96 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
97 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
98 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
99 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
100 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
101 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
102 	[IB_WC_REM_OP_ERR]		= "remote operation error",
103 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
104 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
105 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
106 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
107 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
108 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
109 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
110 	[IB_WC_FATAL_ERR]		= "fatal error",
111 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
112 	[IB_WC_GENERAL_ERR]		= "general error",
113 };
114 
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117 	size_t index = status;
118 
119 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120 			wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123 
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126 	switch (rate) {
127 	case IB_RATE_2_5_GBPS: return   1;
128 	case IB_RATE_5_GBPS:   return   2;
129 	case IB_RATE_10_GBPS:  return   4;
130 	case IB_RATE_20_GBPS:  return   8;
131 	case IB_RATE_30_GBPS:  return  12;
132 	case IB_RATE_40_GBPS:  return  16;
133 	case IB_RATE_60_GBPS:  return  24;
134 	case IB_RATE_80_GBPS:  return  32;
135 	case IB_RATE_120_GBPS: return  48;
136 	case IB_RATE_14_GBPS:  return   6;
137 	case IB_RATE_56_GBPS:  return  22;
138 	case IB_RATE_112_GBPS: return  45;
139 	case IB_RATE_168_GBPS: return  67;
140 	case IB_RATE_25_GBPS:  return  10;
141 	case IB_RATE_100_GBPS: return  40;
142 	case IB_RATE_200_GBPS: return  80;
143 	case IB_RATE_300_GBPS: return 120;
144 	case IB_RATE_28_GBPS:  return  11;
145 	case IB_RATE_50_GBPS:  return  20;
146 	case IB_RATE_400_GBPS: return 160;
147 	case IB_RATE_600_GBPS: return 240;
148 	default:	       return  -1;
149 	}
150 }
151 EXPORT_SYMBOL(ib_rate_to_mult);
152 
153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
154 {
155 	switch (mult) {
156 	case 1:   return IB_RATE_2_5_GBPS;
157 	case 2:   return IB_RATE_5_GBPS;
158 	case 4:   return IB_RATE_10_GBPS;
159 	case 8:   return IB_RATE_20_GBPS;
160 	case 12:  return IB_RATE_30_GBPS;
161 	case 16:  return IB_RATE_40_GBPS;
162 	case 24:  return IB_RATE_60_GBPS;
163 	case 32:  return IB_RATE_80_GBPS;
164 	case 48:  return IB_RATE_120_GBPS;
165 	case 6:   return IB_RATE_14_GBPS;
166 	case 22:  return IB_RATE_56_GBPS;
167 	case 45:  return IB_RATE_112_GBPS;
168 	case 67:  return IB_RATE_168_GBPS;
169 	case 10:  return IB_RATE_25_GBPS;
170 	case 40:  return IB_RATE_100_GBPS;
171 	case 80:  return IB_RATE_200_GBPS;
172 	case 120: return IB_RATE_300_GBPS;
173 	case 11:  return IB_RATE_28_GBPS;
174 	case 20:  return IB_RATE_50_GBPS;
175 	case 160: return IB_RATE_400_GBPS;
176 	case 240: return IB_RATE_600_GBPS;
177 	default:  return IB_RATE_PORT_CURRENT;
178 	}
179 }
180 EXPORT_SYMBOL(mult_to_ib_rate);
181 
182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
183 {
184 	switch (rate) {
185 	case IB_RATE_2_5_GBPS: return 2500;
186 	case IB_RATE_5_GBPS:   return 5000;
187 	case IB_RATE_10_GBPS:  return 10000;
188 	case IB_RATE_20_GBPS:  return 20000;
189 	case IB_RATE_30_GBPS:  return 30000;
190 	case IB_RATE_40_GBPS:  return 40000;
191 	case IB_RATE_60_GBPS:  return 60000;
192 	case IB_RATE_80_GBPS:  return 80000;
193 	case IB_RATE_120_GBPS: return 120000;
194 	case IB_RATE_14_GBPS:  return 14062;
195 	case IB_RATE_56_GBPS:  return 56250;
196 	case IB_RATE_112_GBPS: return 112500;
197 	case IB_RATE_168_GBPS: return 168750;
198 	case IB_RATE_25_GBPS:  return 25781;
199 	case IB_RATE_100_GBPS: return 103125;
200 	case IB_RATE_200_GBPS: return 206250;
201 	case IB_RATE_300_GBPS: return 309375;
202 	case IB_RATE_28_GBPS:  return 28125;
203 	case IB_RATE_50_GBPS:  return 53125;
204 	case IB_RATE_400_GBPS: return 425000;
205 	case IB_RATE_600_GBPS: return 637500;
206 	default:	       return -1;
207 	}
208 }
209 EXPORT_SYMBOL(ib_rate_to_mbps);
210 
211 __attribute_const__ enum rdma_transport_type
212 rdma_node_get_transport(enum rdma_node_type node_type)
213 {
214 
215 	if (node_type == RDMA_NODE_USNIC)
216 		return RDMA_TRANSPORT_USNIC;
217 	if (node_type == RDMA_NODE_USNIC_UDP)
218 		return RDMA_TRANSPORT_USNIC_UDP;
219 	if (node_type == RDMA_NODE_RNIC)
220 		return RDMA_TRANSPORT_IWARP;
221 
222 	return RDMA_TRANSPORT_IB;
223 }
224 EXPORT_SYMBOL(rdma_node_get_transport);
225 
226 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
227 {
228 	enum rdma_transport_type lt;
229 	if (device->ops.get_link_layer)
230 		return device->ops.get_link_layer(device, port_num);
231 
232 	lt = rdma_node_get_transport(device->node_type);
233 	if (lt == RDMA_TRANSPORT_IB)
234 		return IB_LINK_LAYER_INFINIBAND;
235 
236 	return IB_LINK_LAYER_ETHERNET;
237 }
238 EXPORT_SYMBOL(rdma_port_get_link_layer);
239 
240 /* Protection domains */
241 
242 /**
243  * ib_alloc_pd - Allocates an unused protection domain.
244  * @device: The device on which to allocate the protection domain.
245  *
246  * A protection domain object provides an association between QPs, shared
247  * receive queues, address handles, memory regions, and memory windows.
248  *
249  * Every PD has a local_dma_lkey which can be used as the lkey value for local
250  * memory operations.
251  */
252 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
253 		const char *caller)
254 {
255 	struct ib_pd *pd;
256 	int mr_access_flags = 0;
257 
258 	pd = device->ops.alloc_pd(device, NULL, NULL);
259 	if (IS_ERR(pd))
260 		return pd;
261 
262 	pd->device = device;
263 	pd->uobject = NULL;
264 	pd->__internal_mr = NULL;
265 	atomic_set(&pd->usecnt, 0);
266 	pd->flags = flags;
267 
268 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
269 		pd->local_dma_lkey = device->local_dma_lkey;
270 	else
271 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
272 
273 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
274 		pr_warn("%s: enabling unsafe global rkey\n", caller);
275 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
276 	}
277 
278 	pd->res.type = RDMA_RESTRACK_PD;
279 	rdma_restrack_set_task(&pd->res, caller);
280 	rdma_restrack_kadd(&pd->res);
281 
282 	if (mr_access_flags) {
283 		struct ib_mr *mr;
284 
285 		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
286 		if (IS_ERR(mr)) {
287 			ib_dealloc_pd(pd);
288 			return ERR_CAST(mr);
289 		}
290 
291 		mr->device	= pd->device;
292 		mr->pd		= pd;
293 		mr->uobject	= NULL;
294 		mr->need_inval	= false;
295 
296 		pd->__internal_mr = mr;
297 
298 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
299 			pd->local_dma_lkey = pd->__internal_mr->lkey;
300 
301 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
302 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
303 	}
304 
305 	return pd;
306 }
307 EXPORT_SYMBOL(__ib_alloc_pd);
308 
309 /**
310  * ib_dealloc_pd - Deallocates a protection domain.
311  * @pd: The protection domain to deallocate.
312  *
313  * It is an error to call this function while any resources in the pd still
314  * exist.  The caller is responsible to synchronously destroy them and
315  * guarantee no new allocations will happen.
316  */
317 void ib_dealloc_pd(struct ib_pd *pd)
318 {
319 	int ret;
320 
321 	if (pd->__internal_mr) {
322 		ret = pd->device->ops.dereg_mr(pd->__internal_mr);
323 		WARN_ON(ret);
324 		pd->__internal_mr = NULL;
325 	}
326 
327 	/* uverbs manipulates usecnt with proper locking, while the kabi
328 	   requires the caller to guarantee we can't race here. */
329 	WARN_ON(atomic_read(&pd->usecnt));
330 
331 	rdma_restrack_del(&pd->res);
332 	/* Making delalloc_pd a void return is a WIP, no driver should return
333 	   an error here. */
334 	ret = pd->device->ops.dealloc_pd(pd);
335 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
336 }
337 EXPORT_SYMBOL(ib_dealloc_pd);
338 
339 /* Address handles */
340 
341 /**
342  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
343  * @dest:       Pointer to destination ah_attr. Contents of the destination
344  *              pointer is assumed to be invalid and attribute are overwritten.
345  * @src:        Pointer to source ah_attr.
346  */
347 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
348 		       const struct rdma_ah_attr *src)
349 {
350 	*dest = *src;
351 	if (dest->grh.sgid_attr)
352 		rdma_hold_gid_attr(dest->grh.sgid_attr);
353 }
354 EXPORT_SYMBOL(rdma_copy_ah_attr);
355 
356 /**
357  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
358  * @old:        Pointer to existing ah_attr which needs to be replaced.
359  *              old is assumed to be valid or zero'd
360  * @new:        Pointer to the new ah_attr.
361  *
362  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
363  * old the ah_attr is valid; after that it copies the new attribute and holds
364  * the reference to the replaced ah_attr.
365  */
366 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
367 			  const struct rdma_ah_attr *new)
368 {
369 	rdma_destroy_ah_attr(old);
370 	*old = *new;
371 	if (old->grh.sgid_attr)
372 		rdma_hold_gid_attr(old->grh.sgid_attr);
373 }
374 EXPORT_SYMBOL(rdma_replace_ah_attr);
375 
376 /**
377  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
378  * @dest:       Pointer to destination ah_attr to copy to.
379  *              dest is assumed to be valid or zero'd
380  * @src:        Pointer to the new ah_attr.
381  *
382  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
383  * if it is valid. This also transfers ownership of internal references from
384  * src to dest, making src invalid in the process. No new reference of the src
385  * ah_attr is taken.
386  */
387 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
388 {
389 	rdma_destroy_ah_attr(dest);
390 	*dest = *src;
391 	src->grh.sgid_attr = NULL;
392 }
393 EXPORT_SYMBOL(rdma_move_ah_attr);
394 
395 /*
396  * Validate that the rdma_ah_attr is valid for the device before passing it
397  * off to the driver.
398  */
399 static int rdma_check_ah_attr(struct ib_device *device,
400 			      struct rdma_ah_attr *ah_attr)
401 {
402 	if (!rdma_is_port_valid(device, ah_attr->port_num))
403 		return -EINVAL;
404 
405 	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
406 	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
407 	    !(ah_attr->ah_flags & IB_AH_GRH))
408 		return -EINVAL;
409 
410 	if (ah_attr->grh.sgid_attr) {
411 		/*
412 		 * Make sure the passed sgid_attr is consistent with the
413 		 * parameters
414 		 */
415 		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
416 		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
417 			return -EINVAL;
418 	}
419 	return 0;
420 }
421 
422 /*
423  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
424  * On success the caller is responsible to call rdma_unfill_sgid_attr().
425  */
426 static int rdma_fill_sgid_attr(struct ib_device *device,
427 			       struct rdma_ah_attr *ah_attr,
428 			       const struct ib_gid_attr **old_sgid_attr)
429 {
430 	const struct ib_gid_attr *sgid_attr;
431 	struct ib_global_route *grh;
432 	int ret;
433 
434 	*old_sgid_attr = ah_attr->grh.sgid_attr;
435 
436 	ret = rdma_check_ah_attr(device, ah_attr);
437 	if (ret)
438 		return ret;
439 
440 	if (!(ah_attr->ah_flags & IB_AH_GRH))
441 		return 0;
442 
443 	grh = rdma_ah_retrieve_grh(ah_attr);
444 	if (grh->sgid_attr)
445 		return 0;
446 
447 	sgid_attr =
448 		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
449 	if (IS_ERR(sgid_attr))
450 		return PTR_ERR(sgid_attr);
451 
452 	/* Move ownerhip of the kref into the ah_attr */
453 	grh->sgid_attr = sgid_attr;
454 	return 0;
455 }
456 
457 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
458 				  const struct ib_gid_attr *old_sgid_attr)
459 {
460 	/*
461 	 * Fill didn't change anything, the caller retains ownership of
462 	 * whatever it passed
463 	 */
464 	if (ah_attr->grh.sgid_attr == old_sgid_attr)
465 		return;
466 
467 	/*
468 	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
469 	 * doesn't see any change in the rdma_ah_attr. If we get here
470 	 * old_sgid_attr is NULL.
471 	 */
472 	rdma_destroy_ah_attr(ah_attr);
473 }
474 
475 static const struct ib_gid_attr *
476 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
477 		      const struct ib_gid_attr *old_attr)
478 {
479 	if (old_attr)
480 		rdma_put_gid_attr(old_attr);
481 	if (ah_attr->ah_flags & IB_AH_GRH) {
482 		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
483 		return ah_attr->grh.sgid_attr;
484 	}
485 	return NULL;
486 }
487 
488 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
489 				     struct rdma_ah_attr *ah_attr,
490 				     u32 flags,
491 				     struct ib_udata *udata)
492 {
493 	struct ib_ah *ah;
494 
495 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
496 
497 	if (!pd->device->ops.create_ah)
498 		return ERR_PTR(-EOPNOTSUPP);
499 
500 	ah = pd->device->ops.create_ah(pd, ah_attr, flags, udata);
501 
502 	if (!IS_ERR(ah)) {
503 		ah->device  = pd->device;
504 		ah->pd      = pd;
505 		ah->uobject = NULL;
506 		ah->type    = ah_attr->type;
507 		ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
508 
509 		atomic_inc(&pd->usecnt);
510 	}
511 
512 	return ah;
513 }
514 
515 /**
516  * rdma_create_ah - Creates an address handle for the
517  * given address vector.
518  * @pd: The protection domain associated with the address handle.
519  * @ah_attr: The attributes of the address vector.
520  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
521  *
522  * It returns 0 on success and returns appropriate error code on error.
523  * The address handle is used to reference a local or global destination
524  * in all UD QP post sends.
525  */
526 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
527 			     u32 flags)
528 {
529 	const struct ib_gid_attr *old_sgid_attr;
530 	struct ib_ah *ah;
531 	int ret;
532 
533 	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
534 	if (ret)
535 		return ERR_PTR(ret);
536 
537 	ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
538 
539 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
540 	return ah;
541 }
542 EXPORT_SYMBOL(rdma_create_ah);
543 
544 /**
545  * rdma_create_user_ah - Creates an address handle for the
546  * given address vector.
547  * It resolves destination mac address for ah attribute of RoCE type.
548  * @pd: The protection domain associated with the address handle.
549  * @ah_attr: The attributes of the address vector.
550  * @udata: pointer to user's input output buffer information need by
551  *         provider driver.
552  *
553  * It returns 0 on success and returns appropriate error code on error.
554  * The address handle is used to reference a local or global destination
555  * in all UD QP post sends.
556  */
557 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
558 				  struct rdma_ah_attr *ah_attr,
559 				  struct ib_udata *udata)
560 {
561 	const struct ib_gid_attr *old_sgid_attr;
562 	struct ib_ah *ah;
563 	int err;
564 
565 	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
566 	if (err)
567 		return ERR_PTR(err);
568 
569 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
570 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
571 		if (err) {
572 			ah = ERR_PTR(err);
573 			goto out;
574 		}
575 	}
576 
577 	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
578 
579 out:
580 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
581 	return ah;
582 }
583 EXPORT_SYMBOL(rdma_create_user_ah);
584 
585 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
586 {
587 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
588 	struct iphdr ip4h_checked;
589 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
590 
591 	/* If it's IPv6, the version must be 6, otherwise, the first
592 	 * 20 bytes (before the IPv4 header) are garbled.
593 	 */
594 	if (ip6h->version != 6)
595 		return (ip4h->version == 4) ? 4 : 0;
596 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
597 
598 	/* RoCE v2 requires no options, thus header length
599 	 * must be 5 words
600 	 */
601 	if (ip4h->ihl != 5)
602 		return 6;
603 
604 	/* Verify checksum.
605 	 * We can't write on scattered buffers so we need to copy to
606 	 * temp buffer.
607 	 */
608 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
609 	ip4h_checked.check = 0;
610 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
611 	/* if IPv4 header checksum is OK, believe it */
612 	if (ip4h->check == ip4h_checked.check)
613 		return 4;
614 	return 6;
615 }
616 EXPORT_SYMBOL(ib_get_rdma_header_version);
617 
618 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
619 						     u8 port_num,
620 						     const struct ib_grh *grh)
621 {
622 	int grh_version;
623 
624 	if (rdma_protocol_ib(device, port_num))
625 		return RDMA_NETWORK_IB;
626 
627 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
628 
629 	if (grh_version == 4)
630 		return RDMA_NETWORK_IPV4;
631 
632 	if (grh->next_hdr == IPPROTO_UDP)
633 		return RDMA_NETWORK_IPV6;
634 
635 	return RDMA_NETWORK_ROCE_V1;
636 }
637 
638 struct find_gid_index_context {
639 	u16 vlan_id;
640 	enum ib_gid_type gid_type;
641 };
642 
643 static bool find_gid_index(const union ib_gid *gid,
644 			   const struct ib_gid_attr *gid_attr,
645 			   void *context)
646 {
647 	struct find_gid_index_context *ctx = context;
648 
649 	if (ctx->gid_type != gid_attr->gid_type)
650 		return false;
651 
652 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
653 	    (is_vlan_dev(gid_attr->ndev) &&
654 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
655 		return false;
656 
657 	return true;
658 }
659 
660 static const struct ib_gid_attr *
661 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
662 		       u16 vlan_id, const union ib_gid *sgid,
663 		       enum ib_gid_type gid_type)
664 {
665 	struct find_gid_index_context context = {.vlan_id = vlan_id,
666 						 .gid_type = gid_type};
667 
668 	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
669 				       &context);
670 }
671 
672 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
673 			      enum rdma_network_type net_type,
674 			      union ib_gid *sgid, union ib_gid *dgid)
675 {
676 	struct sockaddr_in  src_in;
677 	struct sockaddr_in  dst_in;
678 	__be32 src_saddr, dst_saddr;
679 
680 	if (!sgid || !dgid)
681 		return -EINVAL;
682 
683 	if (net_type == RDMA_NETWORK_IPV4) {
684 		memcpy(&src_in.sin_addr.s_addr,
685 		       &hdr->roce4grh.saddr, 4);
686 		memcpy(&dst_in.sin_addr.s_addr,
687 		       &hdr->roce4grh.daddr, 4);
688 		src_saddr = src_in.sin_addr.s_addr;
689 		dst_saddr = dst_in.sin_addr.s_addr;
690 		ipv6_addr_set_v4mapped(src_saddr,
691 				       (struct in6_addr *)sgid);
692 		ipv6_addr_set_v4mapped(dst_saddr,
693 				       (struct in6_addr *)dgid);
694 		return 0;
695 	} else if (net_type == RDMA_NETWORK_IPV6 ||
696 		   net_type == RDMA_NETWORK_IB) {
697 		*dgid = hdr->ibgrh.dgid;
698 		*sgid = hdr->ibgrh.sgid;
699 		return 0;
700 	} else {
701 		return -EINVAL;
702 	}
703 }
704 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
705 
706 /* Resolve destination mac address and hop limit for unicast destination
707  * GID entry, considering the source GID entry as well.
708  * ah_attribute must have have valid port_num, sgid_index.
709  */
710 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
711 				       struct rdma_ah_attr *ah_attr)
712 {
713 	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
714 	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
715 	int hop_limit = 0xff;
716 	int ret = 0;
717 
718 	/* If destination is link local and source GID is RoCEv1,
719 	 * IP stack is not used.
720 	 */
721 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
722 	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
723 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
724 				ah_attr->roce.dmac);
725 		return ret;
726 	}
727 
728 	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
729 					   ah_attr->roce.dmac,
730 					   sgid_attr, &hop_limit);
731 
732 	grh->hop_limit = hop_limit;
733 	return ret;
734 }
735 
736 /*
737  * This function initializes address handle attributes from the incoming packet.
738  * Incoming packet has dgid of the receiver node on which this code is
739  * getting executed and, sgid contains the GID of the sender.
740  *
741  * When resolving mac address of destination, the arrived dgid is used
742  * as sgid and, sgid is used as dgid because sgid contains destinations
743  * GID whom to respond to.
744  *
745  * On success the caller is responsible to call rdma_destroy_ah_attr on the
746  * attr.
747  */
748 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
749 			    const struct ib_wc *wc, const struct ib_grh *grh,
750 			    struct rdma_ah_attr *ah_attr)
751 {
752 	u32 flow_class;
753 	int ret;
754 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
755 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
756 	const struct ib_gid_attr *sgid_attr;
757 	int hoplimit = 0xff;
758 	union ib_gid dgid;
759 	union ib_gid sgid;
760 
761 	might_sleep();
762 
763 	memset(ah_attr, 0, sizeof *ah_attr);
764 	ah_attr->type = rdma_ah_find_type(device, port_num);
765 	if (rdma_cap_eth_ah(device, port_num)) {
766 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
767 			net_type = wc->network_hdr_type;
768 		else
769 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
770 		gid_type = ib_network_to_gid_type(net_type);
771 	}
772 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
773 					&sgid, &dgid);
774 	if (ret)
775 		return ret;
776 
777 	rdma_ah_set_sl(ah_attr, wc->sl);
778 	rdma_ah_set_port_num(ah_attr, port_num);
779 
780 	if (rdma_protocol_roce(device, port_num)) {
781 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
782 				wc->vlan_id : 0xffff;
783 
784 		if (!(wc->wc_flags & IB_WC_GRH))
785 			return -EPROTOTYPE;
786 
787 		sgid_attr = get_sgid_attr_from_eth(device, port_num,
788 						   vlan_id, &dgid,
789 						   gid_type);
790 		if (IS_ERR(sgid_attr))
791 			return PTR_ERR(sgid_attr);
792 
793 		flow_class = be32_to_cpu(grh->version_tclass_flow);
794 		rdma_move_grh_sgid_attr(ah_attr,
795 					&sgid,
796 					flow_class & 0xFFFFF,
797 					hoplimit,
798 					(flow_class >> 20) & 0xFF,
799 					sgid_attr);
800 
801 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
802 		if (ret)
803 			rdma_destroy_ah_attr(ah_attr);
804 
805 		return ret;
806 	} else {
807 		rdma_ah_set_dlid(ah_attr, wc->slid);
808 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
809 
810 		if ((wc->wc_flags & IB_WC_GRH) == 0)
811 			return 0;
812 
813 		if (dgid.global.interface_id !=
814 					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
815 			sgid_attr = rdma_find_gid_by_port(
816 				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
817 		} else
818 			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
819 
820 		if (IS_ERR(sgid_attr))
821 			return PTR_ERR(sgid_attr);
822 		flow_class = be32_to_cpu(grh->version_tclass_flow);
823 		rdma_move_grh_sgid_attr(ah_attr,
824 					&sgid,
825 					flow_class & 0xFFFFF,
826 					hoplimit,
827 					(flow_class >> 20) & 0xFF,
828 					sgid_attr);
829 
830 		return 0;
831 	}
832 }
833 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
834 
835 /**
836  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
837  * of the reference
838  *
839  * @attr:	Pointer to AH attribute structure
840  * @dgid:	Destination GID
841  * @flow_label:	Flow label
842  * @hop_limit:	Hop limit
843  * @traffic_class: traffic class
844  * @sgid_attr:	Pointer to SGID attribute
845  *
846  * This takes ownership of the sgid_attr reference. The caller must ensure
847  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
848  * calling this function.
849  */
850 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
851 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
852 			     const struct ib_gid_attr *sgid_attr)
853 {
854 	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
855 			traffic_class);
856 	attr->grh.sgid_attr = sgid_attr;
857 }
858 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
859 
860 /**
861  * rdma_destroy_ah_attr - Release reference to SGID attribute of
862  * ah attribute.
863  * @ah_attr: Pointer to ah attribute
864  *
865  * Release reference to the SGID attribute of the ah attribute if it is
866  * non NULL. It is safe to call this multiple times, and safe to call it on
867  * a zero initialized ah_attr.
868  */
869 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
870 {
871 	if (ah_attr->grh.sgid_attr) {
872 		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
873 		ah_attr->grh.sgid_attr = NULL;
874 	}
875 }
876 EXPORT_SYMBOL(rdma_destroy_ah_attr);
877 
878 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
879 				   const struct ib_grh *grh, u8 port_num)
880 {
881 	struct rdma_ah_attr ah_attr;
882 	struct ib_ah *ah;
883 	int ret;
884 
885 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
886 	if (ret)
887 		return ERR_PTR(ret);
888 
889 	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
890 
891 	rdma_destroy_ah_attr(&ah_attr);
892 	return ah;
893 }
894 EXPORT_SYMBOL(ib_create_ah_from_wc);
895 
896 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
897 {
898 	const struct ib_gid_attr *old_sgid_attr;
899 	int ret;
900 
901 	if (ah->type != ah_attr->type)
902 		return -EINVAL;
903 
904 	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
905 	if (ret)
906 		return ret;
907 
908 	ret = ah->device->ops.modify_ah ?
909 		ah->device->ops.modify_ah(ah, ah_attr) :
910 		-EOPNOTSUPP;
911 
912 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
913 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
914 	return ret;
915 }
916 EXPORT_SYMBOL(rdma_modify_ah);
917 
918 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
919 {
920 	ah_attr->grh.sgid_attr = NULL;
921 
922 	return ah->device->ops.query_ah ?
923 		ah->device->ops.query_ah(ah, ah_attr) :
924 		-EOPNOTSUPP;
925 }
926 EXPORT_SYMBOL(rdma_query_ah);
927 
928 int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
929 {
930 	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
931 	struct ib_pd *pd;
932 	int ret;
933 
934 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
935 
936 	pd = ah->pd;
937 	ret = ah->device->ops.destroy_ah(ah, flags);
938 	if (!ret) {
939 		atomic_dec(&pd->usecnt);
940 		if (sgid_attr)
941 			rdma_put_gid_attr(sgid_attr);
942 	}
943 
944 	return ret;
945 }
946 EXPORT_SYMBOL(rdma_destroy_ah);
947 
948 /* Shared receive queues */
949 
950 struct ib_srq *ib_create_srq(struct ib_pd *pd,
951 			     struct ib_srq_init_attr *srq_init_attr)
952 {
953 	struct ib_srq *srq;
954 
955 	if (!pd->device->ops.create_srq)
956 		return ERR_PTR(-EOPNOTSUPP);
957 
958 	srq = pd->device->ops.create_srq(pd, srq_init_attr, NULL);
959 
960 	if (!IS_ERR(srq)) {
961 		srq->device    	   = pd->device;
962 		srq->pd        	   = pd;
963 		srq->uobject       = NULL;
964 		srq->event_handler = srq_init_attr->event_handler;
965 		srq->srq_context   = srq_init_attr->srq_context;
966 		srq->srq_type      = srq_init_attr->srq_type;
967 		if (ib_srq_has_cq(srq->srq_type)) {
968 			srq->ext.cq   = srq_init_attr->ext.cq;
969 			atomic_inc(&srq->ext.cq->usecnt);
970 		}
971 		if (srq->srq_type == IB_SRQT_XRC) {
972 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
973 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
974 		}
975 		atomic_inc(&pd->usecnt);
976 		atomic_set(&srq->usecnt, 0);
977 	}
978 
979 	return srq;
980 }
981 EXPORT_SYMBOL(ib_create_srq);
982 
983 int ib_modify_srq(struct ib_srq *srq,
984 		  struct ib_srq_attr *srq_attr,
985 		  enum ib_srq_attr_mask srq_attr_mask)
986 {
987 	return srq->device->ops.modify_srq ?
988 		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
989 					    NULL) : -EOPNOTSUPP;
990 }
991 EXPORT_SYMBOL(ib_modify_srq);
992 
993 int ib_query_srq(struct ib_srq *srq,
994 		 struct ib_srq_attr *srq_attr)
995 {
996 	return srq->device->ops.query_srq ?
997 		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
998 }
999 EXPORT_SYMBOL(ib_query_srq);
1000 
1001 int ib_destroy_srq(struct ib_srq *srq)
1002 {
1003 	struct ib_pd *pd;
1004 	enum ib_srq_type srq_type;
1005 	struct ib_xrcd *uninitialized_var(xrcd);
1006 	struct ib_cq *uninitialized_var(cq);
1007 	int ret;
1008 
1009 	if (atomic_read(&srq->usecnt))
1010 		return -EBUSY;
1011 
1012 	pd = srq->pd;
1013 	srq_type = srq->srq_type;
1014 	if (ib_srq_has_cq(srq_type))
1015 		cq = srq->ext.cq;
1016 	if (srq_type == IB_SRQT_XRC)
1017 		xrcd = srq->ext.xrc.xrcd;
1018 
1019 	ret = srq->device->ops.destroy_srq(srq);
1020 	if (!ret) {
1021 		atomic_dec(&pd->usecnt);
1022 		if (srq_type == IB_SRQT_XRC)
1023 			atomic_dec(&xrcd->usecnt);
1024 		if (ib_srq_has_cq(srq_type))
1025 			atomic_dec(&cq->usecnt);
1026 	}
1027 
1028 	return ret;
1029 }
1030 EXPORT_SYMBOL(ib_destroy_srq);
1031 
1032 /* Queue pairs */
1033 
1034 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1035 {
1036 	struct ib_qp *qp = context;
1037 	unsigned long flags;
1038 
1039 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1040 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1041 		if (event->element.qp->event_handler)
1042 			event->element.qp->event_handler(event, event->element.qp->qp_context);
1043 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1044 }
1045 
1046 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1047 {
1048 	mutex_lock(&xrcd->tgt_qp_mutex);
1049 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1050 	mutex_unlock(&xrcd->tgt_qp_mutex);
1051 }
1052 
1053 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1054 				  void (*event_handler)(struct ib_event *, void *),
1055 				  void *qp_context)
1056 {
1057 	struct ib_qp *qp;
1058 	unsigned long flags;
1059 	int err;
1060 
1061 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1062 	if (!qp)
1063 		return ERR_PTR(-ENOMEM);
1064 
1065 	qp->real_qp = real_qp;
1066 	err = ib_open_shared_qp_security(qp, real_qp->device);
1067 	if (err) {
1068 		kfree(qp);
1069 		return ERR_PTR(err);
1070 	}
1071 
1072 	qp->real_qp = real_qp;
1073 	atomic_inc(&real_qp->usecnt);
1074 	qp->device = real_qp->device;
1075 	qp->event_handler = event_handler;
1076 	qp->qp_context = qp_context;
1077 	qp->qp_num = real_qp->qp_num;
1078 	qp->qp_type = real_qp->qp_type;
1079 
1080 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1081 	list_add(&qp->open_list, &real_qp->open_list);
1082 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1083 
1084 	return qp;
1085 }
1086 
1087 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1088 			 struct ib_qp_open_attr *qp_open_attr)
1089 {
1090 	struct ib_qp *qp, *real_qp;
1091 
1092 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1093 		return ERR_PTR(-EINVAL);
1094 
1095 	qp = ERR_PTR(-EINVAL);
1096 	mutex_lock(&xrcd->tgt_qp_mutex);
1097 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1098 		if (real_qp->qp_num == qp_open_attr->qp_num) {
1099 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1100 					  qp_open_attr->qp_context);
1101 			break;
1102 		}
1103 	}
1104 	mutex_unlock(&xrcd->tgt_qp_mutex);
1105 	return qp;
1106 }
1107 EXPORT_SYMBOL(ib_open_qp);
1108 
1109 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
1110 		struct ib_qp_init_attr *qp_init_attr)
1111 {
1112 	struct ib_qp *real_qp = qp;
1113 
1114 	qp->event_handler = __ib_shared_qp_event_handler;
1115 	qp->qp_context = qp;
1116 	qp->pd = NULL;
1117 	qp->send_cq = qp->recv_cq = NULL;
1118 	qp->srq = NULL;
1119 	qp->xrcd = qp_init_attr->xrcd;
1120 	atomic_inc(&qp_init_attr->xrcd->usecnt);
1121 	INIT_LIST_HEAD(&qp->open_list);
1122 
1123 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1124 			  qp_init_attr->qp_context);
1125 	if (!IS_ERR(qp))
1126 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1127 	else
1128 		real_qp->device->ops.destroy_qp(real_qp);
1129 	return qp;
1130 }
1131 
1132 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1133 			   struct ib_qp_init_attr *qp_init_attr)
1134 {
1135 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1136 	struct ib_qp *qp;
1137 	int ret;
1138 
1139 	if (qp_init_attr->rwq_ind_tbl &&
1140 	    (qp_init_attr->recv_cq ||
1141 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1142 	    qp_init_attr->cap.max_recv_sge))
1143 		return ERR_PTR(-EINVAL);
1144 
1145 	/*
1146 	 * If the callers is using the RDMA API calculate the resources
1147 	 * needed for the RDMA READ/WRITE operations.
1148 	 *
1149 	 * Note that these callers need to pass in a port number.
1150 	 */
1151 	if (qp_init_attr->cap.max_rdma_ctxs)
1152 		rdma_rw_init_qp(device, qp_init_attr);
1153 
1154 	qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1155 	if (IS_ERR(qp))
1156 		return qp;
1157 
1158 	ret = ib_create_qp_security(qp, device);
1159 	if (ret) {
1160 		ib_destroy_qp(qp);
1161 		return ERR_PTR(ret);
1162 	}
1163 
1164 	qp->real_qp    = qp;
1165 	qp->qp_type    = qp_init_attr->qp_type;
1166 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1167 
1168 	atomic_set(&qp->usecnt, 0);
1169 	qp->mrs_used = 0;
1170 	spin_lock_init(&qp->mr_lock);
1171 	INIT_LIST_HEAD(&qp->rdma_mrs);
1172 	INIT_LIST_HEAD(&qp->sig_mrs);
1173 	qp->port = 0;
1174 
1175 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
1176 		return ib_create_xrc_qp(qp, qp_init_attr);
1177 
1178 	qp->event_handler = qp_init_attr->event_handler;
1179 	qp->qp_context = qp_init_attr->qp_context;
1180 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1181 		qp->recv_cq = NULL;
1182 		qp->srq = NULL;
1183 	} else {
1184 		qp->recv_cq = qp_init_attr->recv_cq;
1185 		if (qp_init_attr->recv_cq)
1186 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
1187 		qp->srq = qp_init_attr->srq;
1188 		if (qp->srq)
1189 			atomic_inc(&qp_init_attr->srq->usecnt);
1190 	}
1191 
1192 	qp->send_cq = qp_init_attr->send_cq;
1193 	qp->xrcd    = NULL;
1194 
1195 	atomic_inc(&pd->usecnt);
1196 	if (qp_init_attr->send_cq)
1197 		atomic_inc(&qp_init_attr->send_cq->usecnt);
1198 	if (qp_init_attr->rwq_ind_tbl)
1199 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1200 
1201 	if (qp_init_attr->cap.max_rdma_ctxs) {
1202 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1203 		if (ret) {
1204 			pr_err("failed to init MR pool ret= %d\n", ret);
1205 			ib_destroy_qp(qp);
1206 			return ERR_PTR(ret);
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * Note: all hw drivers guarantee that max_send_sge is lower than
1212 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1213 	 * max_send_sge <= max_sge_rd.
1214 	 */
1215 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1216 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1217 				 device->attrs.max_sge_rd);
1218 
1219 	return qp;
1220 }
1221 EXPORT_SYMBOL(ib_create_qp);
1222 
1223 static const struct {
1224 	int			valid;
1225 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1226 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1227 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1228 	[IB_QPS_RESET] = {
1229 		[IB_QPS_RESET] = { .valid = 1 },
1230 		[IB_QPS_INIT]  = {
1231 			.valid = 1,
1232 			.req_param = {
1233 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1234 						IB_QP_PORT			|
1235 						IB_QP_QKEY),
1236 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1237 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1238 						IB_QP_PORT			|
1239 						IB_QP_ACCESS_FLAGS),
1240 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1241 						IB_QP_PORT			|
1242 						IB_QP_ACCESS_FLAGS),
1243 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1244 						IB_QP_PORT			|
1245 						IB_QP_ACCESS_FLAGS),
1246 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1247 						IB_QP_PORT			|
1248 						IB_QP_ACCESS_FLAGS),
1249 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1250 						IB_QP_QKEY),
1251 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1252 						IB_QP_QKEY),
1253 			}
1254 		},
1255 	},
1256 	[IB_QPS_INIT]  = {
1257 		[IB_QPS_RESET] = { .valid = 1 },
1258 		[IB_QPS_ERR] =   { .valid = 1 },
1259 		[IB_QPS_INIT]  = {
1260 			.valid = 1,
1261 			.opt_param = {
1262 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1263 						IB_QP_PORT			|
1264 						IB_QP_QKEY),
1265 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1266 						IB_QP_PORT			|
1267 						IB_QP_ACCESS_FLAGS),
1268 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1269 						IB_QP_PORT			|
1270 						IB_QP_ACCESS_FLAGS),
1271 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1272 						IB_QP_PORT			|
1273 						IB_QP_ACCESS_FLAGS),
1274 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1275 						IB_QP_PORT			|
1276 						IB_QP_ACCESS_FLAGS),
1277 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1278 						IB_QP_QKEY),
1279 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1280 						IB_QP_QKEY),
1281 			}
1282 		},
1283 		[IB_QPS_RTR]   = {
1284 			.valid = 1,
1285 			.req_param = {
1286 				[IB_QPT_UC]  = (IB_QP_AV			|
1287 						IB_QP_PATH_MTU			|
1288 						IB_QP_DEST_QPN			|
1289 						IB_QP_RQ_PSN),
1290 				[IB_QPT_RC]  = (IB_QP_AV			|
1291 						IB_QP_PATH_MTU			|
1292 						IB_QP_DEST_QPN			|
1293 						IB_QP_RQ_PSN			|
1294 						IB_QP_MAX_DEST_RD_ATOMIC	|
1295 						IB_QP_MIN_RNR_TIMER),
1296 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1297 						IB_QP_PATH_MTU			|
1298 						IB_QP_DEST_QPN			|
1299 						IB_QP_RQ_PSN),
1300 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1301 						IB_QP_PATH_MTU			|
1302 						IB_QP_DEST_QPN			|
1303 						IB_QP_RQ_PSN			|
1304 						IB_QP_MAX_DEST_RD_ATOMIC	|
1305 						IB_QP_MIN_RNR_TIMER),
1306 			},
1307 			.opt_param = {
1308 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1309 						 IB_QP_QKEY),
1310 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1311 						 IB_QP_ACCESS_FLAGS		|
1312 						 IB_QP_PKEY_INDEX),
1313 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1314 						 IB_QP_ACCESS_FLAGS		|
1315 						 IB_QP_PKEY_INDEX),
1316 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1317 						 IB_QP_ACCESS_FLAGS		|
1318 						 IB_QP_PKEY_INDEX),
1319 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1320 						 IB_QP_ACCESS_FLAGS		|
1321 						 IB_QP_PKEY_INDEX),
1322 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1323 						 IB_QP_QKEY),
1324 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1325 						 IB_QP_QKEY),
1326 			 },
1327 		},
1328 	},
1329 	[IB_QPS_RTR]   = {
1330 		[IB_QPS_RESET] = { .valid = 1 },
1331 		[IB_QPS_ERR] =   { .valid = 1 },
1332 		[IB_QPS_RTS]   = {
1333 			.valid = 1,
1334 			.req_param = {
1335 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1336 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1337 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1338 						IB_QP_RETRY_CNT			|
1339 						IB_QP_RNR_RETRY			|
1340 						IB_QP_SQ_PSN			|
1341 						IB_QP_MAX_QP_RD_ATOMIC),
1342 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1343 						IB_QP_RETRY_CNT			|
1344 						IB_QP_RNR_RETRY			|
1345 						IB_QP_SQ_PSN			|
1346 						IB_QP_MAX_QP_RD_ATOMIC),
1347 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1348 						IB_QP_SQ_PSN),
1349 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1350 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1351 			},
1352 			.opt_param = {
1353 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1354 						 IB_QP_QKEY),
1355 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1356 						 IB_QP_ALT_PATH			|
1357 						 IB_QP_ACCESS_FLAGS		|
1358 						 IB_QP_PATH_MIG_STATE),
1359 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1360 						 IB_QP_ALT_PATH			|
1361 						 IB_QP_ACCESS_FLAGS		|
1362 						 IB_QP_MIN_RNR_TIMER		|
1363 						 IB_QP_PATH_MIG_STATE),
1364 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1365 						 IB_QP_ALT_PATH			|
1366 						 IB_QP_ACCESS_FLAGS		|
1367 						 IB_QP_PATH_MIG_STATE),
1368 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1369 						 IB_QP_ALT_PATH			|
1370 						 IB_QP_ACCESS_FLAGS		|
1371 						 IB_QP_MIN_RNR_TIMER		|
1372 						 IB_QP_PATH_MIG_STATE),
1373 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1374 						 IB_QP_QKEY),
1375 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1376 						 IB_QP_QKEY),
1377 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1378 			 }
1379 		}
1380 	},
1381 	[IB_QPS_RTS]   = {
1382 		[IB_QPS_RESET] = { .valid = 1 },
1383 		[IB_QPS_ERR] =   { .valid = 1 },
1384 		[IB_QPS_RTS]   = {
1385 			.valid = 1,
1386 			.opt_param = {
1387 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1388 						IB_QP_QKEY),
1389 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1390 						IB_QP_ACCESS_FLAGS		|
1391 						IB_QP_ALT_PATH			|
1392 						IB_QP_PATH_MIG_STATE),
1393 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1394 						IB_QP_ACCESS_FLAGS		|
1395 						IB_QP_ALT_PATH			|
1396 						IB_QP_PATH_MIG_STATE		|
1397 						IB_QP_MIN_RNR_TIMER),
1398 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1399 						IB_QP_ACCESS_FLAGS		|
1400 						IB_QP_ALT_PATH			|
1401 						IB_QP_PATH_MIG_STATE),
1402 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1403 						IB_QP_ACCESS_FLAGS		|
1404 						IB_QP_ALT_PATH			|
1405 						IB_QP_PATH_MIG_STATE		|
1406 						IB_QP_MIN_RNR_TIMER),
1407 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1408 						IB_QP_QKEY),
1409 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1410 						IB_QP_QKEY),
1411 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1412 			}
1413 		},
1414 		[IB_QPS_SQD]   = {
1415 			.valid = 1,
1416 			.opt_param = {
1417 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1418 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1419 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1420 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1421 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1422 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1423 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1424 			}
1425 		},
1426 	},
1427 	[IB_QPS_SQD]   = {
1428 		[IB_QPS_RESET] = { .valid = 1 },
1429 		[IB_QPS_ERR] =   { .valid = 1 },
1430 		[IB_QPS_RTS]   = {
1431 			.valid = 1,
1432 			.opt_param = {
1433 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1434 						IB_QP_QKEY),
1435 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1436 						IB_QP_ALT_PATH			|
1437 						IB_QP_ACCESS_FLAGS		|
1438 						IB_QP_PATH_MIG_STATE),
1439 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1440 						IB_QP_ALT_PATH			|
1441 						IB_QP_ACCESS_FLAGS		|
1442 						IB_QP_MIN_RNR_TIMER		|
1443 						IB_QP_PATH_MIG_STATE),
1444 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1445 						IB_QP_ALT_PATH			|
1446 						IB_QP_ACCESS_FLAGS		|
1447 						IB_QP_PATH_MIG_STATE),
1448 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1449 						IB_QP_ALT_PATH			|
1450 						IB_QP_ACCESS_FLAGS		|
1451 						IB_QP_MIN_RNR_TIMER		|
1452 						IB_QP_PATH_MIG_STATE),
1453 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1454 						IB_QP_QKEY),
1455 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1456 						IB_QP_QKEY),
1457 			}
1458 		},
1459 		[IB_QPS_SQD]   = {
1460 			.valid = 1,
1461 			.opt_param = {
1462 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1463 						IB_QP_QKEY),
1464 				[IB_QPT_UC]  = (IB_QP_AV			|
1465 						IB_QP_ALT_PATH			|
1466 						IB_QP_ACCESS_FLAGS		|
1467 						IB_QP_PKEY_INDEX		|
1468 						IB_QP_PATH_MIG_STATE),
1469 				[IB_QPT_RC]  = (IB_QP_PORT			|
1470 						IB_QP_AV			|
1471 						IB_QP_TIMEOUT			|
1472 						IB_QP_RETRY_CNT			|
1473 						IB_QP_RNR_RETRY			|
1474 						IB_QP_MAX_QP_RD_ATOMIC		|
1475 						IB_QP_MAX_DEST_RD_ATOMIC	|
1476 						IB_QP_ALT_PATH			|
1477 						IB_QP_ACCESS_FLAGS		|
1478 						IB_QP_PKEY_INDEX		|
1479 						IB_QP_MIN_RNR_TIMER		|
1480 						IB_QP_PATH_MIG_STATE),
1481 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1482 						IB_QP_AV			|
1483 						IB_QP_TIMEOUT			|
1484 						IB_QP_RETRY_CNT			|
1485 						IB_QP_RNR_RETRY			|
1486 						IB_QP_MAX_QP_RD_ATOMIC		|
1487 						IB_QP_ALT_PATH			|
1488 						IB_QP_ACCESS_FLAGS		|
1489 						IB_QP_PKEY_INDEX		|
1490 						IB_QP_PATH_MIG_STATE),
1491 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1492 						IB_QP_AV			|
1493 						IB_QP_TIMEOUT			|
1494 						IB_QP_MAX_DEST_RD_ATOMIC	|
1495 						IB_QP_ALT_PATH			|
1496 						IB_QP_ACCESS_FLAGS		|
1497 						IB_QP_PKEY_INDEX		|
1498 						IB_QP_MIN_RNR_TIMER		|
1499 						IB_QP_PATH_MIG_STATE),
1500 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1501 						IB_QP_QKEY),
1502 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1503 						IB_QP_QKEY),
1504 			}
1505 		}
1506 	},
1507 	[IB_QPS_SQE]   = {
1508 		[IB_QPS_RESET] = { .valid = 1 },
1509 		[IB_QPS_ERR] =   { .valid = 1 },
1510 		[IB_QPS_RTS]   = {
1511 			.valid = 1,
1512 			.opt_param = {
1513 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1514 						IB_QP_QKEY),
1515 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1516 						IB_QP_ACCESS_FLAGS),
1517 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1518 						IB_QP_QKEY),
1519 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1520 						IB_QP_QKEY),
1521 			}
1522 		}
1523 	},
1524 	[IB_QPS_ERR] = {
1525 		[IB_QPS_RESET] = { .valid = 1 },
1526 		[IB_QPS_ERR] =   { .valid = 1 }
1527 	}
1528 };
1529 
1530 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1531 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1532 {
1533 	enum ib_qp_attr_mask req_param, opt_param;
1534 
1535 	if (mask & IB_QP_CUR_STATE  &&
1536 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1537 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1538 		return false;
1539 
1540 	if (!qp_state_table[cur_state][next_state].valid)
1541 		return false;
1542 
1543 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1544 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1545 
1546 	if ((mask & req_param) != req_param)
1547 		return false;
1548 
1549 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1550 		return false;
1551 
1552 	return true;
1553 }
1554 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1555 
1556 /**
1557  * ib_resolve_eth_dmac - Resolve destination mac address
1558  * @device:		Device to consider
1559  * @ah_attr:		address handle attribute which describes the
1560  *			source and destination parameters
1561  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1562  * returns 0 on success or appropriate error code. It initializes the
1563  * necessary ah_attr fields when call is successful.
1564  */
1565 static int ib_resolve_eth_dmac(struct ib_device *device,
1566 			       struct rdma_ah_attr *ah_attr)
1567 {
1568 	int ret = 0;
1569 
1570 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1571 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1572 			__be32 addr = 0;
1573 
1574 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1575 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1576 		} else {
1577 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1578 					(char *)ah_attr->roce.dmac);
1579 		}
1580 	} else {
1581 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1582 	}
1583 	return ret;
1584 }
1585 
1586 static bool is_qp_type_connected(const struct ib_qp *qp)
1587 {
1588 	return (qp->qp_type == IB_QPT_UC ||
1589 		qp->qp_type == IB_QPT_RC ||
1590 		qp->qp_type == IB_QPT_XRC_INI ||
1591 		qp->qp_type == IB_QPT_XRC_TGT);
1592 }
1593 
1594 /**
1595  * IB core internal function to perform QP attributes modification.
1596  */
1597 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1598 			 int attr_mask, struct ib_udata *udata)
1599 {
1600 	u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1601 	const struct ib_gid_attr *old_sgid_attr_av;
1602 	const struct ib_gid_attr *old_sgid_attr_alt_av;
1603 	int ret;
1604 
1605 	if (attr_mask & IB_QP_AV) {
1606 		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1607 					  &old_sgid_attr_av);
1608 		if (ret)
1609 			return ret;
1610 	}
1611 	if (attr_mask & IB_QP_ALT_PATH) {
1612 		/*
1613 		 * FIXME: This does not track the migration state, so if the
1614 		 * user loads a new alternate path after the HW has migrated
1615 		 * from primary->alternate we will keep the wrong
1616 		 * references. This is OK for IB because the reference
1617 		 * counting does not serve any functional purpose.
1618 		 */
1619 		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1620 					  &old_sgid_attr_alt_av);
1621 		if (ret)
1622 			goto out_av;
1623 
1624 		/*
1625 		 * Today the core code can only handle alternate paths and APM
1626 		 * for IB. Ban them in roce mode.
1627 		 */
1628 		if (!(rdma_protocol_ib(qp->device,
1629 				       attr->alt_ah_attr.port_num) &&
1630 		      rdma_protocol_ib(qp->device, port))) {
1631 			ret = EINVAL;
1632 			goto out;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * If the user provided the qp_attr then we have to resolve it. Kernel
1638 	 * users have to provide already resolved rdma_ah_attr's
1639 	 */
1640 	if (udata && (attr_mask & IB_QP_AV) &&
1641 	    attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1642 	    is_qp_type_connected(qp)) {
1643 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1644 		if (ret)
1645 			goto out;
1646 	}
1647 
1648 	if (rdma_ib_or_roce(qp->device, port)) {
1649 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1650 			dev_warn(&qp->device->dev,
1651 				 "%s rq_psn overflow, masking to 24 bits\n",
1652 				 __func__);
1653 			attr->rq_psn &= 0xffffff;
1654 		}
1655 
1656 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1657 			dev_warn(&qp->device->dev,
1658 				 " %s sq_psn overflow, masking to 24 bits\n",
1659 				 __func__);
1660 			attr->sq_psn &= 0xffffff;
1661 		}
1662 	}
1663 
1664 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1665 	if (ret)
1666 		goto out;
1667 
1668 	if (attr_mask & IB_QP_PORT)
1669 		qp->port = attr->port_num;
1670 	if (attr_mask & IB_QP_AV)
1671 		qp->av_sgid_attr =
1672 			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1673 	if (attr_mask & IB_QP_ALT_PATH)
1674 		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1675 			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1676 
1677 out:
1678 	if (attr_mask & IB_QP_ALT_PATH)
1679 		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1680 out_av:
1681 	if (attr_mask & IB_QP_AV)
1682 		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1683 	return ret;
1684 }
1685 
1686 /**
1687  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1688  * @ib_qp: The QP to modify.
1689  * @attr: On input, specifies the QP attributes to modify.  On output,
1690  *   the current values of selected QP attributes are returned.
1691  * @attr_mask: A bit-mask used to specify which attributes of the QP
1692  *   are being modified.
1693  * @udata: pointer to user's input output buffer information
1694  *   are being modified.
1695  * It returns 0 on success and returns appropriate error code on error.
1696  */
1697 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1698 			    int attr_mask, struct ib_udata *udata)
1699 {
1700 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1701 }
1702 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1703 
1704 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1705 {
1706 	int rc;
1707 	u32 netdev_speed;
1708 	struct net_device *netdev;
1709 	struct ethtool_link_ksettings lksettings;
1710 
1711 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1712 		return -EINVAL;
1713 
1714 	if (!dev->ops.get_netdev)
1715 		return -EOPNOTSUPP;
1716 
1717 	netdev = dev->ops.get_netdev(dev, port_num);
1718 	if (!netdev)
1719 		return -ENODEV;
1720 
1721 	rtnl_lock();
1722 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1723 	rtnl_unlock();
1724 
1725 	dev_put(netdev);
1726 
1727 	if (!rc) {
1728 		netdev_speed = lksettings.base.speed;
1729 	} else {
1730 		netdev_speed = SPEED_1000;
1731 		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1732 			netdev_speed);
1733 	}
1734 
1735 	if (netdev_speed <= SPEED_1000) {
1736 		*width = IB_WIDTH_1X;
1737 		*speed = IB_SPEED_SDR;
1738 	} else if (netdev_speed <= SPEED_10000) {
1739 		*width = IB_WIDTH_1X;
1740 		*speed = IB_SPEED_FDR10;
1741 	} else if (netdev_speed <= SPEED_20000) {
1742 		*width = IB_WIDTH_4X;
1743 		*speed = IB_SPEED_DDR;
1744 	} else if (netdev_speed <= SPEED_25000) {
1745 		*width = IB_WIDTH_1X;
1746 		*speed = IB_SPEED_EDR;
1747 	} else if (netdev_speed <= SPEED_40000) {
1748 		*width = IB_WIDTH_4X;
1749 		*speed = IB_SPEED_FDR10;
1750 	} else {
1751 		*width = IB_WIDTH_4X;
1752 		*speed = IB_SPEED_EDR;
1753 	}
1754 
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(ib_get_eth_speed);
1758 
1759 int ib_modify_qp(struct ib_qp *qp,
1760 		 struct ib_qp_attr *qp_attr,
1761 		 int qp_attr_mask)
1762 {
1763 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1764 }
1765 EXPORT_SYMBOL(ib_modify_qp);
1766 
1767 int ib_query_qp(struct ib_qp *qp,
1768 		struct ib_qp_attr *qp_attr,
1769 		int qp_attr_mask,
1770 		struct ib_qp_init_attr *qp_init_attr)
1771 {
1772 	qp_attr->ah_attr.grh.sgid_attr = NULL;
1773 	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1774 
1775 	return qp->device->ops.query_qp ?
1776 		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1777 					 qp_init_attr) : -EOPNOTSUPP;
1778 }
1779 EXPORT_SYMBOL(ib_query_qp);
1780 
1781 int ib_close_qp(struct ib_qp *qp)
1782 {
1783 	struct ib_qp *real_qp;
1784 	unsigned long flags;
1785 
1786 	real_qp = qp->real_qp;
1787 	if (real_qp == qp)
1788 		return -EINVAL;
1789 
1790 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1791 	list_del(&qp->open_list);
1792 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1793 
1794 	atomic_dec(&real_qp->usecnt);
1795 	if (qp->qp_sec)
1796 		ib_close_shared_qp_security(qp->qp_sec);
1797 	kfree(qp);
1798 
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL(ib_close_qp);
1802 
1803 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1804 {
1805 	struct ib_xrcd *xrcd;
1806 	struct ib_qp *real_qp;
1807 	int ret;
1808 
1809 	real_qp = qp->real_qp;
1810 	xrcd = real_qp->xrcd;
1811 
1812 	mutex_lock(&xrcd->tgt_qp_mutex);
1813 	ib_close_qp(qp);
1814 	if (atomic_read(&real_qp->usecnt) == 0)
1815 		list_del(&real_qp->xrcd_list);
1816 	else
1817 		real_qp = NULL;
1818 	mutex_unlock(&xrcd->tgt_qp_mutex);
1819 
1820 	if (real_qp) {
1821 		ret = ib_destroy_qp(real_qp);
1822 		if (!ret)
1823 			atomic_dec(&xrcd->usecnt);
1824 		else
1825 			__ib_insert_xrcd_qp(xrcd, real_qp);
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 int ib_destroy_qp(struct ib_qp *qp)
1832 {
1833 	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1834 	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1835 	struct ib_pd *pd;
1836 	struct ib_cq *scq, *rcq;
1837 	struct ib_srq *srq;
1838 	struct ib_rwq_ind_table *ind_tbl;
1839 	struct ib_qp_security *sec;
1840 	int ret;
1841 
1842 	WARN_ON_ONCE(qp->mrs_used > 0);
1843 
1844 	if (atomic_read(&qp->usecnt))
1845 		return -EBUSY;
1846 
1847 	if (qp->real_qp != qp)
1848 		return __ib_destroy_shared_qp(qp);
1849 
1850 	pd   = qp->pd;
1851 	scq  = qp->send_cq;
1852 	rcq  = qp->recv_cq;
1853 	srq  = qp->srq;
1854 	ind_tbl = qp->rwq_ind_tbl;
1855 	sec  = qp->qp_sec;
1856 	if (sec)
1857 		ib_destroy_qp_security_begin(sec);
1858 
1859 	if (!qp->uobject)
1860 		rdma_rw_cleanup_mrs(qp);
1861 
1862 	rdma_restrack_del(&qp->res);
1863 	ret = qp->device->ops.destroy_qp(qp);
1864 	if (!ret) {
1865 		if (alt_path_sgid_attr)
1866 			rdma_put_gid_attr(alt_path_sgid_attr);
1867 		if (av_sgid_attr)
1868 			rdma_put_gid_attr(av_sgid_attr);
1869 		if (pd)
1870 			atomic_dec(&pd->usecnt);
1871 		if (scq)
1872 			atomic_dec(&scq->usecnt);
1873 		if (rcq)
1874 			atomic_dec(&rcq->usecnt);
1875 		if (srq)
1876 			atomic_dec(&srq->usecnt);
1877 		if (ind_tbl)
1878 			atomic_dec(&ind_tbl->usecnt);
1879 		if (sec)
1880 			ib_destroy_qp_security_end(sec);
1881 	} else {
1882 		if (sec)
1883 			ib_destroy_qp_security_abort(sec);
1884 	}
1885 
1886 	return ret;
1887 }
1888 EXPORT_SYMBOL(ib_destroy_qp);
1889 
1890 /* Completion queues */
1891 
1892 struct ib_cq *__ib_create_cq(struct ib_device *device,
1893 			     ib_comp_handler comp_handler,
1894 			     void (*event_handler)(struct ib_event *, void *),
1895 			     void *cq_context,
1896 			     const struct ib_cq_init_attr *cq_attr,
1897 			     const char *caller)
1898 {
1899 	struct ib_cq *cq;
1900 
1901 	cq = device->ops.create_cq(device, cq_attr, NULL, NULL);
1902 
1903 	if (!IS_ERR(cq)) {
1904 		cq->device        = device;
1905 		cq->uobject       = NULL;
1906 		cq->comp_handler  = comp_handler;
1907 		cq->event_handler = event_handler;
1908 		cq->cq_context    = cq_context;
1909 		atomic_set(&cq->usecnt, 0);
1910 		cq->res.type = RDMA_RESTRACK_CQ;
1911 		rdma_restrack_set_task(&cq->res, caller);
1912 		rdma_restrack_kadd(&cq->res);
1913 	}
1914 
1915 	return cq;
1916 }
1917 EXPORT_SYMBOL(__ib_create_cq);
1918 
1919 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1920 {
1921 	return cq->device->ops.modify_cq ?
1922 		cq->device->ops.modify_cq(cq, cq_count,
1923 					  cq_period) : -EOPNOTSUPP;
1924 }
1925 EXPORT_SYMBOL(rdma_set_cq_moderation);
1926 
1927 int ib_destroy_cq(struct ib_cq *cq)
1928 {
1929 	if (atomic_read(&cq->usecnt))
1930 		return -EBUSY;
1931 
1932 	rdma_restrack_del(&cq->res);
1933 	return cq->device->ops.destroy_cq(cq);
1934 }
1935 EXPORT_SYMBOL(ib_destroy_cq);
1936 
1937 int ib_resize_cq(struct ib_cq *cq, int cqe)
1938 {
1939 	return cq->device->ops.resize_cq ?
1940 		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1941 }
1942 EXPORT_SYMBOL(ib_resize_cq);
1943 
1944 /* Memory regions */
1945 
1946 int ib_dereg_mr(struct ib_mr *mr)
1947 {
1948 	struct ib_pd *pd = mr->pd;
1949 	struct ib_dm *dm = mr->dm;
1950 	int ret;
1951 
1952 	rdma_restrack_del(&mr->res);
1953 	ret = mr->device->ops.dereg_mr(mr);
1954 	if (!ret) {
1955 		atomic_dec(&pd->usecnt);
1956 		if (dm)
1957 			atomic_dec(&dm->usecnt);
1958 	}
1959 
1960 	return ret;
1961 }
1962 EXPORT_SYMBOL(ib_dereg_mr);
1963 
1964 /**
1965  * ib_alloc_mr() - Allocates a memory region
1966  * @pd:            protection domain associated with the region
1967  * @mr_type:       memory region type
1968  * @max_num_sg:    maximum sg entries available for registration.
1969  *
1970  * Notes:
1971  * Memory registeration page/sg lists must not exceed max_num_sg.
1972  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1973  * max_num_sg * used_page_size.
1974  *
1975  */
1976 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1977 			  enum ib_mr_type mr_type,
1978 			  u32 max_num_sg)
1979 {
1980 	struct ib_mr *mr;
1981 
1982 	if (!pd->device->ops.alloc_mr)
1983 		return ERR_PTR(-EOPNOTSUPP);
1984 
1985 	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
1986 	if (!IS_ERR(mr)) {
1987 		mr->device  = pd->device;
1988 		mr->pd      = pd;
1989 		mr->dm      = NULL;
1990 		mr->uobject = NULL;
1991 		atomic_inc(&pd->usecnt);
1992 		mr->need_inval = false;
1993 		mr->res.type = RDMA_RESTRACK_MR;
1994 		rdma_restrack_kadd(&mr->res);
1995 	}
1996 
1997 	return mr;
1998 }
1999 EXPORT_SYMBOL(ib_alloc_mr);
2000 
2001 /* "Fast" memory regions */
2002 
2003 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2004 			    int mr_access_flags,
2005 			    struct ib_fmr_attr *fmr_attr)
2006 {
2007 	struct ib_fmr *fmr;
2008 
2009 	if (!pd->device->ops.alloc_fmr)
2010 		return ERR_PTR(-EOPNOTSUPP);
2011 
2012 	fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
2013 	if (!IS_ERR(fmr)) {
2014 		fmr->device = pd->device;
2015 		fmr->pd     = pd;
2016 		atomic_inc(&pd->usecnt);
2017 	}
2018 
2019 	return fmr;
2020 }
2021 EXPORT_SYMBOL(ib_alloc_fmr);
2022 
2023 int ib_unmap_fmr(struct list_head *fmr_list)
2024 {
2025 	struct ib_fmr *fmr;
2026 
2027 	if (list_empty(fmr_list))
2028 		return 0;
2029 
2030 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2031 	return fmr->device->ops.unmap_fmr(fmr_list);
2032 }
2033 EXPORT_SYMBOL(ib_unmap_fmr);
2034 
2035 int ib_dealloc_fmr(struct ib_fmr *fmr)
2036 {
2037 	struct ib_pd *pd;
2038 	int ret;
2039 
2040 	pd = fmr->pd;
2041 	ret = fmr->device->ops.dealloc_fmr(fmr);
2042 	if (!ret)
2043 		atomic_dec(&pd->usecnt);
2044 
2045 	return ret;
2046 }
2047 EXPORT_SYMBOL(ib_dealloc_fmr);
2048 
2049 /* Multicast groups */
2050 
2051 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2052 {
2053 	struct ib_qp_init_attr init_attr = {};
2054 	struct ib_qp_attr attr = {};
2055 	int num_eth_ports = 0;
2056 	int port;
2057 
2058 	/* If QP state >= init, it is assigned to a port and we can check this
2059 	 * port only.
2060 	 */
2061 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2062 		if (attr.qp_state >= IB_QPS_INIT) {
2063 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2064 			    IB_LINK_LAYER_INFINIBAND)
2065 				return true;
2066 			goto lid_check;
2067 		}
2068 	}
2069 
2070 	/* Can't get a quick answer, iterate over all ports */
2071 	for (port = 0; port < qp->device->phys_port_cnt; port++)
2072 		if (rdma_port_get_link_layer(qp->device, port) !=
2073 		    IB_LINK_LAYER_INFINIBAND)
2074 			num_eth_ports++;
2075 
2076 	/* If we have at lease one Ethernet port, RoCE annex declares that
2077 	 * multicast LID should be ignored. We can't tell at this step if the
2078 	 * QP belongs to an IB or Ethernet port.
2079 	 */
2080 	if (num_eth_ports)
2081 		return true;
2082 
2083 	/* If all the ports are IB, we can check according to IB spec. */
2084 lid_check:
2085 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2086 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2087 }
2088 
2089 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2090 {
2091 	int ret;
2092 
2093 	if (!qp->device->ops.attach_mcast)
2094 		return -EOPNOTSUPP;
2095 
2096 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2097 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2098 		return -EINVAL;
2099 
2100 	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2101 	if (!ret)
2102 		atomic_inc(&qp->usecnt);
2103 	return ret;
2104 }
2105 EXPORT_SYMBOL(ib_attach_mcast);
2106 
2107 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2108 {
2109 	int ret;
2110 
2111 	if (!qp->device->ops.detach_mcast)
2112 		return -EOPNOTSUPP;
2113 
2114 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2115 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2116 		return -EINVAL;
2117 
2118 	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2119 	if (!ret)
2120 		atomic_dec(&qp->usecnt);
2121 	return ret;
2122 }
2123 EXPORT_SYMBOL(ib_detach_mcast);
2124 
2125 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2126 {
2127 	struct ib_xrcd *xrcd;
2128 
2129 	if (!device->ops.alloc_xrcd)
2130 		return ERR_PTR(-EOPNOTSUPP);
2131 
2132 	xrcd = device->ops.alloc_xrcd(device, NULL, NULL);
2133 	if (!IS_ERR(xrcd)) {
2134 		xrcd->device = device;
2135 		xrcd->inode = NULL;
2136 		atomic_set(&xrcd->usecnt, 0);
2137 		mutex_init(&xrcd->tgt_qp_mutex);
2138 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2139 	}
2140 
2141 	return xrcd;
2142 }
2143 EXPORT_SYMBOL(__ib_alloc_xrcd);
2144 
2145 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2146 {
2147 	struct ib_qp *qp;
2148 	int ret;
2149 
2150 	if (atomic_read(&xrcd->usecnt))
2151 		return -EBUSY;
2152 
2153 	while (!list_empty(&xrcd->tgt_qp_list)) {
2154 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2155 		ret = ib_destroy_qp(qp);
2156 		if (ret)
2157 			return ret;
2158 	}
2159 
2160 	return xrcd->device->ops.dealloc_xrcd(xrcd);
2161 }
2162 EXPORT_SYMBOL(ib_dealloc_xrcd);
2163 
2164 /**
2165  * ib_create_wq - Creates a WQ associated with the specified protection
2166  * domain.
2167  * @pd: The protection domain associated with the WQ.
2168  * @wq_attr: A list of initial attributes required to create the
2169  * WQ. If WQ creation succeeds, then the attributes are updated to
2170  * the actual capabilities of the created WQ.
2171  *
2172  * wq_attr->max_wr and wq_attr->max_sge determine
2173  * the requested size of the WQ, and set to the actual values allocated
2174  * on return.
2175  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2176  * at least as large as the requested values.
2177  */
2178 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2179 			   struct ib_wq_init_attr *wq_attr)
2180 {
2181 	struct ib_wq *wq;
2182 
2183 	if (!pd->device->ops.create_wq)
2184 		return ERR_PTR(-EOPNOTSUPP);
2185 
2186 	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2187 	if (!IS_ERR(wq)) {
2188 		wq->event_handler = wq_attr->event_handler;
2189 		wq->wq_context = wq_attr->wq_context;
2190 		wq->wq_type = wq_attr->wq_type;
2191 		wq->cq = wq_attr->cq;
2192 		wq->device = pd->device;
2193 		wq->pd = pd;
2194 		wq->uobject = NULL;
2195 		atomic_inc(&pd->usecnt);
2196 		atomic_inc(&wq_attr->cq->usecnt);
2197 		atomic_set(&wq->usecnt, 0);
2198 	}
2199 	return wq;
2200 }
2201 EXPORT_SYMBOL(ib_create_wq);
2202 
2203 /**
2204  * ib_destroy_wq - Destroys the specified WQ.
2205  * @wq: The WQ to destroy.
2206  */
2207 int ib_destroy_wq(struct ib_wq *wq)
2208 {
2209 	int err;
2210 	struct ib_cq *cq = wq->cq;
2211 	struct ib_pd *pd = wq->pd;
2212 
2213 	if (atomic_read(&wq->usecnt))
2214 		return -EBUSY;
2215 
2216 	err = wq->device->ops.destroy_wq(wq);
2217 	if (!err) {
2218 		atomic_dec(&pd->usecnt);
2219 		atomic_dec(&cq->usecnt);
2220 	}
2221 	return err;
2222 }
2223 EXPORT_SYMBOL(ib_destroy_wq);
2224 
2225 /**
2226  * ib_modify_wq - Modifies the specified WQ.
2227  * @wq: The WQ to modify.
2228  * @wq_attr: On input, specifies the WQ attributes to modify.
2229  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2230  *   are being modified.
2231  * On output, the current values of selected WQ attributes are returned.
2232  */
2233 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2234 		 u32 wq_attr_mask)
2235 {
2236 	int err;
2237 
2238 	if (!wq->device->ops.modify_wq)
2239 		return -EOPNOTSUPP;
2240 
2241 	err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2242 	return err;
2243 }
2244 EXPORT_SYMBOL(ib_modify_wq);
2245 
2246 /*
2247  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2248  * @device: The device on which to create the rwq indirection table.
2249  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2250  * create the Indirection Table.
2251  *
2252  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2253  *	than the created ib_rwq_ind_table object and the caller is responsible
2254  *	for its memory allocation/free.
2255  */
2256 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2257 						 struct ib_rwq_ind_table_init_attr *init_attr)
2258 {
2259 	struct ib_rwq_ind_table *rwq_ind_table;
2260 	int i;
2261 	u32 table_size;
2262 
2263 	if (!device->ops.create_rwq_ind_table)
2264 		return ERR_PTR(-EOPNOTSUPP);
2265 
2266 	table_size = (1 << init_attr->log_ind_tbl_size);
2267 	rwq_ind_table = device->ops.create_rwq_ind_table(device,
2268 							 init_attr, NULL);
2269 	if (IS_ERR(rwq_ind_table))
2270 		return rwq_ind_table;
2271 
2272 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2273 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2274 	rwq_ind_table->device = device;
2275 	rwq_ind_table->uobject = NULL;
2276 	atomic_set(&rwq_ind_table->usecnt, 0);
2277 
2278 	for (i = 0; i < table_size; i++)
2279 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2280 
2281 	return rwq_ind_table;
2282 }
2283 EXPORT_SYMBOL(ib_create_rwq_ind_table);
2284 
2285 /*
2286  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2287  * @wq_ind_table: The Indirection Table to destroy.
2288 */
2289 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2290 {
2291 	int err, i;
2292 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2293 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2294 
2295 	if (atomic_read(&rwq_ind_table->usecnt))
2296 		return -EBUSY;
2297 
2298 	err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2299 	if (!err) {
2300 		for (i = 0; i < table_size; i++)
2301 			atomic_dec(&ind_tbl[i]->usecnt);
2302 	}
2303 
2304 	return err;
2305 }
2306 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2307 
2308 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2309 		       struct ib_mr_status *mr_status)
2310 {
2311 	if (!mr->device->ops.check_mr_status)
2312 		return -EOPNOTSUPP;
2313 
2314 	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2315 }
2316 EXPORT_SYMBOL(ib_check_mr_status);
2317 
2318 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2319 			 int state)
2320 {
2321 	if (!device->ops.set_vf_link_state)
2322 		return -EOPNOTSUPP;
2323 
2324 	return device->ops.set_vf_link_state(device, vf, port, state);
2325 }
2326 EXPORT_SYMBOL(ib_set_vf_link_state);
2327 
2328 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2329 		     struct ifla_vf_info *info)
2330 {
2331 	if (!device->ops.get_vf_config)
2332 		return -EOPNOTSUPP;
2333 
2334 	return device->ops.get_vf_config(device, vf, port, info);
2335 }
2336 EXPORT_SYMBOL(ib_get_vf_config);
2337 
2338 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2339 		    struct ifla_vf_stats *stats)
2340 {
2341 	if (!device->ops.get_vf_stats)
2342 		return -EOPNOTSUPP;
2343 
2344 	return device->ops.get_vf_stats(device, vf, port, stats);
2345 }
2346 EXPORT_SYMBOL(ib_get_vf_stats);
2347 
2348 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2349 		   int type)
2350 {
2351 	if (!device->ops.set_vf_guid)
2352 		return -EOPNOTSUPP;
2353 
2354 	return device->ops.set_vf_guid(device, vf, port, guid, type);
2355 }
2356 EXPORT_SYMBOL(ib_set_vf_guid);
2357 
2358 /**
2359  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2360  *     and set it the memory region.
2361  * @mr:            memory region
2362  * @sg:            dma mapped scatterlist
2363  * @sg_nents:      number of entries in sg
2364  * @sg_offset:     offset in bytes into sg
2365  * @page_size:     page vector desired page size
2366  *
2367  * Constraints:
2368  * - The first sg element is allowed to have an offset.
2369  * - Each sg element must either be aligned to page_size or virtually
2370  *   contiguous to the previous element. In case an sg element has a
2371  *   non-contiguous offset, the mapping prefix will not include it.
2372  * - The last sg element is allowed to have length less than page_size.
2373  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2374  *   then only max_num_sg entries will be mapped.
2375  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2376  *   constraints holds and the page_size argument is ignored.
2377  *
2378  * Returns the number of sg elements that were mapped to the memory region.
2379  *
2380  * After this completes successfully, the  memory region
2381  * is ready for registration.
2382  */
2383 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2384 		 unsigned int *sg_offset, unsigned int page_size)
2385 {
2386 	if (unlikely(!mr->device->ops.map_mr_sg))
2387 		return -EOPNOTSUPP;
2388 
2389 	mr->page_size = page_size;
2390 
2391 	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2392 }
2393 EXPORT_SYMBOL(ib_map_mr_sg);
2394 
2395 /**
2396  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2397  *     to a page vector
2398  * @mr:            memory region
2399  * @sgl:           dma mapped scatterlist
2400  * @sg_nents:      number of entries in sg
2401  * @sg_offset_p:   IN:  start offset in bytes into sg
2402  *                 OUT: offset in bytes for element n of the sg of the first
2403  *                      byte that has not been processed where n is the return
2404  *                      value of this function.
2405  * @set_page:      driver page assignment function pointer
2406  *
2407  * Core service helper for drivers to convert the largest
2408  * prefix of given sg list to a page vector. The sg list
2409  * prefix converted is the prefix that meet the requirements
2410  * of ib_map_mr_sg.
2411  *
2412  * Returns the number of sg elements that were assigned to
2413  * a page vector.
2414  */
2415 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2416 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2417 {
2418 	struct scatterlist *sg;
2419 	u64 last_end_dma_addr = 0;
2420 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2421 	unsigned int last_page_off = 0;
2422 	u64 page_mask = ~((u64)mr->page_size - 1);
2423 	int i, ret;
2424 
2425 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2426 		return -EINVAL;
2427 
2428 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2429 	mr->length = 0;
2430 
2431 	for_each_sg(sgl, sg, sg_nents, i) {
2432 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2433 		u64 prev_addr = dma_addr;
2434 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2435 		u64 end_dma_addr = dma_addr + dma_len;
2436 		u64 page_addr = dma_addr & page_mask;
2437 
2438 		/*
2439 		 * For the second and later elements, check whether either the
2440 		 * end of element i-1 or the start of element i is not aligned
2441 		 * on a page boundary.
2442 		 */
2443 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2444 			/* Stop mapping if there is a gap. */
2445 			if (last_end_dma_addr != dma_addr)
2446 				break;
2447 
2448 			/*
2449 			 * Coalesce this element with the last. If it is small
2450 			 * enough just update mr->length. Otherwise start
2451 			 * mapping from the next page.
2452 			 */
2453 			goto next_page;
2454 		}
2455 
2456 		do {
2457 			ret = set_page(mr, page_addr);
2458 			if (unlikely(ret < 0)) {
2459 				sg_offset = prev_addr - sg_dma_address(sg);
2460 				mr->length += prev_addr - dma_addr;
2461 				if (sg_offset_p)
2462 					*sg_offset_p = sg_offset;
2463 				return i || sg_offset ? i : ret;
2464 			}
2465 			prev_addr = page_addr;
2466 next_page:
2467 			page_addr += mr->page_size;
2468 		} while (page_addr < end_dma_addr);
2469 
2470 		mr->length += dma_len;
2471 		last_end_dma_addr = end_dma_addr;
2472 		last_page_off = end_dma_addr & ~page_mask;
2473 
2474 		sg_offset = 0;
2475 	}
2476 
2477 	if (sg_offset_p)
2478 		*sg_offset_p = 0;
2479 	return i;
2480 }
2481 EXPORT_SYMBOL(ib_sg_to_pages);
2482 
2483 struct ib_drain_cqe {
2484 	struct ib_cqe cqe;
2485 	struct completion done;
2486 };
2487 
2488 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2489 {
2490 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2491 						cqe);
2492 
2493 	complete(&cqe->done);
2494 }
2495 
2496 /*
2497  * Post a WR and block until its completion is reaped for the SQ.
2498  */
2499 static void __ib_drain_sq(struct ib_qp *qp)
2500 {
2501 	struct ib_cq *cq = qp->send_cq;
2502 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2503 	struct ib_drain_cqe sdrain;
2504 	struct ib_rdma_wr swr = {
2505 		.wr = {
2506 			.next = NULL,
2507 			{ .wr_cqe	= &sdrain.cqe, },
2508 			.opcode	= IB_WR_RDMA_WRITE,
2509 		},
2510 	};
2511 	int ret;
2512 
2513 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2514 	if (ret) {
2515 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2516 		return;
2517 	}
2518 
2519 	sdrain.cqe.done = ib_drain_qp_done;
2520 	init_completion(&sdrain.done);
2521 
2522 	ret = ib_post_send(qp, &swr.wr, NULL);
2523 	if (ret) {
2524 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2525 		return;
2526 	}
2527 
2528 	if (cq->poll_ctx == IB_POLL_DIRECT)
2529 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2530 			ib_process_cq_direct(cq, -1);
2531 	else
2532 		wait_for_completion(&sdrain.done);
2533 }
2534 
2535 /*
2536  * Post a WR and block until its completion is reaped for the RQ.
2537  */
2538 static void __ib_drain_rq(struct ib_qp *qp)
2539 {
2540 	struct ib_cq *cq = qp->recv_cq;
2541 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2542 	struct ib_drain_cqe rdrain;
2543 	struct ib_recv_wr rwr = {};
2544 	int ret;
2545 
2546 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2547 	if (ret) {
2548 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2549 		return;
2550 	}
2551 
2552 	rwr.wr_cqe = &rdrain.cqe;
2553 	rdrain.cqe.done = ib_drain_qp_done;
2554 	init_completion(&rdrain.done);
2555 
2556 	ret = ib_post_recv(qp, &rwr, NULL);
2557 	if (ret) {
2558 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2559 		return;
2560 	}
2561 
2562 	if (cq->poll_ctx == IB_POLL_DIRECT)
2563 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2564 			ib_process_cq_direct(cq, -1);
2565 	else
2566 		wait_for_completion(&rdrain.done);
2567 }
2568 
2569 /**
2570  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2571  *		   application.
2572  * @qp:            queue pair to drain
2573  *
2574  * If the device has a provider-specific drain function, then
2575  * call that.  Otherwise call the generic drain function
2576  * __ib_drain_sq().
2577  *
2578  * The caller must:
2579  *
2580  * ensure there is room in the CQ and SQ for the drain work request and
2581  * completion.
2582  *
2583  * allocate the CQ using ib_alloc_cq().
2584  *
2585  * ensure that there are no other contexts that are posting WRs concurrently.
2586  * Otherwise the drain is not guaranteed.
2587  */
2588 void ib_drain_sq(struct ib_qp *qp)
2589 {
2590 	if (qp->device->ops.drain_sq)
2591 		qp->device->ops.drain_sq(qp);
2592 	else
2593 		__ib_drain_sq(qp);
2594 }
2595 EXPORT_SYMBOL(ib_drain_sq);
2596 
2597 /**
2598  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2599  *		   application.
2600  * @qp:            queue pair to drain
2601  *
2602  * If the device has a provider-specific drain function, then
2603  * call that.  Otherwise call the generic drain function
2604  * __ib_drain_rq().
2605  *
2606  * The caller must:
2607  *
2608  * ensure there is room in the CQ and RQ for the drain work request and
2609  * completion.
2610  *
2611  * allocate the CQ using ib_alloc_cq().
2612  *
2613  * ensure that there are no other contexts that are posting WRs concurrently.
2614  * Otherwise the drain is not guaranteed.
2615  */
2616 void ib_drain_rq(struct ib_qp *qp)
2617 {
2618 	if (qp->device->ops.drain_rq)
2619 		qp->device->ops.drain_rq(qp);
2620 	else
2621 		__ib_drain_rq(qp);
2622 }
2623 EXPORT_SYMBOL(ib_drain_rq);
2624 
2625 /**
2626  * ib_drain_qp() - Block until all CQEs have been consumed by the
2627  *		   application on both the RQ and SQ.
2628  * @qp:            queue pair to drain
2629  *
2630  * The caller must:
2631  *
2632  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2633  * and completions.
2634  *
2635  * allocate the CQs using ib_alloc_cq().
2636  *
2637  * ensure that there are no other contexts that are posting WRs concurrently.
2638  * Otherwise the drain is not guaranteed.
2639  */
2640 void ib_drain_qp(struct ib_qp *qp)
2641 {
2642 	ib_drain_sq(qp);
2643 	if (!qp->srq)
2644 		ib_drain_rq(qp);
2645 }
2646 EXPORT_SYMBOL(ib_drain_qp);
2647 
2648 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2649 				     enum rdma_netdev_t type, const char *name,
2650 				     unsigned char name_assign_type,
2651 				     void (*setup)(struct net_device *))
2652 {
2653 	struct rdma_netdev_alloc_params params;
2654 	struct net_device *netdev;
2655 	int rc;
2656 
2657 	if (!device->ops.rdma_netdev_get_params)
2658 		return ERR_PTR(-EOPNOTSUPP);
2659 
2660 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2661 						&params);
2662 	if (rc)
2663 		return ERR_PTR(rc);
2664 
2665 	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2666 				  setup, params.txqs, params.rxqs);
2667 	if (!netdev)
2668 		return ERR_PTR(-ENOMEM);
2669 
2670 	return netdev;
2671 }
2672 EXPORT_SYMBOL(rdma_alloc_netdev);
2673 
2674 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2675 		     enum rdma_netdev_t type, const char *name,
2676 		     unsigned char name_assign_type,
2677 		     void (*setup)(struct net_device *),
2678 		     struct net_device *netdev)
2679 {
2680 	struct rdma_netdev_alloc_params params;
2681 	int rc;
2682 
2683 	if (!device->ops.rdma_netdev_get_params)
2684 		return -EOPNOTSUPP;
2685 
2686 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2687 						&params);
2688 	if (rc)
2689 		return rc;
2690 
2691 	return params.initialize_rdma_netdev(device, port_num,
2692 					     netdev, params.param);
2693 }
2694 EXPORT_SYMBOL(rdma_init_netdev);
2695