1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree_generic.h>
43 
44 #include <rdma/ib_verbs.h>
45 #include <rdma/ib_umem.h>
46 #include <rdma/ib_umem_odp.h>
47 
48 /*
49  * The ib_umem list keeps track of memory regions for which the HW
50  * device request to receive notification when the related memory
51  * mapping is changed.
52  *
53  * ib_umem_lock protects the list.
54  */
55 
56 static u64 node_start(struct umem_odp_node *n)
57 {
58 	struct ib_umem_odp *umem_odp =
59 			container_of(n, struct ib_umem_odp, interval_tree);
60 
61 	return ib_umem_start(&umem_odp->umem);
62 }
63 
64 /* Note that the representation of the intervals in the interval tree
65  * considers the ending point as contained in the interval, while the
66  * function ib_umem_end returns the first address which is not contained
67  * in the umem.
68  */
69 static u64 node_last(struct umem_odp_node *n)
70 {
71 	struct ib_umem_odp *umem_odp =
72 			container_of(n, struct ib_umem_odp, interval_tree);
73 
74 	return ib_umem_end(&umem_odp->umem) - 1;
75 }
76 
77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
78 		     node_start, node_last, static, rbt_ib_umem)
79 
80 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp)
81 {
82 	mutex_lock(&umem_odp->umem_mutex);
83 	if (umem_odp->notifiers_count++ == 0)
84 		/*
85 		 * Initialize the completion object for waiting on
86 		 * notifiers. Since notifier_count is zero, no one should be
87 		 * waiting right now.
88 		 */
89 		reinit_completion(&umem_odp->notifier_completion);
90 	mutex_unlock(&umem_odp->umem_mutex);
91 }
92 
93 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp)
94 {
95 	mutex_lock(&umem_odp->umem_mutex);
96 	/*
97 	 * This sequence increase will notify the QP page fault that the page
98 	 * that is going to be mapped in the spte could have been freed.
99 	 */
100 	++umem_odp->notifiers_seq;
101 	if (--umem_odp->notifiers_count == 0)
102 		complete_all(&umem_odp->notifier_completion);
103 	mutex_unlock(&umem_odp->umem_mutex);
104 }
105 
106 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp,
107 					       u64 start, u64 end, void *cookie)
108 {
109 	struct ib_umem *umem = &umem_odp->umem;
110 
111 	/*
112 	 * Increase the number of notifiers running, to
113 	 * prevent any further fault handling on this MR.
114 	 */
115 	ib_umem_notifier_start_account(umem_odp);
116 	umem_odp->dying = 1;
117 	/* Make sure that the fact the umem is dying is out before we release
118 	 * all pending page faults. */
119 	smp_wmb();
120 	complete_all(&umem_odp->notifier_completion);
121 	umem->context->invalidate_range(umem_odp, ib_umem_start(umem),
122 					ib_umem_end(umem));
123 	return 0;
124 }
125 
126 static void ib_umem_notifier_release(struct mmu_notifier *mn,
127 				     struct mm_struct *mm)
128 {
129 	struct ib_ucontext_per_mm *per_mm =
130 		container_of(mn, struct ib_ucontext_per_mm, mn);
131 
132 	down_read(&per_mm->umem_rwsem);
133 	if (per_mm->active)
134 		rbt_ib_umem_for_each_in_range(
135 			&per_mm->umem_tree, 0, ULLONG_MAX,
136 			ib_umem_notifier_release_trampoline, true, NULL);
137 	up_read(&per_mm->umem_rwsem);
138 }
139 
140 static int invalidate_range_start_trampoline(struct ib_umem_odp *item,
141 					     u64 start, u64 end, void *cookie)
142 {
143 	ib_umem_notifier_start_account(item);
144 	item->umem.context->invalidate_range(item, start, end);
145 	return 0;
146 }
147 
148 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
149 				const struct mmu_notifier_range *range)
150 {
151 	struct ib_ucontext_per_mm *per_mm =
152 		container_of(mn, struct ib_ucontext_per_mm, mn);
153 
154 	if (range->blockable)
155 		down_read(&per_mm->umem_rwsem);
156 	else if (!down_read_trylock(&per_mm->umem_rwsem))
157 		return -EAGAIN;
158 
159 	if (!per_mm->active) {
160 		up_read(&per_mm->umem_rwsem);
161 		/*
162 		 * At this point active is permanently set and visible to this
163 		 * CPU without a lock, that fact is relied on to skip the unlock
164 		 * in range_end.
165 		 */
166 		return 0;
167 	}
168 
169 	return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
170 					     range->end,
171 					     invalidate_range_start_trampoline,
172 					     range->blockable, NULL);
173 }
174 
175 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start,
176 					   u64 end, void *cookie)
177 {
178 	ib_umem_notifier_end_account(item);
179 	return 0;
180 }
181 
182 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
183 				const struct mmu_notifier_range *range)
184 {
185 	struct ib_ucontext_per_mm *per_mm =
186 		container_of(mn, struct ib_ucontext_per_mm, mn);
187 
188 	if (unlikely(!per_mm->active))
189 		return;
190 
191 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
192 				      range->end,
193 				      invalidate_range_end_trampoline, true, NULL);
194 	up_read(&per_mm->umem_rwsem);
195 }
196 
197 static const struct mmu_notifier_ops ib_umem_notifiers = {
198 	.release                    = ib_umem_notifier_release,
199 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
200 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
201 };
202 
203 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp)
204 {
205 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
206 	struct ib_umem *umem = &umem_odp->umem;
207 
208 	down_write(&per_mm->umem_rwsem);
209 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
210 		rbt_ib_umem_insert(&umem_odp->interval_tree,
211 				   &per_mm->umem_tree);
212 	up_write(&per_mm->umem_rwsem);
213 }
214 
215 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp)
216 {
217 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
218 	struct ib_umem *umem = &umem_odp->umem;
219 
220 	down_write(&per_mm->umem_rwsem);
221 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
222 		rbt_ib_umem_remove(&umem_odp->interval_tree,
223 				   &per_mm->umem_tree);
224 	complete_all(&umem_odp->notifier_completion);
225 
226 	up_write(&per_mm->umem_rwsem);
227 }
228 
229 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx,
230 					       struct mm_struct *mm)
231 {
232 	struct ib_ucontext_per_mm *per_mm;
233 	int ret;
234 
235 	per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL);
236 	if (!per_mm)
237 		return ERR_PTR(-ENOMEM);
238 
239 	per_mm->context = ctx;
240 	per_mm->mm = mm;
241 	per_mm->umem_tree = RB_ROOT_CACHED;
242 	init_rwsem(&per_mm->umem_rwsem);
243 	per_mm->active = ctx->invalidate_range;
244 
245 	rcu_read_lock();
246 	per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
247 	rcu_read_unlock();
248 
249 	WARN_ON(mm != current->mm);
250 
251 	per_mm->mn.ops = &ib_umem_notifiers;
252 	ret = mmu_notifier_register(&per_mm->mn, per_mm->mm);
253 	if (ret) {
254 		dev_err(&ctx->device->dev,
255 			"Failed to register mmu_notifier %d\n", ret);
256 		goto out_pid;
257 	}
258 
259 	list_add(&per_mm->ucontext_list, &ctx->per_mm_list);
260 	return per_mm;
261 
262 out_pid:
263 	put_pid(per_mm->tgid);
264 	kfree(per_mm);
265 	return ERR_PTR(ret);
266 }
267 
268 static int get_per_mm(struct ib_umem_odp *umem_odp)
269 {
270 	struct ib_ucontext *ctx = umem_odp->umem.context;
271 	struct ib_ucontext_per_mm *per_mm;
272 
273 	/*
274 	 * Generally speaking we expect only one or two per_mm in this list,
275 	 * so no reason to optimize this search today.
276 	 */
277 	mutex_lock(&ctx->per_mm_list_lock);
278 	list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) {
279 		if (per_mm->mm == umem_odp->umem.owning_mm)
280 			goto found;
281 	}
282 
283 	per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm);
284 	if (IS_ERR(per_mm)) {
285 		mutex_unlock(&ctx->per_mm_list_lock);
286 		return PTR_ERR(per_mm);
287 	}
288 
289 found:
290 	umem_odp->per_mm = per_mm;
291 	per_mm->odp_mrs_count++;
292 	mutex_unlock(&ctx->per_mm_list_lock);
293 
294 	return 0;
295 }
296 
297 static void free_per_mm(struct rcu_head *rcu)
298 {
299 	kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu));
300 }
301 
302 void put_per_mm(struct ib_umem_odp *umem_odp)
303 {
304 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
305 	struct ib_ucontext *ctx = umem_odp->umem.context;
306 	bool need_free;
307 
308 	mutex_lock(&ctx->per_mm_list_lock);
309 	umem_odp->per_mm = NULL;
310 	per_mm->odp_mrs_count--;
311 	need_free = per_mm->odp_mrs_count == 0;
312 	if (need_free)
313 		list_del(&per_mm->ucontext_list);
314 	mutex_unlock(&ctx->per_mm_list_lock);
315 
316 	if (!need_free)
317 		return;
318 
319 	/*
320 	 * NOTE! mmu_notifier_unregister() can happen between a start/end
321 	 * callback, resulting in an start/end, and thus an unbalanced
322 	 * lock. This doesn't really matter to us since we are about to kfree
323 	 * the memory that holds the lock, however LOCKDEP doesn't like this.
324 	 */
325 	down_write(&per_mm->umem_rwsem);
326 	per_mm->active = false;
327 	up_write(&per_mm->umem_rwsem);
328 
329 	WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root));
330 	mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm);
331 	put_pid(per_mm->tgid);
332 	mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm);
333 }
334 
335 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_ucontext_per_mm *per_mm,
336 				      unsigned long addr, size_t size)
337 {
338 	struct ib_ucontext *ctx = per_mm->context;
339 	struct ib_umem_odp *odp_data;
340 	struct ib_umem *umem;
341 	int pages = size >> PAGE_SHIFT;
342 	int ret;
343 
344 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
345 	if (!odp_data)
346 		return ERR_PTR(-ENOMEM);
347 	umem = &odp_data->umem;
348 	umem->context    = ctx;
349 	umem->length     = size;
350 	umem->address    = addr;
351 	umem->page_shift = PAGE_SHIFT;
352 	umem->writable   = 1;
353 	umem->is_odp = 1;
354 	odp_data->per_mm = per_mm;
355 
356 	mutex_init(&odp_data->umem_mutex);
357 	init_completion(&odp_data->notifier_completion);
358 
359 	odp_data->page_list =
360 		vzalloc(array_size(pages, sizeof(*odp_data->page_list)));
361 	if (!odp_data->page_list) {
362 		ret = -ENOMEM;
363 		goto out_odp_data;
364 	}
365 
366 	odp_data->dma_list =
367 		vzalloc(array_size(pages, sizeof(*odp_data->dma_list)));
368 	if (!odp_data->dma_list) {
369 		ret = -ENOMEM;
370 		goto out_page_list;
371 	}
372 
373 	/*
374 	 * Caller must ensure that the umem_odp that the per_mm came from
375 	 * cannot be freed during the call to ib_alloc_odp_umem.
376 	 */
377 	mutex_lock(&ctx->per_mm_list_lock);
378 	per_mm->odp_mrs_count++;
379 	mutex_unlock(&ctx->per_mm_list_lock);
380 	add_umem_to_per_mm(odp_data);
381 
382 	return odp_data;
383 
384 out_page_list:
385 	vfree(odp_data->page_list);
386 out_odp_data:
387 	kfree(odp_data);
388 	return ERR_PTR(ret);
389 }
390 EXPORT_SYMBOL(ib_alloc_odp_umem);
391 
392 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access)
393 {
394 	struct ib_umem *umem = &umem_odp->umem;
395 	/*
396 	 * NOTE: This must called in a process context where umem->owning_mm
397 	 * == current->mm
398 	 */
399 	struct mm_struct *mm = umem->owning_mm;
400 	int ret_val;
401 
402 	if (access & IB_ACCESS_HUGETLB) {
403 		struct vm_area_struct *vma;
404 		struct hstate *h;
405 
406 		down_read(&mm->mmap_sem);
407 		vma = find_vma(mm, ib_umem_start(umem));
408 		if (!vma || !is_vm_hugetlb_page(vma)) {
409 			up_read(&mm->mmap_sem);
410 			return -EINVAL;
411 		}
412 		h = hstate_vma(vma);
413 		umem->page_shift = huge_page_shift(h);
414 		up_read(&mm->mmap_sem);
415 		umem->hugetlb = 1;
416 	} else {
417 		umem->hugetlb = 0;
418 	}
419 
420 	mutex_init(&umem_odp->umem_mutex);
421 
422 	init_completion(&umem_odp->notifier_completion);
423 
424 	if (ib_umem_num_pages(umem)) {
425 		umem_odp->page_list =
426 			vzalloc(array_size(sizeof(*umem_odp->page_list),
427 					   ib_umem_num_pages(umem)));
428 		if (!umem_odp->page_list)
429 			return -ENOMEM;
430 
431 		umem_odp->dma_list =
432 			vzalloc(array_size(sizeof(*umem_odp->dma_list),
433 					   ib_umem_num_pages(umem)));
434 		if (!umem_odp->dma_list) {
435 			ret_val = -ENOMEM;
436 			goto out_page_list;
437 		}
438 	}
439 
440 	ret_val = get_per_mm(umem_odp);
441 	if (ret_val)
442 		goto out_dma_list;
443 	add_umem_to_per_mm(umem_odp);
444 
445 	return 0;
446 
447 out_dma_list:
448 	vfree(umem_odp->dma_list);
449 out_page_list:
450 	vfree(umem_odp->page_list);
451 	return ret_val;
452 }
453 
454 void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
455 {
456 	struct ib_umem *umem = &umem_odp->umem;
457 
458 	/*
459 	 * Ensure that no more pages are mapped in the umem.
460 	 *
461 	 * It is the driver's responsibility to ensure, before calling us,
462 	 * that the hardware will not attempt to access the MR any more.
463 	 */
464 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
465 				    ib_umem_end(umem));
466 
467 	remove_umem_from_per_mm(umem_odp);
468 	put_per_mm(umem_odp);
469 	vfree(umem_odp->dma_list);
470 	vfree(umem_odp->page_list);
471 }
472 
473 /*
474  * Map for DMA and insert a single page into the on-demand paging page tables.
475  *
476  * @umem: the umem to insert the page to.
477  * @page_index: index in the umem to add the page to.
478  * @page: the page struct to map and add.
479  * @access_mask: access permissions needed for this page.
480  * @current_seq: sequence number for synchronization with invalidations.
481  *               the sequence number is taken from
482  *               umem_odp->notifiers_seq.
483  *
484  * The function returns -EFAULT if the DMA mapping operation fails. It returns
485  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
486  *
487  * The page is released via put_page even if the operation failed. For
488  * on-demand pinning, the page is released whenever it isn't stored in the
489  * umem.
490  */
491 static int ib_umem_odp_map_dma_single_page(
492 		struct ib_umem_odp *umem_odp,
493 		int page_index,
494 		struct page *page,
495 		u64 access_mask,
496 		unsigned long current_seq)
497 {
498 	struct ib_umem *umem = &umem_odp->umem;
499 	struct ib_device *dev = umem->context->device;
500 	dma_addr_t dma_addr;
501 	int stored_page = 0;
502 	int remove_existing_mapping = 0;
503 	int ret = 0;
504 
505 	/*
506 	 * Note: we avoid writing if seq is different from the initial seq, to
507 	 * handle case of a racing notifier. This check also allows us to bail
508 	 * early if we have a notifier running in parallel with us.
509 	 */
510 	if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) {
511 		ret = -EAGAIN;
512 		goto out;
513 	}
514 	if (!(umem_odp->dma_list[page_index])) {
515 		dma_addr = ib_dma_map_page(dev,
516 					   page,
517 					   0, BIT(umem->page_shift),
518 					   DMA_BIDIRECTIONAL);
519 		if (ib_dma_mapping_error(dev, dma_addr)) {
520 			ret = -EFAULT;
521 			goto out;
522 		}
523 		umem_odp->dma_list[page_index] = dma_addr | access_mask;
524 		umem_odp->page_list[page_index] = page;
525 		umem->npages++;
526 		stored_page = 1;
527 	} else if (umem_odp->page_list[page_index] == page) {
528 		umem_odp->dma_list[page_index] |= access_mask;
529 	} else {
530 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
531 		       umem_odp->page_list[page_index], page);
532 		/* Better remove the mapping now, to prevent any further
533 		 * damage. */
534 		remove_existing_mapping = 1;
535 	}
536 
537 out:
538 	/* On Demand Paging - avoid pinning the page */
539 	if (umem->context->invalidate_range || !stored_page)
540 		put_page(page);
541 
542 	if (remove_existing_mapping && umem->context->invalidate_range) {
543 		ib_umem_notifier_start_account(umem_odp);
544 		umem->context->invalidate_range(
545 			umem_odp,
546 			ib_umem_start(umem) + (page_index << umem->page_shift),
547 			ib_umem_start(umem) +
548 				((page_index + 1) << umem->page_shift));
549 		ib_umem_notifier_end_account(umem_odp);
550 		ret = -EAGAIN;
551 	}
552 
553 	return ret;
554 }
555 
556 /**
557  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
558  *
559  * Pins the range of pages passed in the argument, and maps them to
560  * DMA addresses. The DMA addresses of the mapped pages is updated in
561  * umem_odp->dma_list.
562  *
563  * Returns the number of pages mapped in success, negative error code
564  * for failure.
565  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
566  * the function from completing its task.
567  * An -ENOENT error code indicates that userspace process is being terminated
568  * and mm was already destroyed.
569  * @umem_odp: the umem to map and pin
570  * @user_virt: the address from which we need to map.
571  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
572  *        bigger due to alignment, and may also be smaller in case of an error
573  *        pinning or mapping a page. The actual pages mapped is returned in
574  *        the return value.
575  * @access_mask: bit mask of the requested access permissions for the given
576  *               range.
577  * @current_seq: the MMU notifiers sequance value for synchronization with
578  *               invalidations. the sequance number is read from
579  *               umem_odp->notifiers_seq before calling this function
580  */
581 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
582 			      u64 bcnt, u64 access_mask,
583 			      unsigned long current_seq)
584 {
585 	struct ib_umem *umem = &umem_odp->umem;
586 	struct task_struct *owning_process  = NULL;
587 	struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
588 	struct page       **local_page_list = NULL;
589 	u64 page_mask, off;
590 	int j, k, ret = 0, start_idx, npages = 0, page_shift;
591 	unsigned int flags = 0;
592 	phys_addr_t p = 0;
593 
594 	if (access_mask == 0)
595 		return -EINVAL;
596 
597 	if (user_virt < ib_umem_start(umem) ||
598 	    user_virt + bcnt > ib_umem_end(umem))
599 		return -EFAULT;
600 
601 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
602 	if (!local_page_list)
603 		return -ENOMEM;
604 
605 	page_shift = umem->page_shift;
606 	page_mask = ~(BIT(page_shift) - 1);
607 	off = user_virt & (~page_mask);
608 	user_virt = user_virt & page_mask;
609 	bcnt += off; /* Charge for the first page offset as well. */
610 
611 	/*
612 	 * owning_process is allowed to be NULL, this means somehow the mm is
613 	 * existing beyond the lifetime of the originating process.. Presumably
614 	 * mmget_not_zero will fail in this case.
615 	 */
616 	owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID);
617 	if (WARN_ON(!mmget_not_zero(umem_odp->umem.owning_mm))) {
618 		ret = -EINVAL;
619 		goto out_put_task;
620 	}
621 
622 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
623 		flags |= FOLL_WRITE;
624 
625 	start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
626 	k = start_idx;
627 
628 	while (bcnt > 0) {
629 		const size_t gup_num_pages = min_t(size_t,
630 				(bcnt + BIT(page_shift) - 1) >> page_shift,
631 				PAGE_SIZE / sizeof(struct page *));
632 
633 		down_read(&owning_mm->mmap_sem);
634 		/*
635 		 * Note: this might result in redundent page getting. We can
636 		 * avoid this by checking dma_list to be 0 before calling
637 		 * get_user_pages. However, this make the code much more
638 		 * complex (and doesn't gain us much performance in most use
639 		 * cases).
640 		 */
641 		npages = get_user_pages_remote(owning_process, owning_mm,
642 				user_virt, gup_num_pages,
643 				flags, local_page_list, NULL, NULL);
644 		up_read(&owning_mm->mmap_sem);
645 
646 		if (npages < 0) {
647 			if (npages != -EAGAIN)
648 				pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
649 			else
650 				pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
651 			break;
652 		}
653 
654 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
655 		mutex_lock(&umem_odp->umem_mutex);
656 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
657 			if (user_virt & ~page_mask) {
658 				p += PAGE_SIZE;
659 				if (page_to_phys(local_page_list[j]) != p) {
660 					ret = -EFAULT;
661 					break;
662 				}
663 				put_page(local_page_list[j]);
664 				continue;
665 			}
666 
667 			ret = ib_umem_odp_map_dma_single_page(
668 					umem_odp, k, local_page_list[j],
669 					access_mask, current_seq);
670 			if (ret < 0) {
671 				if (ret != -EAGAIN)
672 					pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
673 				else
674 					pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
675 				break;
676 			}
677 
678 			p = page_to_phys(local_page_list[j]);
679 			k++;
680 		}
681 		mutex_unlock(&umem_odp->umem_mutex);
682 
683 		if (ret < 0) {
684 			/* Release left over pages when handling errors. */
685 			for (++j; j < npages; ++j)
686 				put_page(local_page_list[j]);
687 			break;
688 		}
689 	}
690 
691 	if (ret >= 0) {
692 		if (npages < 0 && k == start_idx)
693 			ret = npages;
694 		else
695 			ret = k - start_idx;
696 	}
697 
698 	mmput(owning_mm);
699 out_put_task:
700 	if (owning_process)
701 		put_task_struct(owning_process);
702 	free_page((unsigned long)local_page_list);
703 	return ret;
704 }
705 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
706 
707 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
708 				 u64 bound)
709 {
710 	struct ib_umem *umem = &umem_odp->umem;
711 	int idx;
712 	u64 addr;
713 	struct ib_device *dev = umem->context->device;
714 
715 	virt  = max_t(u64, virt,  ib_umem_start(umem));
716 	bound = min_t(u64, bound, ib_umem_end(umem));
717 	/* Note that during the run of this function, the
718 	 * notifiers_count of the MR is > 0, preventing any racing
719 	 * faults from completion. We might be racing with other
720 	 * invalidations, so we must make sure we free each page only
721 	 * once. */
722 	mutex_lock(&umem_odp->umem_mutex);
723 	for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
724 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
725 		if (umem_odp->page_list[idx]) {
726 			struct page *page = umem_odp->page_list[idx];
727 			dma_addr_t dma = umem_odp->dma_list[idx];
728 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
729 
730 			WARN_ON(!dma_addr);
731 
732 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
733 					  DMA_BIDIRECTIONAL);
734 			if (dma & ODP_WRITE_ALLOWED_BIT) {
735 				struct page *head_page = compound_head(page);
736 				/*
737 				 * set_page_dirty prefers being called with
738 				 * the page lock. However, MMU notifiers are
739 				 * called sometimes with and sometimes without
740 				 * the lock. We rely on the umem_mutex instead
741 				 * to prevent other mmu notifiers from
742 				 * continuing and allowing the page mapping to
743 				 * be removed.
744 				 */
745 				set_page_dirty(head_page);
746 			}
747 			/* on demand pinning support */
748 			if (!umem->context->invalidate_range)
749 				put_page(page);
750 			umem_odp->page_list[idx] = NULL;
751 			umem_odp->dma_list[idx] = 0;
752 			umem->npages--;
753 		}
754 	}
755 	mutex_unlock(&umem_odp->umem_mutex);
756 }
757 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
758 
759 /* @last is not a part of the interval. See comment for function
760  * node_last.
761  */
762 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
763 				  u64 start, u64 last,
764 				  umem_call_back cb,
765 				  bool blockable,
766 				  void *cookie)
767 {
768 	int ret_val = 0;
769 	struct umem_odp_node *node, *next;
770 	struct ib_umem_odp *umem;
771 
772 	if (unlikely(start == last))
773 		return ret_val;
774 
775 	for (node = rbt_ib_umem_iter_first(root, start, last - 1);
776 			node; node = next) {
777 		/* TODO move the blockable decision up to the callback */
778 		if (!blockable)
779 			return -EAGAIN;
780 		next = rbt_ib_umem_iter_next(node, start, last - 1);
781 		umem = container_of(node, struct ib_umem_odp, interval_tree);
782 		ret_val = cb(umem, start, last, cookie) || ret_val;
783 	}
784 
785 	return ret_val;
786 }
787 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
788 
789 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
790 				       u64 addr, u64 length)
791 {
792 	struct umem_odp_node *node;
793 
794 	node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
795 	if (node)
796 		return container_of(node, struct ib_umem_odp, interval_tree);
797 	return NULL;
798 
799 }
800 EXPORT_SYMBOL(rbt_ib_umem_lookup);
801