1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 case IB_RATE_28_GBPS: return 11; 145 case IB_RATE_50_GBPS: return 20; 146 case IB_RATE_400_GBPS: return 160; 147 case IB_RATE_600_GBPS: return 240; 148 default: return -1; 149 } 150 } 151 EXPORT_SYMBOL(ib_rate_to_mult); 152 153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 154 { 155 switch (mult) { 156 case 1: return IB_RATE_2_5_GBPS; 157 case 2: return IB_RATE_5_GBPS; 158 case 4: return IB_RATE_10_GBPS; 159 case 8: return IB_RATE_20_GBPS; 160 case 12: return IB_RATE_30_GBPS; 161 case 16: return IB_RATE_40_GBPS; 162 case 24: return IB_RATE_60_GBPS; 163 case 32: return IB_RATE_80_GBPS; 164 case 48: return IB_RATE_120_GBPS; 165 case 6: return IB_RATE_14_GBPS; 166 case 22: return IB_RATE_56_GBPS; 167 case 45: return IB_RATE_112_GBPS; 168 case 67: return IB_RATE_168_GBPS; 169 case 10: return IB_RATE_25_GBPS; 170 case 40: return IB_RATE_100_GBPS; 171 case 80: return IB_RATE_200_GBPS; 172 case 120: return IB_RATE_300_GBPS; 173 case 11: return IB_RATE_28_GBPS; 174 case 20: return IB_RATE_50_GBPS; 175 case 160: return IB_RATE_400_GBPS; 176 case 240: return IB_RATE_600_GBPS; 177 default: return IB_RATE_PORT_CURRENT; 178 } 179 } 180 EXPORT_SYMBOL(mult_to_ib_rate); 181 182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 183 { 184 switch (rate) { 185 case IB_RATE_2_5_GBPS: return 2500; 186 case IB_RATE_5_GBPS: return 5000; 187 case IB_RATE_10_GBPS: return 10000; 188 case IB_RATE_20_GBPS: return 20000; 189 case IB_RATE_30_GBPS: return 30000; 190 case IB_RATE_40_GBPS: return 40000; 191 case IB_RATE_60_GBPS: return 60000; 192 case IB_RATE_80_GBPS: return 80000; 193 case IB_RATE_120_GBPS: return 120000; 194 case IB_RATE_14_GBPS: return 14062; 195 case IB_RATE_56_GBPS: return 56250; 196 case IB_RATE_112_GBPS: return 112500; 197 case IB_RATE_168_GBPS: return 168750; 198 case IB_RATE_25_GBPS: return 25781; 199 case IB_RATE_100_GBPS: return 103125; 200 case IB_RATE_200_GBPS: return 206250; 201 case IB_RATE_300_GBPS: return 309375; 202 case IB_RATE_28_GBPS: return 28125; 203 case IB_RATE_50_GBPS: return 53125; 204 case IB_RATE_400_GBPS: return 425000; 205 case IB_RATE_600_GBPS: return 637500; 206 default: return -1; 207 } 208 } 209 EXPORT_SYMBOL(ib_rate_to_mbps); 210 211 __attribute_const__ enum rdma_transport_type 212 rdma_node_get_transport(enum rdma_node_type node_type) 213 { 214 215 if (node_type == RDMA_NODE_USNIC) 216 return RDMA_TRANSPORT_USNIC; 217 if (node_type == RDMA_NODE_USNIC_UDP) 218 return RDMA_TRANSPORT_USNIC_UDP; 219 if (node_type == RDMA_NODE_RNIC) 220 return RDMA_TRANSPORT_IWARP; 221 222 return RDMA_TRANSPORT_IB; 223 } 224 EXPORT_SYMBOL(rdma_node_get_transport); 225 226 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 227 { 228 enum rdma_transport_type lt; 229 if (device->ops.get_link_layer) 230 return device->ops.get_link_layer(device, port_num); 231 232 lt = rdma_node_get_transport(device->node_type); 233 if (lt == RDMA_TRANSPORT_IB) 234 return IB_LINK_LAYER_INFINIBAND; 235 236 return IB_LINK_LAYER_ETHERNET; 237 } 238 EXPORT_SYMBOL(rdma_port_get_link_layer); 239 240 /* Protection domains */ 241 242 /** 243 * ib_alloc_pd - Allocates an unused protection domain. 244 * @device: The device on which to allocate the protection domain. 245 * 246 * A protection domain object provides an association between QPs, shared 247 * receive queues, address handles, memory regions, and memory windows. 248 * 249 * Every PD has a local_dma_lkey which can be used as the lkey value for local 250 * memory operations. 251 */ 252 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 253 const char *caller) 254 { 255 struct ib_pd *pd; 256 int mr_access_flags = 0; 257 int ret; 258 259 pd = rdma_zalloc_drv_obj(device, ib_pd); 260 if (!pd) 261 return ERR_PTR(-ENOMEM); 262 263 pd->device = device; 264 pd->uobject = NULL; 265 pd->__internal_mr = NULL; 266 atomic_set(&pd->usecnt, 0); 267 pd->flags = flags; 268 269 pd->res.type = RDMA_RESTRACK_PD; 270 rdma_restrack_set_task(&pd->res, caller); 271 272 ret = device->ops.alloc_pd(pd, NULL, NULL); 273 if (ret) { 274 kfree(pd); 275 return ERR_PTR(ret); 276 } 277 rdma_restrack_kadd(&pd->res); 278 279 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 280 pd->local_dma_lkey = device->local_dma_lkey; 281 else 282 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 283 284 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 285 pr_warn("%s: enabling unsafe global rkey\n", caller); 286 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 287 } 288 289 if (mr_access_flags) { 290 struct ib_mr *mr; 291 292 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 293 if (IS_ERR(mr)) { 294 ib_dealloc_pd(pd); 295 return ERR_CAST(mr); 296 } 297 298 mr->device = pd->device; 299 mr->pd = pd; 300 mr->uobject = NULL; 301 mr->need_inval = false; 302 303 pd->__internal_mr = mr; 304 305 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 306 pd->local_dma_lkey = pd->__internal_mr->lkey; 307 308 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 309 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 310 } 311 312 return pd; 313 } 314 EXPORT_SYMBOL(__ib_alloc_pd); 315 316 /** 317 * ib_dealloc_pd - Deallocates a protection domain. 318 * @pd: The protection domain to deallocate. 319 * 320 * It is an error to call this function while any resources in the pd still 321 * exist. The caller is responsible to synchronously destroy them and 322 * guarantee no new allocations will happen. 323 */ 324 void ib_dealloc_pd(struct ib_pd *pd) 325 { 326 int ret; 327 328 if (pd->__internal_mr) { 329 ret = pd->device->ops.dereg_mr(pd->__internal_mr); 330 WARN_ON(ret); 331 pd->__internal_mr = NULL; 332 } 333 334 /* uverbs manipulates usecnt with proper locking, while the kabi 335 requires the caller to guarantee we can't race here. */ 336 WARN_ON(atomic_read(&pd->usecnt)); 337 338 rdma_restrack_del(&pd->res); 339 pd->device->ops.dealloc_pd(pd); 340 kfree(pd); 341 } 342 EXPORT_SYMBOL(ib_dealloc_pd); 343 344 /* Address handles */ 345 346 /** 347 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 348 * @dest: Pointer to destination ah_attr. Contents of the destination 349 * pointer is assumed to be invalid and attribute are overwritten. 350 * @src: Pointer to source ah_attr. 351 */ 352 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 353 const struct rdma_ah_attr *src) 354 { 355 *dest = *src; 356 if (dest->grh.sgid_attr) 357 rdma_hold_gid_attr(dest->grh.sgid_attr); 358 } 359 EXPORT_SYMBOL(rdma_copy_ah_attr); 360 361 /** 362 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 363 * @old: Pointer to existing ah_attr which needs to be replaced. 364 * old is assumed to be valid or zero'd 365 * @new: Pointer to the new ah_attr. 366 * 367 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 368 * old the ah_attr is valid; after that it copies the new attribute and holds 369 * the reference to the replaced ah_attr. 370 */ 371 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 372 const struct rdma_ah_attr *new) 373 { 374 rdma_destroy_ah_attr(old); 375 *old = *new; 376 if (old->grh.sgid_attr) 377 rdma_hold_gid_attr(old->grh.sgid_attr); 378 } 379 EXPORT_SYMBOL(rdma_replace_ah_attr); 380 381 /** 382 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 383 * @dest: Pointer to destination ah_attr to copy to. 384 * dest is assumed to be valid or zero'd 385 * @src: Pointer to the new ah_attr. 386 * 387 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 388 * if it is valid. This also transfers ownership of internal references from 389 * src to dest, making src invalid in the process. No new reference of the src 390 * ah_attr is taken. 391 */ 392 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 393 { 394 rdma_destroy_ah_attr(dest); 395 *dest = *src; 396 src->grh.sgid_attr = NULL; 397 } 398 EXPORT_SYMBOL(rdma_move_ah_attr); 399 400 /* 401 * Validate that the rdma_ah_attr is valid for the device before passing it 402 * off to the driver. 403 */ 404 static int rdma_check_ah_attr(struct ib_device *device, 405 struct rdma_ah_attr *ah_attr) 406 { 407 if (!rdma_is_port_valid(device, ah_attr->port_num)) 408 return -EINVAL; 409 410 if ((rdma_is_grh_required(device, ah_attr->port_num) || 411 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 412 !(ah_attr->ah_flags & IB_AH_GRH)) 413 return -EINVAL; 414 415 if (ah_attr->grh.sgid_attr) { 416 /* 417 * Make sure the passed sgid_attr is consistent with the 418 * parameters 419 */ 420 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 421 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 422 return -EINVAL; 423 } 424 return 0; 425 } 426 427 /* 428 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 429 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 430 */ 431 static int rdma_fill_sgid_attr(struct ib_device *device, 432 struct rdma_ah_attr *ah_attr, 433 const struct ib_gid_attr **old_sgid_attr) 434 { 435 const struct ib_gid_attr *sgid_attr; 436 struct ib_global_route *grh; 437 int ret; 438 439 *old_sgid_attr = ah_attr->grh.sgid_attr; 440 441 ret = rdma_check_ah_attr(device, ah_attr); 442 if (ret) 443 return ret; 444 445 if (!(ah_attr->ah_flags & IB_AH_GRH)) 446 return 0; 447 448 grh = rdma_ah_retrieve_grh(ah_attr); 449 if (grh->sgid_attr) 450 return 0; 451 452 sgid_attr = 453 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 454 if (IS_ERR(sgid_attr)) 455 return PTR_ERR(sgid_attr); 456 457 /* Move ownerhip of the kref into the ah_attr */ 458 grh->sgid_attr = sgid_attr; 459 return 0; 460 } 461 462 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 463 const struct ib_gid_attr *old_sgid_attr) 464 { 465 /* 466 * Fill didn't change anything, the caller retains ownership of 467 * whatever it passed 468 */ 469 if (ah_attr->grh.sgid_attr == old_sgid_attr) 470 return; 471 472 /* 473 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 474 * doesn't see any change in the rdma_ah_attr. If we get here 475 * old_sgid_attr is NULL. 476 */ 477 rdma_destroy_ah_attr(ah_attr); 478 } 479 480 static const struct ib_gid_attr * 481 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 482 const struct ib_gid_attr *old_attr) 483 { 484 if (old_attr) 485 rdma_put_gid_attr(old_attr); 486 if (ah_attr->ah_flags & IB_AH_GRH) { 487 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 488 return ah_attr->grh.sgid_attr; 489 } 490 return NULL; 491 } 492 493 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 494 struct rdma_ah_attr *ah_attr, 495 u32 flags, 496 struct ib_udata *udata) 497 { 498 struct ib_ah *ah; 499 500 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 501 502 if (!pd->device->ops.create_ah) 503 return ERR_PTR(-EOPNOTSUPP); 504 505 ah = pd->device->ops.create_ah(pd, ah_attr, flags, udata); 506 507 if (!IS_ERR(ah)) { 508 ah->device = pd->device; 509 ah->pd = pd; 510 ah->uobject = NULL; 511 ah->type = ah_attr->type; 512 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 513 514 atomic_inc(&pd->usecnt); 515 } 516 517 return ah; 518 } 519 520 /** 521 * rdma_create_ah - Creates an address handle for the 522 * given address vector. 523 * @pd: The protection domain associated with the address handle. 524 * @ah_attr: The attributes of the address vector. 525 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 526 * 527 * It returns 0 on success and returns appropriate error code on error. 528 * The address handle is used to reference a local or global destination 529 * in all UD QP post sends. 530 */ 531 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 532 u32 flags) 533 { 534 const struct ib_gid_attr *old_sgid_attr; 535 struct ib_ah *ah; 536 int ret; 537 538 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 539 if (ret) 540 return ERR_PTR(ret); 541 542 ah = _rdma_create_ah(pd, ah_attr, flags, NULL); 543 544 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 545 return ah; 546 } 547 EXPORT_SYMBOL(rdma_create_ah); 548 549 /** 550 * rdma_create_user_ah - Creates an address handle for the 551 * given address vector. 552 * It resolves destination mac address for ah attribute of RoCE type. 553 * @pd: The protection domain associated with the address handle. 554 * @ah_attr: The attributes of the address vector. 555 * @udata: pointer to user's input output buffer information need by 556 * provider driver. 557 * 558 * It returns 0 on success and returns appropriate error code on error. 559 * The address handle is used to reference a local or global destination 560 * in all UD QP post sends. 561 */ 562 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 563 struct rdma_ah_attr *ah_attr, 564 struct ib_udata *udata) 565 { 566 const struct ib_gid_attr *old_sgid_attr; 567 struct ib_ah *ah; 568 int err; 569 570 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 571 if (err) 572 return ERR_PTR(err); 573 574 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 575 err = ib_resolve_eth_dmac(pd->device, ah_attr); 576 if (err) { 577 ah = ERR_PTR(err); 578 goto out; 579 } 580 } 581 582 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata); 583 584 out: 585 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 586 return ah; 587 } 588 EXPORT_SYMBOL(rdma_create_user_ah); 589 590 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 591 { 592 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 593 struct iphdr ip4h_checked; 594 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 595 596 /* If it's IPv6, the version must be 6, otherwise, the first 597 * 20 bytes (before the IPv4 header) are garbled. 598 */ 599 if (ip6h->version != 6) 600 return (ip4h->version == 4) ? 4 : 0; 601 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 602 603 /* RoCE v2 requires no options, thus header length 604 * must be 5 words 605 */ 606 if (ip4h->ihl != 5) 607 return 6; 608 609 /* Verify checksum. 610 * We can't write on scattered buffers so we need to copy to 611 * temp buffer. 612 */ 613 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 614 ip4h_checked.check = 0; 615 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 616 /* if IPv4 header checksum is OK, believe it */ 617 if (ip4h->check == ip4h_checked.check) 618 return 4; 619 return 6; 620 } 621 EXPORT_SYMBOL(ib_get_rdma_header_version); 622 623 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 624 u8 port_num, 625 const struct ib_grh *grh) 626 { 627 int grh_version; 628 629 if (rdma_protocol_ib(device, port_num)) 630 return RDMA_NETWORK_IB; 631 632 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 633 634 if (grh_version == 4) 635 return RDMA_NETWORK_IPV4; 636 637 if (grh->next_hdr == IPPROTO_UDP) 638 return RDMA_NETWORK_IPV6; 639 640 return RDMA_NETWORK_ROCE_V1; 641 } 642 643 struct find_gid_index_context { 644 u16 vlan_id; 645 enum ib_gid_type gid_type; 646 }; 647 648 static bool find_gid_index(const union ib_gid *gid, 649 const struct ib_gid_attr *gid_attr, 650 void *context) 651 { 652 struct find_gid_index_context *ctx = context; 653 654 if (ctx->gid_type != gid_attr->gid_type) 655 return false; 656 657 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 658 (is_vlan_dev(gid_attr->ndev) && 659 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 660 return false; 661 662 return true; 663 } 664 665 static const struct ib_gid_attr * 666 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 667 u16 vlan_id, const union ib_gid *sgid, 668 enum ib_gid_type gid_type) 669 { 670 struct find_gid_index_context context = {.vlan_id = vlan_id, 671 .gid_type = gid_type}; 672 673 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 674 &context); 675 } 676 677 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 678 enum rdma_network_type net_type, 679 union ib_gid *sgid, union ib_gid *dgid) 680 { 681 struct sockaddr_in src_in; 682 struct sockaddr_in dst_in; 683 __be32 src_saddr, dst_saddr; 684 685 if (!sgid || !dgid) 686 return -EINVAL; 687 688 if (net_type == RDMA_NETWORK_IPV4) { 689 memcpy(&src_in.sin_addr.s_addr, 690 &hdr->roce4grh.saddr, 4); 691 memcpy(&dst_in.sin_addr.s_addr, 692 &hdr->roce4grh.daddr, 4); 693 src_saddr = src_in.sin_addr.s_addr; 694 dst_saddr = dst_in.sin_addr.s_addr; 695 ipv6_addr_set_v4mapped(src_saddr, 696 (struct in6_addr *)sgid); 697 ipv6_addr_set_v4mapped(dst_saddr, 698 (struct in6_addr *)dgid); 699 return 0; 700 } else if (net_type == RDMA_NETWORK_IPV6 || 701 net_type == RDMA_NETWORK_IB) { 702 *dgid = hdr->ibgrh.dgid; 703 *sgid = hdr->ibgrh.sgid; 704 return 0; 705 } else { 706 return -EINVAL; 707 } 708 } 709 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 710 711 /* Resolve destination mac address and hop limit for unicast destination 712 * GID entry, considering the source GID entry as well. 713 * ah_attribute must have have valid port_num, sgid_index. 714 */ 715 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 716 struct rdma_ah_attr *ah_attr) 717 { 718 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 719 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 720 int hop_limit = 0xff; 721 int ret = 0; 722 723 /* If destination is link local and source GID is RoCEv1, 724 * IP stack is not used. 725 */ 726 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 727 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 728 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 729 ah_attr->roce.dmac); 730 return ret; 731 } 732 733 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 734 ah_attr->roce.dmac, 735 sgid_attr, &hop_limit); 736 737 grh->hop_limit = hop_limit; 738 return ret; 739 } 740 741 /* 742 * This function initializes address handle attributes from the incoming packet. 743 * Incoming packet has dgid of the receiver node on which this code is 744 * getting executed and, sgid contains the GID of the sender. 745 * 746 * When resolving mac address of destination, the arrived dgid is used 747 * as sgid and, sgid is used as dgid because sgid contains destinations 748 * GID whom to respond to. 749 * 750 * On success the caller is responsible to call rdma_destroy_ah_attr on the 751 * attr. 752 */ 753 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 754 const struct ib_wc *wc, const struct ib_grh *grh, 755 struct rdma_ah_attr *ah_attr) 756 { 757 u32 flow_class; 758 int ret; 759 enum rdma_network_type net_type = RDMA_NETWORK_IB; 760 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 761 const struct ib_gid_attr *sgid_attr; 762 int hoplimit = 0xff; 763 union ib_gid dgid; 764 union ib_gid sgid; 765 766 might_sleep(); 767 768 memset(ah_attr, 0, sizeof *ah_attr); 769 ah_attr->type = rdma_ah_find_type(device, port_num); 770 if (rdma_cap_eth_ah(device, port_num)) { 771 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 772 net_type = wc->network_hdr_type; 773 else 774 net_type = ib_get_net_type_by_grh(device, port_num, grh); 775 gid_type = ib_network_to_gid_type(net_type); 776 } 777 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 778 &sgid, &dgid); 779 if (ret) 780 return ret; 781 782 rdma_ah_set_sl(ah_attr, wc->sl); 783 rdma_ah_set_port_num(ah_attr, port_num); 784 785 if (rdma_protocol_roce(device, port_num)) { 786 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 787 wc->vlan_id : 0xffff; 788 789 if (!(wc->wc_flags & IB_WC_GRH)) 790 return -EPROTOTYPE; 791 792 sgid_attr = get_sgid_attr_from_eth(device, port_num, 793 vlan_id, &dgid, 794 gid_type); 795 if (IS_ERR(sgid_attr)) 796 return PTR_ERR(sgid_attr); 797 798 flow_class = be32_to_cpu(grh->version_tclass_flow); 799 rdma_move_grh_sgid_attr(ah_attr, 800 &sgid, 801 flow_class & 0xFFFFF, 802 hoplimit, 803 (flow_class >> 20) & 0xFF, 804 sgid_attr); 805 806 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 807 if (ret) 808 rdma_destroy_ah_attr(ah_attr); 809 810 return ret; 811 } else { 812 rdma_ah_set_dlid(ah_attr, wc->slid); 813 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 814 815 if ((wc->wc_flags & IB_WC_GRH) == 0) 816 return 0; 817 818 if (dgid.global.interface_id != 819 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 820 sgid_attr = rdma_find_gid_by_port( 821 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 822 } else 823 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 824 825 if (IS_ERR(sgid_attr)) 826 return PTR_ERR(sgid_attr); 827 flow_class = be32_to_cpu(grh->version_tclass_flow); 828 rdma_move_grh_sgid_attr(ah_attr, 829 &sgid, 830 flow_class & 0xFFFFF, 831 hoplimit, 832 (flow_class >> 20) & 0xFF, 833 sgid_attr); 834 835 return 0; 836 } 837 } 838 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 839 840 /** 841 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 842 * of the reference 843 * 844 * @attr: Pointer to AH attribute structure 845 * @dgid: Destination GID 846 * @flow_label: Flow label 847 * @hop_limit: Hop limit 848 * @traffic_class: traffic class 849 * @sgid_attr: Pointer to SGID attribute 850 * 851 * This takes ownership of the sgid_attr reference. The caller must ensure 852 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 853 * calling this function. 854 */ 855 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 856 u32 flow_label, u8 hop_limit, u8 traffic_class, 857 const struct ib_gid_attr *sgid_attr) 858 { 859 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 860 traffic_class); 861 attr->grh.sgid_attr = sgid_attr; 862 } 863 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 864 865 /** 866 * rdma_destroy_ah_attr - Release reference to SGID attribute of 867 * ah attribute. 868 * @ah_attr: Pointer to ah attribute 869 * 870 * Release reference to the SGID attribute of the ah attribute if it is 871 * non NULL. It is safe to call this multiple times, and safe to call it on 872 * a zero initialized ah_attr. 873 */ 874 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 875 { 876 if (ah_attr->grh.sgid_attr) { 877 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 878 ah_attr->grh.sgid_attr = NULL; 879 } 880 } 881 EXPORT_SYMBOL(rdma_destroy_ah_attr); 882 883 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 884 const struct ib_grh *grh, u8 port_num) 885 { 886 struct rdma_ah_attr ah_attr; 887 struct ib_ah *ah; 888 int ret; 889 890 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 891 if (ret) 892 return ERR_PTR(ret); 893 894 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 895 896 rdma_destroy_ah_attr(&ah_attr); 897 return ah; 898 } 899 EXPORT_SYMBOL(ib_create_ah_from_wc); 900 901 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 902 { 903 const struct ib_gid_attr *old_sgid_attr; 904 int ret; 905 906 if (ah->type != ah_attr->type) 907 return -EINVAL; 908 909 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 910 if (ret) 911 return ret; 912 913 ret = ah->device->ops.modify_ah ? 914 ah->device->ops.modify_ah(ah, ah_attr) : 915 -EOPNOTSUPP; 916 917 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 918 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 919 return ret; 920 } 921 EXPORT_SYMBOL(rdma_modify_ah); 922 923 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 924 { 925 ah_attr->grh.sgid_attr = NULL; 926 927 return ah->device->ops.query_ah ? 928 ah->device->ops.query_ah(ah, ah_attr) : 929 -EOPNOTSUPP; 930 } 931 EXPORT_SYMBOL(rdma_query_ah); 932 933 int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 934 { 935 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 936 struct ib_pd *pd; 937 int ret; 938 939 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 940 941 pd = ah->pd; 942 ret = ah->device->ops.destroy_ah(ah, flags); 943 if (!ret) { 944 atomic_dec(&pd->usecnt); 945 if (sgid_attr) 946 rdma_put_gid_attr(sgid_attr); 947 } 948 949 return ret; 950 } 951 EXPORT_SYMBOL(rdma_destroy_ah); 952 953 /* Shared receive queues */ 954 955 struct ib_srq *ib_create_srq(struct ib_pd *pd, 956 struct ib_srq_init_attr *srq_init_attr) 957 { 958 struct ib_srq *srq; 959 960 if (!pd->device->ops.create_srq) 961 return ERR_PTR(-EOPNOTSUPP); 962 963 srq = pd->device->ops.create_srq(pd, srq_init_attr, NULL); 964 965 if (!IS_ERR(srq)) { 966 srq->device = pd->device; 967 srq->pd = pd; 968 srq->uobject = NULL; 969 srq->event_handler = srq_init_attr->event_handler; 970 srq->srq_context = srq_init_attr->srq_context; 971 srq->srq_type = srq_init_attr->srq_type; 972 if (ib_srq_has_cq(srq->srq_type)) { 973 srq->ext.cq = srq_init_attr->ext.cq; 974 atomic_inc(&srq->ext.cq->usecnt); 975 } 976 if (srq->srq_type == IB_SRQT_XRC) { 977 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 978 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 979 } 980 atomic_inc(&pd->usecnt); 981 atomic_set(&srq->usecnt, 0); 982 } 983 984 return srq; 985 } 986 EXPORT_SYMBOL(ib_create_srq); 987 988 int ib_modify_srq(struct ib_srq *srq, 989 struct ib_srq_attr *srq_attr, 990 enum ib_srq_attr_mask srq_attr_mask) 991 { 992 return srq->device->ops.modify_srq ? 993 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 994 NULL) : -EOPNOTSUPP; 995 } 996 EXPORT_SYMBOL(ib_modify_srq); 997 998 int ib_query_srq(struct ib_srq *srq, 999 struct ib_srq_attr *srq_attr) 1000 { 1001 return srq->device->ops.query_srq ? 1002 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1003 } 1004 EXPORT_SYMBOL(ib_query_srq); 1005 1006 int ib_destroy_srq(struct ib_srq *srq) 1007 { 1008 struct ib_pd *pd; 1009 enum ib_srq_type srq_type; 1010 struct ib_xrcd *uninitialized_var(xrcd); 1011 struct ib_cq *uninitialized_var(cq); 1012 int ret; 1013 1014 if (atomic_read(&srq->usecnt)) 1015 return -EBUSY; 1016 1017 pd = srq->pd; 1018 srq_type = srq->srq_type; 1019 if (ib_srq_has_cq(srq_type)) 1020 cq = srq->ext.cq; 1021 if (srq_type == IB_SRQT_XRC) 1022 xrcd = srq->ext.xrc.xrcd; 1023 1024 ret = srq->device->ops.destroy_srq(srq); 1025 if (!ret) { 1026 atomic_dec(&pd->usecnt); 1027 if (srq_type == IB_SRQT_XRC) 1028 atomic_dec(&xrcd->usecnt); 1029 if (ib_srq_has_cq(srq_type)) 1030 atomic_dec(&cq->usecnt); 1031 } 1032 1033 return ret; 1034 } 1035 EXPORT_SYMBOL(ib_destroy_srq); 1036 1037 /* Queue pairs */ 1038 1039 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1040 { 1041 struct ib_qp *qp = context; 1042 unsigned long flags; 1043 1044 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 1045 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1046 if (event->element.qp->event_handler) 1047 event->element.qp->event_handler(event, event->element.qp->qp_context); 1048 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 1049 } 1050 1051 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1052 { 1053 mutex_lock(&xrcd->tgt_qp_mutex); 1054 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1055 mutex_unlock(&xrcd->tgt_qp_mutex); 1056 } 1057 1058 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1059 void (*event_handler)(struct ib_event *, void *), 1060 void *qp_context) 1061 { 1062 struct ib_qp *qp; 1063 unsigned long flags; 1064 int err; 1065 1066 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1067 if (!qp) 1068 return ERR_PTR(-ENOMEM); 1069 1070 qp->real_qp = real_qp; 1071 err = ib_open_shared_qp_security(qp, real_qp->device); 1072 if (err) { 1073 kfree(qp); 1074 return ERR_PTR(err); 1075 } 1076 1077 qp->real_qp = real_qp; 1078 atomic_inc(&real_qp->usecnt); 1079 qp->device = real_qp->device; 1080 qp->event_handler = event_handler; 1081 qp->qp_context = qp_context; 1082 qp->qp_num = real_qp->qp_num; 1083 qp->qp_type = real_qp->qp_type; 1084 1085 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1086 list_add(&qp->open_list, &real_qp->open_list); 1087 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1088 1089 return qp; 1090 } 1091 1092 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1093 struct ib_qp_open_attr *qp_open_attr) 1094 { 1095 struct ib_qp *qp, *real_qp; 1096 1097 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1098 return ERR_PTR(-EINVAL); 1099 1100 qp = ERR_PTR(-EINVAL); 1101 mutex_lock(&xrcd->tgt_qp_mutex); 1102 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1103 if (real_qp->qp_num == qp_open_attr->qp_num) { 1104 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1105 qp_open_attr->qp_context); 1106 break; 1107 } 1108 } 1109 mutex_unlock(&xrcd->tgt_qp_mutex); 1110 return qp; 1111 } 1112 EXPORT_SYMBOL(ib_open_qp); 1113 1114 static struct ib_qp *create_xrc_qp(struct ib_qp *qp, 1115 struct ib_qp_init_attr *qp_init_attr) 1116 { 1117 struct ib_qp *real_qp = qp; 1118 1119 qp->event_handler = __ib_shared_qp_event_handler; 1120 qp->qp_context = qp; 1121 qp->pd = NULL; 1122 qp->send_cq = qp->recv_cq = NULL; 1123 qp->srq = NULL; 1124 qp->xrcd = qp_init_attr->xrcd; 1125 atomic_inc(&qp_init_attr->xrcd->usecnt); 1126 INIT_LIST_HEAD(&qp->open_list); 1127 1128 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1129 qp_init_attr->qp_context); 1130 if (IS_ERR(qp)) 1131 return qp; 1132 1133 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1134 return qp; 1135 } 1136 1137 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1138 struct ib_qp_init_attr *qp_init_attr) 1139 { 1140 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1141 struct ib_qp *qp; 1142 int ret; 1143 1144 if (qp_init_attr->rwq_ind_tbl && 1145 (qp_init_attr->recv_cq || 1146 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1147 qp_init_attr->cap.max_recv_sge)) 1148 return ERR_PTR(-EINVAL); 1149 1150 /* 1151 * If the callers is using the RDMA API calculate the resources 1152 * needed for the RDMA READ/WRITE operations. 1153 * 1154 * Note that these callers need to pass in a port number. 1155 */ 1156 if (qp_init_attr->cap.max_rdma_ctxs) 1157 rdma_rw_init_qp(device, qp_init_attr); 1158 1159 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1160 if (IS_ERR(qp)) 1161 return qp; 1162 1163 ret = ib_create_qp_security(qp, device); 1164 if (ret) 1165 goto err; 1166 1167 qp->real_qp = qp; 1168 qp->qp_type = qp_init_attr->qp_type; 1169 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 1170 1171 atomic_set(&qp->usecnt, 0); 1172 qp->mrs_used = 0; 1173 spin_lock_init(&qp->mr_lock); 1174 INIT_LIST_HEAD(&qp->rdma_mrs); 1175 INIT_LIST_HEAD(&qp->sig_mrs); 1176 qp->port = 0; 1177 1178 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 1179 struct ib_qp *xrc_qp = create_xrc_qp(qp, qp_init_attr); 1180 1181 if (IS_ERR(xrc_qp)) { 1182 ret = PTR_ERR(xrc_qp); 1183 goto err; 1184 } 1185 return xrc_qp; 1186 } 1187 1188 qp->event_handler = qp_init_attr->event_handler; 1189 qp->qp_context = qp_init_attr->qp_context; 1190 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1191 qp->recv_cq = NULL; 1192 qp->srq = NULL; 1193 } else { 1194 qp->recv_cq = qp_init_attr->recv_cq; 1195 if (qp_init_attr->recv_cq) 1196 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1197 qp->srq = qp_init_attr->srq; 1198 if (qp->srq) 1199 atomic_inc(&qp_init_attr->srq->usecnt); 1200 } 1201 1202 qp->send_cq = qp_init_attr->send_cq; 1203 qp->xrcd = NULL; 1204 1205 atomic_inc(&pd->usecnt); 1206 if (qp_init_attr->send_cq) 1207 atomic_inc(&qp_init_attr->send_cq->usecnt); 1208 if (qp_init_attr->rwq_ind_tbl) 1209 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1210 1211 if (qp_init_attr->cap.max_rdma_ctxs) { 1212 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1213 if (ret) 1214 goto err; 1215 } 1216 1217 /* 1218 * Note: all hw drivers guarantee that max_send_sge is lower than 1219 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1220 * max_send_sge <= max_sge_rd. 1221 */ 1222 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1223 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1224 device->attrs.max_sge_rd); 1225 1226 return qp; 1227 1228 err: 1229 ib_destroy_qp(qp); 1230 return ERR_PTR(ret); 1231 1232 } 1233 EXPORT_SYMBOL(ib_create_qp); 1234 1235 static const struct { 1236 int valid; 1237 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1238 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1239 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1240 [IB_QPS_RESET] = { 1241 [IB_QPS_RESET] = { .valid = 1 }, 1242 [IB_QPS_INIT] = { 1243 .valid = 1, 1244 .req_param = { 1245 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1246 IB_QP_PORT | 1247 IB_QP_QKEY), 1248 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1249 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1250 IB_QP_PORT | 1251 IB_QP_ACCESS_FLAGS), 1252 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1253 IB_QP_PORT | 1254 IB_QP_ACCESS_FLAGS), 1255 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1256 IB_QP_PORT | 1257 IB_QP_ACCESS_FLAGS), 1258 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1259 IB_QP_PORT | 1260 IB_QP_ACCESS_FLAGS), 1261 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1262 IB_QP_QKEY), 1263 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1264 IB_QP_QKEY), 1265 } 1266 }, 1267 }, 1268 [IB_QPS_INIT] = { 1269 [IB_QPS_RESET] = { .valid = 1 }, 1270 [IB_QPS_ERR] = { .valid = 1 }, 1271 [IB_QPS_INIT] = { 1272 .valid = 1, 1273 .opt_param = { 1274 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1275 IB_QP_PORT | 1276 IB_QP_QKEY), 1277 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1278 IB_QP_PORT | 1279 IB_QP_ACCESS_FLAGS), 1280 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1281 IB_QP_PORT | 1282 IB_QP_ACCESS_FLAGS), 1283 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1284 IB_QP_PORT | 1285 IB_QP_ACCESS_FLAGS), 1286 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1287 IB_QP_PORT | 1288 IB_QP_ACCESS_FLAGS), 1289 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1290 IB_QP_QKEY), 1291 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1292 IB_QP_QKEY), 1293 } 1294 }, 1295 [IB_QPS_RTR] = { 1296 .valid = 1, 1297 .req_param = { 1298 [IB_QPT_UC] = (IB_QP_AV | 1299 IB_QP_PATH_MTU | 1300 IB_QP_DEST_QPN | 1301 IB_QP_RQ_PSN), 1302 [IB_QPT_RC] = (IB_QP_AV | 1303 IB_QP_PATH_MTU | 1304 IB_QP_DEST_QPN | 1305 IB_QP_RQ_PSN | 1306 IB_QP_MAX_DEST_RD_ATOMIC | 1307 IB_QP_MIN_RNR_TIMER), 1308 [IB_QPT_XRC_INI] = (IB_QP_AV | 1309 IB_QP_PATH_MTU | 1310 IB_QP_DEST_QPN | 1311 IB_QP_RQ_PSN), 1312 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1313 IB_QP_PATH_MTU | 1314 IB_QP_DEST_QPN | 1315 IB_QP_RQ_PSN | 1316 IB_QP_MAX_DEST_RD_ATOMIC | 1317 IB_QP_MIN_RNR_TIMER), 1318 }, 1319 .opt_param = { 1320 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1321 IB_QP_QKEY), 1322 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1323 IB_QP_ACCESS_FLAGS | 1324 IB_QP_PKEY_INDEX), 1325 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1326 IB_QP_ACCESS_FLAGS | 1327 IB_QP_PKEY_INDEX), 1328 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1329 IB_QP_ACCESS_FLAGS | 1330 IB_QP_PKEY_INDEX), 1331 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1332 IB_QP_ACCESS_FLAGS | 1333 IB_QP_PKEY_INDEX), 1334 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1335 IB_QP_QKEY), 1336 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1337 IB_QP_QKEY), 1338 }, 1339 }, 1340 }, 1341 [IB_QPS_RTR] = { 1342 [IB_QPS_RESET] = { .valid = 1 }, 1343 [IB_QPS_ERR] = { .valid = 1 }, 1344 [IB_QPS_RTS] = { 1345 .valid = 1, 1346 .req_param = { 1347 [IB_QPT_UD] = IB_QP_SQ_PSN, 1348 [IB_QPT_UC] = IB_QP_SQ_PSN, 1349 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1350 IB_QP_RETRY_CNT | 1351 IB_QP_RNR_RETRY | 1352 IB_QP_SQ_PSN | 1353 IB_QP_MAX_QP_RD_ATOMIC), 1354 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1355 IB_QP_RETRY_CNT | 1356 IB_QP_RNR_RETRY | 1357 IB_QP_SQ_PSN | 1358 IB_QP_MAX_QP_RD_ATOMIC), 1359 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1360 IB_QP_SQ_PSN), 1361 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1362 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1363 }, 1364 .opt_param = { 1365 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1366 IB_QP_QKEY), 1367 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1368 IB_QP_ALT_PATH | 1369 IB_QP_ACCESS_FLAGS | 1370 IB_QP_PATH_MIG_STATE), 1371 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1372 IB_QP_ALT_PATH | 1373 IB_QP_ACCESS_FLAGS | 1374 IB_QP_MIN_RNR_TIMER | 1375 IB_QP_PATH_MIG_STATE), 1376 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1377 IB_QP_ALT_PATH | 1378 IB_QP_ACCESS_FLAGS | 1379 IB_QP_PATH_MIG_STATE), 1380 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1381 IB_QP_ALT_PATH | 1382 IB_QP_ACCESS_FLAGS | 1383 IB_QP_MIN_RNR_TIMER | 1384 IB_QP_PATH_MIG_STATE), 1385 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1386 IB_QP_QKEY), 1387 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1388 IB_QP_QKEY), 1389 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1390 } 1391 } 1392 }, 1393 [IB_QPS_RTS] = { 1394 [IB_QPS_RESET] = { .valid = 1 }, 1395 [IB_QPS_ERR] = { .valid = 1 }, 1396 [IB_QPS_RTS] = { 1397 .valid = 1, 1398 .opt_param = { 1399 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1400 IB_QP_QKEY), 1401 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1402 IB_QP_ACCESS_FLAGS | 1403 IB_QP_ALT_PATH | 1404 IB_QP_PATH_MIG_STATE), 1405 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1406 IB_QP_ACCESS_FLAGS | 1407 IB_QP_ALT_PATH | 1408 IB_QP_PATH_MIG_STATE | 1409 IB_QP_MIN_RNR_TIMER), 1410 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1411 IB_QP_ACCESS_FLAGS | 1412 IB_QP_ALT_PATH | 1413 IB_QP_PATH_MIG_STATE), 1414 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1415 IB_QP_ACCESS_FLAGS | 1416 IB_QP_ALT_PATH | 1417 IB_QP_PATH_MIG_STATE | 1418 IB_QP_MIN_RNR_TIMER), 1419 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1420 IB_QP_QKEY), 1421 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1422 IB_QP_QKEY), 1423 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1424 } 1425 }, 1426 [IB_QPS_SQD] = { 1427 .valid = 1, 1428 .opt_param = { 1429 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1430 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1431 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1432 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1433 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1434 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1435 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1436 } 1437 }, 1438 }, 1439 [IB_QPS_SQD] = { 1440 [IB_QPS_RESET] = { .valid = 1 }, 1441 [IB_QPS_ERR] = { .valid = 1 }, 1442 [IB_QPS_RTS] = { 1443 .valid = 1, 1444 .opt_param = { 1445 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1446 IB_QP_QKEY), 1447 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1448 IB_QP_ALT_PATH | 1449 IB_QP_ACCESS_FLAGS | 1450 IB_QP_PATH_MIG_STATE), 1451 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1452 IB_QP_ALT_PATH | 1453 IB_QP_ACCESS_FLAGS | 1454 IB_QP_MIN_RNR_TIMER | 1455 IB_QP_PATH_MIG_STATE), 1456 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1457 IB_QP_ALT_PATH | 1458 IB_QP_ACCESS_FLAGS | 1459 IB_QP_PATH_MIG_STATE), 1460 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1461 IB_QP_ALT_PATH | 1462 IB_QP_ACCESS_FLAGS | 1463 IB_QP_MIN_RNR_TIMER | 1464 IB_QP_PATH_MIG_STATE), 1465 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1466 IB_QP_QKEY), 1467 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1468 IB_QP_QKEY), 1469 } 1470 }, 1471 [IB_QPS_SQD] = { 1472 .valid = 1, 1473 .opt_param = { 1474 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1475 IB_QP_QKEY), 1476 [IB_QPT_UC] = (IB_QP_AV | 1477 IB_QP_ALT_PATH | 1478 IB_QP_ACCESS_FLAGS | 1479 IB_QP_PKEY_INDEX | 1480 IB_QP_PATH_MIG_STATE), 1481 [IB_QPT_RC] = (IB_QP_PORT | 1482 IB_QP_AV | 1483 IB_QP_TIMEOUT | 1484 IB_QP_RETRY_CNT | 1485 IB_QP_RNR_RETRY | 1486 IB_QP_MAX_QP_RD_ATOMIC | 1487 IB_QP_MAX_DEST_RD_ATOMIC | 1488 IB_QP_ALT_PATH | 1489 IB_QP_ACCESS_FLAGS | 1490 IB_QP_PKEY_INDEX | 1491 IB_QP_MIN_RNR_TIMER | 1492 IB_QP_PATH_MIG_STATE), 1493 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1494 IB_QP_AV | 1495 IB_QP_TIMEOUT | 1496 IB_QP_RETRY_CNT | 1497 IB_QP_RNR_RETRY | 1498 IB_QP_MAX_QP_RD_ATOMIC | 1499 IB_QP_ALT_PATH | 1500 IB_QP_ACCESS_FLAGS | 1501 IB_QP_PKEY_INDEX | 1502 IB_QP_PATH_MIG_STATE), 1503 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1504 IB_QP_AV | 1505 IB_QP_TIMEOUT | 1506 IB_QP_MAX_DEST_RD_ATOMIC | 1507 IB_QP_ALT_PATH | 1508 IB_QP_ACCESS_FLAGS | 1509 IB_QP_PKEY_INDEX | 1510 IB_QP_MIN_RNR_TIMER | 1511 IB_QP_PATH_MIG_STATE), 1512 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1513 IB_QP_QKEY), 1514 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1515 IB_QP_QKEY), 1516 } 1517 } 1518 }, 1519 [IB_QPS_SQE] = { 1520 [IB_QPS_RESET] = { .valid = 1 }, 1521 [IB_QPS_ERR] = { .valid = 1 }, 1522 [IB_QPS_RTS] = { 1523 .valid = 1, 1524 .opt_param = { 1525 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1526 IB_QP_QKEY), 1527 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1528 IB_QP_ACCESS_FLAGS), 1529 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1530 IB_QP_QKEY), 1531 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1532 IB_QP_QKEY), 1533 } 1534 } 1535 }, 1536 [IB_QPS_ERR] = { 1537 [IB_QPS_RESET] = { .valid = 1 }, 1538 [IB_QPS_ERR] = { .valid = 1 } 1539 } 1540 }; 1541 1542 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1543 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1544 { 1545 enum ib_qp_attr_mask req_param, opt_param; 1546 1547 if (mask & IB_QP_CUR_STATE && 1548 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1549 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1550 return false; 1551 1552 if (!qp_state_table[cur_state][next_state].valid) 1553 return false; 1554 1555 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1556 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1557 1558 if ((mask & req_param) != req_param) 1559 return false; 1560 1561 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1562 return false; 1563 1564 return true; 1565 } 1566 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1567 1568 /** 1569 * ib_resolve_eth_dmac - Resolve destination mac address 1570 * @device: Device to consider 1571 * @ah_attr: address handle attribute which describes the 1572 * source and destination parameters 1573 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1574 * returns 0 on success or appropriate error code. It initializes the 1575 * necessary ah_attr fields when call is successful. 1576 */ 1577 static int ib_resolve_eth_dmac(struct ib_device *device, 1578 struct rdma_ah_attr *ah_attr) 1579 { 1580 int ret = 0; 1581 1582 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1583 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1584 __be32 addr = 0; 1585 1586 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1587 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1588 } else { 1589 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1590 (char *)ah_attr->roce.dmac); 1591 } 1592 } else { 1593 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1594 } 1595 return ret; 1596 } 1597 1598 static bool is_qp_type_connected(const struct ib_qp *qp) 1599 { 1600 return (qp->qp_type == IB_QPT_UC || 1601 qp->qp_type == IB_QPT_RC || 1602 qp->qp_type == IB_QPT_XRC_INI || 1603 qp->qp_type == IB_QPT_XRC_TGT); 1604 } 1605 1606 /** 1607 * IB core internal function to perform QP attributes modification. 1608 */ 1609 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1610 int attr_mask, struct ib_udata *udata) 1611 { 1612 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1613 const struct ib_gid_attr *old_sgid_attr_av; 1614 const struct ib_gid_attr *old_sgid_attr_alt_av; 1615 int ret; 1616 1617 if (attr_mask & IB_QP_AV) { 1618 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1619 &old_sgid_attr_av); 1620 if (ret) 1621 return ret; 1622 } 1623 if (attr_mask & IB_QP_ALT_PATH) { 1624 /* 1625 * FIXME: This does not track the migration state, so if the 1626 * user loads a new alternate path after the HW has migrated 1627 * from primary->alternate we will keep the wrong 1628 * references. This is OK for IB because the reference 1629 * counting does not serve any functional purpose. 1630 */ 1631 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1632 &old_sgid_attr_alt_av); 1633 if (ret) 1634 goto out_av; 1635 1636 /* 1637 * Today the core code can only handle alternate paths and APM 1638 * for IB. Ban them in roce mode. 1639 */ 1640 if (!(rdma_protocol_ib(qp->device, 1641 attr->alt_ah_attr.port_num) && 1642 rdma_protocol_ib(qp->device, port))) { 1643 ret = EINVAL; 1644 goto out; 1645 } 1646 } 1647 1648 /* 1649 * If the user provided the qp_attr then we have to resolve it. Kernel 1650 * users have to provide already resolved rdma_ah_attr's 1651 */ 1652 if (udata && (attr_mask & IB_QP_AV) && 1653 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1654 is_qp_type_connected(qp)) { 1655 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1656 if (ret) 1657 goto out; 1658 } 1659 1660 if (rdma_ib_or_roce(qp->device, port)) { 1661 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1662 dev_warn(&qp->device->dev, 1663 "%s rq_psn overflow, masking to 24 bits\n", 1664 __func__); 1665 attr->rq_psn &= 0xffffff; 1666 } 1667 1668 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1669 dev_warn(&qp->device->dev, 1670 " %s sq_psn overflow, masking to 24 bits\n", 1671 __func__); 1672 attr->sq_psn &= 0xffffff; 1673 } 1674 } 1675 1676 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1677 if (ret) 1678 goto out; 1679 1680 if (attr_mask & IB_QP_PORT) 1681 qp->port = attr->port_num; 1682 if (attr_mask & IB_QP_AV) 1683 qp->av_sgid_attr = 1684 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1685 if (attr_mask & IB_QP_ALT_PATH) 1686 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1687 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1688 1689 out: 1690 if (attr_mask & IB_QP_ALT_PATH) 1691 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1692 out_av: 1693 if (attr_mask & IB_QP_AV) 1694 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1695 return ret; 1696 } 1697 1698 /** 1699 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1700 * @ib_qp: The QP to modify. 1701 * @attr: On input, specifies the QP attributes to modify. On output, 1702 * the current values of selected QP attributes are returned. 1703 * @attr_mask: A bit-mask used to specify which attributes of the QP 1704 * are being modified. 1705 * @udata: pointer to user's input output buffer information 1706 * are being modified. 1707 * It returns 0 on success and returns appropriate error code on error. 1708 */ 1709 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1710 int attr_mask, struct ib_udata *udata) 1711 { 1712 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1713 } 1714 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1715 1716 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1717 { 1718 int rc; 1719 u32 netdev_speed; 1720 struct net_device *netdev; 1721 struct ethtool_link_ksettings lksettings; 1722 1723 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1724 return -EINVAL; 1725 1726 netdev = ib_device_get_netdev(dev, port_num); 1727 if (!netdev) 1728 return -ENODEV; 1729 1730 rtnl_lock(); 1731 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1732 rtnl_unlock(); 1733 1734 dev_put(netdev); 1735 1736 if (!rc) { 1737 netdev_speed = lksettings.base.speed; 1738 } else { 1739 netdev_speed = SPEED_1000; 1740 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1741 netdev_speed); 1742 } 1743 1744 if (netdev_speed <= SPEED_1000) { 1745 *width = IB_WIDTH_1X; 1746 *speed = IB_SPEED_SDR; 1747 } else if (netdev_speed <= SPEED_10000) { 1748 *width = IB_WIDTH_1X; 1749 *speed = IB_SPEED_FDR10; 1750 } else if (netdev_speed <= SPEED_20000) { 1751 *width = IB_WIDTH_4X; 1752 *speed = IB_SPEED_DDR; 1753 } else if (netdev_speed <= SPEED_25000) { 1754 *width = IB_WIDTH_1X; 1755 *speed = IB_SPEED_EDR; 1756 } else if (netdev_speed <= SPEED_40000) { 1757 *width = IB_WIDTH_4X; 1758 *speed = IB_SPEED_FDR10; 1759 } else { 1760 *width = IB_WIDTH_4X; 1761 *speed = IB_SPEED_EDR; 1762 } 1763 1764 return 0; 1765 } 1766 EXPORT_SYMBOL(ib_get_eth_speed); 1767 1768 int ib_modify_qp(struct ib_qp *qp, 1769 struct ib_qp_attr *qp_attr, 1770 int qp_attr_mask) 1771 { 1772 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1773 } 1774 EXPORT_SYMBOL(ib_modify_qp); 1775 1776 int ib_query_qp(struct ib_qp *qp, 1777 struct ib_qp_attr *qp_attr, 1778 int qp_attr_mask, 1779 struct ib_qp_init_attr *qp_init_attr) 1780 { 1781 qp_attr->ah_attr.grh.sgid_attr = NULL; 1782 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1783 1784 return qp->device->ops.query_qp ? 1785 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1786 qp_init_attr) : -EOPNOTSUPP; 1787 } 1788 EXPORT_SYMBOL(ib_query_qp); 1789 1790 int ib_close_qp(struct ib_qp *qp) 1791 { 1792 struct ib_qp *real_qp; 1793 unsigned long flags; 1794 1795 real_qp = qp->real_qp; 1796 if (real_qp == qp) 1797 return -EINVAL; 1798 1799 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1800 list_del(&qp->open_list); 1801 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1802 1803 atomic_dec(&real_qp->usecnt); 1804 if (qp->qp_sec) 1805 ib_close_shared_qp_security(qp->qp_sec); 1806 kfree(qp); 1807 1808 return 0; 1809 } 1810 EXPORT_SYMBOL(ib_close_qp); 1811 1812 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1813 { 1814 struct ib_xrcd *xrcd; 1815 struct ib_qp *real_qp; 1816 int ret; 1817 1818 real_qp = qp->real_qp; 1819 xrcd = real_qp->xrcd; 1820 1821 mutex_lock(&xrcd->tgt_qp_mutex); 1822 ib_close_qp(qp); 1823 if (atomic_read(&real_qp->usecnt) == 0) 1824 list_del(&real_qp->xrcd_list); 1825 else 1826 real_qp = NULL; 1827 mutex_unlock(&xrcd->tgt_qp_mutex); 1828 1829 if (real_qp) { 1830 ret = ib_destroy_qp(real_qp); 1831 if (!ret) 1832 atomic_dec(&xrcd->usecnt); 1833 else 1834 __ib_insert_xrcd_qp(xrcd, real_qp); 1835 } 1836 1837 return 0; 1838 } 1839 1840 int ib_destroy_qp(struct ib_qp *qp) 1841 { 1842 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1843 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1844 struct ib_pd *pd; 1845 struct ib_cq *scq, *rcq; 1846 struct ib_srq *srq; 1847 struct ib_rwq_ind_table *ind_tbl; 1848 struct ib_qp_security *sec; 1849 int ret; 1850 1851 WARN_ON_ONCE(qp->mrs_used > 0); 1852 1853 if (atomic_read(&qp->usecnt)) 1854 return -EBUSY; 1855 1856 if (qp->real_qp != qp) 1857 return __ib_destroy_shared_qp(qp); 1858 1859 pd = qp->pd; 1860 scq = qp->send_cq; 1861 rcq = qp->recv_cq; 1862 srq = qp->srq; 1863 ind_tbl = qp->rwq_ind_tbl; 1864 sec = qp->qp_sec; 1865 if (sec) 1866 ib_destroy_qp_security_begin(sec); 1867 1868 if (!qp->uobject) 1869 rdma_rw_cleanup_mrs(qp); 1870 1871 rdma_restrack_del(&qp->res); 1872 ret = qp->device->ops.destroy_qp(qp); 1873 if (!ret) { 1874 if (alt_path_sgid_attr) 1875 rdma_put_gid_attr(alt_path_sgid_attr); 1876 if (av_sgid_attr) 1877 rdma_put_gid_attr(av_sgid_attr); 1878 if (pd) 1879 atomic_dec(&pd->usecnt); 1880 if (scq) 1881 atomic_dec(&scq->usecnt); 1882 if (rcq) 1883 atomic_dec(&rcq->usecnt); 1884 if (srq) 1885 atomic_dec(&srq->usecnt); 1886 if (ind_tbl) 1887 atomic_dec(&ind_tbl->usecnt); 1888 if (sec) 1889 ib_destroy_qp_security_end(sec); 1890 } else { 1891 if (sec) 1892 ib_destroy_qp_security_abort(sec); 1893 } 1894 1895 return ret; 1896 } 1897 EXPORT_SYMBOL(ib_destroy_qp); 1898 1899 /* Completion queues */ 1900 1901 struct ib_cq *__ib_create_cq(struct ib_device *device, 1902 ib_comp_handler comp_handler, 1903 void (*event_handler)(struct ib_event *, void *), 1904 void *cq_context, 1905 const struct ib_cq_init_attr *cq_attr, 1906 const char *caller) 1907 { 1908 struct ib_cq *cq; 1909 1910 cq = device->ops.create_cq(device, cq_attr, NULL, NULL); 1911 1912 if (!IS_ERR(cq)) { 1913 cq->device = device; 1914 cq->uobject = NULL; 1915 cq->comp_handler = comp_handler; 1916 cq->event_handler = event_handler; 1917 cq->cq_context = cq_context; 1918 atomic_set(&cq->usecnt, 0); 1919 cq->res.type = RDMA_RESTRACK_CQ; 1920 rdma_restrack_set_task(&cq->res, caller); 1921 rdma_restrack_kadd(&cq->res); 1922 } 1923 1924 return cq; 1925 } 1926 EXPORT_SYMBOL(__ib_create_cq); 1927 1928 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1929 { 1930 return cq->device->ops.modify_cq ? 1931 cq->device->ops.modify_cq(cq, cq_count, 1932 cq_period) : -EOPNOTSUPP; 1933 } 1934 EXPORT_SYMBOL(rdma_set_cq_moderation); 1935 1936 int ib_destroy_cq(struct ib_cq *cq) 1937 { 1938 if (atomic_read(&cq->usecnt)) 1939 return -EBUSY; 1940 1941 rdma_restrack_del(&cq->res); 1942 return cq->device->ops.destroy_cq(cq); 1943 } 1944 EXPORT_SYMBOL(ib_destroy_cq); 1945 1946 int ib_resize_cq(struct ib_cq *cq, int cqe) 1947 { 1948 return cq->device->ops.resize_cq ? 1949 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1950 } 1951 EXPORT_SYMBOL(ib_resize_cq); 1952 1953 /* Memory regions */ 1954 1955 int ib_dereg_mr(struct ib_mr *mr) 1956 { 1957 struct ib_pd *pd = mr->pd; 1958 struct ib_dm *dm = mr->dm; 1959 int ret; 1960 1961 rdma_restrack_del(&mr->res); 1962 ret = mr->device->ops.dereg_mr(mr); 1963 if (!ret) { 1964 atomic_dec(&pd->usecnt); 1965 if (dm) 1966 atomic_dec(&dm->usecnt); 1967 } 1968 1969 return ret; 1970 } 1971 EXPORT_SYMBOL(ib_dereg_mr); 1972 1973 /** 1974 * ib_alloc_mr() - Allocates a memory region 1975 * @pd: protection domain associated with the region 1976 * @mr_type: memory region type 1977 * @max_num_sg: maximum sg entries available for registration. 1978 * 1979 * Notes: 1980 * Memory registeration page/sg lists must not exceed max_num_sg. 1981 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1982 * max_num_sg * used_page_size. 1983 * 1984 */ 1985 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1986 enum ib_mr_type mr_type, 1987 u32 max_num_sg) 1988 { 1989 struct ib_mr *mr; 1990 1991 if (!pd->device->ops.alloc_mr) 1992 return ERR_PTR(-EOPNOTSUPP); 1993 1994 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 1995 if (!IS_ERR(mr)) { 1996 mr->device = pd->device; 1997 mr->pd = pd; 1998 mr->dm = NULL; 1999 mr->uobject = NULL; 2000 atomic_inc(&pd->usecnt); 2001 mr->need_inval = false; 2002 mr->res.type = RDMA_RESTRACK_MR; 2003 rdma_restrack_kadd(&mr->res); 2004 } 2005 2006 return mr; 2007 } 2008 EXPORT_SYMBOL(ib_alloc_mr); 2009 2010 /* "Fast" memory regions */ 2011 2012 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2013 int mr_access_flags, 2014 struct ib_fmr_attr *fmr_attr) 2015 { 2016 struct ib_fmr *fmr; 2017 2018 if (!pd->device->ops.alloc_fmr) 2019 return ERR_PTR(-EOPNOTSUPP); 2020 2021 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr); 2022 if (!IS_ERR(fmr)) { 2023 fmr->device = pd->device; 2024 fmr->pd = pd; 2025 atomic_inc(&pd->usecnt); 2026 } 2027 2028 return fmr; 2029 } 2030 EXPORT_SYMBOL(ib_alloc_fmr); 2031 2032 int ib_unmap_fmr(struct list_head *fmr_list) 2033 { 2034 struct ib_fmr *fmr; 2035 2036 if (list_empty(fmr_list)) 2037 return 0; 2038 2039 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2040 return fmr->device->ops.unmap_fmr(fmr_list); 2041 } 2042 EXPORT_SYMBOL(ib_unmap_fmr); 2043 2044 int ib_dealloc_fmr(struct ib_fmr *fmr) 2045 { 2046 struct ib_pd *pd; 2047 int ret; 2048 2049 pd = fmr->pd; 2050 ret = fmr->device->ops.dealloc_fmr(fmr); 2051 if (!ret) 2052 atomic_dec(&pd->usecnt); 2053 2054 return ret; 2055 } 2056 EXPORT_SYMBOL(ib_dealloc_fmr); 2057 2058 /* Multicast groups */ 2059 2060 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2061 { 2062 struct ib_qp_init_attr init_attr = {}; 2063 struct ib_qp_attr attr = {}; 2064 int num_eth_ports = 0; 2065 int port; 2066 2067 /* If QP state >= init, it is assigned to a port and we can check this 2068 * port only. 2069 */ 2070 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2071 if (attr.qp_state >= IB_QPS_INIT) { 2072 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2073 IB_LINK_LAYER_INFINIBAND) 2074 return true; 2075 goto lid_check; 2076 } 2077 } 2078 2079 /* Can't get a quick answer, iterate over all ports */ 2080 for (port = 0; port < qp->device->phys_port_cnt; port++) 2081 if (rdma_port_get_link_layer(qp->device, port) != 2082 IB_LINK_LAYER_INFINIBAND) 2083 num_eth_ports++; 2084 2085 /* If we have at lease one Ethernet port, RoCE annex declares that 2086 * multicast LID should be ignored. We can't tell at this step if the 2087 * QP belongs to an IB or Ethernet port. 2088 */ 2089 if (num_eth_ports) 2090 return true; 2091 2092 /* If all the ports are IB, we can check according to IB spec. */ 2093 lid_check: 2094 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2095 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2096 } 2097 2098 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2099 { 2100 int ret; 2101 2102 if (!qp->device->ops.attach_mcast) 2103 return -EOPNOTSUPP; 2104 2105 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2106 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2107 return -EINVAL; 2108 2109 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2110 if (!ret) 2111 atomic_inc(&qp->usecnt); 2112 return ret; 2113 } 2114 EXPORT_SYMBOL(ib_attach_mcast); 2115 2116 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2117 { 2118 int ret; 2119 2120 if (!qp->device->ops.detach_mcast) 2121 return -EOPNOTSUPP; 2122 2123 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2124 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2125 return -EINVAL; 2126 2127 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2128 if (!ret) 2129 atomic_dec(&qp->usecnt); 2130 return ret; 2131 } 2132 EXPORT_SYMBOL(ib_detach_mcast); 2133 2134 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2135 { 2136 struct ib_xrcd *xrcd; 2137 2138 if (!device->ops.alloc_xrcd) 2139 return ERR_PTR(-EOPNOTSUPP); 2140 2141 xrcd = device->ops.alloc_xrcd(device, NULL, NULL); 2142 if (!IS_ERR(xrcd)) { 2143 xrcd->device = device; 2144 xrcd->inode = NULL; 2145 atomic_set(&xrcd->usecnt, 0); 2146 mutex_init(&xrcd->tgt_qp_mutex); 2147 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2148 } 2149 2150 return xrcd; 2151 } 2152 EXPORT_SYMBOL(__ib_alloc_xrcd); 2153 2154 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 2155 { 2156 struct ib_qp *qp; 2157 int ret; 2158 2159 if (atomic_read(&xrcd->usecnt)) 2160 return -EBUSY; 2161 2162 while (!list_empty(&xrcd->tgt_qp_list)) { 2163 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2164 ret = ib_destroy_qp(qp); 2165 if (ret) 2166 return ret; 2167 } 2168 2169 return xrcd->device->ops.dealloc_xrcd(xrcd); 2170 } 2171 EXPORT_SYMBOL(ib_dealloc_xrcd); 2172 2173 /** 2174 * ib_create_wq - Creates a WQ associated with the specified protection 2175 * domain. 2176 * @pd: The protection domain associated with the WQ. 2177 * @wq_attr: A list of initial attributes required to create the 2178 * WQ. If WQ creation succeeds, then the attributes are updated to 2179 * the actual capabilities of the created WQ. 2180 * 2181 * wq_attr->max_wr and wq_attr->max_sge determine 2182 * the requested size of the WQ, and set to the actual values allocated 2183 * on return. 2184 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2185 * at least as large as the requested values. 2186 */ 2187 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2188 struct ib_wq_init_attr *wq_attr) 2189 { 2190 struct ib_wq *wq; 2191 2192 if (!pd->device->ops.create_wq) 2193 return ERR_PTR(-EOPNOTSUPP); 2194 2195 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2196 if (!IS_ERR(wq)) { 2197 wq->event_handler = wq_attr->event_handler; 2198 wq->wq_context = wq_attr->wq_context; 2199 wq->wq_type = wq_attr->wq_type; 2200 wq->cq = wq_attr->cq; 2201 wq->device = pd->device; 2202 wq->pd = pd; 2203 wq->uobject = NULL; 2204 atomic_inc(&pd->usecnt); 2205 atomic_inc(&wq_attr->cq->usecnt); 2206 atomic_set(&wq->usecnt, 0); 2207 } 2208 return wq; 2209 } 2210 EXPORT_SYMBOL(ib_create_wq); 2211 2212 /** 2213 * ib_destroy_wq - Destroys the specified WQ. 2214 * @wq: The WQ to destroy. 2215 */ 2216 int ib_destroy_wq(struct ib_wq *wq) 2217 { 2218 int err; 2219 struct ib_cq *cq = wq->cq; 2220 struct ib_pd *pd = wq->pd; 2221 2222 if (atomic_read(&wq->usecnt)) 2223 return -EBUSY; 2224 2225 err = wq->device->ops.destroy_wq(wq); 2226 if (!err) { 2227 atomic_dec(&pd->usecnt); 2228 atomic_dec(&cq->usecnt); 2229 } 2230 return err; 2231 } 2232 EXPORT_SYMBOL(ib_destroy_wq); 2233 2234 /** 2235 * ib_modify_wq - Modifies the specified WQ. 2236 * @wq: The WQ to modify. 2237 * @wq_attr: On input, specifies the WQ attributes to modify. 2238 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2239 * are being modified. 2240 * On output, the current values of selected WQ attributes are returned. 2241 */ 2242 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2243 u32 wq_attr_mask) 2244 { 2245 int err; 2246 2247 if (!wq->device->ops.modify_wq) 2248 return -EOPNOTSUPP; 2249 2250 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2251 return err; 2252 } 2253 EXPORT_SYMBOL(ib_modify_wq); 2254 2255 /* 2256 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2257 * @device: The device on which to create the rwq indirection table. 2258 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2259 * create the Indirection Table. 2260 * 2261 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2262 * than the created ib_rwq_ind_table object and the caller is responsible 2263 * for its memory allocation/free. 2264 */ 2265 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2266 struct ib_rwq_ind_table_init_attr *init_attr) 2267 { 2268 struct ib_rwq_ind_table *rwq_ind_table; 2269 int i; 2270 u32 table_size; 2271 2272 if (!device->ops.create_rwq_ind_table) 2273 return ERR_PTR(-EOPNOTSUPP); 2274 2275 table_size = (1 << init_attr->log_ind_tbl_size); 2276 rwq_ind_table = device->ops.create_rwq_ind_table(device, 2277 init_attr, NULL); 2278 if (IS_ERR(rwq_ind_table)) 2279 return rwq_ind_table; 2280 2281 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2282 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2283 rwq_ind_table->device = device; 2284 rwq_ind_table->uobject = NULL; 2285 atomic_set(&rwq_ind_table->usecnt, 0); 2286 2287 for (i = 0; i < table_size; i++) 2288 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2289 2290 return rwq_ind_table; 2291 } 2292 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2293 2294 /* 2295 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2296 * @wq_ind_table: The Indirection Table to destroy. 2297 */ 2298 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2299 { 2300 int err, i; 2301 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2302 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2303 2304 if (atomic_read(&rwq_ind_table->usecnt)) 2305 return -EBUSY; 2306 2307 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table); 2308 if (!err) { 2309 for (i = 0; i < table_size; i++) 2310 atomic_dec(&ind_tbl[i]->usecnt); 2311 } 2312 2313 return err; 2314 } 2315 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2316 2317 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2318 struct ib_mr_status *mr_status) 2319 { 2320 if (!mr->device->ops.check_mr_status) 2321 return -EOPNOTSUPP; 2322 2323 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2324 } 2325 EXPORT_SYMBOL(ib_check_mr_status); 2326 2327 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2328 int state) 2329 { 2330 if (!device->ops.set_vf_link_state) 2331 return -EOPNOTSUPP; 2332 2333 return device->ops.set_vf_link_state(device, vf, port, state); 2334 } 2335 EXPORT_SYMBOL(ib_set_vf_link_state); 2336 2337 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2338 struct ifla_vf_info *info) 2339 { 2340 if (!device->ops.get_vf_config) 2341 return -EOPNOTSUPP; 2342 2343 return device->ops.get_vf_config(device, vf, port, info); 2344 } 2345 EXPORT_SYMBOL(ib_get_vf_config); 2346 2347 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2348 struct ifla_vf_stats *stats) 2349 { 2350 if (!device->ops.get_vf_stats) 2351 return -EOPNOTSUPP; 2352 2353 return device->ops.get_vf_stats(device, vf, port, stats); 2354 } 2355 EXPORT_SYMBOL(ib_get_vf_stats); 2356 2357 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2358 int type) 2359 { 2360 if (!device->ops.set_vf_guid) 2361 return -EOPNOTSUPP; 2362 2363 return device->ops.set_vf_guid(device, vf, port, guid, type); 2364 } 2365 EXPORT_SYMBOL(ib_set_vf_guid); 2366 2367 /** 2368 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2369 * and set it the memory region. 2370 * @mr: memory region 2371 * @sg: dma mapped scatterlist 2372 * @sg_nents: number of entries in sg 2373 * @sg_offset: offset in bytes into sg 2374 * @page_size: page vector desired page size 2375 * 2376 * Constraints: 2377 * - The first sg element is allowed to have an offset. 2378 * - Each sg element must either be aligned to page_size or virtually 2379 * contiguous to the previous element. In case an sg element has a 2380 * non-contiguous offset, the mapping prefix will not include it. 2381 * - The last sg element is allowed to have length less than page_size. 2382 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2383 * then only max_num_sg entries will be mapped. 2384 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2385 * constraints holds and the page_size argument is ignored. 2386 * 2387 * Returns the number of sg elements that were mapped to the memory region. 2388 * 2389 * After this completes successfully, the memory region 2390 * is ready for registration. 2391 */ 2392 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2393 unsigned int *sg_offset, unsigned int page_size) 2394 { 2395 if (unlikely(!mr->device->ops.map_mr_sg)) 2396 return -EOPNOTSUPP; 2397 2398 mr->page_size = page_size; 2399 2400 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2401 } 2402 EXPORT_SYMBOL(ib_map_mr_sg); 2403 2404 /** 2405 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2406 * to a page vector 2407 * @mr: memory region 2408 * @sgl: dma mapped scatterlist 2409 * @sg_nents: number of entries in sg 2410 * @sg_offset_p: IN: start offset in bytes into sg 2411 * OUT: offset in bytes for element n of the sg of the first 2412 * byte that has not been processed where n is the return 2413 * value of this function. 2414 * @set_page: driver page assignment function pointer 2415 * 2416 * Core service helper for drivers to convert the largest 2417 * prefix of given sg list to a page vector. The sg list 2418 * prefix converted is the prefix that meet the requirements 2419 * of ib_map_mr_sg. 2420 * 2421 * Returns the number of sg elements that were assigned to 2422 * a page vector. 2423 */ 2424 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2425 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2426 { 2427 struct scatterlist *sg; 2428 u64 last_end_dma_addr = 0; 2429 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2430 unsigned int last_page_off = 0; 2431 u64 page_mask = ~((u64)mr->page_size - 1); 2432 int i, ret; 2433 2434 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2435 return -EINVAL; 2436 2437 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2438 mr->length = 0; 2439 2440 for_each_sg(sgl, sg, sg_nents, i) { 2441 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2442 u64 prev_addr = dma_addr; 2443 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2444 u64 end_dma_addr = dma_addr + dma_len; 2445 u64 page_addr = dma_addr & page_mask; 2446 2447 /* 2448 * For the second and later elements, check whether either the 2449 * end of element i-1 or the start of element i is not aligned 2450 * on a page boundary. 2451 */ 2452 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2453 /* Stop mapping if there is a gap. */ 2454 if (last_end_dma_addr != dma_addr) 2455 break; 2456 2457 /* 2458 * Coalesce this element with the last. If it is small 2459 * enough just update mr->length. Otherwise start 2460 * mapping from the next page. 2461 */ 2462 goto next_page; 2463 } 2464 2465 do { 2466 ret = set_page(mr, page_addr); 2467 if (unlikely(ret < 0)) { 2468 sg_offset = prev_addr - sg_dma_address(sg); 2469 mr->length += prev_addr - dma_addr; 2470 if (sg_offset_p) 2471 *sg_offset_p = sg_offset; 2472 return i || sg_offset ? i : ret; 2473 } 2474 prev_addr = page_addr; 2475 next_page: 2476 page_addr += mr->page_size; 2477 } while (page_addr < end_dma_addr); 2478 2479 mr->length += dma_len; 2480 last_end_dma_addr = end_dma_addr; 2481 last_page_off = end_dma_addr & ~page_mask; 2482 2483 sg_offset = 0; 2484 } 2485 2486 if (sg_offset_p) 2487 *sg_offset_p = 0; 2488 return i; 2489 } 2490 EXPORT_SYMBOL(ib_sg_to_pages); 2491 2492 struct ib_drain_cqe { 2493 struct ib_cqe cqe; 2494 struct completion done; 2495 }; 2496 2497 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2498 { 2499 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2500 cqe); 2501 2502 complete(&cqe->done); 2503 } 2504 2505 /* 2506 * Post a WR and block until its completion is reaped for the SQ. 2507 */ 2508 static void __ib_drain_sq(struct ib_qp *qp) 2509 { 2510 struct ib_cq *cq = qp->send_cq; 2511 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2512 struct ib_drain_cqe sdrain; 2513 struct ib_rdma_wr swr = { 2514 .wr = { 2515 .next = NULL, 2516 { .wr_cqe = &sdrain.cqe, }, 2517 .opcode = IB_WR_RDMA_WRITE, 2518 }, 2519 }; 2520 int ret; 2521 2522 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2523 if (ret) { 2524 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2525 return; 2526 } 2527 2528 sdrain.cqe.done = ib_drain_qp_done; 2529 init_completion(&sdrain.done); 2530 2531 ret = ib_post_send(qp, &swr.wr, NULL); 2532 if (ret) { 2533 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2534 return; 2535 } 2536 2537 if (cq->poll_ctx == IB_POLL_DIRECT) 2538 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2539 ib_process_cq_direct(cq, -1); 2540 else 2541 wait_for_completion(&sdrain.done); 2542 } 2543 2544 /* 2545 * Post a WR and block until its completion is reaped for the RQ. 2546 */ 2547 static void __ib_drain_rq(struct ib_qp *qp) 2548 { 2549 struct ib_cq *cq = qp->recv_cq; 2550 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2551 struct ib_drain_cqe rdrain; 2552 struct ib_recv_wr rwr = {}; 2553 int ret; 2554 2555 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2556 if (ret) { 2557 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2558 return; 2559 } 2560 2561 rwr.wr_cqe = &rdrain.cqe; 2562 rdrain.cqe.done = ib_drain_qp_done; 2563 init_completion(&rdrain.done); 2564 2565 ret = ib_post_recv(qp, &rwr, NULL); 2566 if (ret) { 2567 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2568 return; 2569 } 2570 2571 if (cq->poll_ctx == IB_POLL_DIRECT) 2572 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2573 ib_process_cq_direct(cq, -1); 2574 else 2575 wait_for_completion(&rdrain.done); 2576 } 2577 2578 /** 2579 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2580 * application. 2581 * @qp: queue pair to drain 2582 * 2583 * If the device has a provider-specific drain function, then 2584 * call that. Otherwise call the generic drain function 2585 * __ib_drain_sq(). 2586 * 2587 * The caller must: 2588 * 2589 * ensure there is room in the CQ and SQ for the drain work request and 2590 * completion. 2591 * 2592 * allocate the CQ using ib_alloc_cq(). 2593 * 2594 * ensure that there are no other contexts that are posting WRs concurrently. 2595 * Otherwise the drain is not guaranteed. 2596 */ 2597 void ib_drain_sq(struct ib_qp *qp) 2598 { 2599 if (qp->device->ops.drain_sq) 2600 qp->device->ops.drain_sq(qp); 2601 else 2602 __ib_drain_sq(qp); 2603 } 2604 EXPORT_SYMBOL(ib_drain_sq); 2605 2606 /** 2607 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2608 * application. 2609 * @qp: queue pair to drain 2610 * 2611 * If the device has a provider-specific drain function, then 2612 * call that. Otherwise call the generic drain function 2613 * __ib_drain_rq(). 2614 * 2615 * The caller must: 2616 * 2617 * ensure there is room in the CQ and RQ for the drain work request and 2618 * completion. 2619 * 2620 * allocate the CQ using ib_alloc_cq(). 2621 * 2622 * ensure that there are no other contexts that are posting WRs concurrently. 2623 * Otherwise the drain is not guaranteed. 2624 */ 2625 void ib_drain_rq(struct ib_qp *qp) 2626 { 2627 if (qp->device->ops.drain_rq) 2628 qp->device->ops.drain_rq(qp); 2629 else 2630 __ib_drain_rq(qp); 2631 } 2632 EXPORT_SYMBOL(ib_drain_rq); 2633 2634 /** 2635 * ib_drain_qp() - Block until all CQEs have been consumed by the 2636 * application on both the RQ and SQ. 2637 * @qp: queue pair to drain 2638 * 2639 * The caller must: 2640 * 2641 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2642 * and completions. 2643 * 2644 * allocate the CQs using ib_alloc_cq(). 2645 * 2646 * ensure that there are no other contexts that are posting WRs concurrently. 2647 * Otherwise the drain is not guaranteed. 2648 */ 2649 void ib_drain_qp(struct ib_qp *qp) 2650 { 2651 ib_drain_sq(qp); 2652 if (!qp->srq) 2653 ib_drain_rq(qp); 2654 } 2655 EXPORT_SYMBOL(ib_drain_qp); 2656 2657 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 2658 enum rdma_netdev_t type, const char *name, 2659 unsigned char name_assign_type, 2660 void (*setup)(struct net_device *)) 2661 { 2662 struct rdma_netdev_alloc_params params; 2663 struct net_device *netdev; 2664 int rc; 2665 2666 if (!device->ops.rdma_netdev_get_params) 2667 return ERR_PTR(-EOPNOTSUPP); 2668 2669 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2670 ¶ms); 2671 if (rc) 2672 return ERR_PTR(rc); 2673 2674 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2675 setup, params.txqs, params.rxqs); 2676 if (!netdev) 2677 return ERR_PTR(-ENOMEM); 2678 2679 return netdev; 2680 } 2681 EXPORT_SYMBOL(rdma_alloc_netdev); 2682 2683 int rdma_init_netdev(struct ib_device *device, u8 port_num, 2684 enum rdma_netdev_t type, const char *name, 2685 unsigned char name_assign_type, 2686 void (*setup)(struct net_device *), 2687 struct net_device *netdev) 2688 { 2689 struct rdma_netdev_alloc_params params; 2690 int rc; 2691 2692 if (!device->ops.rdma_netdev_get_params) 2693 return -EOPNOTSUPP; 2694 2695 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2696 ¶ms); 2697 if (rc) 2698 return rc; 2699 2700 return params.initialize_rdma_netdev(device, port_num, 2701 netdev, params.param); 2702 } 2703 EXPORT_SYMBOL(rdma_init_netdev); 2704