1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 case IB_RATE_28_GBPS: return 11; 145 case IB_RATE_50_GBPS: return 20; 146 case IB_RATE_400_GBPS: return 160; 147 case IB_RATE_600_GBPS: return 240; 148 default: return -1; 149 } 150 } 151 EXPORT_SYMBOL(ib_rate_to_mult); 152 153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 154 { 155 switch (mult) { 156 case 1: return IB_RATE_2_5_GBPS; 157 case 2: return IB_RATE_5_GBPS; 158 case 4: return IB_RATE_10_GBPS; 159 case 8: return IB_RATE_20_GBPS; 160 case 12: return IB_RATE_30_GBPS; 161 case 16: return IB_RATE_40_GBPS; 162 case 24: return IB_RATE_60_GBPS; 163 case 32: return IB_RATE_80_GBPS; 164 case 48: return IB_RATE_120_GBPS; 165 case 6: return IB_RATE_14_GBPS; 166 case 22: return IB_RATE_56_GBPS; 167 case 45: return IB_RATE_112_GBPS; 168 case 67: return IB_RATE_168_GBPS; 169 case 10: return IB_RATE_25_GBPS; 170 case 40: return IB_RATE_100_GBPS; 171 case 80: return IB_RATE_200_GBPS; 172 case 120: return IB_RATE_300_GBPS; 173 case 11: return IB_RATE_28_GBPS; 174 case 20: return IB_RATE_50_GBPS; 175 case 160: return IB_RATE_400_GBPS; 176 case 240: return IB_RATE_600_GBPS; 177 default: return IB_RATE_PORT_CURRENT; 178 } 179 } 180 EXPORT_SYMBOL(mult_to_ib_rate); 181 182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 183 { 184 switch (rate) { 185 case IB_RATE_2_5_GBPS: return 2500; 186 case IB_RATE_5_GBPS: return 5000; 187 case IB_RATE_10_GBPS: return 10000; 188 case IB_RATE_20_GBPS: return 20000; 189 case IB_RATE_30_GBPS: return 30000; 190 case IB_RATE_40_GBPS: return 40000; 191 case IB_RATE_60_GBPS: return 60000; 192 case IB_RATE_80_GBPS: return 80000; 193 case IB_RATE_120_GBPS: return 120000; 194 case IB_RATE_14_GBPS: return 14062; 195 case IB_RATE_56_GBPS: return 56250; 196 case IB_RATE_112_GBPS: return 112500; 197 case IB_RATE_168_GBPS: return 168750; 198 case IB_RATE_25_GBPS: return 25781; 199 case IB_RATE_100_GBPS: return 103125; 200 case IB_RATE_200_GBPS: return 206250; 201 case IB_RATE_300_GBPS: return 309375; 202 case IB_RATE_28_GBPS: return 28125; 203 case IB_RATE_50_GBPS: return 53125; 204 case IB_RATE_400_GBPS: return 425000; 205 case IB_RATE_600_GBPS: return 637500; 206 default: return -1; 207 } 208 } 209 EXPORT_SYMBOL(ib_rate_to_mbps); 210 211 __attribute_const__ enum rdma_transport_type 212 rdma_node_get_transport(enum rdma_node_type node_type) 213 { 214 215 if (node_type == RDMA_NODE_USNIC) 216 return RDMA_TRANSPORT_USNIC; 217 if (node_type == RDMA_NODE_USNIC_UDP) 218 return RDMA_TRANSPORT_USNIC_UDP; 219 if (node_type == RDMA_NODE_RNIC) 220 return RDMA_TRANSPORT_IWARP; 221 if (node_type == RDMA_NODE_UNSPECIFIED) 222 return RDMA_TRANSPORT_UNSPECIFIED; 223 224 return RDMA_TRANSPORT_IB; 225 } 226 EXPORT_SYMBOL(rdma_node_get_transport); 227 228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 229 { 230 enum rdma_transport_type lt; 231 if (device->ops.get_link_layer) 232 return device->ops.get_link_layer(device, port_num); 233 234 lt = rdma_node_get_transport(device->node_type); 235 if (lt == RDMA_TRANSPORT_IB) 236 return IB_LINK_LAYER_INFINIBAND; 237 238 return IB_LINK_LAYER_ETHERNET; 239 } 240 EXPORT_SYMBOL(rdma_port_get_link_layer); 241 242 /* Protection domains */ 243 244 /** 245 * ib_alloc_pd - Allocates an unused protection domain. 246 * @device: The device on which to allocate the protection domain. 247 * 248 * A protection domain object provides an association between QPs, shared 249 * receive queues, address handles, memory regions, and memory windows. 250 * 251 * Every PD has a local_dma_lkey which can be used as the lkey value for local 252 * memory operations. 253 */ 254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 255 const char *caller) 256 { 257 struct ib_pd *pd; 258 int mr_access_flags = 0; 259 int ret; 260 261 pd = rdma_zalloc_drv_obj(device, ib_pd); 262 if (!pd) 263 return ERR_PTR(-ENOMEM); 264 265 pd->device = device; 266 pd->uobject = NULL; 267 pd->__internal_mr = NULL; 268 atomic_set(&pd->usecnt, 0); 269 pd->flags = flags; 270 271 pd->res.type = RDMA_RESTRACK_PD; 272 rdma_restrack_set_task(&pd->res, caller); 273 274 ret = device->ops.alloc_pd(pd, NULL); 275 if (ret) { 276 kfree(pd); 277 return ERR_PTR(ret); 278 } 279 rdma_restrack_kadd(&pd->res); 280 281 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 282 pd->local_dma_lkey = device->local_dma_lkey; 283 else 284 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 285 286 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 287 pr_warn("%s: enabling unsafe global rkey\n", caller); 288 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 289 } 290 291 if (mr_access_flags) { 292 struct ib_mr *mr; 293 294 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 295 if (IS_ERR(mr)) { 296 ib_dealloc_pd(pd); 297 return ERR_CAST(mr); 298 } 299 300 mr->device = pd->device; 301 mr->pd = pd; 302 mr->uobject = NULL; 303 mr->need_inval = false; 304 305 pd->__internal_mr = mr; 306 307 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 308 pd->local_dma_lkey = pd->__internal_mr->lkey; 309 310 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 311 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 312 } 313 314 return pd; 315 } 316 EXPORT_SYMBOL(__ib_alloc_pd); 317 318 /** 319 * ib_dealloc_pd - Deallocates a protection domain. 320 * @pd: The protection domain to deallocate. 321 * @udata: Valid user data or NULL for kernel object 322 * 323 * It is an error to call this function while any resources in the pd still 324 * exist. The caller is responsible to synchronously destroy them and 325 * guarantee no new allocations will happen. 326 */ 327 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 328 { 329 int ret; 330 331 if (pd->__internal_mr) { 332 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 333 WARN_ON(ret); 334 pd->__internal_mr = NULL; 335 } 336 337 /* uverbs manipulates usecnt with proper locking, while the kabi 338 requires the caller to guarantee we can't race here. */ 339 WARN_ON(atomic_read(&pd->usecnt)); 340 341 rdma_restrack_del(&pd->res); 342 pd->device->ops.dealloc_pd(pd, udata); 343 kfree(pd); 344 } 345 EXPORT_SYMBOL(ib_dealloc_pd_user); 346 347 /* Address handles */ 348 349 /** 350 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 351 * @dest: Pointer to destination ah_attr. Contents of the destination 352 * pointer is assumed to be invalid and attribute are overwritten. 353 * @src: Pointer to source ah_attr. 354 */ 355 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 356 const struct rdma_ah_attr *src) 357 { 358 *dest = *src; 359 if (dest->grh.sgid_attr) 360 rdma_hold_gid_attr(dest->grh.sgid_attr); 361 } 362 EXPORT_SYMBOL(rdma_copy_ah_attr); 363 364 /** 365 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 366 * @old: Pointer to existing ah_attr which needs to be replaced. 367 * old is assumed to be valid or zero'd 368 * @new: Pointer to the new ah_attr. 369 * 370 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 371 * old the ah_attr is valid; after that it copies the new attribute and holds 372 * the reference to the replaced ah_attr. 373 */ 374 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 375 const struct rdma_ah_attr *new) 376 { 377 rdma_destroy_ah_attr(old); 378 *old = *new; 379 if (old->grh.sgid_attr) 380 rdma_hold_gid_attr(old->grh.sgid_attr); 381 } 382 EXPORT_SYMBOL(rdma_replace_ah_attr); 383 384 /** 385 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 386 * @dest: Pointer to destination ah_attr to copy to. 387 * dest is assumed to be valid or zero'd 388 * @src: Pointer to the new ah_attr. 389 * 390 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 391 * if it is valid. This also transfers ownership of internal references from 392 * src to dest, making src invalid in the process. No new reference of the src 393 * ah_attr is taken. 394 */ 395 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 396 { 397 rdma_destroy_ah_attr(dest); 398 *dest = *src; 399 src->grh.sgid_attr = NULL; 400 } 401 EXPORT_SYMBOL(rdma_move_ah_attr); 402 403 /* 404 * Validate that the rdma_ah_attr is valid for the device before passing it 405 * off to the driver. 406 */ 407 static int rdma_check_ah_attr(struct ib_device *device, 408 struct rdma_ah_attr *ah_attr) 409 { 410 if (!rdma_is_port_valid(device, ah_attr->port_num)) 411 return -EINVAL; 412 413 if ((rdma_is_grh_required(device, ah_attr->port_num) || 414 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 415 !(ah_attr->ah_flags & IB_AH_GRH)) 416 return -EINVAL; 417 418 if (ah_attr->grh.sgid_attr) { 419 /* 420 * Make sure the passed sgid_attr is consistent with the 421 * parameters 422 */ 423 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 424 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 425 return -EINVAL; 426 } 427 return 0; 428 } 429 430 /* 431 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 432 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 433 */ 434 static int rdma_fill_sgid_attr(struct ib_device *device, 435 struct rdma_ah_attr *ah_attr, 436 const struct ib_gid_attr **old_sgid_attr) 437 { 438 const struct ib_gid_attr *sgid_attr; 439 struct ib_global_route *grh; 440 int ret; 441 442 *old_sgid_attr = ah_attr->grh.sgid_attr; 443 444 ret = rdma_check_ah_attr(device, ah_attr); 445 if (ret) 446 return ret; 447 448 if (!(ah_attr->ah_flags & IB_AH_GRH)) 449 return 0; 450 451 grh = rdma_ah_retrieve_grh(ah_attr); 452 if (grh->sgid_attr) 453 return 0; 454 455 sgid_attr = 456 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 457 if (IS_ERR(sgid_attr)) 458 return PTR_ERR(sgid_attr); 459 460 /* Move ownerhip of the kref into the ah_attr */ 461 grh->sgid_attr = sgid_attr; 462 return 0; 463 } 464 465 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 466 const struct ib_gid_attr *old_sgid_attr) 467 { 468 /* 469 * Fill didn't change anything, the caller retains ownership of 470 * whatever it passed 471 */ 472 if (ah_attr->grh.sgid_attr == old_sgid_attr) 473 return; 474 475 /* 476 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 477 * doesn't see any change in the rdma_ah_attr. If we get here 478 * old_sgid_attr is NULL. 479 */ 480 rdma_destroy_ah_attr(ah_attr); 481 } 482 483 static const struct ib_gid_attr * 484 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 485 const struct ib_gid_attr *old_attr) 486 { 487 if (old_attr) 488 rdma_put_gid_attr(old_attr); 489 if (ah_attr->ah_flags & IB_AH_GRH) { 490 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 491 return ah_attr->grh.sgid_attr; 492 } 493 return NULL; 494 } 495 496 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 497 struct rdma_ah_attr *ah_attr, 498 u32 flags, 499 struct ib_udata *udata) 500 { 501 struct ib_device *device = pd->device; 502 struct ib_ah *ah; 503 int ret; 504 505 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 506 507 if (!device->ops.create_ah) 508 return ERR_PTR(-EOPNOTSUPP); 509 510 ah = rdma_zalloc_drv_obj_gfp( 511 device, ib_ah, 512 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 513 if (!ah) 514 return ERR_PTR(-ENOMEM); 515 516 ah->device = device; 517 ah->pd = pd; 518 ah->type = ah_attr->type; 519 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 520 521 ret = device->ops.create_ah(ah, ah_attr, flags, udata); 522 if (ret) { 523 kfree(ah); 524 return ERR_PTR(ret); 525 } 526 527 atomic_inc(&pd->usecnt); 528 return ah; 529 } 530 531 /** 532 * rdma_create_ah - Creates an address handle for the 533 * given address vector. 534 * @pd: The protection domain associated with the address handle. 535 * @ah_attr: The attributes of the address vector. 536 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 537 * 538 * It returns 0 on success and returns appropriate error code on error. 539 * The address handle is used to reference a local or global destination 540 * in all UD QP post sends. 541 */ 542 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 543 u32 flags) 544 { 545 const struct ib_gid_attr *old_sgid_attr; 546 struct ib_ah *ah; 547 int ret; 548 549 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 550 if (ret) 551 return ERR_PTR(ret); 552 553 ah = _rdma_create_ah(pd, ah_attr, flags, NULL); 554 555 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 556 return ah; 557 } 558 EXPORT_SYMBOL(rdma_create_ah); 559 560 /** 561 * rdma_create_user_ah - Creates an address handle for the 562 * given address vector. 563 * It resolves destination mac address for ah attribute of RoCE type. 564 * @pd: The protection domain associated with the address handle. 565 * @ah_attr: The attributes of the address vector. 566 * @udata: pointer to user's input output buffer information need by 567 * provider driver. 568 * 569 * It returns 0 on success and returns appropriate error code on error. 570 * The address handle is used to reference a local or global destination 571 * in all UD QP post sends. 572 */ 573 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 574 struct rdma_ah_attr *ah_attr, 575 struct ib_udata *udata) 576 { 577 const struct ib_gid_attr *old_sgid_attr; 578 struct ib_ah *ah; 579 int err; 580 581 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 582 if (err) 583 return ERR_PTR(err); 584 585 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 586 err = ib_resolve_eth_dmac(pd->device, ah_attr); 587 if (err) { 588 ah = ERR_PTR(err); 589 goto out; 590 } 591 } 592 593 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata); 594 595 out: 596 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 597 return ah; 598 } 599 EXPORT_SYMBOL(rdma_create_user_ah); 600 601 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 602 { 603 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 604 struct iphdr ip4h_checked; 605 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 606 607 /* If it's IPv6, the version must be 6, otherwise, the first 608 * 20 bytes (before the IPv4 header) are garbled. 609 */ 610 if (ip6h->version != 6) 611 return (ip4h->version == 4) ? 4 : 0; 612 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 613 614 /* RoCE v2 requires no options, thus header length 615 * must be 5 words 616 */ 617 if (ip4h->ihl != 5) 618 return 6; 619 620 /* Verify checksum. 621 * We can't write on scattered buffers so we need to copy to 622 * temp buffer. 623 */ 624 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 625 ip4h_checked.check = 0; 626 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 627 /* if IPv4 header checksum is OK, believe it */ 628 if (ip4h->check == ip4h_checked.check) 629 return 4; 630 return 6; 631 } 632 EXPORT_SYMBOL(ib_get_rdma_header_version); 633 634 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 635 u8 port_num, 636 const struct ib_grh *grh) 637 { 638 int grh_version; 639 640 if (rdma_protocol_ib(device, port_num)) 641 return RDMA_NETWORK_IB; 642 643 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 644 645 if (grh_version == 4) 646 return RDMA_NETWORK_IPV4; 647 648 if (grh->next_hdr == IPPROTO_UDP) 649 return RDMA_NETWORK_IPV6; 650 651 return RDMA_NETWORK_ROCE_V1; 652 } 653 654 struct find_gid_index_context { 655 u16 vlan_id; 656 enum ib_gid_type gid_type; 657 }; 658 659 static bool find_gid_index(const union ib_gid *gid, 660 const struct ib_gid_attr *gid_attr, 661 void *context) 662 { 663 struct find_gid_index_context *ctx = context; 664 665 if (ctx->gid_type != gid_attr->gid_type) 666 return false; 667 668 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 669 (is_vlan_dev(gid_attr->ndev) && 670 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 671 return false; 672 673 return true; 674 } 675 676 static const struct ib_gid_attr * 677 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 678 u16 vlan_id, const union ib_gid *sgid, 679 enum ib_gid_type gid_type) 680 { 681 struct find_gid_index_context context = {.vlan_id = vlan_id, 682 .gid_type = gid_type}; 683 684 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 685 &context); 686 } 687 688 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 689 enum rdma_network_type net_type, 690 union ib_gid *sgid, union ib_gid *dgid) 691 { 692 struct sockaddr_in src_in; 693 struct sockaddr_in dst_in; 694 __be32 src_saddr, dst_saddr; 695 696 if (!sgid || !dgid) 697 return -EINVAL; 698 699 if (net_type == RDMA_NETWORK_IPV4) { 700 memcpy(&src_in.sin_addr.s_addr, 701 &hdr->roce4grh.saddr, 4); 702 memcpy(&dst_in.sin_addr.s_addr, 703 &hdr->roce4grh.daddr, 4); 704 src_saddr = src_in.sin_addr.s_addr; 705 dst_saddr = dst_in.sin_addr.s_addr; 706 ipv6_addr_set_v4mapped(src_saddr, 707 (struct in6_addr *)sgid); 708 ipv6_addr_set_v4mapped(dst_saddr, 709 (struct in6_addr *)dgid); 710 return 0; 711 } else if (net_type == RDMA_NETWORK_IPV6 || 712 net_type == RDMA_NETWORK_IB) { 713 *dgid = hdr->ibgrh.dgid; 714 *sgid = hdr->ibgrh.sgid; 715 return 0; 716 } else { 717 return -EINVAL; 718 } 719 } 720 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 721 722 /* Resolve destination mac address and hop limit for unicast destination 723 * GID entry, considering the source GID entry as well. 724 * ah_attribute must have have valid port_num, sgid_index. 725 */ 726 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 727 struct rdma_ah_attr *ah_attr) 728 { 729 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 730 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 731 int hop_limit = 0xff; 732 int ret = 0; 733 734 /* If destination is link local and source GID is RoCEv1, 735 * IP stack is not used. 736 */ 737 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 738 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 739 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 740 ah_attr->roce.dmac); 741 return ret; 742 } 743 744 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 745 ah_attr->roce.dmac, 746 sgid_attr, &hop_limit); 747 748 grh->hop_limit = hop_limit; 749 return ret; 750 } 751 752 /* 753 * This function initializes address handle attributes from the incoming packet. 754 * Incoming packet has dgid of the receiver node on which this code is 755 * getting executed and, sgid contains the GID of the sender. 756 * 757 * When resolving mac address of destination, the arrived dgid is used 758 * as sgid and, sgid is used as dgid because sgid contains destinations 759 * GID whom to respond to. 760 * 761 * On success the caller is responsible to call rdma_destroy_ah_attr on the 762 * attr. 763 */ 764 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 765 const struct ib_wc *wc, const struct ib_grh *grh, 766 struct rdma_ah_attr *ah_attr) 767 { 768 u32 flow_class; 769 int ret; 770 enum rdma_network_type net_type = RDMA_NETWORK_IB; 771 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 772 const struct ib_gid_attr *sgid_attr; 773 int hoplimit = 0xff; 774 union ib_gid dgid; 775 union ib_gid sgid; 776 777 might_sleep(); 778 779 memset(ah_attr, 0, sizeof *ah_attr); 780 ah_attr->type = rdma_ah_find_type(device, port_num); 781 if (rdma_cap_eth_ah(device, port_num)) { 782 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 783 net_type = wc->network_hdr_type; 784 else 785 net_type = ib_get_net_type_by_grh(device, port_num, grh); 786 gid_type = ib_network_to_gid_type(net_type); 787 } 788 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 789 &sgid, &dgid); 790 if (ret) 791 return ret; 792 793 rdma_ah_set_sl(ah_attr, wc->sl); 794 rdma_ah_set_port_num(ah_attr, port_num); 795 796 if (rdma_protocol_roce(device, port_num)) { 797 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 798 wc->vlan_id : 0xffff; 799 800 if (!(wc->wc_flags & IB_WC_GRH)) 801 return -EPROTOTYPE; 802 803 sgid_attr = get_sgid_attr_from_eth(device, port_num, 804 vlan_id, &dgid, 805 gid_type); 806 if (IS_ERR(sgid_attr)) 807 return PTR_ERR(sgid_attr); 808 809 flow_class = be32_to_cpu(grh->version_tclass_flow); 810 rdma_move_grh_sgid_attr(ah_attr, 811 &sgid, 812 flow_class & 0xFFFFF, 813 hoplimit, 814 (flow_class >> 20) & 0xFF, 815 sgid_attr); 816 817 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 818 if (ret) 819 rdma_destroy_ah_attr(ah_attr); 820 821 return ret; 822 } else { 823 rdma_ah_set_dlid(ah_attr, wc->slid); 824 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 825 826 if ((wc->wc_flags & IB_WC_GRH) == 0) 827 return 0; 828 829 if (dgid.global.interface_id != 830 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 831 sgid_attr = rdma_find_gid_by_port( 832 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 833 } else 834 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 835 836 if (IS_ERR(sgid_attr)) 837 return PTR_ERR(sgid_attr); 838 flow_class = be32_to_cpu(grh->version_tclass_flow); 839 rdma_move_grh_sgid_attr(ah_attr, 840 &sgid, 841 flow_class & 0xFFFFF, 842 hoplimit, 843 (flow_class >> 20) & 0xFF, 844 sgid_attr); 845 846 return 0; 847 } 848 } 849 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 850 851 /** 852 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 853 * of the reference 854 * 855 * @attr: Pointer to AH attribute structure 856 * @dgid: Destination GID 857 * @flow_label: Flow label 858 * @hop_limit: Hop limit 859 * @traffic_class: traffic class 860 * @sgid_attr: Pointer to SGID attribute 861 * 862 * This takes ownership of the sgid_attr reference. The caller must ensure 863 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 864 * calling this function. 865 */ 866 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 867 u32 flow_label, u8 hop_limit, u8 traffic_class, 868 const struct ib_gid_attr *sgid_attr) 869 { 870 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 871 traffic_class); 872 attr->grh.sgid_attr = sgid_attr; 873 } 874 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 875 876 /** 877 * rdma_destroy_ah_attr - Release reference to SGID attribute of 878 * ah attribute. 879 * @ah_attr: Pointer to ah attribute 880 * 881 * Release reference to the SGID attribute of the ah attribute if it is 882 * non NULL. It is safe to call this multiple times, and safe to call it on 883 * a zero initialized ah_attr. 884 */ 885 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 886 { 887 if (ah_attr->grh.sgid_attr) { 888 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 889 ah_attr->grh.sgid_attr = NULL; 890 } 891 } 892 EXPORT_SYMBOL(rdma_destroy_ah_attr); 893 894 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 895 const struct ib_grh *grh, u8 port_num) 896 { 897 struct rdma_ah_attr ah_attr; 898 struct ib_ah *ah; 899 int ret; 900 901 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 902 if (ret) 903 return ERR_PTR(ret); 904 905 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 906 907 rdma_destroy_ah_attr(&ah_attr); 908 return ah; 909 } 910 EXPORT_SYMBOL(ib_create_ah_from_wc); 911 912 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 913 { 914 const struct ib_gid_attr *old_sgid_attr; 915 int ret; 916 917 if (ah->type != ah_attr->type) 918 return -EINVAL; 919 920 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 921 if (ret) 922 return ret; 923 924 ret = ah->device->ops.modify_ah ? 925 ah->device->ops.modify_ah(ah, ah_attr) : 926 -EOPNOTSUPP; 927 928 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 929 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 930 return ret; 931 } 932 EXPORT_SYMBOL(rdma_modify_ah); 933 934 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 935 { 936 ah_attr->grh.sgid_attr = NULL; 937 938 return ah->device->ops.query_ah ? 939 ah->device->ops.query_ah(ah, ah_attr) : 940 -EOPNOTSUPP; 941 } 942 EXPORT_SYMBOL(rdma_query_ah); 943 944 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 945 { 946 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 947 struct ib_pd *pd; 948 949 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 950 951 pd = ah->pd; 952 953 ah->device->ops.destroy_ah(ah, flags); 954 atomic_dec(&pd->usecnt); 955 if (sgid_attr) 956 rdma_put_gid_attr(sgid_attr); 957 958 kfree(ah); 959 return 0; 960 } 961 EXPORT_SYMBOL(rdma_destroy_ah_user); 962 963 /* Shared receive queues */ 964 965 struct ib_srq *ib_create_srq(struct ib_pd *pd, 966 struct ib_srq_init_attr *srq_init_attr) 967 { 968 struct ib_srq *srq; 969 int ret; 970 971 if (!pd->device->ops.create_srq) 972 return ERR_PTR(-EOPNOTSUPP); 973 974 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 975 if (!srq) 976 return ERR_PTR(-ENOMEM); 977 978 srq->device = pd->device; 979 srq->pd = pd; 980 srq->event_handler = srq_init_attr->event_handler; 981 srq->srq_context = srq_init_attr->srq_context; 982 srq->srq_type = srq_init_attr->srq_type; 983 984 if (ib_srq_has_cq(srq->srq_type)) { 985 srq->ext.cq = srq_init_attr->ext.cq; 986 atomic_inc(&srq->ext.cq->usecnt); 987 } 988 if (srq->srq_type == IB_SRQT_XRC) { 989 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 990 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 991 } 992 atomic_inc(&pd->usecnt); 993 994 ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL); 995 if (ret) { 996 atomic_dec(&srq->pd->usecnt); 997 if (srq->srq_type == IB_SRQT_XRC) 998 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 999 if (ib_srq_has_cq(srq->srq_type)) 1000 atomic_dec(&srq->ext.cq->usecnt); 1001 kfree(srq); 1002 return ERR_PTR(ret); 1003 } 1004 1005 return srq; 1006 } 1007 EXPORT_SYMBOL(ib_create_srq); 1008 1009 int ib_modify_srq(struct ib_srq *srq, 1010 struct ib_srq_attr *srq_attr, 1011 enum ib_srq_attr_mask srq_attr_mask) 1012 { 1013 return srq->device->ops.modify_srq ? 1014 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1015 NULL) : -EOPNOTSUPP; 1016 } 1017 EXPORT_SYMBOL(ib_modify_srq); 1018 1019 int ib_query_srq(struct ib_srq *srq, 1020 struct ib_srq_attr *srq_attr) 1021 { 1022 return srq->device->ops.query_srq ? 1023 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1024 } 1025 EXPORT_SYMBOL(ib_query_srq); 1026 1027 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1028 { 1029 if (atomic_read(&srq->usecnt)) 1030 return -EBUSY; 1031 1032 srq->device->ops.destroy_srq(srq, udata); 1033 1034 atomic_dec(&srq->pd->usecnt); 1035 if (srq->srq_type == IB_SRQT_XRC) 1036 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1037 if (ib_srq_has_cq(srq->srq_type)) 1038 atomic_dec(&srq->ext.cq->usecnt); 1039 kfree(srq); 1040 1041 return 0; 1042 } 1043 EXPORT_SYMBOL(ib_destroy_srq_user); 1044 1045 /* Queue pairs */ 1046 1047 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1048 { 1049 struct ib_qp *qp = context; 1050 unsigned long flags; 1051 1052 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 1053 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1054 if (event->element.qp->event_handler) 1055 event->element.qp->event_handler(event, event->element.qp->qp_context); 1056 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 1057 } 1058 1059 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1060 { 1061 mutex_lock(&xrcd->tgt_qp_mutex); 1062 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1063 mutex_unlock(&xrcd->tgt_qp_mutex); 1064 } 1065 1066 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1067 void (*event_handler)(struct ib_event *, void *), 1068 void *qp_context) 1069 { 1070 struct ib_qp *qp; 1071 unsigned long flags; 1072 int err; 1073 1074 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1075 if (!qp) 1076 return ERR_PTR(-ENOMEM); 1077 1078 qp->real_qp = real_qp; 1079 err = ib_open_shared_qp_security(qp, real_qp->device); 1080 if (err) { 1081 kfree(qp); 1082 return ERR_PTR(err); 1083 } 1084 1085 qp->real_qp = real_qp; 1086 atomic_inc(&real_qp->usecnt); 1087 qp->device = real_qp->device; 1088 qp->event_handler = event_handler; 1089 qp->qp_context = qp_context; 1090 qp->qp_num = real_qp->qp_num; 1091 qp->qp_type = real_qp->qp_type; 1092 1093 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1094 list_add(&qp->open_list, &real_qp->open_list); 1095 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1096 1097 return qp; 1098 } 1099 1100 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1101 struct ib_qp_open_attr *qp_open_attr) 1102 { 1103 struct ib_qp *qp, *real_qp; 1104 1105 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1106 return ERR_PTR(-EINVAL); 1107 1108 qp = ERR_PTR(-EINVAL); 1109 mutex_lock(&xrcd->tgt_qp_mutex); 1110 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1111 if (real_qp->qp_num == qp_open_attr->qp_num) { 1112 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1113 qp_open_attr->qp_context); 1114 break; 1115 } 1116 } 1117 mutex_unlock(&xrcd->tgt_qp_mutex); 1118 return qp; 1119 } 1120 EXPORT_SYMBOL(ib_open_qp); 1121 1122 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1123 struct ib_qp_init_attr *qp_init_attr, 1124 struct ib_udata *udata) 1125 { 1126 struct ib_qp *real_qp = qp; 1127 1128 qp->event_handler = __ib_shared_qp_event_handler; 1129 qp->qp_context = qp; 1130 qp->pd = NULL; 1131 qp->send_cq = qp->recv_cq = NULL; 1132 qp->srq = NULL; 1133 qp->xrcd = qp_init_attr->xrcd; 1134 atomic_inc(&qp_init_attr->xrcd->usecnt); 1135 INIT_LIST_HEAD(&qp->open_list); 1136 1137 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1138 qp_init_attr->qp_context); 1139 if (IS_ERR(qp)) 1140 return qp; 1141 1142 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1143 return qp; 1144 } 1145 1146 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 1147 struct ib_qp_init_attr *qp_init_attr, 1148 struct ib_udata *udata) 1149 { 1150 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1151 struct ib_qp *qp; 1152 int ret; 1153 1154 if (qp_init_attr->rwq_ind_tbl && 1155 (qp_init_attr->recv_cq || 1156 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1157 qp_init_attr->cap.max_recv_sge)) 1158 return ERR_PTR(-EINVAL); 1159 1160 /* 1161 * If the callers is using the RDMA API calculate the resources 1162 * needed for the RDMA READ/WRITE operations. 1163 * 1164 * Note that these callers need to pass in a port number. 1165 */ 1166 if (qp_init_attr->cap.max_rdma_ctxs) 1167 rdma_rw_init_qp(device, qp_init_attr); 1168 1169 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1170 if (IS_ERR(qp)) 1171 return qp; 1172 1173 ret = ib_create_qp_security(qp, device); 1174 if (ret) 1175 goto err; 1176 1177 qp->qp_type = qp_init_attr->qp_type; 1178 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 1179 1180 atomic_set(&qp->usecnt, 0); 1181 qp->mrs_used = 0; 1182 spin_lock_init(&qp->mr_lock); 1183 INIT_LIST_HEAD(&qp->rdma_mrs); 1184 INIT_LIST_HEAD(&qp->sig_mrs); 1185 qp->port = 0; 1186 1187 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 1188 struct ib_qp *xrc_qp = 1189 create_xrc_qp_user(qp, qp_init_attr, udata); 1190 1191 if (IS_ERR(xrc_qp)) { 1192 ret = PTR_ERR(xrc_qp); 1193 goto err; 1194 } 1195 return xrc_qp; 1196 } 1197 1198 qp->event_handler = qp_init_attr->event_handler; 1199 qp->qp_context = qp_init_attr->qp_context; 1200 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1201 qp->recv_cq = NULL; 1202 qp->srq = NULL; 1203 } else { 1204 qp->recv_cq = qp_init_attr->recv_cq; 1205 if (qp_init_attr->recv_cq) 1206 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1207 qp->srq = qp_init_attr->srq; 1208 if (qp->srq) 1209 atomic_inc(&qp_init_attr->srq->usecnt); 1210 } 1211 1212 qp->send_cq = qp_init_attr->send_cq; 1213 qp->xrcd = NULL; 1214 1215 atomic_inc(&pd->usecnt); 1216 if (qp_init_attr->send_cq) 1217 atomic_inc(&qp_init_attr->send_cq->usecnt); 1218 if (qp_init_attr->rwq_ind_tbl) 1219 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1220 1221 if (qp_init_attr->cap.max_rdma_ctxs) { 1222 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1223 if (ret) 1224 goto err; 1225 } 1226 1227 /* 1228 * Note: all hw drivers guarantee that max_send_sge is lower than 1229 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1230 * max_send_sge <= max_sge_rd. 1231 */ 1232 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1233 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1234 device->attrs.max_sge_rd); 1235 1236 return qp; 1237 1238 err: 1239 ib_destroy_qp(qp); 1240 return ERR_PTR(ret); 1241 1242 } 1243 EXPORT_SYMBOL(ib_create_qp_user); 1244 1245 static const struct { 1246 int valid; 1247 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1248 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1249 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1250 [IB_QPS_RESET] = { 1251 [IB_QPS_RESET] = { .valid = 1 }, 1252 [IB_QPS_INIT] = { 1253 .valid = 1, 1254 .req_param = { 1255 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1256 IB_QP_PORT | 1257 IB_QP_QKEY), 1258 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1259 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1260 IB_QP_PORT | 1261 IB_QP_ACCESS_FLAGS), 1262 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1263 IB_QP_PORT | 1264 IB_QP_ACCESS_FLAGS), 1265 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1266 IB_QP_PORT | 1267 IB_QP_ACCESS_FLAGS), 1268 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1269 IB_QP_PORT | 1270 IB_QP_ACCESS_FLAGS), 1271 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1272 IB_QP_QKEY), 1273 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1274 IB_QP_QKEY), 1275 } 1276 }, 1277 }, 1278 [IB_QPS_INIT] = { 1279 [IB_QPS_RESET] = { .valid = 1 }, 1280 [IB_QPS_ERR] = { .valid = 1 }, 1281 [IB_QPS_INIT] = { 1282 .valid = 1, 1283 .opt_param = { 1284 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1285 IB_QP_PORT | 1286 IB_QP_QKEY), 1287 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1288 IB_QP_PORT | 1289 IB_QP_ACCESS_FLAGS), 1290 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1291 IB_QP_PORT | 1292 IB_QP_ACCESS_FLAGS), 1293 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1294 IB_QP_PORT | 1295 IB_QP_ACCESS_FLAGS), 1296 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1297 IB_QP_PORT | 1298 IB_QP_ACCESS_FLAGS), 1299 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1300 IB_QP_QKEY), 1301 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1302 IB_QP_QKEY), 1303 } 1304 }, 1305 [IB_QPS_RTR] = { 1306 .valid = 1, 1307 .req_param = { 1308 [IB_QPT_UC] = (IB_QP_AV | 1309 IB_QP_PATH_MTU | 1310 IB_QP_DEST_QPN | 1311 IB_QP_RQ_PSN), 1312 [IB_QPT_RC] = (IB_QP_AV | 1313 IB_QP_PATH_MTU | 1314 IB_QP_DEST_QPN | 1315 IB_QP_RQ_PSN | 1316 IB_QP_MAX_DEST_RD_ATOMIC | 1317 IB_QP_MIN_RNR_TIMER), 1318 [IB_QPT_XRC_INI] = (IB_QP_AV | 1319 IB_QP_PATH_MTU | 1320 IB_QP_DEST_QPN | 1321 IB_QP_RQ_PSN), 1322 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1323 IB_QP_PATH_MTU | 1324 IB_QP_DEST_QPN | 1325 IB_QP_RQ_PSN | 1326 IB_QP_MAX_DEST_RD_ATOMIC | 1327 IB_QP_MIN_RNR_TIMER), 1328 }, 1329 .opt_param = { 1330 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1331 IB_QP_QKEY), 1332 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1333 IB_QP_ACCESS_FLAGS | 1334 IB_QP_PKEY_INDEX), 1335 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1336 IB_QP_ACCESS_FLAGS | 1337 IB_QP_PKEY_INDEX), 1338 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1339 IB_QP_ACCESS_FLAGS | 1340 IB_QP_PKEY_INDEX), 1341 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1342 IB_QP_ACCESS_FLAGS | 1343 IB_QP_PKEY_INDEX), 1344 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1345 IB_QP_QKEY), 1346 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1347 IB_QP_QKEY), 1348 }, 1349 }, 1350 }, 1351 [IB_QPS_RTR] = { 1352 [IB_QPS_RESET] = { .valid = 1 }, 1353 [IB_QPS_ERR] = { .valid = 1 }, 1354 [IB_QPS_RTS] = { 1355 .valid = 1, 1356 .req_param = { 1357 [IB_QPT_UD] = IB_QP_SQ_PSN, 1358 [IB_QPT_UC] = IB_QP_SQ_PSN, 1359 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1360 IB_QP_RETRY_CNT | 1361 IB_QP_RNR_RETRY | 1362 IB_QP_SQ_PSN | 1363 IB_QP_MAX_QP_RD_ATOMIC), 1364 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1365 IB_QP_RETRY_CNT | 1366 IB_QP_RNR_RETRY | 1367 IB_QP_SQ_PSN | 1368 IB_QP_MAX_QP_RD_ATOMIC), 1369 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1370 IB_QP_SQ_PSN), 1371 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1372 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1373 }, 1374 .opt_param = { 1375 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1376 IB_QP_QKEY), 1377 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1378 IB_QP_ALT_PATH | 1379 IB_QP_ACCESS_FLAGS | 1380 IB_QP_PATH_MIG_STATE), 1381 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1382 IB_QP_ALT_PATH | 1383 IB_QP_ACCESS_FLAGS | 1384 IB_QP_MIN_RNR_TIMER | 1385 IB_QP_PATH_MIG_STATE), 1386 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1387 IB_QP_ALT_PATH | 1388 IB_QP_ACCESS_FLAGS | 1389 IB_QP_PATH_MIG_STATE), 1390 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1391 IB_QP_ALT_PATH | 1392 IB_QP_ACCESS_FLAGS | 1393 IB_QP_MIN_RNR_TIMER | 1394 IB_QP_PATH_MIG_STATE), 1395 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1396 IB_QP_QKEY), 1397 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1398 IB_QP_QKEY), 1399 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1400 } 1401 } 1402 }, 1403 [IB_QPS_RTS] = { 1404 [IB_QPS_RESET] = { .valid = 1 }, 1405 [IB_QPS_ERR] = { .valid = 1 }, 1406 [IB_QPS_RTS] = { 1407 .valid = 1, 1408 .opt_param = { 1409 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1410 IB_QP_QKEY), 1411 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1412 IB_QP_ACCESS_FLAGS | 1413 IB_QP_ALT_PATH | 1414 IB_QP_PATH_MIG_STATE), 1415 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1416 IB_QP_ACCESS_FLAGS | 1417 IB_QP_ALT_PATH | 1418 IB_QP_PATH_MIG_STATE | 1419 IB_QP_MIN_RNR_TIMER), 1420 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1421 IB_QP_ACCESS_FLAGS | 1422 IB_QP_ALT_PATH | 1423 IB_QP_PATH_MIG_STATE), 1424 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1425 IB_QP_ACCESS_FLAGS | 1426 IB_QP_ALT_PATH | 1427 IB_QP_PATH_MIG_STATE | 1428 IB_QP_MIN_RNR_TIMER), 1429 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1430 IB_QP_QKEY), 1431 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1432 IB_QP_QKEY), 1433 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1434 } 1435 }, 1436 [IB_QPS_SQD] = { 1437 .valid = 1, 1438 .opt_param = { 1439 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1440 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1441 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1442 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1443 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1444 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1445 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1446 } 1447 }, 1448 }, 1449 [IB_QPS_SQD] = { 1450 [IB_QPS_RESET] = { .valid = 1 }, 1451 [IB_QPS_ERR] = { .valid = 1 }, 1452 [IB_QPS_RTS] = { 1453 .valid = 1, 1454 .opt_param = { 1455 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1456 IB_QP_QKEY), 1457 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1458 IB_QP_ALT_PATH | 1459 IB_QP_ACCESS_FLAGS | 1460 IB_QP_PATH_MIG_STATE), 1461 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1462 IB_QP_ALT_PATH | 1463 IB_QP_ACCESS_FLAGS | 1464 IB_QP_MIN_RNR_TIMER | 1465 IB_QP_PATH_MIG_STATE), 1466 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1467 IB_QP_ALT_PATH | 1468 IB_QP_ACCESS_FLAGS | 1469 IB_QP_PATH_MIG_STATE), 1470 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1471 IB_QP_ALT_PATH | 1472 IB_QP_ACCESS_FLAGS | 1473 IB_QP_MIN_RNR_TIMER | 1474 IB_QP_PATH_MIG_STATE), 1475 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1476 IB_QP_QKEY), 1477 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1478 IB_QP_QKEY), 1479 } 1480 }, 1481 [IB_QPS_SQD] = { 1482 .valid = 1, 1483 .opt_param = { 1484 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1485 IB_QP_QKEY), 1486 [IB_QPT_UC] = (IB_QP_AV | 1487 IB_QP_ALT_PATH | 1488 IB_QP_ACCESS_FLAGS | 1489 IB_QP_PKEY_INDEX | 1490 IB_QP_PATH_MIG_STATE), 1491 [IB_QPT_RC] = (IB_QP_PORT | 1492 IB_QP_AV | 1493 IB_QP_TIMEOUT | 1494 IB_QP_RETRY_CNT | 1495 IB_QP_RNR_RETRY | 1496 IB_QP_MAX_QP_RD_ATOMIC | 1497 IB_QP_MAX_DEST_RD_ATOMIC | 1498 IB_QP_ALT_PATH | 1499 IB_QP_ACCESS_FLAGS | 1500 IB_QP_PKEY_INDEX | 1501 IB_QP_MIN_RNR_TIMER | 1502 IB_QP_PATH_MIG_STATE), 1503 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1504 IB_QP_AV | 1505 IB_QP_TIMEOUT | 1506 IB_QP_RETRY_CNT | 1507 IB_QP_RNR_RETRY | 1508 IB_QP_MAX_QP_RD_ATOMIC | 1509 IB_QP_ALT_PATH | 1510 IB_QP_ACCESS_FLAGS | 1511 IB_QP_PKEY_INDEX | 1512 IB_QP_PATH_MIG_STATE), 1513 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1514 IB_QP_AV | 1515 IB_QP_TIMEOUT | 1516 IB_QP_MAX_DEST_RD_ATOMIC | 1517 IB_QP_ALT_PATH | 1518 IB_QP_ACCESS_FLAGS | 1519 IB_QP_PKEY_INDEX | 1520 IB_QP_MIN_RNR_TIMER | 1521 IB_QP_PATH_MIG_STATE), 1522 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1523 IB_QP_QKEY), 1524 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1525 IB_QP_QKEY), 1526 } 1527 } 1528 }, 1529 [IB_QPS_SQE] = { 1530 [IB_QPS_RESET] = { .valid = 1 }, 1531 [IB_QPS_ERR] = { .valid = 1 }, 1532 [IB_QPS_RTS] = { 1533 .valid = 1, 1534 .opt_param = { 1535 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1536 IB_QP_QKEY), 1537 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1538 IB_QP_ACCESS_FLAGS), 1539 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1540 IB_QP_QKEY), 1541 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1542 IB_QP_QKEY), 1543 } 1544 } 1545 }, 1546 [IB_QPS_ERR] = { 1547 [IB_QPS_RESET] = { .valid = 1 }, 1548 [IB_QPS_ERR] = { .valid = 1 } 1549 } 1550 }; 1551 1552 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1553 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1554 { 1555 enum ib_qp_attr_mask req_param, opt_param; 1556 1557 if (mask & IB_QP_CUR_STATE && 1558 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1559 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1560 return false; 1561 1562 if (!qp_state_table[cur_state][next_state].valid) 1563 return false; 1564 1565 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1566 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1567 1568 if ((mask & req_param) != req_param) 1569 return false; 1570 1571 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1572 return false; 1573 1574 return true; 1575 } 1576 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1577 1578 /** 1579 * ib_resolve_eth_dmac - Resolve destination mac address 1580 * @device: Device to consider 1581 * @ah_attr: address handle attribute which describes the 1582 * source and destination parameters 1583 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1584 * returns 0 on success or appropriate error code. It initializes the 1585 * necessary ah_attr fields when call is successful. 1586 */ 1587 static int ib_resolve_eth_dmac(struct ib_device *device, 1588 struct rdma_ah_attr *ah_attr) 1589 { 1590 int ret = 0; 1591 1592 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1593 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1594 __be32 addr = 0; 1595 1596 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1597 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1598 } else { 1599 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1600 (char *)ah_attr->roce.dmac); 1601 } 1602 } else { 1603 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1604 } 1605 return ret; 1606 } 1607 1608 static bool is_qp_type_connected(const struct ib_qp *qp) 1609 { 1610 return (qp->qp_type == IB_QPT_UC || 1611 qp->qp_type == IB_QPT_RC || 1612 qp->qp_type == IB_QPT_XRC_INI || 1613 qp->qp_type == IB_QPT_XRC_TGT); 1614 } 1615 1616 /** 1617 * IB core internal function to perform QP attributes modification. 1618 */ 1619 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1620 int attr_mask, struct ib_udata *udata) 1621 { 1622 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1623 const struct ib_gid_attr *old_sgid_attr_av; 1624 const struct ib_gid_attr *old_sgid_attr_alt_av; 1625 int ret; 1626 1627 if (attr_mask & IB_QP_AV) { 1628 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1629 &old_sgid_attr_av); 1630 if (ret) 1631 return ret; 1632 } 1633 if (attr_mask & IB_QP_ALT_PATH) { 1634 /* 1635 * FIXME: This does not track the migration state, so if the 1636 * user loads a new alternate path after the HW has migrated 1637 * from primary->alternate we will keep the wrong 1638 * references. This is OK for IB because the reference 1639 * counting does not serve any functional purpose. 1640 */ 1641 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1642 &old_sgid_attr_alt_av); 1643 if (ret) 1644 goto out_av; 1645 1646 /* 1647 * Today the core code can only handle alternate paths and APM 1648 * for IB. Ban them in roce mode. 1649 */ 1650 if (!(rdma_protocol_ib(qp->device, 1651 attr->alt_ah_attr.port_num) && 1652 rdma_protocol_ib(qp->device, port))) { 1653 ret = EINVAL; 1654 goto out; 1655 } 1656 } 1657 1658 /* 1659 * If the user provided the qp_attr then we have to resolve it. Kernel 1660 * users have to provide already resolved rdma_ah_attr's 1661 */ 1662 if (udata && (attr_mask & IB_QP_AV) && 1663 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1664 is_qp_type_connected(qp)) { 1665 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1666 if (ret) 1667 goto out; 1668 } 1669 1670 if (rdma_ib_or_roce(qp->device, port)) { 1671 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1672 dev_warn(&qp->device->dev, 1673 "%s rq_psn overflow, masking to 24 bits\n", 1674 __func__); 1675 attr->rq_psn &= 0xffffff; 1676 } 1677 1678 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1679 dev_warn(&qp->device->dev, 1680 " %s sq_psn overflow, masking to 24 bits\n", 1681 __func__); 1682 attr->sq_psn &= 0xffffff; 1683 } 1684 } 1685 1686 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1687 if (ret) 1688 goto out; 1689 1690 if (attr_mask & IB_QP_PORT) 1691 qp->port = attr->port_num; 1692 if (attr_mask & IB_QP_AV) 1693 qp->av_sgid_attr = 1694 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1695 if (attr_mask & IB_QP_ALT_PATH) 1696 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1697 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1698 1699 out: 1700 if (attr_mask & IB_QP_ALT_PATH) 1701 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1702 out_av: 1703 if (attr_mask & IB_QP_AV) 1704 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1705 return ret; 1706 } 1707 1708 /** 1709 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1710 * @ib_qp: The QP to modify. 1711 * @attr: On input, specifies the QP attributes to modify. On output, 1712 * the current values of selected QP attributes are returned. 1713 * @attr_mask: A bit-mask used to specify which attributes of the QP 1714 * are being modified. 1715 * @udata: pointer to user's input output buffer information 1716 * are being modified. 1717 * It returns 0 on success and returns appropriate error code on error. 1718 */ 1719 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1720 int attr_mask, struct ib_udata *udata) 1721 { 1722 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1723 } 1724 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1725 1726 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1727 { 1728 int rc; 1729 u32 netdev_speed; 1730 struct net_device *netdev; 1731 struct ethtool_link_ksettings lksettings; 1732 1733 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1734 return -EINVAL; 1735 1736 netdev = ib_device_get_netdev(dev, port_num); 1737 if (!netdev) 1738 return -ENODEV; 1739 1740 rtnl_lock(); 1741 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1742 rtnl_unlock(); 1743 1744 dev_put(netdev); 1745 1746 if (!rc) { 1747 netdev_speed = lksettings.base.speed; 1748 } else { 1749 netdev_speed = SPEED_1000; 1750 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1751 netdev_speed); 1752 } 1753 1754 if (netdev_speed <= SPEED_1000) { 1755 *width = IB_WIDTH_1X; 1756 *speed = IB_SPEED_SDR; 1757 } else if (netdev_speed <= SPEED_10000) { 1758 *width = IB_WIDTH_1X; 1759 *speed = IB_SPEED_FDR10; 1760 } else if (netdev_speed <= SPEED_20000) { 1761 *width = IB_WIDTH_4X; 1762 *speed = IB_SPEED_DDR; 1763 } else if (netdev_speed <= SPEED_25000) { 1764 *width = IB_WIDTH_1X; 1765 *speed = IB_SPEED_EDR; 1766 } else if (netdev_speed <= SPEED_40000) { 1767 *width = IB_WIDTH_4X; 1768 *speed = IB_SPEED_FDR10; 1769 } else { 1770 *width = IB_WIDTH_4X; 1771 *speed = IB_SPEED_EDR; 1772 } 1773 1774 return 0; 1775 } 1776 EXPORT_SYMBOL(ib_get_eth_speed); 1777 1778 int ib_modify_qp(struct ib_qp *qp, 1779 struct ib_qp_attr *qp_attr, 1780 int qp_attr_mask) 1781 { 1782 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1783 } 1784 EXPORT_SYMBOL(ib_modify_qp); 1785 1786 int ib_query_qp(struct ib_qp *qp, 1787 struct ib_qp_attr *qp_attr, 1788 int qp_attr_mask, 1789 struct ib_qp_init_attr *qp_init_attr) 1790 { 1791 qp_attr->ah_attr.grh.sgid_attr = NULL; 1792 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1793 1794 return qp->device->ops.query_qp ? 1795 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1796 qp_init_attr) : -EOPNOTSUPP; 1797 } 1798 EXPORT_SYMBOL(ib_query_qp); 1799 1800 int ib_close_qp(struct ib_qp *qp) 1801 { 1802 struct ib_qp *real_qp; 1803 unsigned long flags; 1804 1805 real_qp = qp->real_qp; 1806 if (real_qp == qp) 1807 return -EINVAL; 1808 1809 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1810 list_del(&qp->open_list); 1811 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1812 1813 atomic_dec(&real_qp->usecnt); 1814 if (qp->qp_sec) 1815 ib_close_shared_qp_security(qp->qp_sec); 1816 kfree(qp); 1817 1818 return 0; 1819 } 1820 EXPORT_SYMBOL(ib_close_qp); 1821 1822 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1823 { 1824 struct ib_xrcd *xrcd; 1825 struct ib_qp *real_qp; 1826 int ret; 1827 1828 real_qp = qp->real_qp; 1829 xrcd = real_qp->xrcd; 1830 1831 mutex_lock(&xrcd->tgt_qp_mutex); 1832 ib_close_qp(qp); 1833 if (atomic_read(&real_qp->usecnt) == 0) 1834 list_del(&real_qp->xrcd_list); 1835 else 1836 real_qp = NULL; 1837 mutex_unlock(&xrcd->tgt_qp_mutex); 1838 1839 if (real_qp) { 1840 ret = ib_destroy_qp(real_qp); 1841 if (!ret) 1842 atomic_dec(&xrcd->usecnt); 1843 else 1844 __ib_insert_xrcd_qp(xrcd, real_qp); 1845 } 1846 1847 return 0; 1848 } 1849 1850 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 1851 { 1852 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1853 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1854 struct ib_pd *pd; 1855 struct ib_cq *scq, *rcq; 1856 struct ib_srq *srq; 1857 struct ib_rwq_ind_table *ind_tbl; 1858 struct ib_qp_security *sec; 1859 int ret; 1860 1861 WARN_ON_ONCE(qp->mrs_used > 0); 1862 1863 if (atomic_read(&qp->usecnt)) 1864 return -EBUSY; 1865 1866 if (qp->real_qp != qp) 1867 return __ib_destroy_shared_qp(qp); 1868 1869 pd = qp->pd; 1870 scq = qp->send_cq; 1871 rcq = qp->recv_cq; 1872 srq = qp->srq; 1873 ind_tbl = qp->rwq_ind_tbl; 1874 sec = qp->qp_sec; 1875 if (sec) 1876 ib_destroy_qp_security_begin(sec); 1877 1878 if (!qp->uobject) 1879 rdma_rw_cleanup_mrs(qp); 1880 1881 rdma_restrack_del(&qp->res); 1882 ret = qp->device->ops.destroy_qp(qp, udata); 1883 if (!ret) { 1884 if (alt_path_sgid_attr) 1885 rdma_put_gid_attr(alt_path_sgid_attr); 1886 if (av_sgid_attr) 1887 rdma_put_gid_attr(av_sgid_attr); 1888 if (pd) 1889 atomic_dec(&pd->usecnt); 1890 if (scq) 1891 atomic_dec(&scq->usecnt); 1892 if (rcq) 1893 atomic_dec(&rcq->usecnt); 1894 if (srq) 1895 atomic_dec(&srq->usecnt); 1896 if (ind_tbl) 1897 atomic_dec(&ind_tbl->usecnt); 1898 if (sec) 1899 ib_destroy_qp_security_end(sec); 1900 } else { 1901 if (sec) 1902 ib_destroy_qp_security_abort(sec); 1903 } 1904 1905 return ret; 1906 } 1907 EXPORT_SYMBOL(ib_destroy_qp_user); 1908 1909 /* Completion queues */ 1910 1911 struct ib_cq *__ib_create_cq(struct ib_device *device, 1912 ib_comp_handler comp_handler, 1913 void (*event_handler)(struct ib_event *, void *), 1914 void *cq_context, 1915 const struct ib_cq_init_attr *cq_attr, 1916 const char *caller) 1917 { 1918 struct ib_cq *cq; 1919 1920 cq = device->ops.create_cq(device, cq_attr, NULL); 1921 1922 if (!IS_ERR(cq)) { 1923 cq->device = device; 1924 cq->uobject = NULL; 1925 cq->comp_handler = comp_handler; 1926 cq->event_handler = event_handler; 1927 cq->cq_context = cq_context; 1928 atomic_set(&cq->usecnt, 0); 1929 cq->res.type = RDMA_RESTRACK_CQ; 1930 rdma_restrack_set_task(&cq->res, caller); 1931 rdma_restrack_kadd(&cq->res); 1932 } 1933 1934 return cq; 1935 } 1936 EXPORT_SYMBOL(__ib_create_cq); 1937 1938 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1939 { 1940 return cq->device->ops.modify_cq ? 1941 cq->device->ops.modify_cq(cq, cq_count, 1942 cq_period) : -EOPNOTSUPP; 1943 } 1944 EXPORT_SYMBOL(rdma_set_cq_moderation); 1945 1946 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 1947 { 1948 if (atomic_read(&cq->usecnt)) 1949 return -EBUSY; 1950 1951 rdma_restrack_del(&cq->res); 1952 return cq->device->ops.destroy_cq(cq, udata); 1953 } 1954 EXPORT_SYMBOL(ib_destroy_cq_user); 1955 1956 int ib_resize_cq(struct ib_cq *cq, int cqe) 1957 { 1958 return cq->device->ops.resize_cq ? 1959 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1960 } 1961 EXPORT_SYMBOL(ib_resize_cq); 1962 1963 /* Memory regions */ 1964 1965 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 1966 { 1967 struct ib_pd *pd = mr->pd; 1968 struct ib_dm *dm = mr->dm; 1969 int ret; 1970 1971 rdma_restrack_del(&mr->res); 1972 ret = mr->device->ops.dereg_mr(mr, udata); 1973 if (!ret) { 1974 atomic_dec(&pd->usecnt); 1975 if (dm) 1976 atomic_dec(&dm->usecnt); 1977 } 1978 1979 return ret; 1980 } 1981 EXPORT_SYMBOL(ib_dereg_mr_user); 1982 1983 /** 1984 * ib_alloc_mr() - Allocates a memory region 1985 * @pd: protection domain associated with the region 1986 * @mr_type: memory region type 1987 * @max_num_sg: maximum sg entries available for registration. 1988 * @udata: user data or null for kernel objects 1989 * 1990 * Notes: 1991 * Memory registeration page/sg lists must not exceed max_num_sg. 1992 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1993 * max_num_sg * used_page_size. 1994 * 1995 */ 1996 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 1997 u32 max_num_sg, struct ib_udata *udata) 1998 { 1999 struct ib_mr *mr; 2000 2001 if (!pd->device->ops.alloc_mr) 2002 return ERR_PTR(-EOPNOTSUPP); 2003 2004 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata); 2005 if (!IS_ERR(mr)) { 2006 mr->device = pd->device; 2007 mr->pd = pd; 2008 mr->dm = NULL; 2009 mr->uobject = NULL; 2010 atomic_inc(&pd->usecnt); 2011 mr->need_inval = false; 2012 mr->res.type = RDMA_RESTRACK_MR; 2013 rdma_restrack_kadd(&mr->res); 2014 } 2015 2016 return mr; 2017 } 2018 EXPORT_SYMBOL(ib_alloc_mr_user); 2019 2020 /* "Fast" memory regions */ 2021 2022 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2023 int mr_access_flags, 2024 struct ib_fmr_attr *fmr_attr) 2025 { 2026 struct ib_fmr *fmr; 2027 2028 if (!pd->device->ops.alloc_fmr) 2029 return ERR_PTR(-EOPNOTSUPP); 2030 2031 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr); 2032 if (!IS_ERR(fmr)) { 2033 fmr->device = pd->device; 2034 fmr->pd = pd; 2035 atomic_inc(&pd->usecnt); 2036 } 2037 2038 return fmr; 2039 } 2040 EXPORT_SYMBOL(ib_alloc_fmr); 2041 2042 int ib_unmap_fmr(struct list_head *fmr_list) 2043 { 2044 struct ib_fmr *fmr; 2045 2046 if (list_empty(fmr_list)) 2047 return 0; 2048 2049 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2050 return fmr->device->ops.unmap_fmr(fmr_list); 2051 } 2052 EXPORT_SYMBOL(ib_unmap_fmr); 2053 2054 int ib_dealloc_fmr(struct ib_fmr *fmr) 2055 { 2056 struct ib_pd *pd; 2057 int ret; 2058 2059 pd = fmr->pd; 2060 ret = fmr->device->ops.dealloc_fmr(fmr); 2061 if (!ret) 2062 atomic_dec(&pd->usecnt); 2063 2064 return ret; 2065 } 2066 EXPORT_SYMBOL(ib_dealloc_fmr); 2067 2068 /* Multicast groups */ 2069 2070 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2071 { 2072 struct ib_qp_init_attr init_attr = {}; 2073 struct ib_qp_attr attr = {}; 2074 int num_eth_ports = 0; 2075 int port; 2076 2077 /* If QP state >= init, it is assigned to a port and we can check this 2078 * port only. 2079 */ 2080 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2081 if (attr.qp_state >= IB_QPS_INIT) { 2082 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2083 IB_LINK_LAYER_INFINIBAND) 2084 return true; 2085 goto lid_check; 2086 } 2087 } 2088 2089 /* Can't get a quick answer, iterate over all ports */ 2090 for (port = 0; port < qp->device->phys_port_cnt; port++) 2091 if (rdma_port_get_link_layer(qp->device, port) != 2092 IB_LINK_LAYER_INFINIBAND) 2093 num_eth_ports++; 2094 2095 /* If we have at lease one Ethernet port, RoCE annex declares that 2096 * multicast LID should be ignored. We can't tell at this step if the 2097 * QP belongs to an IB or Ethernet port. 2098 */ 2099 if (num_eth_ports) 2100 return true; 2101 2102 /* If all the ports are IB, we can check according to IB spec. */ 2103 lid_check: 2104 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2105 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2106 } 2107 2108 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2109 { 2110 int ret; 2111 2112 if (!qp->device->ops.attach_mcast) 2113 return -EOPNOTSUPP; 2114 2115 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2116 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2117 return -EINVAL; 2118 2119 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2120 if (!ret) 2121 atomic_inc(&qp->usecnt); 2122 return ret; 2123 } 2124 EXPORT_SYMBOL(ib_attach_mcast); 2125 2126 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2127 { 2128 int ret; 2129 2130 if (!qp->device->ops.detach_mcast) 2131 return -EOPNOTSUPP; 2132 2133 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2134 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2135 return -EINVAL; 2136 2137 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2138 if (!ret) 2139 atomic_dec(&qp->usecnt); 2140 return ret; 2141 } 2142 EXPORT_SYMBOL(ib_detach_mcast); 2143 2144 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2145 { 2146 struct ib_xrcd *xrcd; 2147 2148 if (!device->ops.alloc_xrcd) 2149 return ERR_PTR(-EOPNOTSUPP); 2150 2151 xrcd = device->ops.alloc_xrcd(device, NULL); 2152 if (!IS_ERR(xrcd)) { 2153 xrcd->device = device; 2154 xrcd->inode = NULL; 2155 atomic_set(&xrcd->usecnt, 0); 2156 mutex_init(&xrcd->tgt_qp_mutex); 2157 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2158 } 2159 2160 return xrcd; 2161 } 2162 EXPORT_SYMBOL(__ib_alloc_xrcd); 2163 2164 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata) 2165 { 2166 struct ib_qp *qp; 2167 int ret; 2168 2169 if (atomic_read(&xrcd->usecnt)) 2170 return -EBUSY; 2171 2172 while (!list_empty(&xrcd->tgt_qp_list)) { 2173 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2174 ret = ib_destroy_qp(qp); 2175 if (ret) 2176 return ret; 2177 } 2178 2179 return xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2180 } 2181 EXPORT_SYMBOL(ib_dealloc_xrcd); 2182 2183 /** 2184 * ib_create_wq - Creates a WQ associated with the specified protection 2185 * domain. 2186 * @pd: The protection domain associated with the WQ. 2187 * @wq_attr: A list of initial attributes required to create the 2188 * WQ. If WQ creation succeeds, then the attributes are updated to 2189 * the actual capabilities of the created WQ. 2190 * 2191 * wq_attr->max_wr and wq_attr->max_sge determine 2192 * the requested size of the WQ, and set to the actual values allocated 2193 * on return. 2194 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2195 * at least as large as the requested values. 2196 */ 2197 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2198 struct ib_wq_init_attr *wq_attr) 2199 { 2200 struct ib_wq *wq; 2201 2202 if (!pd->device->ops.create_wq) 2203 return ERR_PTR(-EOPNOTSUPP); 2204 2205 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2206 if (!IS_ERR(wq)) { 2207 wq->event_handler = wq_attr->event_handler; 2208 wq->wq_context = wq_attr->wq_context; 2209 wq->wq_type = wq_attr->wq_type; 2210 wq->cq = wq_attr->cq; 2211 wq->device = pd->device; 2212 wq->pd = pd; 2213 wq->uobject = NULL; 2214 atomic_inc(&pd->usecnt); 2215 atomic_inc(&wq_attr->cq->usecnt); 2216 atomic_set(&wq->usecnt, 0); 2217 } 2218 return wq; 2219 } 2220 EXPORT_SYMBOL(ib_create_wq); 2221 2222 /** 2223 * ib_destroy_wq - Destroys the specified user WQ. 2224 * @wq: The WQ to destroy. 2225 * @udata: Valid user data 2226 */ 2227 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata) 2228 { 2229 int err; 2230 struct ib_cq *cq = wq->cq; 2231 struct ib_pd *pd = wq->pd; 2232 2233 if (atomic_read(&wq->usecnt)) 2234 return -EBUSY; 2235 2236 err = wq->device->ops.destroy_wq(wq, udata); 2237 if (!err) { 2238 atomic_dec(&pd->usecnt); 2239 atomic_dec(&cq->usecnt); 2240 } 2241 return err; 2242 } 2243 EXPORT_SYMBOL(ib_destroy_wq); 2244 2245 /** 2246 * ib_modify_wq - Modifies the specified WQ. 2247 * @wq: The WQ to modify. 2248 * @wq_attr: On input, specifies the WQ attributes to modify. 2249 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2250 * are being modified. 2251 * On output, the current values of selected WQ attributes are returned. 2252 */ 2253 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2254 u32 wq_attr_mask) 2255 { 2256 int err; 2257 2258 if (!wq->device->ops.modify_wq) 2259 return -EOPNOTSUPP; 2260 2261 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2262 return err; 2263 } 2264 EXPORT_SYMBOL(ib_modify_wq); 2265 2266 /* 2267 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2268 * @device: The device on which to create the rwq indirection table. 2269 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2270 * create the Indirection Table. 2271 * 2272 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2273 * than the created ib_rwq_ind_table object and the caller is responsible 2274 * for its memory allocation/free. 2275 */ 2276 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2277 struct ib_rwq_ind_table_init_attr *init_attr) 2278 { 2279 struct ib_rwq_ind_table *rwq_ind_table; 2280 int i; 2281 u32 table_size; 2282 2283 if (!device->ops.create_rwq_ind_table) 2284 return ERR_PTR(-EOPNOTSUPP); 2285 2286 table_size = (1 << init_attr->log_ind_tbl_size); 2287 rwq_ind_table = device->ops.create_rwq_ind_table(device, 2288 init_attr, NULL); 2289 if (IS_ERR(rwq_ind_table)) 2290 return rwq_ind_table; 2291 2292 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2293 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2294 rwq_ind_table->device = device; 2295 rwq_ind_table->uobject = NULL; 2296 atomic_set(&rwq_ind_table->usecnt, 0); 2297 2298 for (i = 0; i < table_size; i++) 2299 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2300 2301 return rwq_ind_table; 2302 } 2303 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2304 2305 /* 2306 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2307 * @wq_ind_table: The Indirection Table to destroy. 2308 */ 2309 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2310 { 2311 int err, i; 2312 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2313 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2314 2315 if (atomic_read(&rwq_ind_table->usecnt)) 2316 return -EBUSY; 2317 2318 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table); 2319 if (!err) { 2320 for (i = 0; i < table_size; i++) 2321 atomic_dec(&ind_tbl[i]->usecnt); 2322 } 2323 2324 return err; 2325 } 2326 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2327 2328 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2329 struct ib_mr_status *mr_status) 2330 { 2331 if (!mr->device->ops.check_mr_status) 2332 return -EOPNOTSUPP; 2333 2334 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2335 } 2336 EXPORT_SYMBOL(ib_check_mr_status); 2337 2338 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2339 int state) 2340 { 2341 if (!device->ops.set_vf_link_state) 2342 return -EOPNOTSUPP; 2343 2344 return device->ops.set_vf_link_state(device, vf, port, state); 2345 } 2346 EXPORT_SYMBOL(ib_set_vf_link_state); 2347 2348 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2349 struct ifla_vf_info *info) 2350 { 2351 if (!device->ops.get_vf_config) 2352 return -EOPNOTSUPP; 2353 2354 return device->ops.get_vf_config(device, vf, port, info); 2355 } 2356 EXPORT_SYMBOL(ib_get_vf_config); 2357 2358 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2359 struct ifla_vf_stats *stats) 2360 { 2361 if (!device->ops.get_vf_stats) 2362 return -EOPNOTSUPP; 2363 2364 return device->ops.get_vf_stats(device, vf, port, stats); 2365 } 2366 EXPORT_SYMBOL(ib_get_vf_stats); 2367 2368 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2369 int type) 2370 { 2371 if (!device->ops.set_vf_guid) 2372 return -EOPNOTSUPP; 2373 2374 return device->ops.set_vf_guid(device, vf, port, guid, type); 2375 } 2376 EXPORT_SYMBOL(ib_set_vf_guid); 2377 2378 /** 2379 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2380 * and set it the memory region. 2381 * @mr: memory region 2382 * @sg: dma mapped scatterlist 2383 * @sg_nents: number of entries in sg 2384 * @sg_offset: offset in bytes into sg 2385 * @page_size: page vector desired page size 2386 * 2387 * Constraints: 2388 * - The first sg element is allowed to have an offset. 2389 * - Each sg element must either be aligned to page_size or virtually 2390 * contiguous to the previous element. In case an sg element has a 2391 * non-contiguous offset, the mapping prefix will not include it. 2392 * - The last sg element is allowed to have length less than page_size. 2393 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2394 * then only max_num_sg entries will be mapped. 2395 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2396 * constraints holds and the page_size argument is ignored. 2397 * 2398 * Returns the number of sg elements that were mapped to the memory region. 2399 * 2400 * After this completes successfully, the memory region 2401 * is ready for registration. 2402 */ 2403 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2404 unsigned int *sg_offset, unsigned int page_size) 2405 { 2406 if (unlikely(!mr->device->ops.map_mr_sg)) 2407 return -EOPNOTSUPP; 2408 2409 mr->page_size = page_size; 2410 2411 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2412 } 2413 EXPORT_SYMBOL(ib_map_mr_sg); 2414 2415 /** 2416 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2417 * to a page vector 2418 * @mr: memory region 2419 * @sgl: dma mapped scatterlist 2420 * @sg_nents: number of entries in sg 2421 * @sg_offset_p: IN: start offset in bytes into sg 2422 * OUT: offset in bytes for element n of the sg of the first 2423 * byte that has not been processed where n is the return 2424 * value of this function. 2425 * @set_page: driver page assignment function pointer 2426 * 2427 * Core service helper for drivers to convert the largest 2428 * prefix of given sg list to a page vector. The sg list 2429 * prefix converted is the prefix that meet the requirements 2430 * of ib_map_mr_sg. 2431 * 2432 * Returns the number of sg elements that were assigned to 2433 * a page vector. 2434 */ 2435 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2436 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2437 { 2438 struct scatterlist *sg; 2439 u64 last_end_dma_addr = 0; 2440 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2441 unsigned int last_page_off = 0; 2442 u64 page_mask = ~((u64)mr->page_size - 1); 2443 int i, ret; 2444 2445 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2446 return -EINVAL; 2447 2448 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2449 mr->length = 0; 2450 2451 for_each_sg(sgl, sg, sg_nents, i) { 2452 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2453 u64 prev_addr = dma_addr; 2454 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2455 u64 end_dma_addr = dma_addr + dma_len; 2456 u64 page_addr = dma_addr & page_mask; 2457 2458 /* 2459 * For the second and later elements, check whether either the 2460 * end of element i-1 or the start of element i is not aligned 2461 * on a page boundary. 2462 */ 2463 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2464 /* Stop mapping if there is a gap. */ 2465 if (last_end_dma_addr != dma_addr) 2466 break; 2467 2468 /* 2469 * Coalesce this element with the last. If it is small 2470 * enough just update mr->length. Otherwise start 2471 * mapping from the next page. 2472 */ 2473 goto next_page; 2474 } 2475 2476 do { 2477 ret = set_page(mr, page_addr); 2478 if (unlikely(ret < 0)) { 2479 sg_offset = prev_addr - sg_dma_address(sg); 2480 mr->length += prev_addr - dma_addr; 2481 if (sg_offset_p) 2482 *sg_offset_p = sg_offset; 2483 return i || sg_offset ? i : ret; 2484 } 2485 prev_addr = page_addr; 2486 next_page: 2487 page_addr += mr->page_size; 2488 } while (page_addr < end_dma_addr); 2489 2490 mr->length += dma_len; 2491 last_end_dma_addr = end_dma_addr; 2492 last_page_off = end_dma_addr & ~page_mask; 2493 2494 sg_offset = 0; 2495 } 2496 2497 if (sg_offset_p) 2498 *sg_offset_p = 0; 2499 return i; 2500 } 2501 EXPORT_SYMBOL(ib_sg_to_pages); 2502 2503 struct ib_drain_cqe { 2504 struct ib_cqe cqe; 2505 struct completion done; 2506 }; 2507 2508 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2509 { 2510 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2511 cqe); 2512 2513 complete(&cqe->done); 2514 } 2515 2516 /* 2517 * Post a WR and block until its completion is reaped for the SQ. 2518 */ 2519 static void __ib_drain_sq(struct ib_qp *qp) 2520 { 2521 struct ib_cq *cq = qp->send_cq; 2522 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2523 struct ib_drain_cqe sdrain; 2524 struct ib_rdma_wr swr = { 2525 .wr = { 2526 .next = NULL, 2527 { .wr_cqe = &sdrain.cqe, }, 2528 .opcode = IB_WR_RDMA_WRITE, 2529 }, 2530 }; 2531 int ret; 2532 2533 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2534 if (ret) { 2535 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2536 return; 2537 } 2538 2539 sdrain.cqe.done = ib_drain_qp_done; 2540 init_completion(&sdrain.done); 2541 2542 ret = ib_post_send(qp, &swr.wr, NULL); 2543 if (ret) { 2544 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2545 return; 2546 } 2547 2548 if (cq->poll_ctx == IB_POLL_DIRECT) 2549 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2550 ib_process_cq_direct(cq, -1); 2551 else 2552 wait_for_completion(&sdrain.done); 2553 } 2554 2555 /* 2556 * Post a WR and block until its completion is reaped for the RQ. 2557 */ 2558 static void __ib_drain_rq(struct ib_qp *qp) 2559 { 2560 struct ib_cq *cq = qp->recv_cq; 2561 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2562 struct ib_drain_cqe rdrain; 2563 struct ib_recv_wr rwr = {}; 2564 int ret; 2565 2566 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2567 if (ret) { 2568 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2569 return; 2570 } 2571 2572 rwr.wr_cqe = &rdrain.cqe; 2573 rdrain.cqe.done = ib_drain_qp_done; 2574 init_completion(&rdrain.done); 2575 2576 ret = ib_post_recv(qp, &rwr, NULL); 2577 if (ret) { 2578 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2579 return; 2580 } 2581 2582 if (cq->poll_ctx == IB_POLL_DIRECT) 2583 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2584 ib_process_cq_direct(cq, -1); 2585 else 2586 wait_for_completion(&rdrain.done); 2587 } 2588 2589 /** 2590 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2591 * application. 2592 * @qp: queue pair to drain 2593 * 2594 * If the device has a provider-specific drain function, then 2595 * call that. Otherwise call the generic drain function 2596 * __ib_drain_sq(). 2597 * 2598 * The caller must: 2599 * 2600 * ensure there is room in the CQ and SQ for the drain work request and 2601 * completion. 2602 * 2603 * allocate the CQ using ib_alloc_cq(). 2604 * 2605 * ensure that there are no other contexts that are posting WRs concurrently. 2606 * Otherwise the drain is not guaranteed. 2607 */ 2608 void ib_drain_sq(struct ib_qp *qp) 2609 { 2610 if (qp->device->ops.drain_sq) 2611 qp->device->ops.drain_sq(qp); 2612 else 2613 __ib_drain_sq(qp); 2614 } 2615 EXPORT_SYMBOL(ib_drain_sq); 2616 2617 /** 2618 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2619 * application. 2620 * @qp: queue pair to drain 2621 * 2622 * If the device has a provider-specific drain function, then 2623 * call that. Otherwise call the generic drain function 2624 * __ib_drain_rq(). 2625 * 2626 * The caller must: 2627 * 2628 * ensure there is room in the CQ and RQ for the drain work request and 2629 * completion. 2630 * 2631 * allocate the CQ using ib_alloc_cq(). 2632 * 2633 * ensure that there are no other contexts that are posting WRs concurrently. 2634 * Otherwise the drain is not guaranteed. 2635 */ 2636 void ib_drain_rq(struct ib_qp *qp) 2637 { 2638 if (qp->device->ops.drain_rq) 2639 qp->device->ops.drain_rq(qp); 2640 else 2641 __ib_drain_rq(qp); 2642 } 2643 EXPORT_SYMBOL(ib_drain_rq); 2644 2645 /** 2646 * ib_drain_qp() - Block until all CQEs have been consumed by the 2647 * application on both the RQ and SQ. 2648 * @qp: queue pair to drain 2649 * 2650 * The caller must: 2651 * 2652 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2653 * and completions. 2654 * 2655 * allocate the CQs using ib_alloc_cq(). 2656 * 2657 * ensure that there are no other contexts that are posting WRs concurrently. 2658 * Otherwise the drain is not guaranteed. 2659 */ 2660 void ib_drain_qp(struct ib_qp *qp) 2661 { 2662 ib_drain_sq(qp); 2663 if (!qp->srq) 2664 ib_drain_rq(qp); 2665 } 2666 EXPORT_SYMBOL(ib_drain_qp); 2667 2668 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 2669 enum rdma_netdev_t type, const char *name, 2670 unsigned char name_assign_type, 2671 void (*setup)(struct net_device *)) 2672 { 2673 struct rdma_netdev_alloc_params params; 2674 struct net_device *netdev; 2675 int rc; 2676 2677 if (!device->ops.rdma_netdev_get_params) 2678 return ERR_PTR(-EOPNOTSUPP); 2679 2680 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2681 ¶ms); 2682 if (rc) 2683 return ERR_PTR(rc); 2684 2685 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2686 setup, params.txqs, params.rxqs); 2687 if (!netdev) 2688 return ERR_PTR(-ENOMEM); 2689 2690 return netdev; 2691 } 2692 EXPORT_SYMBOL(rdma_alloc_netdev); 2693 2694 int rdma_init_netdev(struct ib_device *device, u8 port_num, 2695 enum rdma_netdev_t type, const char *name, 2696 unsigned char name_assign_type, 2697 void (*setup)(struct net_device *), 2698 struct net_device *netdev) 2699 { 2700 struct rdma_netdev_alloc_params params; 2701 int rc; 2702 2703 if (!device->ops.rdma_netdev_get_params) 2704 return -EOPNOTSUPP; 2705 2706 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2707 ¶ms); 2708 if (rc) 2709 return rc; 2710 2711 return params.initialize_rdma_netdev(device, port_num, 2712 netdev, params.param); 2713 } 2714 EXPORT_SYMBOL(rdma_init_netdev); 2715 2716 void __rdma_block_iter_start(struct ib_block_iter *biter, 2717 struct scatterlist *sglist, unsigned int nents, 2718 unsigned long pgsz) 2719 { 2720 memset(biter, 0, sizeof(struct ib_block_iter)); 2721 biter->__sg = sglist; 2722 biter->__sg_nents = nents; 2723 2724 /* Driver provides best block size to use */ 2725 biter->__pg_bit = __fls(pgsz); 2726 } 2727 EXPORT_SYMBOL(__rdma_block_iter_start); 2728 2729 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2730 { 2731 unsigned int block_offset; 2732 2733 if (!biter->__sg_nents || !biter->__sg) 2734 return false; 2735 2736 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2737 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2738 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2739 2740 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2741 biter->__sg_advance = 0; 2742 biter->__sg = sg_next(biter->__sg); 2743 biter->__sg_nents--; 2744 } 2745 2746 return true; 2747 } 2748 EXPORT_SYMBOL(__rdma_block_iter_next); 2749