1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 #include <linux/pagemap.h> 44 45 #include <rdma/ib_verbs.h> 46 #include <rdma/ib_umem.h> 47 #include <rdma/ib_umem_odp.h> 48 49 /* 50 * The ib_umem list keeps track of memory regions for which the HW 51 * device request to receive notification when the related memory 52 * mapping is changed. 53 * 54 * ib_umem_lock protects the list. 55 */ 56 57 static u64 node_start(struct umem_odp_node *n) 58 { 59 struct ib_umem_odp *umem_odp = 60 container_of(n, struct ib_umem_odp, interval_tree); 61 62 return ib_umem_start(umem_odp); 63 } 64 65 /* Note that the representation of the intervals in the interval tree 66 * considers the ending point as contained in the interval, while the 67 * function ib_umem_end returns the first address which is not contained 68 * in the umem. 69 */ 70 static u64 node_last(struct umem_odp_node *n) 71 { 72 struct ib_umem_odp *umem_odp = 73 container_of(n, struct ib_umem_odp, interval_tree); 74 75 return ib_umem_end(umem_odp) - 1; 76 } 77 78 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 79 node_start, node_last, static, rbt_ib_umem) 80 81 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) 82 { 83 mutex_lock(&umem_odp->umem_mutex); 84 if (umem_odp->notifiers_count++ == 0) 85 /* 86 * Initialize the completion object for waiting on 87 * notifiers. Since notifier_count is zero, no one should be 88 * waiting right now. 89 */ 90 reinit_completion(&umem_odp->notifier_completion); 91 mutex_unlock(&umem_odp->umem_mutex); 92 } 93 94 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) 95 { 96 mutex_lock(&umem_odp->umem_mutex); 97 /* 98 * This sequence increase will notify the QP page fault that the page 99 * that is going to be mapped in the spte could have been freed. 100 */ 101 ++umem_odp->notifiers_seq; 102 if (--umem_odp->notifiers_count == 0) 103 complete_all(&umem_odp->notifier_completion); 104 mutex_unlock(&umem_odp->umem_mutex); 105 } 106 107 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, 108 u64 start, u64 end, void *cookie) 109 { 110 /* 111 * Increase the number of notifiers running, to 112 * prevent any further fault handling on this MR. 113 */ 114 ib_umem_notifier_start_account(umem_odp); 115 umem_odp->dying = 1; 116 /* Make sure that the fact the umem is dying is out before we release 117 * all pending page faults. */ 118 smp_wmb(); 119 complete_all(&umem_odp->notifier_completion); 120 umem_odp->umem.context->invalidate_range( 121 umem_odp, ib_umem_start(umem_odp), ib_umem_end(umem_odp)); 122 return 0; 123 } 124 125 static void ib_umem_notifier_release(struct mmu_notifier *mn, 126 struct mm_struct *mm) 127 { 128 struct ib_ucontext_per_mm *per_mm = 129 container_of(mn, struct ib_ucontext_per_mm, mn); 130 131 down_read(&per_mm->umem_rwsem); 132 if (per_mm->active) 133 rbt_ib_umem_for_each_in_range( 134 &per_mm->umem_tree, 0, ULLONG_MAX, 135 ib_umem_notifier_release_trampoline, true, NULL); 136 up_read(&per_mm->umem_rwsem); 137 } 138 139 static int invalidate_range_start_trampoline(struct ib_umem_odp *item, 140 u64 start, u64 end, void *cookie) 141 { 142 ib_umem_notifier_start_account(item); 143 item->umem.context->invalidate_range(item, start, end); 144 return 0; 145 } 146 147 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 148 const struct mmu_notifier_range *range) 149 { 150 struct ib_ucontext_per_mm *per_mm = 151 container_of(mn, struct ib_ucontext_per_mm, mn); 152 int rc; 153 154 if (mmu_notifier_range_blockable(range)) 155 down_read(&per_mm->umem_rwsem); 156 else if (!down_read_trylock(&per_mm->umem_rwsem)) 157 return -EAGAIN; 158 159 if (!per_mm->active) { 160 up_read(&per_mm->umem_rwsem); 161 /* 162 * At this point active is permanently set and visible to this 163 * CPU without a lock, that fact is relied on to skip the unlock 164 * in range_end. 165 */ 166 return 0; 167 } 168 169 rc = rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 170 range->end, 171 invalidate_range_start_trampoline, 172 mmu_notifier_range_blockable(range), 173 NULL); 174 if (rc) 175 up_read(&per_mm->umem_rwsem); 176 return rc; 177 } 178 179 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, 180 u64 end, void *cookie) 181 { 182 ib_umem_notifier_end_account(item); 183 return 0; 184 } 185 186 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 187 const struct mmu_notifier_range *range) 188 { 189 struct ib_ucontext_per_mm *per_mm = 190 container_of(mn, struct ib_ucontext_per_mm, mn); 191 192 if (unlikely(!per_mm->active)) 193 return; 194 195 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 196 range->end, 197 invalidate_range_end_trampoline, true, NULL); 198 up_read(&per_mm->umem_rwsem); 199 } 200 201 static const struct mmu_notifier_ops ib_umem_notifiers = { 202 .release = ib_umem_notifier_release, 203 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 204 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 205 }; 206 207 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) 208 { 209 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 210 211 down_write(&per_mm->umem_rwsem); 212 if (likely(ib_umem_start(umem_odp) != ib_umem_end(umem_odp))) 213 rbt_ib_umem_insert(&umem_odp->interval_tree, 214 &per_mm->umem_tree); 215 up_write(&per_mm->umem_rwsem); 216 } 217 218 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) 219 { 220 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 221 222 down_write(&per_mm->umem_rwsem); 223 if (likely(ib_umem_start(umem_odp) != ib_umem_end(umem_odp))) 224 rbt_ib_umem_remove(&umem_odp->interval_tree, 225 &per_mm->umem_tree); 226 complete_all(&umem_odp->notifier_completion); 227 228 up_write(&per_mm->umem_rwsem); 229 } 230 231 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, 232 struct mm_struct *mm) 233 { 234 struct ib_ucontext_per_mm *per_mm; 235 int ret; 236 237 per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); 238 if (!per_mm) 239 return ERR_PTR(-ENOMEM); 240 241 per_mm->context = ctx; 242 per_mm->mm = mm; 243 per_mm->umem_tree = RB_ROOT_CACHED; 244 init_rwsem(&per_mm->umem_rwsem); 245 per_mm->active = true; 246 247 rcu_read_lock(); 248 per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); 249 rcu_read_unlock(); 250 251 WARN_ON(mm != current->mm); 252 253 per_mm->mn.ops = &ib_umem_notifiers; 254 ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); 255 if (ret) { 256 dev_err(&ctx->device->dev, 257 "Failed to register mmu_notifier %d\n", ret); 258 goto out_pid; 259 } 260 261 list_add(&per_mm->ucontext_list, &ctx->per_mm_list); 262 return per_mm; 263 264 out_pid: 265 put_pid(per_mm->tgid); 266 kfree(per_mm); 267 return ERR_PTR(ret); 268 } 269 270 static int get_per_mm(struct ib_umem_odp *umem_odp) 271 { 272 struct ib_ucontext *ctx = umem_odp->umem.context; 273 struct ib_ucontext_per_mm *per_mm; 274 275 /* 276 * Generally speaking we expect only one or two per_mm in this list, 277 * so no reason to optimize this search today. 278 */ 279 mutex_lock(&ctx->per_mm_list_lock); 280 list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { 281 if (per_mm->mm == umem_odp->umem.owning_mm) 282 goto found; 283 } 284 285 per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); 286 if (IS_ERR(per_mm)) { 287 mutex_unlock(&ctx->per_mm_list_lock); 288 return PTR_ERR(per_mm); 289 } 290 291 found: 292 umem_odp->per_mm = per_mm; 293 per_mm->odp_mrs_count++; 294 mutex_unlock(&ctx->per_mm_list_lock); 295 296 return 0; 297 } 298 299 static void free_per_mm(struct rcu_head *rcu) 300 { 301 kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); 302 } 303 304 static void put_per_mm(struct ib_umem_odp *umem_odp) 305 { 306 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 307 struct ib_ucontext *ctx = umem_odp->umem.context; 308 bool need_free; 309 310 mutex_lock(&ctx->per_mm_list_lock); 311 umem_odp->per_mm = NULL; 312 per_mm->odp_mrs_count--; 313 need_free = per_mm->odp_mrs_count == 0; 314 if (need_free) 315 list_del(&per_mm->ucontext_list); 316 mutex_unlock(&ctx->per_mm_list_lock); 317 318 if (!need_free) 319 return; 320 321 /* 322 * NOTE! mmu_notifier_unregister() can happen between a start/end 323 * callback, resulting in an start/end, and thus an unbalanced 324 * lock. This doesn't really matter to us since we are about to kfree 325 * the memory that holds the lock, however LOCKDEP doesn't like this. 326 */ 327 down_write(&per_mm->umem_rwsem); 328 per_mm->active = false; 329 up_write(&per_mm->umem_rwsem); 330 331 WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); 332 mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); 333 put_pid(per_mm->tgid); 334 mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); 335 } 336 337 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root, 338 unsigned long addr, size_t size) 339 { 340 struct ib_ucontext_per_mm *per_mm = root->per_mm; 341 struct ib_ucontext *ctx = per_mm->context; 342 struct ib_umem_odp *odp_data; 343 struct ib_umem *umem; 344 int pages = size >> PAGE_SHIFT; 345 int ret; 346 347 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 348 if (!odp_data) 349 return ERR_PTR(-ENOMEM); 350 umem = &odp_data->umem; 351 umem->context = ctx; 352 umem->length = size; 353 umem->address = addr; 354 odp_data->page_shift = PAGE_SHIFT; 355 umem->writable = root->umem.writable; 356 umem->is_odp = 1; 357 odp_data->per_mm = per_mm; 358 umem->owning_mm = per_mm->mm; 359 mmgrab(umem->owning_mm); 360 361 mutex_init(&odp_data->umem_mutex); 362 init_completion(&odp_data->notifier_completion); 363 364 odp_data->page_list = 365 vzalloc(array_size(pages, sizeof(*odp_data->page_list))); 366 if (!odp_data->page_list) { 367 ret = -ENOMEM; 368 goto out_odp_data; 369 } 370 371 odp_data->dma_list = 372 vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); 373 if (!odp_data->dma_list) { 374 ret = -ENOMEM; 375 goto out_page_list; 376 } 377 378 /* 379 * Caller must ensure that the umem_odp that the per_mm came from 380 * cannot be freed during the call to ib_alloc_odp_umem. 381 */ 382 mutex_lock(&ctx->per_mm_list_lock); 383 per_mm->odp_mrs_count++; 384 mutex_unlock(&ctx->per_mm_list_lock); 385 add_umem_to_per_mm(odp_data); 386 387 return odp_data; 388 389 out_page_list: 390 vfree(odp_data->page_list); 391 out_odp_data: 392 mmdrop(umem->owning_mm); 393 kfree(odp_data); 394 return ERR_PTR(ret); 395 } 396 EXPORT_SYMBOL(ib_alloc_odp_umem); 397 398 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) 399 { 400 struct ib_umem *umem = &umem_odp->umem; 401 /* 402 * NOTE: This must called in a process context where umem->owning_mm 403 * == current->mm 404 */ 405 struct mm_struct *mm = umem->owning_mm; 406 int ret_val; 407 408 umem_odp->page_shift = PAGE_SHIFT; 409 if (access & IB_ACCESS_HUGETLB) { 410 struct vm_area_struct *vma; 411 struct hstate *h; 412 413 down_read(&mm->mmap_sem); 414 vma = find_vma(mm, ib_umem_start(umem_odp)); 415 if (!vma || !is_vm_hugetlb_page(vma)) { 416 up_read(&mm->mmap_sem); 417 return -EINVAL; 418 } 419 h = hstate_vma(vma); 420 umem_odp->page_shift = huge_page_shift(h); 421 up_read(&mm->mmap_sem); 422 } 423 424 mutex_init(&umem_odp->umem_mutex); 425 426 init_completion(&umem_odp->notifier_completion); 427 428 if (ib_umem_odp_num_pages(umem_odp)) { 429 umem_odp->page_list = 430 vzalloc(array_size(sizeof(*umem_odp->page_list), 431 ib_umem_odp_num_pages(umem_odp))); 432 if (!umem_odp->page_list) 433 return -ENOMEM; 434 435 umem_odp->dma_list = 436 vzalloc(array_size(sizeof(*umem_odp->dma_list), 437 ib_umem_odp_num_pages(umem_odp))); 438 if (!umem_odp->dma_list) { 439 ret_val = -ENOMEM; 440 goto out_page_list; 441 } 442 } 443 444 ret_val = get_per_mm(umem_odp); 445 if (ret_val) 446 goto out_dma_list; 447 add_umem_to_per_mm(umem_odp); 448 449 return 0; 450 451 out_dma_list: 452 vfree(umem_odp->dma_list); 453 out_page_list: 454 vfree(umem_odp->page_list); 455 return ret_val; 456 } 457 458 void ib_umem_odp_release(struct ib_umem_odp *umem_odp) 459 { 460 /* 461 * Ensure that no more pages are mapped in the umem. 462 * 463 * It is the driver's responsibility to ensure, before calling us, 464 * that the hardware will not attempt to access the MR any more. 465 */ 466 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), 467 ib_umem_end(umem_odp)); 468 469 remove_umem_from_per_mm(umem_odp); 470 put_per_mm(umem_odp); 471 vfree(umem_odp->dma_list); 472 vfree(umem_odp->page_list); 473 } 474 475 /* 476 * Map for DMA and insert a single page into the on-demand paging page tables. 477 * 478 * @umem: the umem to insert the page to. 479 * @page_index: index in the umem to add the page to. 480 * @page: the page struct to map and add. 481 * @access_mask: access permissions needed for this page. 482 * @current_seq: sequence number for synchronization with invalidations. 483 * the sequence number is taken from 484 * umem_odp->notifiers_seq. 485 * 486 * The function returns -EFAULT if the DMA mapping operation fails. It returns 487 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 488 * 489 * The page is released via put_user_page even if the operation failed. For 490 * on-demand pinning, the page is released whenever it isn't stored in the 491 * umem. 492 */ 493 static int ib_umem_odp_map_dma_single_page( 494 struct ib_umem_odp *umem_odp, 495 int page_index, 496 struct page *page, 497 u64 access_mask, 498 unsigned long current_seq) 499 { 500 struct ib_ucontext *context = umem_odp->umem.context; 501 struct ib_device *dev = context->device; 502 dma_addr_t dma_addr; 503 int remove_existing_mapping = 0; 504 int ret = 0; 505 506 /* 507 * Note: we avoid writing if seq is different from the initial seq, to 508 * handle case of a racing notifier. This check also allows us to bail 509 * early if we have a notifier running in parallel with us. 510 */ 511 if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { 512 ret = -EAGAIN; 513 goto out; 514 } 515 if (!(umem_odp->dma_list[page_index])) { 516 dma_addr = 517 ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift), 518 DMA_BIDIRECTIONAL); 519 if (ib_dma_mapping_error(dev, dma_addr)) { 520 ret = -EFAULT; 521 goto out; 522 } 523 umem_odp->dma_list[page_index] = dma_addr | access_mask; 524 umem_odp->page_list[page_index] = page; 525 umem_odp->npages++; 526 } else if (umem_odp->page_list[page_index] == page) { 527 umem_odp->dma_list[page_index] |= access_mask; 528 } else { 529 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 530 umem_odp->page_list[page_index], page); 531 /* Better remove the mapping now, to prevent any further 532 * damage. */ 533 remove_existing_mapping = 1; 534 } 535 536 out: 537 put_user_page(page); 538 539 if (remove_existing_mapping) { 540 ib_umem_notifier_start_account(umem_odp); 541 context->invalidate_range( 542 umem_odp, 543 ib_umem_start(umem_odp) + 544 (page_index << umem_odp->page_shift), 545 ib_umem_start(umem_odp) + 546 ((page_index + 1) << umem_odp->page_shift)); 547 ib_umem_notifier_end_account(umem_odp); 548 ret = -EAGAIN; 549 } 550 551 return ret; 552 } 553 554 /** 555 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 556 * 557 * Pins the range of pages passed in the argument, and maps them to 558 * DMA addresses. The DMA addresses of the mapped pages is updated in 559 * umem_odp->dma_list. 560 * 561 * Returns the number of pages mapped in success, negative error code 562 * for failure. 563 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 564 * the function from completing its task. 565 * An -ENOENT error code indicates that userspace process is being terminated 566 * and mm was already destroyed. 567 * @umem_odp: the umem to map and pin 568 * @user_virt: the address from which we need to map. 569 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 570 * bigger due to alignment, and may also be smaller in case of an error 571 * pinning or mapping a page. The actual pages mapped is returned in 572 * the return value. 573 * @access_mask: bit mask of the requested access permissions for the given 574 * range. 575 * @current_seq: the MMU notifiers sequance value for synchronization with 576 * invalidations. the sequance number is read from 577 * umem_odp->notifiers_seq before calling this function 578 */ 579 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, 580 u64 bcnt, u64 access_mask, 581 unsigned long current_seq) 582 { 583 struct task_struct *owning_process = NULL; 584 struct mm_struct *owning_mm = umem_odp->umem.owning_mm; 585 struct page **local_page_list = NULL; 586 u64 page_mask, off; 587 int j, k, ret = 0, start_idx, npages = 0; 588 unsigned int flags = 0, page_shift; 589 phys_addr_t p = 0; 590 591 if (access_mask == 0) 592 return -EINVAL; 593 594 if (user_virt < ib_umem_start(umem_odp) || 595 user_virt + bcnt > ib_umem_end(umem_odp)) 596 return -EFAULT; 597 598 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 599 if (!local_page_list) 600 return -ENOMEM; 601 602 page_shift = umem_odp->page_shift; 603 page_mask = ~(BIT(page_shift) - 1); 604 off = user_virt & (~page_mask); 605 user_virt = user_virt & page_mask; 606 bcnt += off; /* Charge for the first page offset as well. */ 607 608 /* 609 * owning_process is allowed to be NULL, this means somehow the mm is 610 * existing beyond the lifetime of the originating process.. Presumably 611 * mmget_not_zero will fail in this case. 612 */ 613 owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); 614 if (!owning_process || !mmget_not_zero(owning_mm)) { 615 ret = -EINVAL; 616 goto out_put_task; 617 } 618 619 if (access_mask & ODP_WRITE_ALLOWED_BIT) 620 flags |= FOLL_WRITE; 621 622 start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift; 623 k = start_idx; 624 625 while (bcnt > 0) { 626 const size_t gup_num_pages = min_t(size_t, 627 (bcnt + BIT(page_shift) - 1) >> page_shift, 628 PAGE_SIZE / sizeof(struct page *)); 629 630 down_read(&owning_mm->mmap_sem); 631 /* 632 * Note: this might result in redundent page getting. We can 633 * avoid this by checking dma_list to be 0 before calling 634 * get_user_pages. However, this make the code much more 635 * complex (and doesn't gain us much performance in most use 636 * cases). 637 */ 638 npages = get_user_pages_remote(owning_process, owning_mm, 639 user_virt, gup_num_pages, 640 flags, local_page_list, NULL, NULL); 641 up_read(&owning_mm->mmap_sem); 642 643 if (npages < 0) { 644 if (npages != -EAGAIN) 645 pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 646 else 647 pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 648 break; 649 } 650 651 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 652 mutex_lock(&umem_odp->umem_mutex); 653 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 654 if (user_virt & ~page_mask) { 655 p += PAGE_SIZE; 656 if (page_to_phys(local_page_list[j]) != p) { 657 ret = -EFAULT; 658 break; 659 } 660 put_user_page(local_page_list[j]); 661 continue; 662 } 663 664 ret = ib_umem_odp_map_dma_single_page( 665 umem_odp, k, local_page_list[j], 666 access_mask, current_seq); 667 if (ret < 0) { 668 if (ret != -EAGAIN) 669 pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 670 else 671 pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 672 break; 673 } 674 675 p = page_to_phys(local_page_list[j]); 676 k++; 677 } 678 mutex_unlock(&umem_odp->umem_mutex); 679 680 if (ret < 0) { 681 /* 682 * Release pages, remembering that the first page 683 * to hit an error was already released by 684 * ib_umem_odp_map_dma_single_page(). 685 */ 686 if (npages - (j + 1) > 0) 687 put_user_pages(&local_page_list[j+1], 688 npages - (j + 1)); 689 break; 690 } 691 } 692 693 if (ret >= 0) { 694 if (npages < 0 && k == start_idx) 695 ret = npages; 696 else 697 ret = k - start_idx; 698 } 699 700 mmput(owning_mm); 701 out_put_task: 702 if (owning_process) 703 put_task_struct(owning_process); 704 free_page((unsigned long)local_page_list); 705 return ret; 706 } 707 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 708 709 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, 710 u64 bound) 711 { 712 int idx; 713 u64 addr; 714 struct ib_device *dev = umem_odp->umem.context->device; 715 716 virt = max_t(u64, virt, ib_umem_start(umem_odp)); 717 bound = min_t(u64, bound, ib_umem_end(umem_odp)); 718 /* Note that during the run of this function, the 719 * notifiers_count of the MR is > 0, preventing any racing 720 * faults from completion. We might be racing with other 721 * invalidations, so we must make sure we free each page only 722 * once. */ 723 mutex_lock(&umem_odp->umem_mutex); 724 for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { 725 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 726 if (umem_odp->page_list[idx]) { 727 struct page *page = umem_odp->page_list[idx]; 728 dma_addr_t dma = umem_odp->dma_list[idx]; 729 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 730 731 WARN_ON(!dma_addr); 732 733 ib_dma_unmap_page(dev, dma_addr, 734 BIT(umem_odp->page_shift), 735 DMA_BIDIRECTIONAL); 736 if (dma & ODP_WRITE_ALLOWED_BIT) { 737 struct page *head_page = compound_head(page); 738 /* 739 * set_page_dirty prefers being called with 740 * the page lock. However, MMU notifiers are 741 * called sometimes with and sometimes without 742 * the lock. We rely on the umem_mutex instead 743 * to prevent other mmu notifiers from 744 * continuing and allowing the page mapping to 745 * be removed. 746 */ 747 set_page_dirty(head_page); 748 } 749 umem_odp->page_list[idx] = NULL; 750 umem_odp->dma_list[idx] = 0; 751 umem_odp->npages--; 752 } 753 } 754 mutex_unlock(&umem_odp->umem_mutex); 755 } 756 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 757 758 /* @last is not a part of the interval. See comment for function 759 * node_last. 760 */ 761 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 762 u64 start, u64 last, 763 umem_call_back cb, 764 bool blockable, 765 void *cookie) 766 { 767 int ret_val = 0; 768 struct umem_odp_node *node, *next; 769 struct ib_umem_odp *umem; 770 771 if (unlikely(start == last)) 772 return ret_val; 773 774 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 775 node; node = next) { 776 /* TODO move the blockable decision up to the callback */ 777 if (!blockable) 778 return -EAGAIN; 779 next = rbt_ib_umem_iter_next(node, start, last - 1); 780 umem = container_of(node, struct ib_umem_odp, interval_tree); 781 ret_val = cb(umem, start, last, cookie) || ret_val; 782 } 783 784 return ret_val; 785 } 786 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 787 788 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 789 u64 addr, u64 length) 790 { 791 struct umem_odp_node *node; 792 793 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 794 if (node) 795 return container_of(node, struct ib_umem_odp, interval_tree); 796 return NULL; 797 798 } 799 EXPORT_SYMBOL(rbt_ib_umem_lookup); 800