1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree_generic.h>
43 #include <linux/pagemap.h>
44 
45 #include <rdma/ib_verbs.h>
46 #include <rdma/ib_umem.h>
47 #include <rdma/ib_umem_odp.h>
48 
49 /*
50  * The ib_umem list keeps track of memory regions for which the HW
51  * device request to receive notification when the related memory
52  * mapping is changed.
53  *
54  * ib_umem_lock protects the list.
55  */
56 
57 static u64 node_start(struct umem_odp_node *n)
58 {
59 	struct ib_umem_odp *umem_odp =
60 			container_of(n, struct ib_umem_odp, interval_tree);
61 
62 	return ib_umem_start(&umem_odp->umem);
63 }
64 
65 /* Note that the representation of the intervals in the interval tree
66  * considers the ending point as contained in the interval, while the
67  * function ib_umem_end returns the first address which is not contained
68  * in the umem.
69  */
70 static u64 node_last(struct umem_odp_node *n)
71 {
72 	struct ib_umem_odp *umem_odp =
73 			container_of(n, struct ib_umem_odp, interval_tree);
74 
75 	return ib_umem_end(&umem_odp->umem) - 1;
76 }
77 
78 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last,
79 		     node_start, node_last, static, rbt_ib_umem)
80 
81 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp)
82 {
83 	mutex_lock(&umem_odp->umem_mutex);
84 	if (umem_odp->notifiers_count++ == 0)
85 		/*
86 		 * Initialize the completion object for waiting on
87 		 * notifiers. Since notifier_count is zero, no one should be
88 		 * waiting right now.
89 		 */
90 		reinit_completion(&umem_odp->notifier_completion);
91 	mutex_unlock(&umem_odp->umem_mutex);
92 }
93 
94 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp)
95 {
96 	mutex_lock(&umem_odp->umem_mutex);
97 	/*
98 	 * This sequence increase will notify the QP page fault that the page
99 	 * that is going to be mapped in the spte could have been freed.
100 	 */
101 	++umem_odp->notifiers_seq;
102 	if (--umem_odp->notifiers_count == 0)
103 		complete_all(&umem_odp->notifier_completion);
104 	mutex_unlock(&umem_odp->umem_mutex);
105 }
106 
107 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp,
108 					       u64 start, u64 end, void *cookie)
109 {
110 	struct ib_umem *umem = &umem_odp->umem;
111 
112 	/*
113 	 * Increase the number of notifiers running, to
114 	 * prevent any further fault handling on this MR.
115 	 */
116 	ib_umem_notifier_start_account(umem_odp);
117 	umem_odp->dying = 1;
118 	/* Make sure that the fact the umem is dying is out before we release
119 	 * all pending page faults. */
120 	smp_wmb();
121 	complete_all(&umem_odp->notifier_completion);
122 	umem->context->invalidate_range(umem_odp, ib_umem_start(umem),
123 					ib_umem_end(umem));
124 	return 0;
125 }
126 
127 static void ib_umem_notifier_release(struct mmu_notifier *mn,
128 				     struct mm_struct *mm)
129 {
130 	struct ib_ucontext_per_mm *per_mm =
131 		container_of(mn, struct ib_ucontext_per_mm, mn);
132 
133 	down_read(&per_mm->umem_rwsem);
134 	if (per_mm->active)
135 		rbt_ib_umem_for_each_in_range(
136 			&per_mm->umem_tree, 0, ULLONG_MAX,
137 			ib_umem_notifier_release_trampoline, true, NULL);
138 	up_read(&per_mm->umem_rwsem);
139 }
140 
141 static int invalidate_range_start_trampoline(struct ib_umem_odp *item,
142 					     u64 start, u64 end, void *cookie)
143 {
144 	ib_umem_notifier_start_account(item);
145 	item->umem.context->invalidate_range(item, start, end);
146 	return 0;
147 }
148 
149 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
150 				const struct mmu_notifier_range *range)
151 {
152 	struct ib_ucontext_per_mm *per_mm =
153 		container_of(mn, struct ib_ucontext_per_mm, mn);
154 
155 	if (mmu_notifier_range_blockable(range))
156 		down_read(&per_mm->umem_rwsem);
157 	else if (!down_read_trylock(&per_mm->umem_rwsem))
158 		return -EAGAIN;
159 
160 	if (!per_mm->active) {
161 		up_read(&per_mm->umem_rwsem);
162 		/*
163 		 * At this point active is permanently set and visible to this
164 		 * CPU without a lock, that fact is relied on to skip the unlock
165 		 * in range_end.
166 		 */
167 		return 0;
168 	}
169 
170 	return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
171 					     range->end,
172 					     invalidate_range_start_trampoline,
173 					     mmu_notifier_range_blockable(range),
174 					     NULL);
175 }
176 
177 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start,
178 					   u64 end, void *cookie)
179 {
180 	ib_umem_notifier_end_account(item);
181 	return 0;
182 }
183 
184 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
185 				const struct mmu_notifier_range *range)
186 {
187 	struct ib_ucontext_per_mm *per_mm =
188 		container_of(mn, struct ib_ucontext_per_mm, mn);
189 
190 	if (unlikely(!per_mm->active))
191 		return;
192 
193 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
194 				      range->end,
195 				      invalidate_range_end_trampoline, true, NULL);
196 	up_read(&per_mm->umem_rwsem);
197 }
198 
199 static const struct mmu_notifier_ops ib_umem_notifiers = {
200 	.release                    = ib_umem_notifier_release,
201 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
202 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
203 };
204 
205 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp)
206 {
207 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
208 	struct ib_umem *umem = &umem_odp->umem;
209 
210 	down_write(&per_mm->umem_rwsem);
211 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
212 		rbt_ib_umem_insert(&umem_odp->interval_tree,
213 				   &per_mm->umem_tree);
214 	up_write(&per_mm->umem_rwsem);
215 }
216 
217 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp)
218 {
219 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
220 	struct ib_umem *umem = &umem_odp->umem;
221 
222 	down_write(&per_mm->umem_rwsem);
223 	if (likely(ib_umem_start(umem) != ib_umem_end(umem)))
224 		rbt_ib_umem_remove(&umem_odp->interval_tree,
225 				   &per_mm->umem_tree);
226 	complete_all(&umem_odp->notifier_completion);
227 
228 	up_write(&per_mm->umem_rwsem);
229 }
230 
231 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx,
232 					       struct mm_struct *mm)
233 {
234 	struct ib_ucontext_per_mm *per_mm;
235 	int ret;
236 
237 	per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL);
238 	if (!per_mm)
239 		return ERR_PTR(-ENOMEM);
240 
241 	per_mm->context = ctx;
242 	per_mm->mm = mm;
243 	per_mm->umem_tree = RB_ROOT_CACHED;
244 	init_rwsem(&per_mm->umem_rwsem);
245 	per_mm->active = true;
246 
247 	rcu_read_lock();
248 	per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
249 	rcu_read_unlock();
250 
251 	WARN_ON(mm != current->mm);
252 
253 	per_mm->mn.ops = &ib_umem_notifiers;
254 	ret = mmu_notifier_register(&per_mm->mn, per_mm->mm);
255 	if (ret) {
256 		dev_err(&ctx->device->dev,
257 			"Failed to register mmu_notifier %d\n", ret);
258 		goto out_pid;
259 	}
260 
261 	list_add(&per_mm->ucontext_list, &ctx->per_mm_list);
262 	return per_mm;
263 
264 out_pid:
265 	put_pid(per_mm->tgid);
266 	kfree(per_mm);
267 	return ERR_PTR(ret);
268 }
269 
270 static int get_per_mm(struct ib_umem_odp *umem_odp)
271 {
272 	struct ib_ucontext *ctx = umem_odp->umem.context;
273 	struct ib_ucontext_per_mm *per_mm;
274 
275 	/*
276 	 * Generally speaking we expect only one or two per_mm in this list,
277 	 * so no reason to optimize this search today.
278 	 */
279 	mutex_lock(&ctx->per_mm_list_lock);
280 	list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) {
281 		if (per_mm->mm == umem_odp->umem.owning_mm)
282 			goto found;
283 	}
284 
285 	per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm);
286 	if (IS_ERR(per_mm)) {
287 		mutex_unlock(&ctx->per_mm_list_lock);
288 		return PTR_ERR(per_mm);
289 	}
290 
291 found:
292 	umem_odp->per_mm = per_mm;
293 	per_mm->odp_mrs_count++;
294 	mutex_unlock(&ctx->per_mm_list_lock);
295 
296 	return 0;
297 }
298 
299 static void free_per_mm(struct rcu_head *rcu)
300 {
301 	kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu));
302 }
303 
304 static void put_per_mm(struct ib_umem_odp *umem_odp)
305 {
306 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
307 	struct ib_ucontext *ctx = umem_odp->umem.context;
308 	bool need_free;
309 
310 	mutex_lock(&ctx->per_mm_list_lock);
311 	umem_odp->per_mm = NULL;
312 	per_mm->odp_mrs_count--;
313 	need_free = per_mm->odp_mrs_count == 0;
314 	if (need_free)
315 		list_del(&per_mm->ucontext_list);
316 	mutex_unlock(&ctx->per_mm_list_lock);
317 
318 	if (!need_free)
319 		return;
320 
321 	/*
322 	 * NOTE! mmu_notifier_unregister() can happen between a start/end
323 	 * callback, resulting in an start/end, and thus an unbalanced
324 	 * lock. This doesn't really matter to us since we are about to kfree
325 	 * the memory that holds the lock, however LOCKDEP doesn't like this.
326 	 */
327 	down_write(&per_mm->umem_rwsem);
328 	per_mm->active = false;
329 	up_write(&per_mm->umem_rwsem);
330 
331 	WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root));
332 	mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm);
333 	put_pid(per_mm->tgid);
334 	mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm);
335 }
336 
337 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root,
338 				      unsigned long addr, size_t size)
339 {
340 	struct ib_ucontext_per_mm *per_mm = root->per_mm;
341 	struct ib_ucontext *ctx = per_mm->context;
342 	struct ib_umem_odp *odp_data;
343 	struct ib_umem *umem;
344 	int pages = size >> PAGE_SHIFT;
345 	int ret;
346 
347 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
348 	if (!odp_data)
349 		return ERR_PTR(-ENOMEM);
350 	umem = &odp_data->umem;
351 	umem->context    = ctx;
352 	umem->length     = size;
353 	umem->address    = addr;
354 	umem->page_shift = PAGE_SHIFT;
355 	umem->writable   = root->umem.writable;
356 	umem->is_odp = 1;
357 	odp_data->per_mm = per_mm;
358 	umem->owning_mm  = per_mm->mm;
359 	mmgrab(umem->owning_mm);
360 
361 	mutex_init(&odp_data->umem_mutex);
362 	init_completion(&odp_data->notifier_completion);
363 
364 	odp_data->page_list =
365 		vzalloc(array_size(pages, sizeof(*odp_data->page_list)));
366 	if (!odp_data->page_list) {
367 		ret = -ENOMEM;
368 		goto out_odp_data;
369 	}
370 
371 	odp_data->dma_list =
372 		vzalloc(array_size(pages, sizeof(*odp_data->dma_list)));
373 	if (!odp_data->dma_list) {
374 		ret = -ENOMEM;
375 		goto out_page_list;
376 	}
377 
378 	/*
379 	 * Caller must ensure that the umem_odp that the per_mm came from
380 	 * cannot be freed during the call to ib_alloc_odp_umem.
381 	 */
382 	mutex_lock(&ctx->per_mm_list_lock);
383 	per_mm->odp_mrs_count++;
384 	mutex_unlock(&ctx->per_mm_list_lock);
385 	add_umem_to_per_mm(odp_data);
386 
387 	return odp_data;
388 
389 out_page_list:
390 	vfree(odp_data->page_list);
391 out_odp_data:
392 	mmdrop(umem->owning_mm);
393 	kfree(odp_data);
394 	return ERR_PTR(ret);
395 }
396 EXPORT_SYMBOL(ib_alloc_odp_umem);
397 
398 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access)
399 {
400 	struct ib_umem *umem = &umem_odp->umem;
401 	/*
402 	 * NOTE: This must called in a process context where umem->owning_mm
403 	 * == current->mm
404 	 */
405 	struct mm_struct *mm = umem->owning_mm;
406 	int ret_val;
407 
408 	if (access & IB_ACCESS_HUGETLB) {
409 		struct vm_area_struct *vma;
410 		struct hstate *h;
411 
412 		down_read(&mm->mmap_sem);
413 		vma = find_vma(mm, ib_umem_start(umem));
414 		if (!vma || !is_vm_hugetlb_page(vma)) {
415 			up_read(&mm->mmap_sem);
416 			return -EINVAL;
417 		}
418 		h = hstate_vma(vma);
419 		umem->page_shift = huge_page_shift(h);
420 		up_read(&mm->mmap_sem);
421 	}
422 
423 	mutex_init(&umem_odp->umem_mutex);
424 
425 	init_completion(&umem_odp->notifier_completion);
426 
427 	if (ib_umem_num_pages(umem)) {
428 		umem_odp->page_list =
429 			vzalloc(array_size(sizeof(*umem_odp->page_list),
430 					   ib_umem_num_pages(umem)));
431 		if (!umem_odp->page_list)
432 			return -ENOMEM;
433 
434 		umem_odp->dma_list =
435 			vzalloc(array_size(sizeof(*umem_odp->dma_list),
436 					   ib_umem_num_pages(umem)));
437 		if (!umem_odp->dma_list) {
438 			ret_val = -ENOMEM;
439 			goto out_page_list;
440 		}
441 	}
442 
443 	ret_val = get_per_mm(umem_odp);
444 	if (ret_val)
445 		goto out_dma_list;
446 	add_umem_to_per_mm(umem_odp);
447 
448 	return 0;
449 
450 out_dma_list:
451 	vfree(umem_odp->dma_list);
452 out_page_list:
453 	vfree(umem_odp->page_list);
454 	return ret_val;
455 }
456 
457 void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
458 {
459 	struct ib_umem *umem = &umem_odp->umem;
460 
461 	/*
462 	 * Ensure that no more pages are mapped in the umem.
463 	 *
464 	 * It is the driver's responsibility to ensure, before calling us,
465 	 * that the hardware will not attempt to access the MR any more.
466 	 */
467 	ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem),
468 				    ib_umem_end(umem));
469 
470 	remove_umem_from_per_mm(umem_odp);
471 	put_per_mm(umem_odp);
472 	vfree(umem_odp->dma_list);
473 	vfree(umem_odp->page_list);
474 }
475 
476 /*
477  * Map for DMA and insert a single page into the on-demand paging page tables.
478  *
479  * @umem: the umem to insert the page to.
480  * @page_index: index in the umem to add the page to.
481  * @page: the page struct to map and add.
482  * @access_mask: access permissions needed for this page.
483  * @current_seq: sequence number for synchronization with invalidations.
484  *               the sequence number is taken from
485  *               umem_odp->notifiers_seq.
486  *
487  * The function returns -EFAULT if the DMA mapping operation fails. It returns
488  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
489  *
490  * The page is released via put_page even if the operation failed. For
491  * on-demand pinning, the page is released whenever it isn't stored in the
492  * umem.
493  */
494 static int ib_umem_odp_map_dma_single_page(
495 		struct ib_umem_odp *umem_odp,
496 		int page_index,
497 		struct page *page,
498 		u64 access_mask,
499 		unsigned long current_seq)
500 {
501 	struct ib_umem *umem = &umem_odp->umem;
502 	struct ib_device *dev = umem->context->device;
503 	dma_addr_t dma_addr;
504 	int remove_existing_mapping = 0;
505 	int ret = 0;
506 
507 	/*
508 	 * Note: we avoid writing if seq is different from the initial seq, to
509 	 * handle case of a racing notifier. This check also allows us to bail
510 	 * early if we have a notifier running in parallel with us.
511 	 */
512 	if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) {
513 		ret = -EAGAIN;
514 		goto out;
515 	}
516 	if (!(umem_odp->dma_list[page_index])) {
517 		dma_addr = ib_dma_map_page(dev,
518 					   page,
519 					   0, BIT(umem->page_shift),
520 					   DMA_BIDIRECTIONAL);
521 		if (ib_dma_mapping_error(dev, dma_addr)) {
522 			ret = -EFAULT;
523 			goto out;
524 		}
525 		umem_odp->dma_list[page_index] = dma_addr | access_mask;
526 		umem_odp->page_list[page_index] = page;
527 		umem_odp->npages++;
528 	} else if (umem_odp->page_list[page_index] == page) {
529 		umem_odp->dma_list[page_index] |= access_mask;
530 	} else {
531 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
532 		       umem_odp->page_list[page_index], page);
533 		/* Better remove the mapping now, to prevent any further
534 		 * damage. */
535 		remove_existing_mapping = 1;
536 	}
537 
538 out:
539 	put_page(page);
540 
541 	if (remove_existing_mapping) {
542 		ib_umem_notifier_start_account(umem_odp);
543 		umem->context->invalidate_range(
544 			umem_odp,
545 			ib_umem_start(umem) + (page_index << umem->page_shift),
546 			ib_umem_start(umem) +
547 				((page_index + 1) << umem->page_shift));
548 		ib_umem_notifier_end_account(umem_odp);
549 		ret = -EAGAIN;
550 	}
551 
552 	return ret;
553 }
554 
555 /**
556  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
557  *
558  * Pins the range of pages passed in the argument, and maps them to
559  * DMA addresses. The DMA addresses of the mapped pages is updated in
560  * umem_odp->dma_list.
561  *
562  * Returns the number of pages mapped in success, negative error code
563  * for failure.
564  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
565  * the function from completing its task.
566  * An -ENOENT error code indicates that userspace process is being terminated
567  * and mm was already destroyed.
568  * @umem_odp: the umem to map and pin
569  * @user_virt: the address from which we need to map.
570  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
571  *        bigger due to alignment, and may also be smaller in case of an error
572  *        pinning or mapping a page. The actual pages mapped is returned in
573  *        the return value.
574  * @access_mask: bit mask of the requested access permissions for the given
575  *               range.
576  * @current_seq: the MMU notifiers sequance value for synchronization with
577  *               invalidations. the sequance number is read from
578  *               umem_odp->notifiers_seq before calling this function
579  */
580 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
581 			      u64 bcnt, u64 access_mask,
582 			      unsigned long current_seq)
583 {
584 	struct ib_umem *umem = &umem_odp->umem;
585 	struct task_struct *owning_process  = NULL;
586 	struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
587 	struct page       **local_page_list = NULL;
588 	u64 page_mask, off;
589 	int j, k, ret = 0, start_idx, npages = 0, page_shift;
590 	unsigned int flags = 0;
591 	phys_addr_t p = 0;
592 
593 	if (access_mask == 0)
594 		return -EINVAL;
595 
596 	if (user_virt < ib_umem_start(umem) ||
597 	    user_virt + bcnt > ib_umem_end(umem))
598 		return -EFAULT;
599 
600 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
601 	if (!local_page_list)
602 		return -ENOMEM;
603 
604 	page_shift = umem->page_shift;
605 	page_mask = ~(BIT(page_shift) - 1);
606 	off = user_virt & (~page_mask);
607 	user_virt = user_virt & page_mask;
608 	bcnt += off; /* Charge for the first page offset as well. */
609 
610 	/*
611 	 * owning_process is allowed to be NULL, this means somehow the mm is
612 	 * existing beyond the lifetime of the originating process.. Presumably
613 	 * mmget_not_zero will fail in this case.
614 	 */
615 	owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID);
616 	if (!owning_process || !mmget_not_zero(owning_mm)) {
617 		ret = -EINVAL;
618 		goto out_put_task;
619 	}
620 
621 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
622 		flags |= FOLL_WRITE;
623 
624 	start_idx = (user_virt - ib_umem_start(umem)) >> page_shift;
625 	k = start_idx;
626 
627 	while (bcnt > 0) {
628 		const size_t gup_num_pages = min_t(size_t,
629 				(bcnt + BIT(page_shift) - 1) >> page_shift,
630 				PAGE_SIZE / sizeof(struct page *));
631 
632 		down_read(&owning_mm->mmap_sem);
633 		/*
634 		 * Note: this might result in redundent page getting. We can
635 		 * avoid this by checking dma_list to be 0 before calling
636 		 * get_user_pages. However, this make the code much more
637 		 * complex (and doesn't gain us much performance in most use
638 		 * cases).
639 		 */
640 		npages = get_user_pages_remote(owning_process, owning_mm,
641 				user_virt, gup_num_pages,
642 				flags, local_page_list, NULL, NULL);
643 		up_read(&owning_mm->mmap_sem);
644 
645 		if (npages < 0) {
646 			if (npages != -EAGAIN)
647 				pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
648 			else
649 				pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
650 			break;
651 		}
652 
653 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
654 		mutex_lock(&umem_odp->umem_mutex);
655 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
656 			if (user_virt & ~page_mask) {
657 				p += PAGE_SIZE;
658 				if (page_to_phys(local_page_list[j]) != p) {
659 					ret = -EFAULT;
660 					break;
661 				}
662 				put_page(local_page_list[j]);
663 				continue;
664 			}
665 
666 			ret = ib_umem_odp_map_dma_single_page(
667 					umem_odp, k, local_page_list[j],
668 					access_mask, current_seq);
669 			if (ret < 0) {
670 				if (ret != -EAGAIN)
671 					pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
672 				else
673 					pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
674 				break;
675 			}
676 
677 			p = page_to_phys(local_page_list[j]);
678 			k++;
679 		}
680 		mutex_unlock(&umem_odp->umem_mutex);
681 
682 		if (ret < 0) {
683 			/*
684 			 * Release pages, remembering that the first page
685 			 * to hit an error was already released by
686 			 * ib_umem_odp_map_dma_single_page().
687 			 */
688 			if (npages - (j + 1) > 0)
689 				release_pages(&local_page_list[j+1],
690 					      npages - (j + 1));
691 			break;
692 		}
693 	}
694 
695 	if (ret >= 0) {
696 		if (npages < 0 && k == start_idx)
697 			ret = npages;
698 		else
699 			ret = k - start_idx;
700 	}
701 
702 	mmput(owning_mm);
703 out_put_task:
704 	if (owning_process)
705 		put_task_struct(owning_process);
706 	free_page((unsigned long)local_page_list);
707 	return ret;
708 }
709 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
710 
711 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
712 				 u64 bound)
713 {
714 	struct ib_umem *umem = &umem_odp->umem;
715 	int idx;
716 	u64 addr;
717 	struct ib_device *dev = umem->context->device;
718 
719 	virt  = max_t(u64, virt,  ib_umem_start(umem));
720 	bound = min_t(u64, bound, ib_umem_end(umem));
721 	/* Note that during the run of this function, the
722 	 * notifiers_count of the MR is > 0, preventing any racing
723 	 * faults from completion. We might be racing with other
724 	 * invalidations, so we must make sure we free each page only
725 	 * once. */
726 	mutex_lock(&umem_odp->umem_mutex);
727 	for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) {
728 		idx = (addr - ib_umem_start(umem)) >> umem->page_shift;
729 		if (umem_odp->page_list[idx]) {
730 			struct page *page = umem_odp->page_list[idx];
731 			dma_addr_t dma = umem_odp->dma_list[idx];
732 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
733 
734 			WARN_ON(!dma_addr);
735 
736 			ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE,
737 					  DMA_BIDIRECTIONAL);
738 			if (dma & ODP_WRITE_ALLOWED_BIT) {
739 				struct page *head_page = compound_head(page);
740 				/*
741 				 * set_page_dirty prefers being called with
742 				 * the page lock. However, MMU notifiers are
743 				 * called sometimes with and sometimes without
744 				 * the lock. We rely on the umem_mutex instead
745 				 * to prevent other mmu notifiers from
746 				 * continuing and allowing the page mapping to
747 				 * be removed.
748 				 */
749 				set_page_dirty(head_page);
750 			}
751 			umem_odp->page_list[idx] = NULL;
752 			umem_odp->dma_list[idx] = 0;
753 			umem_odp->npages--;
754 		}
755 	}
756 	mutex_unlock(&umem_odp->umem_mutex);
757 }
758 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
759 
760 /* @last is not a part of the interval. See comment for function
761  * node_last.
762  */
763 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
764 				  u64 start, u64 last,
765 				  umem_call_back cb,
766 				  bool blockable,
767 				  void *cookie)
768 {
769 	int ret_val = 0;
770 	struct umem_odp_node *node, *next;
771 	struct ib_umem_odp *umem;
772 
773 	if (unlikely(start == last))
774 		return ret_val;
775 
776 	for (node = rbt_ib_umem_iter_first(root, start, last - 1);
777 			node; node = next) {
778 		/* TODO move the blockable decision up to the callback */
779 		if (!blockable)
780 			return -EAGAIN;
781 		next = rbt_ib_umem_iter_next(node, start, last - 1);
782 		umem = container_of(node, struct ib_umem_odp, interval_tree);
783 		ret_val = cb(umem, start, last, cookie) || ret_val;
784 	}
785 
786 	return ret_val;
787 }
788 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range);
789 
790 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root,
791 				       u64 addr, u64 length)
792 {
793 	struct umem_odp_node *node;
794 
795 	node = rbt_ib_umem_iter_first(root, addr, addr + length - 1);
796 	if (node)
797 		return container_of(node, struct ib_umem_odp, interval_tree);
798 	return NULL;
799 
800 }
801 EXPORT_SYMBOL(rbt_ib_umem_lookup);
802