1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 #include <rdma/lag.h> 54 55 #include "core_priv.h" 56 #include <trace/events/rdma_core.h> 57 58 static int ib_resolve_eth_dmac(struct ib_device *device, 59 struct rdma_ah_attr *ah_attr); 60 61 static const char * const ib_events[] = { 62 [IB_EVENT_CQ_ERR] = "CQ error", 63 [IB_EVENT_QP_FATAL] = "QP fatal error", 64 [IB_EVENT_QP_REQ_ERR] = "QP request error", 65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 66 [IB_EVENT_COMM_EST] = "communication established", 67 [IB_EVENT_SQ_DRAINED] = "send queue drained", 68 [IB_EVENT_PATH_MIG] = "path migration successful", 69 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 70 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 71 [IB_EVENT_PORT_ACTIVE] = "port active", 72 [IB_EVENT_PORT_ERR] = "port error", 73 [IB_EVENT_LID_CHANGE] = "LID change", 74 [IB_EVENT_PKEY_CHANGE] = "P_key change", 75 [IB_EVENT_SM_CHANGE] = "SM change", 76 [IB_EVENT_SRQ_ERR] = "SRQ error", 77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 80 [IB_EVENT_GID_CHANGE] = "GID changed", 81 }; 82 83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 84 { 85 size_t index = event; 86 87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 88 ib_events[index] : "unrecognized event"; 89 } 90 EXPORT_SYMBOL(ib_event_msg); 91 92 static const char * const wc_statuses[] = { 93 [IB_WC_SUCCESS] = "success", 94 [IB_WC_LOC_LEN_ERR] = "local length error", 95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 97 [IB_WC_LOC_PROT_ERR] = "local protection error", 98 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 99 [IB_WC_MW_BIND_ERR] = "memory bind operation error", 100 [IB_WC_BAD_RESP_ERR] = "bad response error", 101 [IB_WC_LOC_ACCESS_ERR] = "local access error", 102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error", 103 [IB_WC_REM_ACCESS_ERR] = "remote access error", 104 [IB_WC_REM_OP_ERR] = "remote operation error", 105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 109 [IB_WC_REM_ABORT_ERR] = "operation aborted", 110 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 112 [IB_WC_FATAL_ERR] = "fatal error", 113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 114 [IB_WC_GENERAL_ERR] = "general error", 115 }; 116 117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 118 { 119 size_t index = status; 120 121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 122 wc_statuses[index] : "unrecognized status"; 123 } 124 EXPORT_SYMBOL(ib_wc_status_msg); 125 126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 127 { 128 switch (rate) { 129 case IB_RATE_2_5_GBPS: return 1; 130 case IB_RATE_5_GBPS: return 2; 131 case IB_RATE_10_GBPS: return 4; 132 case IB_RATE_20_GBPS: return 8; 133 case IB_RATE_30_GBPS: return 12; 134 case IB_RATE_40_GBPS: return 16; 135 case IB_RATE_60_GBPS: return 24; 136 case IB_RATE_80_GBPS: return 32; 137 case IB_RATE_120_GBPS: return 48; 138 case IB_RATE_14_GBPS: return 6; 139 case IB_RATE_56_GBPS: return 22; 140 case IB_RATE_112_GBPS: return 45; 141 case IB_RATE_168_GBPS: return 67; 142 case IB_RATE_25_GBPS: return 10; 143 case IB_RATE_100_GBPS: return 40; 144 case IB_RATE_200_GBPS: return 80; 145 case IB_RATE_300_GBPS: return 120; 146 case IB_RATE_28_GBPS: return 11; 147 case IB_RATE_50_GBPS: return 20; 148 case IB_RATE_400_GBPS: return 160; 149 case IB_RATE_600_GBPS: return 240; 150 default: return -1; 151 } 152 } 153 EXPORT_SYMBOL(ib_rate_to_mult); 154 155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 156 { 157 switch (mult) { 158 case 1: return IB_RATE_2_5_GBPS; 159 case 2: return IB_RATE_5_GBPS; 160 case 4: return IB_RATE_10_GBPS; 161 case 8: return IB_RATE_20_GBPS; 162 case 12: return IB_RATE_30_GBPS; 163 case 16: return IB_RATE_40_GBPS; 164 case 24: return IB_RATE_60_GBPS; 165 case 32: return IB_RATE_80_GBPS; 166 case 48: return IB_RATE_120_GBPS; 167 case 6: return IB_RATE_14_GBPS; 168 case 22: return IB_RATE_56_GBPS; 169 case 45: return IB_RATE_112_GBPS; 170 case 67: return IB_RATE_168_GBPS; 171 case 10: return IB_RATE_25_GBPS; 172 case 40: return IB_RATE_100_GBPS; 173 case 80: return IB_RATE_200_GBPS; 174 case 120: return IB_RATE_300_GBPS; 175 case 11: return IB_RATE_28_GBPS; 176 case 20: return IB_RATE_50_GBPS; 177 case 160: return IB_RATE_400_GBPS; 178 case 240: return IB_RATE_600_GBPS; 179 default: return IB_RATE_PORT_CURRENT; 180 } 181 } 182 EXPORT_SYMBOL(mult_to_ib_rate); 183 184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 185 { 186 switch (rate) { 187 case IB_RATE_2_5_GBPS: return 2500; 188 case IB_RATE_5_GBPS: return 5000; 189 case IB_RATE_10_GBPS: return 10000; 190 case IB_RATE_20_GBPS: return 20000; 191 case IB_RATE_30_GBPS: return 30000; 192 case IB_RATE_40_GBPS: return 40000; 193 case IB_RATE_60_GBPS: return 60000; 194 case IB_RATE_80_GBPS: return 80000; 195 case IB_RATE_120_GBPS: return 120000; 196 case IB_RATE_14_GBPS: return 14062; 197 case IB_RATE_56_GBPS: return 56250; 198 case IB_RATE_112_GBPS: return 112500; 199 case IB_RATE_168_GBPS: return 168750; 200 case IB_RATE_25_GBPS: return 25781; 201 case IB_RATE_100_GBPS: return 103125; 202 case IB_RATE_200_GBPS: return 206250; 203 case IB_RATE_300_GBPS: return 309375; 204 case IB_RATE_28_GBPS: return 28125; 205 case IB_RATE_50_GBPS: return 53125; 206 case IB_RATE_400_GBPS: return 425000; 207 case IB_RATE_600_GBPS: return 637500; 208 default: return -1; 209 } 210 } 211 EXPORT_SYMBOL(ib_rate_to_mbps); 212 213 __attribute_const__ enum rdma_transport_type 214 rdma_node_get_transport(unsigned int node_type) 215 { 216 217 if (node_type == RDMA_NODE_USNIC) 218 return RDMA_TRANSPORT_USNIC; 219 if (node_type == RDMA_NODE_USNIC_UDP) 220 return RDMA_TRANSPORT_USNIC_UDP; 221 if (node_type == RDMA_NODE_RNIC) 222 return RDMA_TRANSPORT_IWARP; 223 if (node_type == RDMA_NODE_UNSPECIFIED) 224 return RDMA_TRANSPORT_UNSPECIFIED; 225 226 return RDMA_TRANSPORT_IB; 227 } 228 EXPORT_SYMBOL(rdma_node_get_transport); 229 230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 231 u32 port_num) 232 { 233 enum rdma_transport_type lt; 234 if (device->ops.get_link_layer) 235 return device->ops.get_link_layer(device, port_num); 236 237 lt = rdma_node_get_transport(device->node_type); 238 if (lt == RDMA_TRANSPORT_IB) 239 return IB_LINK_LAYER_INFINIBAND; 240 241 return IB_LINK_LAYER_ETHERNET; 242 } 243 EXPORT_SYMBOL(rdma_port_get_link_layer); 244 245 /* Protection domains */ 246 247 /** 248 * __ib_alloc_pd - Allocates an unused protection domain. 249 * @device: The device on which to allocate the protection domain. 250 * @flags: protection domain flags 251 * @caller: caller's build-time module name 252 * 253 * A protection domain object provides an association between QPs, shared 254 * receive queues, address handles, memory regions, and memory windows. 255 * 256 * Every PD has a local_dma_lkey which can be used as the lkey value for local 257 * memory operations. 258 */ 259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 260 const char *caller) 261 { 262 struct ib_pd *pd; 263 int mr_access_flags = 0; 264 int ret; 265 266 pd = rdma_zalloc_drv_obj(device, ib_pd); 267 if (!pd) 268 return ERR_PTR(-ENOMEM); 269 270 pd->device = device; 271 pd->uobject = NULL; 272 pd->__internal_mr = NULL; 273 atomic_set(&pd->usecnt, 0); 274 pd->flags = flags; 275 276 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); 277 rdma_restrack_set_name(&pd->res, caller); 278 279 ret = device->ops.alloc_pd(pd, NULL); 280 if (ret) { 281 rdma_restrack_put(&pd->res); 282 kfree(pd); 283 return ERR_PTR(ret); 284 } 285 rdma_restrack_add(&pd->res); 286 287 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 288 pd->local_dma_lkey = device->local_dma_lkey; 289 else 290 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 291 292 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 293 pr_warn("%s: enabling unsafe global rkey\n", caller); 294 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 295 } 296 297 if (mr_access_flags) { 298 struct ib_mr *mr; 299 300 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 301 if (IS_ERR(mr)) { 302 ib_dealloc_pd(pd); 303 return ERR_CAST(mr); 304 } 305 306 mr->device = pd->device; 307 mr->pd = pd; 308 mr->type = IB_MR_TYPE_DMA; 309 mr->uobject = NULL; 310 mr->need_inval = false; 311 312 pd->__internal_mr = mr; 313 314 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 315 pd->local_dma_lkey = pd->__internal_mr->lkey; 316 317 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 318 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 319 } 320 321 return pd; 322 } 323 EXPORT_SYMBOL(__ib_alloc_pd); 324 325 /** 326 * ib_dealloc_pd_user - Deallocates a protection domain. 327 * @pd: The protection domain to deallocate. 328 * @udata: Valid user data or NULL for kernel object 329 * 330 * It is an error to call this function while any resources in the pd still 331 * exist. The caller is responsible to synchronously destroy them and 332 * guarantee no new allocations will happen. 333 */ 334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 335 { 336 int ret; 337 338 if (pd->__internal_mr) { 339 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 340 WARN_ON(ret); 341 pd->__internal_mr = NULL; 342 } 343 344 /* uverbs manipulates usecnt with proper locking, while the kabi 345 * requires the caller to guarantee we can't race here. 346 */ 347 WARN_ON(atomic_read(&pd->usecnt)); 348 349 ret = pd->device->ops.dealloc_pd(pd, udata); 350 if (ret) 351 return ret; 352 353 rdma_restrack_del(&pd->res); 354 kfree(pd); 355 return ret; 356 } 357 EXPORT_SYMBOL(ib_dealloc_pd_user); 358 359 /* Address handles */ 360 361 /** 362 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 363 * @dest: Pointer to destination ah_attr. Contents of the destination 364 * pointer is assumed to be invalid and attribute are overwritten. 365 * @src: Pointer to source ah_attr. 366 */ 367 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 368 const struct rdma_ah_attr *src) 369 { 370 *dest = *src; 371 if (dest->grh.sgid_attr) 372 rdma_hold_gid_attr(dest->grh.sgid_attr); 373 } 374 EXPORT_SYMBOL(rdma_copy_ah_attr); 375 376 /** 377 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 378 * @old: Pointer to existing ah_attr which needs to be replaced. 379 * old is assumed to be valid or zero'd 380 * @new: Pointer to the new ah_attr. 381 * 382 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 383 * old the ah_attr is valid; after that it copies the new attribute and holds 384 * the reference to the replaced ah_attr. 385 */ 386 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 387 const struct rdma_ah_attr *new) 388 { 389 rdma_destroy_ah_attr(old); 390 *old = *new; 391 if (old->grh.sgid_attr) 392 rdma_hold_gid_attr(old->grh.sgid_attr); 393 } 394 EXPORT_SYMBOL(rdma_replace_ah_attr); 395 396 /** 397 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 398 * @dest: Pointer to destination ah_attr to copy to. 399 * dest is assumed to be valid or zero'd 400 * @src: Pointer to the new ah_attr. 401 * 402 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 403 * if it is valid. This also transfers ownership of internal references from 404 * src to dest, making src invalid in the process. No new reference of the src 405 * ah_attr is taken. 406 */ 407 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 408 { 409 rdma_destroy_ah_attr(dest); 410 *dest = *src; 411 src->grh.sgid_attr = NULL; 412 } 413 EXPORT_SYMBOL(rdma_move_ah_attr); 414 415 /* 416 * Validate that the rdma_ah_attr is valid for the device before passing it 417 * off to the driver. 418 */ 419 static int rdma_check_ah_attr(struct ib_device *device, 420 struct rdma_ah_attr *ah_attr) 421 { 422 if (!rdma_is_port_valid(device, ah_attr->port_num)) 423 return -EINVAL; 424 425 if ((rdma_is_grh_required(device, ah_attr->port_num) || 426 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 427 !(ah_attr->ah_flags & IB_AH_GRH)) 428 return -EINVAL; 429 430 if (ah_attr->grh.sgid_attr) { 431 /* 432 * Make sure the passed sgid_attr is consistent with the 433 * parameters 434 */ 435 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 436 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 437 return -EINVAL; 438 } 439 return 0; 440 } 441 442 /* 443 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 444 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 445 */ 446 static int rdma_fill_sgid_attr(struct ib_device *device, 447 struct rdma_ah_attr *ah_attr, 448 const struct ib_gid_attr **old_sgid_attr) 449 { 450 const struct ib_gid_attr *sgid_attr; 451 struct ib_global_route *grh; 452 int ret; 453 454 *old_sgid_attr = ah_attr->grh.sgid_attr; 455 456 ret = rdma_check_ah_attr(device, ah_attr); 457 if (ret) 458 return ret; 459 460 if (!(ah_attr->ah_flags & IB_AH_GRH)) 461 return 0; 462 463 grh = rdma_ah_retrieve_grh(ah_attr); 464 if (grh->sgid_attr) 465 return 0; 466 467 sgid_attr = 468 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 469 if (IS_ERR(sgid_attr)) 470 return PTR_ERR(sgid_attr); 471 472 /* Move ownerhip of the kref into the ah_attr */ 473 grh->sgid_attr = sgid_attr; 474 return 0; 475 } 476 477 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 478 const struct ib_gid_attr *old_sgid_attr) 479 { 480 /* 481 * Fill didn't change anything, the caller retains ownership of 482 * whatever it passed 483 */ 484 if (ah_attr->grh.sgid_attr == old_sgid_attr) 485 return; 486 487 /* 488 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 489 * doesn't see any change in the rdma_ah_attr. If we get here 490 * old_sgid_attr is NULL. 491 */ 492 rdma_destroy_ah_attr(ah_attr); 493 } 494 495 static const struct ib_gid_attr * 496 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 497 const struct ib_gid_attr *old_attr) 498 { 499 if (old_attr) 500 rdma_put_gid_attr(old_attr); 501 if (ah_attr->ah_flags & IB_AH_GRH) { 502 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 503 return ah_attr->grh.sgid_attr; 504 } 505 return NULL; 506 } 507 508 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 509 struct rdma_ah_attr *ah_attr, 510 u32 flags, 511 struct ib_udata *udata, 512 struct net_device *xmit_slave) 513 { 514 struct rdma_ah_init_attr init_attr = {}; 515 struct ib_device *device = pd->device; 516 struct ib_ah *ah; 517 int ret; 518 519 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 520 521 if (!udata && !device->ops.create_ah) 522 return ERR_PTR(-EOPNOTSUPP); 523 524 ah = rdma_zalloc_drv_obj_gfp( 525 device, ib_ah, 526 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 527 if (!ah) 528 return ERR_PTR(-ENOMEM); 529 530 ah->device = device; 531 ah->pd = pd; 532 ah->type = ah_attr->type; 533 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 534 init_attr.ah_attr = ah_attr; 535 init_attr.flags = flags; 536 init_attr.xmit_slave = xmit_slave; 537 538 if (udata) 539 ret = device->ops.create_user_ah(ah, &init_attr, udata); 540 else 541 ret = device->ops.create_ah(ah, &init_attr, NULL); 542 if (ret) { 543 kfree(ah); 544 return ERR_PTR(ret); 545 } 546 547 atomic_inc(&pd->usecnt); 548 return ah; 549 } 550 551 /** 552 * rdma_create_ah - Creates an address handle for the 553 * given address vector. 554 * @pd: The protection domain associated with the address handle. 555 * @ah_attr: The attributes of the address vector. 556 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 557 * 558 * It returns 0 on success and returns appropriate error code on error. 559 * The address handle is used to reference a local or global destination 560 * in all UD QP post sends. 561 */ 562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 563 u32 flags) 564 { 565 const struct ib_gid_attr *old_sgid_attr; 566 struct net_device *slave; 567 struct ib_ah *ah; 568 int ret; 569 570 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 571 if (ret) 572 return ERR_PTR(ret); 573 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, 574 (flags & RDMA_CREATE_AH_SLEEPABLE) ? 575 GFP_KERNEL : GFP_ATOMIC); 576 if (IS_ERR(slave)) { 577 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 578 return (void *)slave; 579 } 580 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); 581 rdma_lag_put_ah_roce_slave(slave); 582 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 583 return ah; 584 } 585 EXPORT_SYMBOL(rdma_create_ah); 586 587 /** 588 * rdma_create_user_ah - Creates an address handle for the 589 * given address vector. 590 * It resolves destination mac address for ah attribute of RoCE type. 591 * @pd: The protection domain associated with the address handle. 592 * @ah_attr: The attributes of the address vector. 593 * @udata: pointer to user's input output buffer information need by 594 * provider driver. 595 * 596 * It returns 0 on success and returns appropriate error code on error. 597 * The address handle is used to reference a local or global destination 598 * in all UD QP post sends. 599 */ 600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 601 struct rdma_ah_attr *ah_attr, 602 struct ib_udata *udata) 603 { 604 const struct ib_gid_attr *old_sgid_attr; 605 struct ib_ah *ah; 606 int err; 607 608 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 609 if (err) 610 return ERR_PTR(err); 611 612 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 613 err = ib_resolve_eth_dmac(pd->device, ah_attr); 614 if (err) { 615 ah = ERR_PTR(err); 616 goto out; 617 } 618 } 619 620 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, 621 udata, NULL); 622 623 out: 624 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 625 return ah; 626 } 627 EXPORT_SYMBOL(rdma_create_user_ah); 628 629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 630 { 631 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 632 struct iphdr ip4h_checked; 633 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 634 635 /* If it's IPv6, the version must be 6, otherwise, the first 636 * 20 bytes (before the IPv4 header) are garbled. 637 */ 638 if (ip6h->version != 6) 639 return (ip4h->version == 4) ? 4 : 0; 640 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 641 642 /* RoCE v2 requires no options, thus header length 643 * must be 5 words 644 */ 645 if (ip4h->ihl != 5) 646 return 6; 647 648 /* Verify checksum. 649 * We can't write on scattered buffers so we need to copy to 650 * temp buffer. 651 */ 652 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 653 ip4h_checked.check = 0; 654 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 655 /* if IPv4 header checksum is OK, believe it */ 656 if (ip4h->check == ip4h_checked.check) 657 return 4; 658 return 6; 659 } 660 EXPORT_SYMBOL(ib_get_rdma_header_version); 661 662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 663 u32 port_num, 664 const struct ib_grh *grh) 665 { 666 int grh_version; 667 668 if (rdma_protocol_ib(device, port_num)) 669 return RDMA_NETWORK_IB; 670 671 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 672 673 if (grh_version == 4) 674 return RDMA_NETWORK_IPV4; 675 676 if (grh->next_hdr == IPPROTO_UDP) 677 return RDMA_NETWORK_IPV6; 678 679 return RDMA_NETWORK_ROCE_V1; 680 } 681 682 struct find_gid_index_context { 683 u16 vlan_id; 684 enum ib_gid_type gid_type; 685 }; 686 687 static bool find_gid_index(const union ib_gid *gid, 688 const struct ib_gid_attr *gid_attr, 689 void *context) 690 { 691 struct find_gid_index_context *ctx = context; 692 u16 vlan_id = 0xffff; 693 int ret; 694 695 if (ctx->gid_type != gid_attr->gid_type) 696 return false; 697 698 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 699 if (ret) 700 return false; 701 702 return ctx->vlan_id == vlan_id; 703 } 704 705 static const struct ib_gid_attr * 706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num, 707 u16 vlan_id, const union ib_gid *sgid, 708 enum ib_gid_type gid_type) 709 { 710 struct find_gid_index_context context = {.vlan_id = vlan_id, 711 .gid_type = gid_type}; 712 713 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 714 &context); 715 } 716 717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 718 enum rdma_network_type net_type, 719 union ib_gid *sgid, union ib_gid *dgid) 720 { 721 struct sockaddr_in src_in; 722 struct sockaddr_in dst_in; 723 __be32 src_saddr, dst_saddr; 724 725 if (!sgid || !dgid) 726 return -EINVAL; 727 728 if (net_type == RDMA_NETWORK_IPV4) { 729 memcpy(&src_in.sin_addr.s_addr, 730 &hdr->roce4grh.saddr, 4); 731 memcpy(&dst_in.sin_addr.s_addr, 732 &hdr->roce4grh.daddr, 4); 733 src_saddr = src_in.sin_addr.s_addr; 734 dst_saddr = dst_in.sin_addr.s_addr; 735 ipv6_addr_set_v4mapped(src_saddr, 736 (struct in6_addr *)sgid); 737 ipv6_addr_set_v4mapped(dst_saddr, 738 (struct in6_addr *)dgid); 739 return 0; 740 } else if (net_type == RDMA_NETWORK_IPV6 || 741 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) { 742 *dgid = hdr->ibgrh.dgid; 743 *sgid = hdr->ibgrh.sgid; 744 return 0; 745 } else { 746 return -EINVAL; 747 } 748 } 749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 750 751 /* Resolve destination mac address and hop limit for unicast destination 752 * GID entry, considering the source GID entry as well. 753 * ah_attribute must have have valid port_num, sgid_index. 754 */ 755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 756 struct rdma_ah_attr *ah_attr) 757 { 758 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 759 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 760 int hop_limit = 0xff; 761 int ret = 0; 762 763 /* If destination is link local and source GID is RoCEv1, 764 * IP stack is not used. 765 */ 766 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 767 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 768 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 769 ah_attr->roce.dmac); 770 return ret; 771 } 772 773 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 774 ah_attr->roce.dmac, 775 sgid_attr, &hop_limit); 776 777 grh->hop_limit = hop_limit; 778 return ret; 779 } 780 781 /* 782 * This function initializes address handle attributes from the incoming packet. 783 * Incoming packet has dgid of the receiver node on which this code is 784 * getting executed and, sgid contains the GID of the sender. 785 * 786 * When resolving mac address of destination, the arrived dgid is used 787 * as sgid and, sgid is used as dgid because sgid contains destinations 788 * GID whom to respond to. 789 * 790 * On success the caller is responsible to call rdma_destroy_ah_attr on the 791 * attr. 792 */ 793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 794 const struct ib_wc *wc, const struct ib_grh *grh, 795 struct rdma_ah_attr *ah_attr) 796 { 797 u32 flow_class; 798 int ret; 799 enum rdma_network_type net_type = RDMA_NETWORK_IB; 800 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 801 const struct ib_gid_attr *sgid_attr; 802 int hoplimit = 0xff; 803 union ib_gid dgid; 804 union ib_gid sgid; 805 806 might_sleep(); 807 808 memset(ah_attr, 0, sizeof *ah_attr); 809 ah_attr->type = rdma_ah_find_type(device, port_num); 810 if (rdma_cap_eth_ah(device, port_num)) { 811 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 812 net_type = wc->network_hdr_type; 813 else 814 net_type = ib_get_net_type_by_grh(device, port_num, grh); 815 gid_type = ib_network_to_gid_type(net_type); 816 } 817 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 818 &sgid, &dgid); 819 if (ret) 820 return ret; 821 822 rdma_ah_set_sl(ah_attr, wc->sl); 823 rdma_ah_set_port_num(ah_attr, port_num); 824 825 if (rdma_protocol_roce(device, port_num)) { 826 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 827 wc->vlan_id : 0xffff; 828 829 if (!(wc->wc_flags & IB_WC_GRH)) 830 return -EPROTOTYPE; 831 832 sgid_attr = get_sgid_attr_from_eth(device, port_num, 833 vlan_id, &dgid, 834 gid_type); 835 if (IS_ERR(sgid_attr)) 836 return PTR_ERR(sgid_attr); 837 838 flow_class = be32_to_cpu(grh->version_tclass_flow); 839 rdma_move_grh_sgid_attr(ah_attr, 840 &sgid, 841 flow_class & 0xFFFFF, 842 hoplimit, 843 (flow_class >> 20) & 0xFF, 844 sgid_attr); 845 846 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 847 if (ret) 848 rdma_destroy_ah_attr(ah_attr); 849 850 return ret; 851 } else { 852 rdma_ah_set_dlid(ah_attr, wc->slid); 853 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 854 855 if ((wc->wc_flags & IB_WC_GRH) == 0) 856 return 0; 857 858 if (dgid.global.interface_id != 859 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 860 sgid_attr = rdma_find_gid_by_port( 861 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 862 } else 863 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 864 865 if (IS_ERR(sgid_attr)) 866 return PTR_ERR(sgid_attr); 867 flow_class = be32_to_cpu(grh->version_tclass_flow); 868 rdma_move_grh_sgid_attr(ah_attr, 869 &sgid, 870 flow_class & 0xFFFFF, 871 hoplimit, 872 (flow_class >> 20) & 0xFF, 873 sgid_attr); 874 875 return 0; 876 } 877 } 878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 879 880 /** 881 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 882 * of the reference 883 * 884 * @attr: Pointer to AH attribute structure 885 * @dgid: Destination GID 886 * @flow_label: Flow label 887 * @hop_limit: Hop limit 888 * @traffic_class: traffic class 889 * @sgid_attr: Pointer to SGID attribute 890 * 891 * This takes ownership of the sgid_attr reference. The caller must ensure 892 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 893 * calling this function. 894 */ 895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 896 u32 flow_label, u8 hop_limit, u8 traffic_class, 897 const struct ib_gid_attr *sgid_attr) 898 { 899 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 900 traffic_class); 901 attr->grh.sgid_attr = sgid_attr; 902 } 903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 904 905 /** 906 * rdma_destroy_ah_attr - Release reference to SGID attribute of 907 * ah attribute. 908 * @ah_attr: Pointer to ah attribute 909 * 910 * Release reference to the SGID attribute of the ah attribute if it is 911 * non NULL. It is safe to call this multiple times, and safe to call it on 912 * a zero initialized ah_attr. 913 */ 914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 915 { 916 if (ah_attr->grh.sgid_attr) { 917 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 918 ah_attr->grh.sgid_attr = NULL; 919 } 920 } 921 EXPORT_SYMBOL(rdma_destroy_ah_attr); 922 923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 924 const struct ib_grh *grh, u32 port_num) 925 { 926 struct rdma_ah_attr ah_attr; 927 struct ib_ah *ah; 928 int ret; 929 930 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 931 if (ret) 932 return ERR_PTR(ret); 933 934 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 935 936 rdma_destroy_ah_attr(&ah_attr); 937 return ah; 938 } 939 EXPORT_SYMBOL(ib_create_ah_from_wc); 940 941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 942 { 943 const struct ib_gid_attr *old_sgid_attr; 944 int ret; 945 946 if (ah->type != ah_attr->type) 947 return -EINVAL; 948 949 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 950 if (ret) 951 return ret; 952 953 ret = ah->device->ops.modify_ah ? 954 ah->device->ops.modify_ah(ah, ah_attr) : 955 -EOPNOTSUPP; 956 957 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 958 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 959 return ret; 960 } 961 EXPORT_SYMBOL(rdma_modify_ah); 962 963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 964 { 965 ah_attr->grh.sgid_attr = NULL; 966 967 return ah->device->ops.query_ah ? 968 ah->device->ops.query_ah(ah, ah_attr) : 969 -EOPNOTSUPP; 970 } 971 EXPORT_SYMBOL(rdma_query_ah); 972 973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 974 { 975 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 976 struct ib_pd *pd; 977 int ret; 978 979 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 980 981 pd = ah->pd; 982 983 ret = ah->device->ops.destroy_ah(ah, flags); 984 if (ret) 985 return ret; 986 987 atomic_dec(&pd->usecnt); 988 if (sgid_attr) 989 rdma_put_gid_attr(sgid_attr); 990 991 kfree(ah); 992 return ret; 993 } 994 EXPORT_SYMBOL(rdma_destroy_ah_user); 995 996 /* Shared receive queues */ 997 998 /** 999 * ib_create_srq_user - Creates a SRQ associated with the specified protection 1000 * domain. 1001 * @pd: The protection domain associated with the SRQ. 1002 * @srq_init_attr: A list of initial attributes required to create the 1003 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1004 * the actual capabilities of the created SRQ. 1005 * @uobject: uobject pointer if this is not a kernel SRQ 1006 * @udata: udata pointer if this is not a kernel SRQ 1007 * 1008 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1009 * requested size of the SRQ, and set to the actual values allocated 1010 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1011 * will always be at least as large as the requested values. 1012 */ 1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 1014 struct ib_srq_init_attr *srq_init_attr, 1015 struct ib_usrq_object *uobject, 1016 struct ib_udata *udata) 1017 { 1018 struct ib_srq *srq; 1019 int ret; 1020 1021 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 1022 if (!srq) 1023 return ERR_PTR(-ENOMEM); 1024 1025 srq->device = pd->device; 1026 srq->pd = pd; 1027 srq->event_handler = srq_init_attr->event_handler; 1028 srq->srq_context = srq_init_attr->srq_context; 1029 srq->srq_type = srq_init_attr->srq_type; 1030 srq->uobject = uobject; 1031 1032 if (ib_srq_has_cq(srq->srq_type)) { 1033 srq->ext.cq = srq_init_attr->ext.cq; 1034 atomic_inc(&srq->ext.cq->usecnt); 1035 } 1036 if (srq->srq_type == IB_SRQT_XRC) { 1037 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 1038 if (srq->ext.xrc.xrcd) 1039 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 1040 } 1041 atomic_inc(&pd->usecnt); 1042 1043 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ); 1044 rdma_restrack_parent_name(&srq->res, &pd->res); 1045 1046 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); 1047 if (ret) { 1048 rdma_restrack_put(&srq->res); 1049 atomic_dec(&srq->pd->usecnt); 1050 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1051 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1052 if (ib_srq_has_cq(srq->srq_type)) 1053 atomic_dec(&srq->ext.cq->usecnt); 1054 kfree(srq); 1055 return ERR_PTR(ret); 1056 } 1057 1058 rdma_restrack_add(&srq->res); 1059 1060 return srq; 1061 } 1062 EXPORT_SYMBOL(ib_create_srq_user); 1063 1064 int ib_modify_srq(struct ib_srq *srq, 1065 struct ib_srq_attr *srq_attr, 1066 enum ib_srq_attr_mask srq_attr_mask) 1067 { 1068 return srq->device->ops.modify_srq ? 1069 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1070 NULL) : -EOPNOTSUPP; 1071 } 1072 EXPORT_SYMBOL(ib_modify_srq); 1073 1074 int ib_query_srq(struct ib_srq *srq, 1075 struct ib_srq_attr *srq_attr) 1076 { 1077 return srq->device->ops.query_srq ? 1078 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1079 } 1080 EXPORT_SYMBOL(ib_query_srq); 1081 1082 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1083 { 1084 int ret; 1085 1086 if (atomic_read(&srq->usecnt)) 1087 return -EBUSY; 1088 1089 ret = srq->device->ops.destroy_srq(srq, udata); 1090 if (ret) 1091 return ret; 1092 1093 atomic_dec(&srq->pd->usecnt); 1094 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1095 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1096 if (ib_srq_has_cq(srq->srq_type)) 1097 atomic_dec(&srq->ext.cq->usecnt); 1098 rdma_restrack_del(&srq->res); 1099 kfree(srq); 1100 1101 return ret; 1102 } 1103 EXPORT_SYMBOL(ib_destroy_srq_user); 1104 1105 /* Queue pairs */ 1106 1107 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1108 { 1109 struct ib_qp *qp = context; 1110 unsigned long flags; 1111 1112 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1113 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1114 if (event->element.qp->event_handler) 1115 event->element.qp->event_handler(event, event->element.qp->qp_context); 1116 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1117 } 1118 1119 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1120 void (*event_handler)(struct ib_event *, void *), 1121 void *qp_context) 1122 { 1123 struct ib_qp *qp; 1124 unsigned long flags; 1125 int err; 1126 1127 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1128 if (!qp) 1129 return ERR_PTR(-ENOMEM); 1130 1131 qp->real_qp = real_qp; 1132 err = ib_open_shared_qp_security(qp, real_qp->device); 1133 if (err) { 1134 kfree(qp); 1135 return ERR_PTR(err); 1136 } 1137 1138 qp->real_qp = real_qp; 1139 atomic_inc(&real_qp->usecnt); 1140 qp->device = real_qp->device; 1141 qp->event_handler = event_handler; 1142 qp->qp_context = qp_context; 1143 qp->qp_num = real_qp->qp_num; 1144 qp->qp_type = real_qp->qp_type; 1145 1146 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1147 list_add(&qp->open_list, &real_qp->open_list); 1148 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1149 1150 return qp; 1151 } 1152 1153 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1154 struct ib_qp_open_attr *qp_open_attr) 1155 { 1156 struct ib_qp *qp, *real_qp; 1157 1158 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1159 return ERR_PTR(-EINVAL); 1160 1161 down_read(&xrcd->tgt_qps_rwsem); 1162 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); 1163 if (!real_qp) { 1164 up_read(&xrcd->tgt_qps_rwsem); 1165 return ERR_PTR(-EINVAL); 1166 } 1167 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1168 qp_open_attr->qp_context); 1169 up_read(&xrcd->tgt_qps_rwsem); 1170 return qp; 1171 } 1172 EXPORT_SYMBOL(ib_open_qp); 1173 1174 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1175 struct ib_qp_init_attr *qp_init_attr) 1176 { 1177 struct ib_qp *real_qp = qp; 1178 int err; 1179 1180 qp->event_handler = __ib_shared_qp_event_handler; 1181 qp->qp_context = qp; 1182 qp->pd = NULL; 1183 qp->send_cq = qp->recv_cq = NULL; 1184 qp->srq = NULL; 1185 qp->xrcd = qp_init_attr->xrcd; 1186 atomic_inc(&qp_init_attr->xrcd->usecnt); 1187 INIT_LIST_HEAD(&qp->open_list); 1188 1189 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1190 qp_init_attr->qp_context); 1191 if (IS_ERR(qp)) 1192 return qp; 1193 1194 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, 1195 real_qp, GFP_KERNEL)); 1196 if (err) { 1197 ib_close_qp(qp); 1198 return ERR_PTR(err); 1199 } 1200 return qp; 1201 } 1202 1203 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd, 1204 struct ib_qp_init_attr *attr, 1205 struct ib_udata *udata, 1206 struct ib_uqp_object *uobj, const char *caller) 1207 { 1208 struct ib_udata dummy = {}; 1209 struct ib_qp *qp; 1210 int ret; 1211 1212 if (!dev->ops.create_qp) 1213 return ERR_PTR(-EOPNOTSUPP); 1214 1215 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp); 1216 if (!qp) 1217 return ERR_PTR(-ENOMEM); 1218 1219 qp->device = dev; 1220 qp->pd = pd; 1221 qp->uobject = uobj; 1222 qp->real_qp = qp; 1223 1224 qp->qp_type = attr->qp_type; 1225 qp->rwq_ind_tbl = attr->rwq_ind_tbl; 1226 qp->srq = attr->srq; 1227 qp->event_handler = attr->event_handler; 1228 qp->port = attr->port_num; 1229 qp->qp_context = attr->qp_context; 1230 1231 spin_lock_init(&qp->mr_lock); 1232 INIT_LIST_HEAD(&qp->rdma_mrs); 1233 INIT_LIST_HEAD(&qp->sig_mrs); 1234 1235 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP); 1236 WARN_ONCE(!udata && !caller, "Missing kernel QP owner"); 1237 rdma_restrack_set_name(&qp->res, udata ? NULL : caller); 1238 ret = dev->ops.create_qp(qp, attr, udata); 1239 if (ret) 1240 goto err_create; 1241 1242 /* 1243 * TODO: The mlx4 internally overwrites send_cq and recv_cq. 1244 * Unfortunately, it is not an easy task to fix that driver. 1245 */ 1246 qp->send_cq = attr->send_cq; 1247 qp->recv_cq = attr->recv_cq; 1248 1249 ret = ib_create_qp_security(qp, dev); 1250 if (ret) 1251 goto err_security; 1252 1253 rdma_restrack_add(&qp->res); 1254 return qp; 1255 1256 err_security: 1257 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL); 1258 err_create: 1259 rdma_restrack_put(&qp->res); 1260 kfree(qp); 1261 return ERR_PTR(ret); 1262 1263 } 1264 1265 /** 1266 * ib_create_qp_user - Creates a QP associated with the specified protection 1267 * domain. 1268 * @dev: IB device 1269 * @pd: The protection domain associated with the QP. 1270 * @attr: A list of initial attributes required to create the 1271 * QP. If QP creation succeeds, then the attributes are updated to 1272 * the actual capabilities of the created QP. 1273 * @udata: User data 1274 * @uobj: uverbs obect 1275 * @caller: caller's build-time module name 1276 */ 1277 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd, 1278 struct ib_qp_init_attr *attr, 1279 struct ib_udata *udata, 1280 struct ib_uqp_object *uobj, const char *caller) 1281 { 1282 struct ib_qp *qp, *xrc_qp; 1283 1284 if (attr->qp_type == IB_QPT_XRC_TGT) 1285 qp = create_qp(dev, pd, attr, NULL, NULL, caller); 1286 else 1287 qp = create_qp(dev, pd, attr, udata, uobj, NULL); 1288 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp)) 1289 return qp; 1290 1291 xrc_qp = create_xrc_qp_user(qp, attr); 1292 if (IS_ERR(xrc_qp)) { 1293 ib_destroy_qp(qp); 1294 return xrc_qp; 1295 } 1296 1297 xrc_qp->uobject = uobj; 1298 return xrc_qp; 1299 } 1300 EXPORT_SYMBOL(ib_create_qp_user); 1301 1302 void ib_qp_usecnt_inc(struct ib_qp *qp) 1303 { 1304 if (qp->pd) 1305 atomic_inc(&qp->pd->usecnt); 1306 if (qp->send_cq) 1307 atomic_inc(&qp->send_cq->usecnt); 1308 if (qp->recv_cq) 1309 atomic_inc(&qp->recv_cq->usecnt); 1310 if (qp->srq) 1311 atomic_inc(&qp->srq->usecnt); 1312 if (qp->rwq_ind_tbl) 1313 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1314 } 1315 EXPORT_SYMBOL(ib_qp_usecnt_inc); 1316 1317 void ib_qp_usecnt_dec(struct ib_qp *qp) 1318 { 1319 if (qp->rwq_ind_tbl) 1320 atomic_dec(&qp->rwq_ind_tbl->usecnt); 1321 if (qp->srq) 1322 atomic_dec(&qp->srq->usecnt); 1323 if (qp->recv_cq) 1324 atomic_dec(&qp->recv_cq->usecnt); 1325 if (qp->send_cq) 1326 atomic_dec(&qp->send_cq->usecnt); 1327 if (qp->pd) 1328 atomic_dec(&qp->pd->usecnt); 1329 } 1330 EXPORT_SYMBOL(ib_qp_usecnt_dec); 1331 1332 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 1333 struct ib_qp_init_attr *qp_init_attr, 1334 const char *caller) 1335 { 1336 struct ib_device *device = pd->device; 1337 struct ib_qp *qp; 1338 int ret; 1339 1340 /* 1341 * If the callers is using the RDMA API calculate the resources 1342 * needed for the RDMA READ/WRITE operations. 1343 * 1344 * Note that these callers need to pass in a port number. 1345 */ 1346 if (qp_init_attr->cap.max_rdma_ctxs) 1347 rdma_rw_init_qp(device, qp_init_attr); 1348 1349 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller); 1350 if (IS_ERR(qp)) 1351 return qp; 1352 1353 ib_qp_usecnt_inc(qp); 1354 1355 if (qp_init_attr->cap.max_rdma_ctxs) { 1356 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1357 if (ret) 1358 goto err; 1359 } 1360 1361 /* 1362 * Note: all hw drivers guarantee that max_send_sge is lower than 1363 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1364 * max_send_sge <= max_sge_rd. 1365 */ 1366 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1367 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1368 device->attrs.max_sge_rd); 1369 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1370 qp->integrity_en = true; 1371 1372 return qp; 1373 1374 err: 1375 ib_destroy_qp(qp); 1376 return ERR_PTR(ret); 1377 1378 } 1379 EXPORT_SYMBOL(ib_create_qp_kernel); 1380 1381 static const struct { 1382 int valid; 1383 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1384 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1385 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1386 [IB_QPS_RESET] = { 1387 [IB_QPS_RESET] = { .valid = 1 }, 1388 [IB_QPS_INIT] = { 1389 .valid = 1, 1390 .req_param = { 1391 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1392 IB_QP_PORT | 1393 IB_QP_QKEY), 1394 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1395 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1396 IB_QP_PORT | 1397 IB_QP_ACCESS_FLAGS), 1398 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1399 IB_QP_PORT | 1400 IB_QP_ACCESS_FLAGS), 1401 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1402 IB_QP_PORT | 1403 IB_QP_ACCESS_FLAGS), 1404 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1405 IB_QP_PORT | 1406 IB_QP_ACCESS_FLAGS), 1407 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1408 IB_QP_QKEY), 1409 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1410 IB_QP_QKEY), 1411 } 1412 }, 1413 }, 1414 [IB_QPS_INIT] = { 1415 [IB_QPS_RESET] = { .valid = 1 }, 1416 [IB_QPS_ERR] = { .valid = 1 }, 1417 [IB_QPS_INIT] = { 1418 .valid = 1, 1419 .opt_param = { 1420 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1421 IB_QP_PORT | 1422 IB_QP_QKEY), 1423 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1424 IB_QP_PORT | 1425 IB_QP_ACCESS_FLAGS), 1426 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1427 IB_QP_PORT | 1428 IB_QP_ACCESS_FLAGS), 1429 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1430 IB_QP_PORT | 1431 IB_QP_ACCESS_FLAGS), 1432 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1433 IB_QP_PORT | 1434 IB_QP_ACCESS_FLAGS), 1435 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1436 IB_QP_QKEY), 1437 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1438 IB_QP_QKEY), 1439 } 1440 }, 1441 [IB_QPS_RTR] = { 1442 .valid = 1, 1443 .req_param = { 1444 [IB_QPT_UC] = (IB_QP_AV | 1445 IB_QP_PATH_MTU | 1446 IB_QP_DEST_QPN | 1447 IB_QP_RQ_PSN), 1448 [IB_QPT_RC] = (IB_QP_AV | 1449 IB_QP_PATH_MTU | 1450 IB_QP_DEST_QPN | 1451 IB_QP_RQ_PSN | 1452 IB_QP_MAX_DEST_RD_ATOMIC | 1453 IB_QP_MIN_RNR_TIMER), 1454 [IB_QPT_XRC_INI] = (IB_QP_AV | 1455 IB_QP_PATH_MTU | 1456 IB_QP_DEST_QPN | 1457 IB_QP_RQ_PSN), 1458 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1459 IB_QP_PATH_MTU | 1460 IB_QP_DEST_QPN | 1461 IB_QP_RQ_PSN | 1462 IB_QP_MAX_DEST_RD_ATOMIC | 1463 IB_QP_MIN_RNR_TIMER), 1464 }, 1465 .opt_param = { 1466 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1467 IB_QP_QKEY), 1468 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1469 IB_QP_ACCESS_FLAGS | 1470 IB_QP_PKEY_INDEX), 1471 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1472 IB_QP_ACCESS_FLAGS | 1473 IB_QP_PKEY_INDEX), 1474 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1475 IB_QP_ACCESS_FLAGS | 1476 IB_QP_PKEY_INDEX), 1477 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1478 IB_QP_ACCESS_FLAGS | 1479 IB_QP_PKEY_INDEX), 1480 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1481 IB_QP_QKEY), 1482 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1483 IB_QP_QKEY), 1484 }, 1485 }, 1486 }, 1487 [IB_QPS_RTR] = { 1488 [IB_QPS_RESET] = { .valid = 1 }, 1489 [IB_QPS_ERR] = { .valid = 1 }, 1490 [IB_QPS_RTS] = { 1491 .valid = 1, 1492 .req_param = { 1493 [IB_QPT_UD] = IB_QP_SQ_PSN, 1494 [IB_QPT_UC] = IB_QP_SQ_PSN, 1495 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1496 IB_QP_RETRY_CNT | 1497 IB_QP_RNR_RETRY | 1498 IB_QP_SQ_PSN | 1499 IB_QP_MAX_QP_RD_ATOMIC), 1500 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1501 IB_QP_RETRY_CNT | 1502 IB_QP_RNR_RETRY | 1503 IB_QP_SQ_PSN | 1504 IB_QP_MAX_QP_RD_ATOMIC), 1505 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1506 IB_QP_SQ_PSN), 1507 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1508 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1509 }, 1510 .opt_param = { 1511 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1512 IB_QP_QKEY), 1513 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1514 IB_QP_ALT_PATH | 1515 IB_QP_ACCESS_FLAGS | 1516 IB_QP_PATH_MIG_STATE), 1517 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1518 IB_QP_ALT_PATH | 1519 IB_QP_ACCESS_FLAGS | 1520 IB_QP_MIN_RNR_TIMER | 1521 IB_QP_PATH_MIG_STATE), 1522 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1523 IB_QP_ALT_PATH | 1524 IB_QP_ACCESS_FLAGS | 1525 IB_QP_PATH_MIG_STATE), 1526 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1527 IB_QP_ALT_PATH | 1528 IB_QP_ACCESS_FLAGS | 1529 IB_QP_MIN_RNR_TIMER | 1530 IB_QP_PATH_MIG_STATE), 1531 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1532 IB_QP_QKEY), 1533 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1534 IB_QP_QKEY), 1535 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1536 } 1537 } 1538 }, 1539 [IB_QPS_RTS] = { 1540 [IB_QPS_RESET] = { .valid = 1 }, 1541 [IB_QPS_ERR] = { .valid = 1 }, 1542 [IB_QPS_RTS] = { 1543 .valid = 1, 1544 .opt_param = { 1545 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1546 IB_QP_QKEY), 1547 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1548 IB_QP_ACCESS_FLAGS | 1549 IB_QP_ALT_PATH | 1550 IB_QP_PATH_MIG_STATE), 1551 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1552 IB_QP_ACCESS_FLAGS | 1553 IB_QP_ALT_PATH | 1554 IB_QP_PATH_MIG_STATE | 1555 IB_QP_MIN_RNR_TIMER), 1556 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1557 IB_QP_ACCESS_FLAGS | 1558 IB_QP_ALT_PATH | 1559 IB_QP_PATH_MIG_STATE), 1560 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1561 IB_QP_ACCESS_FLAGS | 1562 IB_QP_ALT_PATH | 1563 IB_QP_PATH_MIG_STATE | 1564 IB_QP_MIN_RNR_TIMER), 1565 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1566 IB_QP_QKEY), 1567 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1568 IB_QP_QKEY), 1569 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1570 } 1571 }, 1572 [IB_QPS_SQD] = { 1573 .valid = 1, 1574 .opt_param = { 1575 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1576 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1577 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1578 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1579 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1580 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1581 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1582 } 1583 }, 1584 }, 1585 [IB_QPS_SQD] = { 1586 [IB_QPS_RESET] = { .valid = 1 }, 1587 [IB_QPS_ERR] = { .valid = 1 }, 1588 [IB_QPS_RTS] = { 1589 .valid = 1, 1590 .opt_param = { 1591 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1592 IB_QP_QKEY), 1593 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1594 IB_QP_ALT_PATH | 1595 IB_QP_ACCESS_FLAGS | 1596 IB_QP_PATH_MIG_STATE), 1597 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1598 IB_QP_ALT_PATH | 1599 IB_QP_ACCESS_FLAGS | 1600 IB_QP_MIN_RNR_TIMER | 1601 IB_QP_PATH_MIG_STATE), 1602 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1603 IB_QP_ALT_PATH | 1604 IB_QP_ACCESS_FLAGS | 1605 IB_QP_PATH_MIG_STATE), 1606 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1607 IB_QP_ALT_PATH | 1608 IB_QP_ACCESS_FLAGS | 1609 IB_QP_MIN_RNR_TIMER | 1610 IB_QP_PATH_MIG_STATE), 1611 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1612 IB_QP_QKEY), 1613 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1614 IB_QP_QKEY), 1615 } 1616 }, 1617 [IB_QPS_SQD] = { 1618 .valid = 1, 1619 .opt_param = { 1620 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1621 IB_QP_QKEY), 1622 [IB_QPT_UC] = (IB_QP_AV | 1623 IB_QP_ALT_PATH | 1624 IB_QP_ACCESS_FLAGS | 1625 IB_QP_PKEY_INDEX | 1626 IB_QP_PATH_MIG_STATE), 1627 [IB_QPT_RC] = (IB_QP_PORT | 1628 IB_QP_AV | 1629 IB_QP_TIMEOUT | 1630 IB_QP_RETRY_CNT | 1631 IB_QP_RNR_RETRY | 1632 IB_QP_MAX_QP_RD_ATOMIC | 1633 IB_QP_MAX_DEST_RD_ATOMIC | 1634 IB_QP_ALT_PATH | 1635 IB_QP_ACCESS_FLAGS | 1636 IB_QP_PKEY_INDEX | 1637 IB_QP_MIN_RNR_TIMER | 1638 IB_QP_PATH_MIG_STATE), 1639 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1640 IB_QP_AV | 1641 IB_QP_TIMEOUT | 1642 IB_QP_RETRY_CNT | 1643 IB_QP_RNR_RETRY | 1644 IB_QP_MAX_QP_RD_ATOMIC | 1645 IB_QP_ALT_PATH | 1646 IB_QP_ACCESS_FLAGS | 1647 IB_QP_PKEY_INDEX | 1648 IB_QP_PATH_MIG_STATE), 1649 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1650 IB_QP_AV | 1651 IB_QP_TIMEOUT | 1652 IB_QP_MAX_DEST_RD_ATOMIC | 1653 IB_QP_ALT_PATH | 1654 IB_QP_ACCESS_FLAGS | 1655 IB_QP_PKEY_INDEX | 1656 IB_QP_MIN_RNR_TIMER | 1657 IB_QP_PATH_MIG_STATE), 1658 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1659 IB_QP_QKEY), 1660 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1661 IB_QP_QKEY), 1662 } 1663 } 1664 }, 1665 [IB_QPS_SQE] = { 1666 [IB_QPS_RESET] = { .valid = 1 }, 1667 [IB_QPS_ERR] = { .valid = 1 }, 1668 [IB_QPS_RTS] = { 1669 .valid = 1, 1670 .opt_param = { 1671 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1672 IB_QP_QKEY), 1673 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1674 IB_QP_ACCESS_FLAGS), 1675 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1676 IB_QP_QKEY), 1677 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1678 IB_QP_QKEY), 1679 } 1680 } 1681 }, 1682 [IB_QPS_ERR] = { 1683 [IB_QPS_RESET] = { .valid = 1 }, 1684 [IB_QPS_ERR] = { .valid = 1 } 1685 } 1686 }; 1687 1688 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1689 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1690 { 1691 enum ib_qp_attr_mask req_param, opt_param; 1692 1693 if (mask & IB_QP_CUR_STATE && 1694 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1695 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1696 return false; 1697 1698 if (!qp_state_table[cur_state][next_state].valid) 1699 return false; 1700 1701 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1702 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1703 1704 if ((mask & req_param) != req_param) 1705 return false; 1706 1707 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1708 return false; 1709 1710 return true; 1711 } 1712 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1713 1714 /** 1715 * ib_resolve_eth_dmac - Resolve destination mac address 1716 * @device: Device to consider 1717 * @ah_attr: address handle attribute which describes the 1718 * source and destination parameters 1719 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1720 * returns 0 on success or appropriate error code. It initializes the 1721 * necessary ah_attr fields when call is successful. 1722 */ 1723 static int ib_resolve_eth_dmac(struct ib_device *device, 1724 struct rdma_ah_attr *ah_attr) 1725 { 1726 int ret = 0; 1727 1728 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1729 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1730 __be32 addr = 0; 1731 1732 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1733 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1734 } else { 1735 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1736 (char *)ah_attr->roce.dmac); 1737 } 1738 } else { 1739 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1740 } 1741 return ret; 1742 } 1743 1744 static bool is_qp_type_connected(const struct ib_qp *qp) 1745 { 1746 return (qp->qp_type == IB_QPT_UC || 1747 qp->qp_type == IB_QPT_RC || 1748 qp->qp_type == IB_QPT_XRC_INI || 1749 qp->qp_type == IB_QPT_XRC_TGT); 1750 } 1751 1752 /* 1753 * IB core internal function to perform QP attributes modification. 1754 */ 1755 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1756 int attr_mask, struct ib_udata *udata) 1757 { 1758 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1759 const struct ib_gid_attr *old_sgid_attr_av; 1760 const struct ib_gid_attr *old_sgid_attr_alt_av; 1761 int ret; 1762 1763 attr->xmit_slave = NULL; 1764 if (attr_mask & IB_QP_AV) { 1765 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1766 &old_sgid_attr_av); 1767 if (ret) 1768 return ret; 1769 1770 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1771 is_qp_type_connected(qp)) { 1772 struct net_device *slave; 1773 1774 /* 1775 * If the user provided the qp_attr then we have to 1776 * resolve it. Kerne users have to provide already 1777 * resolved rdma_ah_attr's. 1778 */ 1779 if (udata) { 1780 ret = ib_resolve_eth_dmac(qp->device, 1781 &attr->ah_attr); 1782 if (ret) 1783 goto out_av; 1784 } 1785 slave = rdma_lag_get_ah_roce_slave(qp->device, 1786 &attr->ah_attr, 1787 GFP_KERNEL); 1788 if (IS_ERR(slave)) { 1789 ret = PTR_ERR(slave); 1790 goto out_av; 1791 } 1792 attr->xmit_slave = slave; 1793 } 1794 } 1795 if (attr_mask & IB_QP_ALT_PATH) { 1796 /* 1797 * FIXME: This does not track the migration state, so if the 1798 * user loads a new alternate path after the HW has migrated 1799 * from primary->alternate we will keep the wrong 1800 * references. This is OK for IB because the reference 1801 * counting does not serve any functional purpose. 1802 */ 1803 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1804 &old_sgid_attr_alt_av); 1805 if (ret) 1806 goto out_av; 1807 1808 /* 1809 * Today the core code can only handle alternate paths and APM 1810 * for IB. Ban them in roce mode. 1811 */ 1812 if (!(rdma_protocol_ib(qp->device, 1813 attr->alt_ah_attr.port_num) && 1814 rdma_protocol_ib(qp->device, port))) { 1815 ret = -EINVAL; 1816 goto out; 1817 } 1818 } 1819 1820 if (rdma_ib_or_roce(qp->device, port)) { 1821 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1822 dev_warn(&qp->device->dev, 1823 "%s rq_psn overflow, masking to 24 bits\n", 1824 __func__); 1825 attr->rq_psn &= 0xffffff; 1826 } 1827 1828 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1829 dev_warn(&qp->device->dev, 1830 " %s sq_psn overflow, masking to 24 bits\n", 1831 __func__); 1832 attr->sq_psn &= 0xffffff; 1833 } 1834 } 1835 1836 /* 1837 * Bind this qp to a counter automatically based on the rdma counter 1838 * rules. This only set in RST2INIT with port specified 1839 */ 1840 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1841 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1842 rdma_counter_bind_qp_auto(qp, attr->port_num); 1843 1844 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1845 if (ret) 1846 goto out; 1847 1848 if (attr_mask & IB_QP_PORT) 1849 qp->port = attr->port_num; 1850 if (attr_mask & IB_QP_AV) 1851 qp->av_sgid_attr = 1852 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1853 if (attr_mask & IB_QP_ALT_PATH) 1854 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1855 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1856 1857 out: 1858 if (attr_mask & IB_QP_ALT_PATH) 1859 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1860 out_av: 1861 if (attr_mask & IB_QP_AV) { 1862 rdma_lag_put_ah_roce_slave(attr->xmit_slave); 1863 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1864 } 1865 return ret; 1866 } 1867 1868 /** 1869 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1870 * @ib_qp: The QP to modify. 1871 * @attr: On input, specifies the QP attributes to modify. On output, 1872 * the current values of selected QP attributes are returned. 1873 * @attr_mask: A bit-mask used to specify which attributes of the QP 1874 * are being modified. 1875 * @udata: pointer to user's input output buffer information 1876 * are being modified. 1877 * It returns 0 on success and returns appropriate error code on error. 1878 */ 1879 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1880 int attr_mask, struct ib_udata *udata) 1881 { 1882 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1883 } 1884 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1885 1886 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width) 1887 { 1888 int rc; 1889 u32 netdev_speed; 1890 struct net_device *netdev; 1891 struct ethtool_link_ksettings lksettings; 1892 1893 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1894 return -EINVAL; 1895 1896 netdev = ib_device_get_netdev(dev, port_num); 1897 if (!netdev) 1898 return -ENODEV; 1899 1900 rtnl_lock(); 1901 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1902 rtnl_unlock(); 1903 1904 dev_put(netdev); 1905 1906 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { 1907 netdev_speed = lksettings.base.speed; 1908 } else { 1909 netdev_speed = SPEED_1000; 1910 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name, 1911 netdev_speed); 1912 } 1913 1914 if (netdev_speed <= SPEED_1000) { 1915 *width = IB_WIDTH_1X; 1916 *speed = IB_SPEED_SDR; 1917 } else if (netdev_speed <= SPEED_10000) { 1918 *width = IB_WIDTH_1X; 1919 *speed = IB_SPEED_FDR10; 1920 } else if (netdev_speed <= SPEED_20000) { 1921 *width = IB_WIDTH_4X; 1922 *speed = IB_SPEED_DDR; 1923 } else if (netdev_speed <= SPEED_25000) { 1924 *width = IB_WIDTH_1X; 1925 *speed = IB_SPEED_EDR; 1926 } else if (netdev_speed <= SPEED_40000) { 1927 *width = IB_WIDTH_4X; 1928 *speed = IB_SPEED_FDR10; 1929 } else { 1930 *width = IB_WIDTH_4X; 1931 *speed = IB_SPEED_EDR; 1932 } 1933 1934 return 0; 1935 } 1936 EXPORT_SYMBOL(ib_get_eth_speed); 1937 1938 int ib_modify_qp(struct ib_qp *qp, 1939 struct ib_qp_attr *qp_attr, 1940 int qp_attr_mask) 1941 { 1942 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1943 } 1944 EXPORT_SYMBOL(ib_modify_qp); 1945 1946 int ib_query_qp(struct ib_qp *qp, 1947 struct ib_qp_attr *qp_attr, 1948 int qp_attr_mask, 1949 struct ib_qp_init_attr *qp_init_attr) 1950 { 1951 qp_attr->ah_attr.grh.sgid_attr = NULL; 1952 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1953 1954 return qp->device->ops.query_qp ? 1955 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1956 qp_init_attr) : -EOPNOTSUPP; 1957 } 1958 EXPORT_SYMBOL(ib_query_qp); 1959 1960 int ib_close_qp(struct ib_qp *qp) 1961 { 1962 struct ib_qp *real_qp; 1963 unsigned long flags; 1964 1965 real_qp = qp->real_qp; 1966 if (real_qp == qp) 1967 return -EINVAL; 1968 1969 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1970 list_del(&qp->open_list); 1971 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1972 1973 atomic_dec(&real_qp->usecnt); 1974 if (qp->qp_sec) 1975 ib_close_shared_qp_security(qp->qp_sec); 1976 kfree(qp); 1977 1978 return 0; 1979 } 1980 EXPORT_SYMBOL(ib_close_qp); 1981 1982 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1983 { 1984 struct ib_xrcd *xrcd; 1985 struct ib_qp *real_qp; 1986 int ret; 1987 1988 real_qp = qp->real_qp; 1989 xrcd = real_qp->xrcd; 1990 down_write(&xrcd->tgt_qps_rwsem); 1991 ib_close_qp(qp); 1992 if (atomic_read(&real_qp->usecnt) == 0) 1993 xa_erase(&xrcd->tgt_qps, real_qp->qp_num); 1994 else 1995 real_qp = NULL; 1996 up_write(&xrcd->tgt_qps_rwsem); 1997 1998 if (real_qp) { 1999 ret = ib_destroy_qp(real_qp); 2000 if (!ret) 2001 atomic_dec(&xrcd->usecnt); 2002 } 2003 2004 return 0; 2005 } 2006 2007 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 2008 { 2009 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 2010 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 2011 struct ib_qp_security *sec; 2012 int ret; 2013 2014 WARN_ON_ONCE(qp->mrs_used > 0); 2015 2016 if (atomic_read(&qp->usecnt)) 2017 return -EBUSY; 2018 2019 if (qp->real_qp != qp) 2020 return __ib_destroy_shared_qp(qp); 2021 2022 sec = qp->qp_sec; 2023 if (sec) 2024 ib_destroy_qp_security_begin(sec); 2025 2026 if (!qp->uobject) 2027 rdma_rw_cleanup_mrs(qp); 2028 2029 rdma_counter_unbind_qp(qp, true); 2030 ret = qp->device->ops.destroy_qp(qp, udata); 2031 if (ret) { 2032 if (sec) 2033 ib_destroy_qp_security_abort(sec); 2034 return ret; 2035 } 2036 2037 if (alt_path_sgid_attr) 2038 rdma_put_gid_attr(alt_path_sgid_attr); 2039 if (av_sgid_attr) 2040 rdma_put_gid_attr(av_sgid_attr); 2041 2042 ib_qp_usecnt_dec(qp); 2043 if (sec) 2044 ib_destroy_qp_security_end(sec); 2045 2046 rdma_restrack_del(&qp->res); 2047 kfree(qp); 2048 return ret; 2049 } 2050 EXPORT_SYMBOL(ib_destroy_qp_user); 2051 2052 /* Completion queues */ 2053 2054 struct ib_cq *__ib_create_cq(struct ib_device *device, 2055 ib_comp_handler comp_handler, 2056 void (*event_handler)(struct ib_event *, void *), 2057 void *cq_context, 2058 const struct ib_cq_init_attr *cq_attr, 2059 const char *caller) 2060 { 2061 struct ib_cq *cq; 2062 int ret; 2063 2064 cq = rdma_zalloc_drv_obj(device, ib_cq); 2065 if (!cq) 2066 return ERR_PTR(-ENOMEM); 2067 2068 cq->device = device; 2069 cq->uobject = NULL; 2070 cq->comp_handler = comp_handler; 2071 cq->event_handler = event_handler; 2072 cq->cq_context = cq_context; 2073 atomic_set(&cq->usecnt, 0); 2074 2075 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); 2076 rdma_restrack_set_name(&cq->res, caller); 2077 2078 ret = device->ops.create_cq(cq, cq_attr, NULL); 2079 if (ret) { 2080 rdma_restrack_put(&cq->res); 2081 kfree(cq); 2082 return ERR_PTR(ret); 2083 } 2084 2085 rdma_restrack_add(&cq->res); 2086 return cq; 2087 } 2088 EXPORT_SYMBOL(__ib_create_cq); 2089 2090 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 2091 { 2092 if (cq->shared) 2093 return -EOPNOTSUPP; 2094 2095 return cq->device->ops.modify_cq ? 2096 cq->device->ops.modify_cq(cq, cq_count, 2097 cq_period) : -EOPNOTSUPP; 2098 } 2099 EXPORT_SYMBOL(rdma_set_cq_moderation); 2100 2101 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 2102 { 2103 int ret; 2104 2105 if (WARN_ON_ONCE(cq->shared)) 2106 return -EOPNOTSUPP; 2107 2108 if (atomic_read(&cq->usecnt)) 2109 return -EBUSY; 2110 2111 ret = cq->device->ops.destroy_cq(cq, udata); 2112 if (ret) 2113 return ret; 2114 2115 rdma_restrack_del(&cq->res); 2116 kfree(cq); 2117 return ret; 2118 } 2119 EXPORT_SYMBOL(ib_destroy_cq_user); 2120 2121 int ib_resize_cq(struct ib_cq *cq, int cqe) 2122 { 2123 if (cq->shared) 2124 return -EOPNOTSUPP; 2125 2126 return cq->device->ops.resize_cq ? 2127 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 2128 } 2129 EXPORT_SYMBOL(ib_resize_cq); 2130 2131 /* Memory regions */ 2132 2133 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 2134 u64 virt_addr, int access_flags) 2135 { 2136 struct ib_mr *mr; 2137 2138 if (access_flags & IB_ACCESS_ON_DEMAND) { 2139 if (!(pd->device->attrs.device_cap_flags & 2140 IB_DEVICE_ON_DEMAND_PAGING)) { 2141 pr_debug("ODP support not available\n"); 2142 return ERR_PTR(-EINVAL); 2143 } 2144 } 2145 2146 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2147 access_flags, NULL); 2148 2149 if (IS_ERR(mr)) 2150 return mr; 2151 2152 mr->device = pd->device; 2153 mr->pd = pd; 2154 mr->dm = NULL; 2155 atomic_inc(&pd->usecnt); 2156 2157 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2158 rdma_restrack_parent_name(&mr->res, &pd->res); 2159 rdma_restrack_add(&mr->res); 2160 2161 return mr; 2162 } 2163 EXPORT_SYMBOL(ib_reg_user_mr); 2164 2165 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2166 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2167 { 2168 if (!pd->device->ops.advise_mr) 2169 return -EOPNOTSUPP; 2170 2171 if (!num_sge) 2172 return 0; 2173 2174 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2175 NULL); 2176 } 2177 EXPORT_SYMBOL(ib_advise_mr); 2178 2179 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2180 { 2181 struct ib_pd *pd = mr->pd; 2182 struct ib_dm *dm = mr->dm; 2183 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2184 int ret; 2185 2186 trace_mr_dereg(mr); 2187 rdma_restrack_del(&mr->res); 2188 ret = mr->device->ops.dereg_mr(mr, udata); 2189 if (!ret) { 2190 atomic_dec(&pd->usecnt); 2191 if (dm) 2192 atomic_dec(&dm->usecnt); 2193 kfree(sig_attrs); 2194 } 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(ib_dereg_mr_user); 2199 2200 /** 2201 * ib_alloc_mr() - Allocates a memory region 2202 * @pd: protection domain associated with the region 2203 * @mr_type: memory region type 2204 * @max_num_sg: maximum sg entries available for registration. 2205 * 2206 * Notes: 2207 * Memory registeration page/sg lists must not exceed max_num_sg. 2208 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2209 * max_num_sg * used_page_size. 2210 * 2211 */ 2212 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2213 u32 max_num_sg) 2214 { 2215 struct ib_mr *mr; 2216 2217 if (!pd->device->ops.alloc_mr) { 2218 mr = ERR_PTR(-EOPNOTSUPP); 2219 goto out; 2220 } 2221 2222 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2223 WARN_ON_ONCE(1); 2224 mr = ERR_PTR(-EINVAL); 2225 goto out; 2226 } 2227 2228 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 2229 if (IS_ERR(mr)) 2230 goto out; 2231 2232 mr->device = pd->device; 2233 mr->pd = pd; 2234 mr->dm = NULL; 2235 mr->uobject = NULL; 2236 atomic_inc(&pd->usecnt); 2237 mr->need_inval = false; 2238 mr->type = mr_type; 2239 mr->sig_attrs = NULL; 2240 2241 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2242 rdma_restrack_parent_name(&mr->res, &pd->res); 2243 rdma_restrack_add(&mr->res); 2244 out: 2245 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2246 return mr; 2247 } 2248 EXPORT_SYMBOL(ib_alloc_mr); 2249 2250 /** 2251 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2252 * @pd: protection domain associated with the region 2253 * @max_num_data_sg: maximum data sg entries available for registration 2254 * @max_num_meta_sg: maximum metadata sg entries available for 2255 * registration 2256 * 2257 * Notes: 2258 * Memory registration page/sg lists must not exceed max_num_sg, 2259 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2260 * 2261 */ 2262 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2263 u32 max_num_data_sg, 2264 u32 max_num_meta_sg) 2265 { 2266 struct ib_mr *mr; 2267 struct ib_sig_attrs *sig_attrs; 2268 2269 if (!pd->device->ops.alloc_mr_integrity || 2270 !pd->device->ops.map_mr_sg_pi) { 2271 mr = ERR_PTR(-EOPNOTSUPP); 2272 goto out; 2273 } 2274 2275 if (!max_num_meta_sg) { 2276 mr = ERR_PTR(-EINVAL); 2277 goto out; 2278 } 2279 2280 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2281 if (!sig_attrs) { 2282 mr = ERR_PTR(-ENOMEM); 2283 goto out; 2284 } 2285 2286 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2287 max_num_meta_sg); 2288 if (IS_ERR(mr)) { 2289 kfree(sig_attrs); 2290 goto out; 2291 } 2292 2293 mr->device = pd->device; 2294 mr->pd = pd; 2295 mr->dm = NULL; 2296 mr->uobject = NULL; 2297 atomic_inc(&pd->usecnt); 2298 mr->need_inval = false; 2299 mr->type = IB_MR_TYPE_INTEGRITY; 2300 mr->sig_attrs = sig_attrs; 2301 2302 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2303 rdma_restrack_parent_name(&mr->res, &pd->res); 2304 rdma_restrack_add(&mr->res); 2305 out: 2306 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2307 return mr; 2308 } 2309 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2310 2311 /* Multicast groups */ 2312 2313 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2314 { 2315 struct ib_qp_init_attr init_attr = {}; 2316 struct ib_qp_attr attr = {}; 2317 int num_eth_ports = 0; 2318 unsigned int port; 2319 2320 /* If QP state >= init, it is assigned to a port and we can check this 2321 * port only. 2322 */ 2323 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2324 if (attr.qp_state >= IB_QPS_INIT) { 2325 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2326 IB_LINK_LAYER_INFINIBAND) 2327 return true; 2328 goto lid_check; 2329 } 2330 } 2331 2332 /* Can't get a quick answer, iterate over all ports */ 2333 rdma_for_each_port(qp->device, port) 2334 if (rdma_port_get_link_layer(qp->device, port) != 2335 IB_LINK_LAYER_INFINIBAND) 2336 num_eth_ports++; 2337 2338 /* If we have at lease one Ethernet port, RoCE annex declares that 2339 * multicast LID should be ignored. We can't tell at this step if the 2340 * QP belongs to an IB or Ethernet port. 2341 */ 2342 if (num_eth_ports) 2343 return true; 2344 2345 /* If all the ports are IB, we can check according to IB spec. */ 2346 lid_check: 2347 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2348 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2349 } 2350 2351 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2352 { 2353 int ret; 2354 2355 if (!qp->device->ops.attach_mcast) 2356 return -EOPNOTSUPP; 2357 2358 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2359 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2360 return -EINVAL; 2361 2362 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2363 if (!ret) 2364 atomic_inc(&qp->usecnt); 2365 return ret; 2366 } 2367 EXPORT_SYMBOL(ib_attach_mcast); 2368 2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2370 { 2371 int ret; 2372 2373 if (!qp->device->ops.detach_mcast) 2374 return -EOPNOTSUPP; 2375 2376 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2377 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2378 return -EINVAL; 2379 2380 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2381 if (!ret) 2382 atomic_dec(&qp->usecnt); 2383 return ret; 2384 } 2385 EXPORT_SYMBOL(ib_detach_mcast); 2386 2387 /** 2388 * ib_alloc_xrcd_user - Allocates an XRC domain. 2389 * @device: The device on which to allocate the XRC domain. 2390 * @inode: inode to connect XRCD 2391 * @udata: Valid user data or NULL for kernel object 2392 */ 2393 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 2394 struct inode *inode, struct ib_udata *udata) 2395 { 2396 struct ib_xrcd *xrcd; 2397 int ret; 2398 2399 if (!device->ops.alloc_xrcd) 2400 return ERR_PTR(-EOPNOTSUPP); 2401 2402 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); 2403 if (!xrcd) 2404 return ERR_PTR(-ENOMEM); 2405 2406 xrcd->device = device; 2407 xrcd->inode = inode; 2408 atomic_set(&xrcd->usecnt, 0); 2409 init_rwsem(&xrcd->tgt_qps_rwsem); 2410 xa_init(&xrcd->tgt_qps); 2411 2412 ret = device->ops.alloc_xrcd(xrcd, udata); 2413 if (ret) 2414 goto err; 2415 return xrcd; 2416 err: 2417 kfree(xrcd); 2418 return ERR_PTR(ret); 2419 } 2420 EXPORT_SYMBOL(ib_alloc_xrcd_user); 2421 2422 /** 2423 * ib_dealloc_xrcd_user - Deallocates an XRC domain. 2424 * @xrcd: The XRC domain to deallocate. 2425 * @udata: Valid user data or NULL for kernel object 2426 */ 2427 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) 2428 { 2429 int ret; 2430 2431 if (atomic_read(&xrcd->usecnt)) 2432 return -EBUSY; 2433 2434 WARN_ON(!xa_empty(&xrcd->tgt_qps)); 2435 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2436 if (ret) 2437 return ret; 2438 kfree(xrcd); 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(ib_dealloc_xrcd_user); 2442 2443 /** 2444 * ib_create_wq - Creates a WQ associated with the specified protection 2445 * domain. 2446 * @pd: The protection domain associated with the WQ. 2447 * @wq_attr: A list of initial attributes required to create the 2448 * WQ. If WQ creation succeeds, then the attributes are updated to 2449 * the actual capabilities of the created WQ. 2450 * 2451 * wq_attr->max_wr and wq_attr->max_sge determine 2452 * the requested size of the WQ, and set to the actual values allocated 2453 * on return. 2454 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2455 * at least as large as the requested values. 2456 */ 2457 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2458 struct ib_wq_init_attr *wq_attr) 2459 { 2460 struct ib_wq *wq; 2461 2462 if (!pd->device->ops.create_wq) 2463 return ERR_PTR(-EOPNOTSUPP); 2464 2465 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2466 if (!IS_ERR(wq)) { 2467 wq->event_handler = wq_attr->event_handler; 2468 wq->wq_context = wq_attr->wq_context; 2469 wq->wq_type = wq_attr->wq_type; 2470 wq->cq = wq_attr->cq; 2471 wq->device = pd->device; 2472 wq->pd = pd; 2473 wq->uobject = NULL; 2474 atomic_inc(&pd->usecnt); 2475 atomic_inc(&wq_attr->cq->usecnt); 2476 atomic_set(&wq->usecnt, 0); 2477 } 2478 return wq; 2479 } 2480 EXPORT_SYMBOL(ib_create_wq); 2481 2482 /** 2483 * ib_destroy_wq_user - Destroys the specified user WQ. 2484 * @wq: The WQ to destroy. 2485 * @udata: Valid user data 2486 */ 2487 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) 2488 { 2489 struct ib_cq *cq = wq->cq; 2490 struct ib_pd *pd = wq->pd; 2491 int ret; 2492 2493 if (atomic_read(&wq->usecnt)) 2494 return -EBUSY; 2495 2496 ret = wq->device->ops.destroy_wq(wq, udata); 2497 if (ret) 2498 return ret; 2499 2500 atomic_dec(&pd->usecnt); 2501 atomic_dec(&cq->usecnt); 2502 return ret; 2503 } 2504 EXPORT_SYMBOL(ib_destroy_wq_user); 2505 2506 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2507 struct ib_mr_status *mr_status) 2508 { 2509 if (!mr->device->ops.check_mr_status) 2510 return -EOPNOTSUPP; 2511 2512 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2513 } 2514 EXPORT_SYMBOL(ib_check_mr_status); 2515 2516 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 2517 int state) 2518 { 2519 if (!device->ops.set_vf_link_state) 2520 return -EOPNOTSUPP; 2521 2522 return device->ops.set_vf_link_state(device, vf, port, state); 2523 } 2524 EXPORT_SYMBOL(ib_set_vf_link_state); 2525 2526 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 2527 struct ifla_vf_info *info) 2528 { 2529 if (!device->ops.get_vf_config) 2530 return -EOPNOTSUPP; 2531 2532 return device->ops.get_vf_config(device, vf, port, info); 2533 } 2534 EXPORT_SYMBOL(ib_get_vf_config); 2535 2536 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 2537 struct ifla_vf_stats *stats) 2538 { 2539 if (!device->ops.get_vf_stats) 2540 return -EOPNOTSUPP; 2541 2542 return device->ops.get_vf_stats(device, vf, port, stats); 2543 } 2544 EXPORT_SYMBOL(ib_get_vf_stats); 2545 2546 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 2547 int type) 2548 { 2549 if (!device->ops.set_vf_guid) 2550 return -EOPNOTSUPP; 2551 2552 return device->ops.set_vf_guid(device, vf, port, guid, type); 2553 } 2554 EXPORT_SYMBOL(ib_set_vf_guid); 2555 2556 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 2557 struct ifla_vf_guid *node_guid, 2558 struct ifla_vf_guid *port_guid) 2559 { 2560 if (!device->ops.get_vf_guid) 2561 return -EOPNOTSUPP; 2562 2563 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2564 } 2565 EXPORT_SYMBOL(ib_get_vf_guid); 2566 /** 2567 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2568 * information) and set an appropriate memory region for registration. 2569 * @mr: memory region 2570 * @data_sg: dma mapped scatterlist for data 2571 * @data_sg_nents: number of entries in data_sg 2572 * @data_sg_offset: offset in bytes into data_sg 2573 * @meta_sg: dma mapped scatterlist for metadata 2574 * @meta_sg_nents: number of entries in meta_sg 2575 * @meta_sg_offset: offset in bytes into meta_sg 2576 * @page_size: page vector desired page size 2577 * 2578 * Constraints: 2579 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2580 * 2581 * Return: 0 on success. 2582 * 2583 * After this completes successfully, the memory region 2584 * is ready for registration. 2585 */ 2586 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2587 int data_sg_nents, unsigned int *data_sg_offset, 2588 struct scatterlist *meta_sg, int meta_sg_nents, 2589 unsigned int *meta_sg_offset, unsigned int page_size) 2590 { 2591 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2592 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2593 return -EOPNOTSUPP; 2594 2595 mr->page_size = page_size; 2596 2597 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2598 data_sg_offset, meta_sg, 2599 meta_sg_nents, meta_sg_offset); 2600 } 2601 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2602 2603 /** 2604 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2605 * and set it the memory region. 2606 * @mr: memory region 2607 * @sg: dma mapped scatterlist 2608 * @sg_nents: number of entries in sg 2609 * @sg_offset: offset in bytes into sg 2610 * @page_size: page vector desired page size 2611 * 2612 * Constraints: 2613 * 2614 * - The first sg element is allowed to have an offset. 2615 * - Each sg element must either be aligned to page_size or virtually 2616 * contiguous to the previous element. In case an sg element has a 2617 * non-contiguous offset, the mapping prefix will not include it. 2618 * - The last sg element is allowed to have length less than page_size. 2619 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2620 * then only max_num_sg entries will be mapped. 2621 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2622 * constraints holds and the page_size argument is ignored. 2623 * 2624 * Returns the number of sg elements that were mapped to the memory region. 2625 * 2626 * After this completes successfully, the memory region 2627 * is ready for registration. 2628 */ 2629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2630 unsigned int *sg_offset, unsigned int page_size) 2631 { 2632 if (unlikely(!mr->device->ops.map_mr_sg)) 2633 return -EOPNOTSUPP; 2634 2635 mr->page_size = page_size; 2636 2637 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2638 } 2639 EXPORT_SYMBOL(ib_map_mr_sg); 2640 2641 /** 2642 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2643 * to a page vector 2644 * @mr: memory region 2645 * @sgl: dma mapped scatterlist 2646 * @sg_nents: number of entries in sg 2647 * @sg_offset_p: ==== ======================================================= 2648 * IN start offset in bytes into sg 2649 * OUT offset in bytes for element n of the sg of the first 2650 * byte that has not been processed where n is the return 2651 * value of this function. 2652 * ==== ======================================================= 2653 * @set_page: driver page assignment function pointer 2654 * 2655 * Core service helper for drivers to convert the largest 2656 * prefix of given sg list to a page vector. The sg list 2657 * prefix converted is the prefix that meet the requirements 2658 * of ib_map_mr_sg. 2659 * 2660 * Returns the number of sg elements that were assigned to 2661 * a page vector. 2662 */ 2663 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2664 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2665 { 2666 struct scatterlist *sg; 2667 u64 last_end_dma_addr = 0; 2668 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2669 unsigned int last_page_off = 0; 2670 u64 page_mask = ~((u64)mr->page_size - 1); 2671 int i, ret; 2672 2673 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2674 return -EINVAL; 2675 2676 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2677 mr->length = 0; 2678 2679 for_each_sg(sgl, sg, sg_nents, i) { 2680 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2681 u64 prev_addr = dma_addr; 2682 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2683 u64 end_dma_addr = dma_addr + dma_len; 2684 u64 page_addr = dma_addr & page_mask; 2685 2686 /* 2687 * For the second and later elements, check whether either the 2688 * end of element i-1 or the start of element i is not aligned 2689 * on a page boundary. 2690 */ 2691 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2692 /* Stop mapping if there is a gap. */ 2693 if (last_end_dma_addr != dma_addr) 2694 break; 2695 2696 /* 2697 * Coalesce this element with the last. If it is small 2698 * enough just update mr->length. Otherwise start 2699 * mapping from the next page. 2700 */ 2701 goto next_page; 2702 } 2703 2704 do { 2705 ret = set_page(mr, page_addr); 2706 if (unlikely(ret < 0)) { 2707 sg_offset = prev_addr - sg_dma_address(sg); 2708 mr->length += prev_addr - dma_addr; 2709 if (sg_offset_p) 2710 *sg_offset_p = sg_offset; 2711 return i || sg_offset ? i : ret; 2712 } 2713 prev_addr = page_addr; 2714 next_page: 2715 page_addr += mr->page_size; 2716 } while (page_addr < end_dma_addr); 2717 2718 mr->length += dma_len; 2719 last_end_dma_addr = end_dma_addr; 2720 last_page_off = end_dma_addr & ~page_mask; 2721 2722 sg_offset = 0; 2723 } 2724 2725 if (sg_offset_p) 2726 *sg_offset_p = 0; 2727 return i; 2728 } 2729 EXPORT_SYMBOL(ib_sg_to_pages); 2730 2731 struct ib_drain_cqe { 2732 struct ib_cqe cqe; 2733 struct completion done; 2734 }; 2735 2736 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2737 { 2738 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2739 cqe); 2740 2741 complete(&cqe->done); 2742 } 2743 2744 /* 2745 * Post a WR and block until its completion is reaped for the SQ. 2746 */ 2747 static void __ib_drain_sq(struct ib_qp *qp) 2748 { 2749 struct ib_cq *cq = qp->send_cq; 2750 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2751 struct ib_drain_cqe sdrain; 2752 struct ib_rdma_wr swr = { 2753 .wr = { 2754 .next = NULL, 2755 { .wr_cqe = &sdrain.cqe, }, 2756 .opcode = IB_WR_RDMA_WRITE, 2757 }, 2758 }; 2759 int ret; 2760 2761 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2762 if (ret) { 2763 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2764 return; 2765 } 2766 2767 sdrain.cqe.done = ib_drain_qp_done; 2768 init_completion(&sdrain.done); 2769 2770 ret = ib_post_send(qp, &swr.wr, NULL); 2771 if (ret) { 2772 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2773 return; 2774 } 2775 2776 if (cq->poll_ctx == IB_POLL_DIRECT) 2777 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2778 ib_process_cq_direct(cq, -1); 2779 else 2780 wait_for_completion(&sdrain.done); 2781 } 2782 2783 /* 2784 * Post a WR and block until its completion is reaped for the RQ. 2785 */ 2786 static void __ib_drain_rq(struct ib_qp *qp) 2787 { 2788 struct ib_cq *cq = qp->recv_cq; 2789 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2790 struct ib_drain_cqe rdrain; 2791 struct ib_recv_wr rwr = {}; 2792 int ret; 2793 2794 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2795 if (ret) { 2796 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2797 return; 2798 } 2799 2800 rwr.wr_cqe = &rdrain.cqe; 2801 rdrain.cqe.done = ib_drain_qp_done; 2802 init_completion(&rdrain.done); 2803 2804 ret = ib_post_recv(qp, &rwr, NULL); 2805 if (ret) { 2806 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2807 return; 2808 } 2809 2810 if (cq->poll_ctx == IB_POLL_DIRECT) 2811 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2812 ib_process_cq_direct(cq, -1); 2813 else 2814 wait_for_completion(&rdrain.done); 2815 } 2816 2817 /** 2818 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2819 * application. 2820 * @qp: queue pair to drain 2821 * 2822 * If the device has a provider-specific drain function, then 2823 * call that. Otherwise call the generic drain function 2824 * __ib_drain_sq(). 2825 * 2826 * The caller must: 2827 * 2828 * ensure there is room in the CQ and SQ for the drain work request and 2829 * completion. 2830 * 2831 * allocate the CQ using ib_alloc_cq(). 2832 * 2833 * ensure that there are no other contexts that are posting WRs concurrently. 2834 * Otherwise the drain is not guaranteed. 2835 */ 2836 void ib_drain_sq(struct ib_qp *qp) 2837 { 2838 if (qp->device->ops.drain_sq) 2839 qp->device->ops.drain_sq(qp); 2840 else 2841 __ib_drain_sq(qp); 2842 trace_cq_drain_complete(qp->send_cq); 2843 } 2844 EXPORT_SYMBOL(ib_drain_sq); 2845 2846 /** 2847 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2848 * application. 2849 * @qp: queue pair to drain 2850 * 2851 * If the device has a provider-specific drain function, then 2852 * call that. Otherwise call the generic drain function 2853 * __ib_drain_rq(). 2854 * 2855 * The caller must: 2856 * 2857 * ensure there is room in the CQ and RQ for the drain work request and 2858 * completion. 2859 * 2860 * allocate the CQ using ib_alloc_cq(). 2861 * 2862 * ensure that there are no other contexts that are posting WRs concurrently. 2863 * Otherwise the drain is not guaranteed. 2864 */ 2865 void ib_drain_rq(struct ib_qp *qp) 2866 { 2867 if (qp->device->ops.drain_rq) 2868 qp->device->ops.drain_rq(qp); 2869 else 2870 __ib_drain_rq(qp); 2871 trace_cq_drain_complete(qp->recv_cq); 2872 } 2873 EXPORT_SYMBOL(ib_drain_rq); 2874 2875 /** 2876 * ib_drain_qp() - Block until all CQEs have been consumed by the 2877 * application on both the RQ and SQ. 2878 * @qp: queue pair to drain 2879 * 2880 * The caller must: 2881 * 2882 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2883 * and completions. 2884 * 2885 * allocate the CQs using ib_alloc_cq(). 2886 * 2887 * ensure that there are no other contexts that are posting WRs concurrently. 2888 * Otherwise the drain is not guaranteed. 2889 */ 2890 void ib_drain_qp(struct ib_qp *qp) 2891 { 2892 ib_drain_sq(qp); 2893 if (!qp->srq) 2894 ib_drain_rq(qp); 2895 } 2896 EXPORT_SYMBOL(ib_drain_qp); 2897 2898 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 2899 enum rdma_netdev_t type, const char *name, 2900 unsigned char name_assign_type, 2901 void (*setup)(struct net_device *)) 2902 { 2903 struct rdma_netdev_alloc_params params; 2904 struct net_device *netdev; 2905 int rc; 2906 2907 if (!device->ops.rdma_netdev_get_params) 2908 return ERR_PTR(-EOPNOTSUPP); 2909 2910 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2911 ¶ms); 2912 if (rc) 2913 return ERR_PTR(rc); 2914 2915 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2916 setup, params.txqs, params.rxqs); 2917 if (!netdev) 2918 return ERR_PTR(-ENOMEM); 2919 2920 return netdev; 2921 } 2922 EXPORT_SYMBOL(rdma_alloc_netdev); 2923 2924 int rdma_init_netdev(struct ib_device *device, u32 port_num, 2925 enum rdma_netdev_t type, const char *name, 2926 unsigned char name_assign_type, 2927 void (*setup)(struct net_device *), 2928 struct net_device *netdev) 2929 { 2930 struct rdma_netdev_alloc_params params; 2931 int rc; 2932 2933 if (!device->ops.rdma_netdev_get_params) 2934 return -EOPNOTSUPP; 2935 2936 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2937 ¶ms); 2938 if (rc) 2939 return rc; 2940 2941 return params.initialize_rdma_netdev(device, port_num, 2942 netdev, params.param); 2943 } 2944 EXPORT_SYMBOL(rdma_init_netdev); 2945 2946 void __rdma_block_iter_start(struct ib_block_iter *biter, 2947 struct scatterlist *sglist, unsigned int nents, 2948 unsigned long pgsz) 2949 { 2950 memset(biter, 0, sizeof(struct ib_block_iter)); 2951 biter->__sg = sglist; 2952 biter->__sg_nents = nents; 2953 2954 /* Driver provides best block size to use */ 2955 biter->__pg_bit = __fls(pgsz); 2956 } 2957 EXPORT_SYMBOL(__rdma_block_iter_start); 2958 2959 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2960 { 2961 unsigned int block_offset; 2962 2963 if (!biter->__sg_nents || !biter->__sg) 2964 return false; 2965 2966 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2967 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2968 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2969 2970 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2971 biter->__sg_advance = 0; 2972 biter->__sg = sg_next(biter->__sg); 2973 biter->__sg_nents--; 2974 } 2975 2976 return true; 2977 } 2978 EXPORT_SYMBOL(__rdma_block_iter_next); 2979 2980 /** 2981 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 2982 * for the drivers. 2983 * @descs: array of static descriptors 2984 * @num_counters: number of elements in array 2985 * @lifespan: milliseconds between updates 2986 */ 2987 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 2988 const struct rdma_stat_desc *descs, int num_counters, 2989 unsigned long lifespan) 2990 { 2991 struct rdma_hw_stats *stats; 2992 2993 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL); 2994 if (!stats) 2995 return NULL; 2996 2997 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters), 2998 sizeof(*stats->is_disabled), GFP_KERNEL); 2999 if (!stats->is_disabled) 3000 goto err; 3001 3002 stats->descs = descs; 3003 stats->num_counters = num_counters; 3004 stats->lifespan = msecs_to_jiffies(lifespan); 3005 mutex_init(&stats->lock); 3006 3007 return stats; 3008 3009 err: 3010 kfree(stats); 3011 return NULL; 3012 } 3013 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct); 3014 3015 /** 3016 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats 3017 * @stats: statistics to release 3018 */ 3019 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats) 3020 { 3021 if (!stats) 3022 return; 3023 3024 kfree(stats->is_disabled); 3025 kfree(stats); 3026 } 3027 EXPORT_SYMBOL(rdma_free_hw_stats_struct); 3028