xref: /openbmc/linux/drivers/infiniband/core/umem_odp.c (revision d003c346bf75f01d240c80000baf2fbf28e53782)
1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree_generic.h>
43 
44 #include <rdma/ib_verbs.h>
45 #include <rdma/ib_umem.h>
46 #include <rdma/ib_umem_odp.h>
47 
48 /*
49  * The ib_umem list keeps track of memory regions for which the HW
50  * device request to receive notification when the related memory
51  * mapping is changed.
52  *
53  * ib_umem_lock protects the list.
54  */
55 
56 static u64 node_start(struct umem_odp_node *n)
57 {
58 	struct ib_umem_odp *umem_odp =
59 			container_of(n, struct ib_umem_odp, interval_tree);
60 
61 	return ib_umem_start(&umem_odp->umem);
62 }
63 
64 /* Note that the representation of the intervals in the interval tree
65  * considers the ending point as contained in the interval, while the
66  * function ib_umem_end returns the first address which is not contained
67  * in the umem.
68  */
69 static u64 node_last(struct umem_odp_node *n)
70 {
71 	struct ib_umem_odp *umem_odp =
72 			container_of(n, struct ib_umem_odp, interval_tree);
73 
74 	return ib_umem_end(&umem_odp->umem) - 1;
75 }
76 
77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
78 		     node_start, node_last, static, rbt_ib_umem)
79 
80 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp)
81 {
82 	mutex_lock(&umem_odp->umem_mutex);
83 	if (umem_odp->notifiers_count++ == 0)
84 		/*
85 		 * Initialize the completion object for waiting on
86 		 * notifiers. Since notifier_count is zero, no one should be
87 		 * waiting right now.
88 		 */
89 		reinit_completion(&umem_odp->notifier_completion);
90 	mutex_unlock(&umem_odp->umem_mutex);
91 }
92 
93 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp)
94 {
95 	mutex_lock(&umem_odp->umem_mutex);
96 	/*
97 	 * This sequence increase will notify the QP page fault that the page
98 	 * that is going to be mapped in the spte could have been freed.
99 	 */
100 	++umem_odp->notifiers_seq;
101 	if (--umem_odp->notifiers_count == 0)
102 		complete_all(&umem_odp->notifier_completion);
103 	mutex_unlock(&umem_odp->umem_mutex);
104 }
105 
106 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp,
107 					       u64 start, u64 end, void *cookie)
108 {
109 	struct ib_umem *umem = &umem_odp->umem;
110 
111 	/*
112 	 * Increase the number of notifiers running, to
113 	 * prevent any further fault handling on this MR.
114 	 */
115 	ib_umem_notifier_start_account(umem_odp);
116 	umem_odp->dying = 1;
117 	/* Make sure that the fact the umem is dying is out before we release
118 	 * all pending page faults. */
119 	smp_wmb();
120 	complete_all(&umem_odp->notifier_completion);
121 	umem->context->invalidate_range(umem_odp, ib_umem_start(umem),
122 					ib_umem_end(umem));
123 	return 0;
124 }
125 
126 static void ib_umem_notifier_release(struct mmu_notifier *mn,
127 				     struct mm_struct *mm)
128 {
129 	struct ib_ucontext_per_mm *per_mm =
130 		container_of(mn, struct ib_ucontext_per_mm, mn);
131 
132 	down_read(&per_mm->umem_rwsem);
133 	if (per_mm->active)
134 		rbt_ib_umem_for_each_in_range(
135 			&per_mm->umem_tree, 0, ULLONG_MAX,
136 			ib_umem_notifier_release_trampoline, true, NULL);
137 	up_read(&per_mm->umem_rwsem);
138 }
139 
140 static int invalidate_range_start_trampoline(struct ib_umem_odp *item,
141 					     u64 start, u64 end, void *cookie)
142 {
143 	ib_umem_notifier_start_account(item);
144 	item->umem.context->invalidate_range(item, start, end);
145 	return 0;
146 }
147 
148 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
149 						    struct mm_struct *mm,
150 						    unsigned long start,
151 						    unsigned long end,
152 						    bool blockable)
153 {
154 	struct ib_ucontext_per_mm *per_mm =
155 		container_of(mn, struct ib_ucontext_per_mm, mn);
156 
157 	if (blockable)
158 		down_read(&per_mm->umem_rwsem);
159 	else if (!down_read_trylock(&per_mm->umem_rwsem))
160 		return -EAGAIN;
161 
162 	if (!per_mm->active) {
163 		up_read(&per_mm->umem_rwsem);
164 		/*
165 		 * At this point active is permanently set and visible to this
166 		 * CPU without a lock, that fact is relied on to skip the unlock
167 		 * in range_end.
168 		 */
169 		return 0;
170 	}
171 
172 	return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, start, end,
173 					     invalidate_range_start_trampoline,
174 					     blockable, NULL);
175 }
176 
177 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start,
178 					   u64 end, void *cookie)
179 {
180 	ib_umem_notifier_end_account(item);
181 	return 0;
182 }
183 
184 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
185 						  struct mm_struct *mm,
186 						  unsigned long start,
187 						  unsigned long end)
188 {
189 	struct ib_ucontext_per_mm *per_mm =
190 		container_of(mn, struct ib_ucontext_per_mm, mn);
191 
192 	if (unlikely(!per_mm->active))
193 		return;
194 
195 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, start,
196 				      end,
197 				      invalidate_range_end_trampoline, true, NULL);
198 	up_read(&per_mm->umem_rwsem);
199 }
200 
201 static const struct mmu_notifier_ops ib_umem_notifiers = {
202 	.release                    = ib_umem_notifier_release,
203 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
204 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
205 };
206 
207 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp)
208 {
209 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
210 	struct ib_umem *umem = &umem_odp->umem;
211 
212 	down_write(&per_mm->umem_rwsem);
213 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
214 		rbt_ib_umem_insert(&umem_odp->interval_tree,
215 				   &per_mm->umem_tree);
216 	up_write(&per_mm->umem_rwsem);
217 }
218 
219 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp)
220 {
221 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
222 	struct ib_umem *umem = &umem_odp->umem;
223 
224 	down_write(&per_mm->umem_rwsem);
225 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
226 		rbt_ib_umem_remove(&umem_odp->interval_tree,
227 				   &per_mm->umem_tree);
228 	complete_all(&umem_odp->notifier_completion);
229 
230 	up_write(&per_mm->umem_rwsem);
231 }
232 
233 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx,
234 					       struct mm_struct *mm)
235 {
236 	struct ib_ucontext_per_mm *per_mm;
237 	int ret;
238 
239 	per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL);
240 	if (!per_mm)
241 		return ERR_PTR(-ENOMEM);
242 
243 	per_mm->context = ctx;
244 	per_mm->mm = mm;
245 	per_mm->umem_tree = RB_ROOT_CACHED;
246 	init_rwsem(&per_mm->umem_rwsem);
247 	per_mm->active = ctx->invalidate_range;
248 
249 	rcu_read_lock();
250 	per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
251 	rcu_read_unlock();
252 
253 	WARN_ON(mm != current->mm);
254 
255 	per_mm->mn.ops = &ib_umem_notifiers;
256 	ret = mmu_notifier_register(&per_mm->mn, per_mm->mm);
257 	if (ret) {
258 		dev_err(&ctx->device->dev,
259 			"Failed to register mmu_notifier %d\n", ret);
260 		goto out_pid;
261 	}
262 
263 	list_add(&per_mm->ucontext_list, &ctx->per_mm_list);
264 	return per_mm;
265 
266 out_pid:
267 	put_pid(per_mm->tgid);
268 	kfree(per_mm);
269 	return ERR_PTR(ret);
270 }
271 
272 static int get_per_mm(struct ib_umem_odp *umem_odp)
273 {
274 	struct ib_ucontext *ctx = umem_odp->umem.context;
275 	struct ib_ucontext_per_mm *per_mm;
276 
277 	/*
278 	 * Generally speaking we expect only one or two per_mm in this list,
279 	 * so no reason to optimize this search today.
280 	 */
281 	mutex_lock(&ctx->per_mm_list_lock);
282 	list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) {
283 		if (per_mm->mm == umem_odp->umem.owning_mm)
284 			goto found;
285 	}
286 
287 	per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm);
288 	if (IS_ERR(per_mm)) {
289 		mutex_unlock(&ctx->per_mm_list_lock);
290 		return PTR_ERR(per_mm);
291 	}
292 
293 found:
294 	umem_odp->per_mm = per_mm;
295 	per_mm->odp_mrs_count++;
296 	mutex_unlock(&ctx->per_mm_list_lock);
297 
298 	return 0;
299 }
300 
301 static void free_per_mm(struct rcu_head *rcu)
302 {
303 	kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu));
304 }
305 
306 void put_per_mm(struct ib_umem_odp *umem_odp)
307 {
308 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
309 	struct ib_ucontext *ctx = umem_odp->umem.context;
310 	bool need_free;
311 
312 	mutex_lock(&ctx->per_mm_list_lock);
313 	umem_odp->per_mm = NULL;
314 	per_mm->odp_mrs_count--;
315 	need_free = per_mm->odp_mrs_count == 0;
316 	if (need_free)
317 		list_del(&per_mm->ucontext_list);
318 	mutex_unlock(&ctx->per_mm_list_lock);
319 
320 	if (!need_free)
321 		return;
322 
323 	/*
324 	 * NOTE! mmu_notifier_unregister() can happen between a start/end
325 	 * callback, resulting in an start/end, and thus an unbalanced
326 	 * lock. This doesn't really matter to us since we are about to kfree
327 	 * the memory that holds the lock, however LOCKDEP doesn't like this.
328 	 */
329 	down_write(&per_mm->umem_rwsem);
330 	per_mm->active = false;
331 	up_write(&per_mm->umem_rwsem);
332 
333 	WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root));
334 	mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm);
335 	put_pid(per_mm->tgid);
336 	mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm);
337 }
338 
339 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_ucontext_per_mm *per_mm,
340 				      unsigned long addr, size_t size)
341 {
342 	struct ib_ucontext *ctx = per_mm->context;
343 	struct ib_umem_odp *odp_data;
344 	struct ib_umem *umem;
345 	int pages = size >> PAGE_SHIFT;
346 	int ret;
347 
348 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
349 	if (!odp_data)
350 		return ERR_PTR(-ENOMEM);
351 	umem = &odp_data->umem;
352 	umem->context    = ctx;
353 	umem->length     = size;
354 	umem->address    = addr;
355 	umem->page_shift = PAGE_SHIFT;
356 	umem->writable   = 1;
357 	umem->is_odp = 1;
358 	odp_data->per_mm = per_mm;
359 
360 	mutex_init(&odp_data->umem_mutex);
361 	init_completion(&odp_data->notifier_completion);
362 
363 	odp_data->page_list =
364 		vzalloc(array_size(pages, sizeof(*odp_data->page_list)));
365 	if (!odp_data->page_list) {
366 		ret = -ENOMEM;
367 		goto out_odp_data;
368 	}
369 
370 	odp_data->dma_list =
371 		vzalloc(array_size(pages, sizeof(*odp_data->dma_list)));
372 	if (!odp_data->dma_list) {
373 		ret = -ENOMEM;
374 		goto out_page_list;
375 	}
376 
377 	/*
378 	 * Caller must ensure that the umem_odp that the per_mm came from
379 	 * cannot be freed during the call to ib_alloc_odp_umem.
380 	 */
381 	mutex_lock(&ctx->per_mm_list_lock);
382 	per_mm->odp_mrs_count++;
383 	mutex_unlock(&ctx->per_mm_list_lock);
384 	add_umem_to_per_mm(odp_data);
385 
386 	return odp_data;
387 
388 out_page_list:
389 	vfree(odp_data->page_list);
390 out_odp_data:
391 	kfree(odp_data);
392 	return ERR_PTR(ret);
393 }
394 EXPORT_SYMBOL(ib_alloc_odp_umem);
395 
396 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access)
397 {
398 	struct ib_umem *umem = &umem_odp->umem;
399 	/*
400 	 * NOTE: This must called in a process context where umem->owning_mm
401 	 * == current->mm
402 	 */
403 	struct mm_struct *mm = umem->owning_mm;
404 	int ret_val;
405 
406 	if (access & IB_ACCESS_HUGETLB) {
407 		struct vm_area_struct *vma;
408 		struct hstate *h;
409 
410 		down_read(&mm->mmap_sem);
411 		vma = find_vma(mm, ib_umem_start(umem));
412 		if (!vma || !is_vm_hugetlb_page(vma)) {
413 			up_read(&mm->mmap_sem);
414 			return -EINVAL;
415 		}
416 		h = hstate_vma(vma);
417 		umem->page_shift = huge_page_shift(h);
418 		up_read(&mm->mmap_sem);
419 		umem->hugetlb = 1;
420 	} else {
421 		umem->hugetlb = 0;
422 	}
423 
424 	mutex_init(&umem_odp->umem_mutex);
425 
426 	init_completion(&umem_odp->notifier_completion);
427 
428 	if (ib_umem_num_pages(umem)) {
429 		umem_odp->page_list =
430 			vzalloc(array_size(sizeof(*umem_odp->page_list),
431 					   ib_umem_num_pages(umem)));
432 		if (!umem_odp->page_list)
433 			return -ENOMEM;
434 
435 		umem_odp->dma_list =
436 			vzalloc(array_size(sizeof(*umem_odp->dma_list),
437 					   ib_umem_num_pages(umem)));
438 		if (!umem_odp->dma_list) {
439 			ret_val = -ENOMEM;
440 			goto out_page_list;
441 		}
442 	}
443 
444 	ret_val = get_per_mm(umem_odp);
445 	if (ret_val)
446 		goto out_dma_list;
447 	add_umem_to_per_mm(umem_odp);
448 
449 	return 0;
450 
451 out_dma_list:
452 	vfree(umem_odp->dma_list);
453 out_page_list:
454 	vfree(umem_odp->page_list);
455 	return ret_val;
456 }
457 
458 void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
459 {
460 	struct ib_umem *umem = &umem_odp->umem;
461 
462 	/*
463 	 * Ensure that no more pages are mapped in the umem.
464 	 *
465 	 * It is the driver's responsibility to ensure, before calling us,
466 	 * that the hardware will not attempt to access the MR any more.
467 	 */
468 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
469 				    ib_umem_end(umem));
470 
471 	remove_umem_from_per_mm(umem_odp);
472 	put_per_mm(umem_odp);
473 	vfree(umem_odp->dma_list);
474 	vfree(umem_odp->page_list);
475 }
476 
477 /*
478  * Map for DMA and insert a single page into the on-demand paging page tables.
479  *
480  * @umem: the umem to insert the page to.
481  * @page_index: index in the umem to add the page to.
482  * @page: the page struct to map and add.
483  * @access_mask: access permissions needed for this page.
484  * @current_seq: sequence number for synchronization with invalidations.
485  *               the sequence number is taken from
486  *               umem_odp->notifiers_seq.
487  *
488  * The function returns -EFAULT if the DMA mapping operation fails. It returns
489  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
490  *
491  * The page is released via put_page even if the operation failed. For
492  * on-demand pinning, the page is released whenever it isn't stored in the
493  * umem.
494  */
495 static int ib_umem_odp_map_dma_single_page(
496 		struct ib_umem_odp *umem_odp,
497 		int page_index,
498 		struct page *page,
499 		u64 access_mask,
500 		unsigned long current_seq)
501 {
502 	struct ib_umem *umem = &umem_odp->umem;
503 	struct ib_device *dev = umem->context->device;
504 	dma_addr_t dma_addr;
505 	int stored_page = 0;
506 	int remove_existing_mapping = 0;
507 	int ret = 0;
508 
509 	/*
510 	 * Note: we avoid writing if seq is different from the initial seq, to
511 	 * handle case of a racing notifier. This check also allows us to bail
512 	 * early if we have a notifier running in parallel with us.
513 	 */
514 	if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) {
515 		ret = -EAGAIN;
516 		goto out;
517 	}
518 	if (!(umem_odp->dma_list[page_index])) {
519 		dma_addr = ib_dma_map_page(dev,
520 					   page,
521 					   0, BIT(umem->page_shift),
522 					   DMA_BIDIRECTIONAL);
523 		if (ib_dma_mapping_error(dev, dma_addr)) {
524 			ret = -EFAULT;
525 			goto out;
526 		}
527 		umem_odp->dma_list[page_index] = dma_addr | access_mask;
528 		umem_odp->page_list[page_index] = page;
529 		umem->npages++;
530 		stored_page = 1;
531 	} else if (umem_odp->page_list[page_index] == page) {
532 		umem_odp->dma_list[page_index] |= access_mask;
533 	} else {
534 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
535 		       umem_odp->page_list[page_index], page);
536 		/* Better remove the mapping now, to prevent any further
537 		 * damage. */
538 		remove_existing_mapping = 1;
539 	}
540 
541 out:
542 	/* On Demand Paging - avoid pinning the page */
543 	if (umem->context->invalidate_range || !stored_page)
544 		put_page(page);
545 
546 	if (remove_existing_mapping && umem->context->invalidate_range) {
547 		ib_umem_notifier_start_account(umem_odp);
548 		umem->context->invalidate_range(
549 			umem_odp,
550 			ib_umem_start(umem) + (page_index << umem->page_shift),
551 			ib_umem_start(umem) +
552 				((page_index + 1) << umem->page_shift));
553 		ib_umem_notifier_end_account(umem_odp);
554 		ret = -EAGAIN;
555 	}
556 
557 	return ret;
558 }
559 
560 /**
561  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
562  *
563  * Pins the range of pages passed in the argument, and maps them to
564  * DMA addresses. The DMA addresses of the mapped pages is updated in
565  * umem_odp->dma_list.
566  *
567  * Returns the number of pages mapped in success, negative error code
568  * for failure.
569  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
570  * the function from completing its task.
571  * An -ENOENT error code indicates that userspace process is being terminated
572  * and mm was already destroyed.
573  * @umem_odp: the umem to map and pin
574  * @user_virt: the address from which we need to map.
575  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
576  *        bigger due to alignment, and may also be smaller in case of an error
577  *        pinning or mapping a page. The actual pages mapped is returned in
578  *        the return value.
579  * @access_mask: bit mask of the requested access permissions for the given
580  *               range.
581  * @current_seq: the MMU notifiers sequance value for synchronization with
582  *               invalidations. the sequance number is read from
583  *               umem_odp->notifiers_seq before calling this function
584  */
585 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
586 			      u64 bcnt, u64 access_mask,
587 			      unsigned long current_seq)
588 {
589 	struct ib_umem *umem = &umem_odp->umem;
590 	struct task_struct *owning_process  = NULL;
591 	struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
592 	struct page       **local_page_list = NULL;
593 	u64 page_mask, off;
594 	int j, k, ret = 0, start_idx, npages = 0, page_shift;
595 	unsigned int flags = 0;
596 	phys_addr_t p = 0;
597 
598 	if (access_mask == 0)
599 		return -EINVAL;
600 
601 	if (user_virt < ib_umem_start(umem) ||
602 	    user_virt + bcnt > ib_umem_end(umem))
603 		return -EFAULT;
604 
605 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
606 	if (!local_page_list)
607 		return -ENOMEM;
608 
609 	page_shift = umem->page_shift;
610 	page_mask = ~(BIT(page_shift) - 1);
611 	off = user_virt & (~page_mask);
612 	user_virt = user_virt & page_mask;
613 	bcnt += off; /* Charge for the first page offset as well. */
614 
615 	/*
616 	 * owning_process is allowed to be NULL, this means somehow the mm is
617 	 * existing beyond the lifetime of the originating process.. Presumably
618 	 * mmget_not_zero will fail in this case.
619 	 */
620 	owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID);
621 	if (WARN_ON(!mmget_not_zero(umem_odp->umem.owning_mm))) {
622 		ret = -EINVAL;
623 		goto out_put_task;
624 	}
625 
626 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
627 		flags |= FOLL_WRITE;
628 
629 	start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
630 	k = start_idx;
631 
632 	while (bcnt > 0) {
633 		const size_t gup_num_pages = min_t(size_t,
634 				(bcnt + BIT(page_shift) - 1) >> page_shift,
635 				PAGE_SIZE / sizeof(struct page *));
636 
637 		down_read(&owning_mm->mmap_sem);
638 		/*
639 		 * Note: this might result in redundent page getting. We can
640 		 * avoid this by checking dma_list to be 0 before calling
641 		 * get_user_pages. However, this make the code much more
642 		 * complex (and doesn't gain us much performance in most use
643 		 * cases).
644 		 */
645 		npages = get_user_pages_remote(owning_process, owning_mm,
646 				user_virt, gup_num_pages,
647 				flags, local_page_list, NULL, NULL);
648 		up_read(&owning_mm->mmap_sem);
649 
650 		if (npages < 0)
651 			break;
652 
653 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
654 		mutex_lock(&umem_odp->umem_mutex);
655 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
656 			if (user_virt & ~page_mask) {
657 				p += PAGE_SIZE;
658 				if (page_to_phys(local_page_list[j]) != p) {
659 					ret = -EFAULT;
660 					break;
661 				}
662 				put_page(local_page_list[j]);
663 				continue;
664 			}
665 
666 			ret = ib_umem_odp_map_dma_single_page(
667 					umem_odp, k, local_page_list[j],
668 					access_mask, current_seq);
669 			if (ret < 0)
670 				break;
671 
672 			p = page_to_phys(local_page_list[j]);
673 			k++;
674 		}
675 		mutex_unlock(&umem_odp->umem_mutex);
676 
677 		if (ret < 0) {
678 			/* Release left over pages when handling errors. */
679 			for (++j; j < npages; ++j)
680 				put_page(local_page_list[j]);
681 			break;
682 		}
683 	}
684 
685 	if (ret >= 0) {
686 		if (npages < 0 && k == start_idx)
687 			ret = npages;
688 		else
689 			ret = k - start_idx;
690 	}
691 
692 	mmput(owning_mm);
693 out_put_task:
694 	if (owning_process)
695 		put_task_struct(owning_process);
696 	free_page((unsigned long)local_page_list);
697 	return ret;
698 }
699 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
700 
701 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
702 				 u64 bound)
703 {
704 	struct ib_umem *umem = &umem_odp->umem;
705 	int idx;
706 	u64 addr;
707 	struct ib_device *dev = umem->context->device;
708 
709 	virt  = max_t(u64, virt,  ib_umem_start(umem));
710 	bound = min_t(u64, bound, ib_umem_end(umem));
711 	/* Note that during the run of this function, the
712 	 * notifiers_count of the MR is > 0, preventing any racing
713 	 * faults from completion. We might be racing with other
714 	 * invalidations, so we must make sure we free each page only
715 	 * once. */
716 	mutex_lock(&umem_odp->umem_mutex);
717 	for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
718 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
719 		if (umem_odp->page_list[idx]) {
720 			struct page *page = umem_odp->page_list[idx];
721 			dma_addr_t dma = umem_odp->dma_list[idx];
722 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
723 
724 			WARN_ON(!dma_addr);
725 
726 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
727 					  DMA_BIDIRECTIONAL);
728 			if (dma & ODP_WRITE_ALLOWED_BIT) {
729 				struct page *head_page = compound_head(page);
730 				/*
731 				 * set_page_dirty prefers being called with
732 				 * the page lock. However, MMU notifiers are
733 				 * called sometimes with and sometimes without
734 				 * the lock. We rely on the umem_mutex instead
735 				 * to prevent other mmu notifiers from
736 				 * continuing and allowing the page mapping to
737 				 * be removed.
738 				 */
739 				set_page_dirty(head_page);
740 			}
741 			/* on demand pinning support */
742 			if (!umem->context->invalidate_range)
743 				put_page(page);
744 			umem_odp->page_list[idx] = NULL;
745 			umem_odp->dma_list[idx] = 0;
746 			umem->npages--;
747 		}
748 	}
749 	mutex_unlock(&umem_odp->umem_mutex);
750 }
751 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
752 
753 /* @last is not a part of the interval. See comment for function
754  * node_last.
755  */
756 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
757 				  u64 start, u64 last,
758 				  umem_call_back cb,
759 				  bool blockable,
760 				  void *cookie)
761 {
762 	int ret_val = 0;
763 	struct umem_odp_node *node, *next;
764 	struct ib_umem_odp *umem;
765 
766 	if (unlikely(start == last))
767 		return ret_val;
768 
769 	for (node = rbt_ib_umem_iter_first(root, start, last - 1);
770 			node; node = next) {
771 		/* TODO move the blockable decision up to the callback */
772 		if (!blockable)
773 			return -EAGAIN;
774 		next = rbt_ib_umem_iter_next(node, start, last - 1);
775 		umem = container_of(node, struct ib_umem_odp, interval_tree);
776 		ret_val = cb(umem, start, last, cookie) || ret_val;
777 	}
778 
779 	return ret_val;
780 }
781 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
782 
783 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
784 				       u64 addr, u64 length)
785 {
786 	struct umem_odp_node *node;
787 
788 	node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
789 	if (node)
790 		return container_of(node, struct ib_umem_odp, interval_tree);
791 	return NULL;
792 
793 }
794 EXPORT_SYMBOL(rbt_ib_umem_lookup);
795