xref: /openbmc/linux/drivers/infiniband/core/umem_odp.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree.h>
43 #include <linux/pagemap.h>
44 
45 #include <rdma/ib_verbs.h>
46 #include <rdma/ib_umem.h>
47 #include <rdma/ib_umem_odp.h>
48 
49 #include "uverbs.h"
50 
51 static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp,
52 				   const struct mmu_interval_notifier_ops *ops)
53 {
54 	int ret;
55 
56 	umem_odp->umem.is_odp = 1;
57 	mutex_init(&umem_odp->umem_mutex);
58 
59 	if (!umem_odp->is_implicit_odp) {
60 		size_t page_size = 1UL << umem_odp->page_shift;
61 		unsigned long start;
62 		unsigned long end;
63 		size_t pages;
64 
65 		start = ALIGN_DOWN(umem_odp->umem.address, page_size);
66 		if (check_add_overflow(umem_odp->umem.address,
67 				       (unsigned long)umem_odp->umem.length,
68 				       &end))
69 			return -EOVERFLOW;
70 		end = ALIGN(end, page_size);
71 		if (unlikely(end < page_size))
72 			return -EOVERFLOW;
73 
74 		pages = (end - start) >> umem_odp->page_shift;
75 		if (!pages)
76 			return -EINVAL;
77 
78 		umem_odp->page_list = kvcalloc(
79 			pages, sizeof(*umem_odp->page_list), GFP_KERNEL);
80 		if (!umem_odp->page_list)
81 			return -ENOMEM;
82 
83 		umem_odp->dma_list = kvcalloc(
84 			pages, sizeof(*umem_odp->dma_list), GFP_KERNEL);
85 		if (!umem_odp->dma_list) {
86 			ret = -ENOMEM;
87 			goto out_page_list;
88 		}
89 
90 		ret = mmu_interval_notifier_insert(&umem_odp->notifier,
91 						   umem_odp->umem.owning_mm,
92 						   start, end - start, ops);
93 		if (ret)
94 			goto out_dma_list;
95 	}
96 
97 	return 0;
98 
99 out_dma_list:
100 	kvfree(umem_odp->dma_list);
101 out_page_list:
102 	kvfree(umem_odp->page_list);
103 	return ret;
104 }
105 
106 /**
107  * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem
108  *
109  * Implicit ODP umems do not have a VA range and do not have any page lists.
110  * They exist only to hold the per_mm reference to help the driver create
111  * children umems.
112  *
113  * @udata: udata from the syscall being used to create the umem
114  * @access: ib_reg_mr access flags
115  */
116 struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_udata *udata,
117 					       int access)
118 {
119 	struct ib_ucontext *context =
120 		container_of(udata, struct uverbs_attr_bundle, driver_udata)
121 			->context;
122 	struct ib_umem *umem;
123 	struct ib_umem_odp *umem_odp;
124 	int ret;
125 
126 	if (access & IB_ACCESS_HUGETLB)
127 		return ERR_PTR(-EINVAL);
128 
129 	if (!context)
130 		return ERR_PTR(-EIO);
131 
132 	umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL);
133 	if (!umem_odp)
134 		return ERR_PTR(-ENOMEM);
135 	umem = &umem_odp->umem;
136 	umem->ibdev = context->device;
137 	umem->writable = ib_access_writable(access);
138 	umem->owning_mm = current->mm;
139 	umem_odp->is_implicit_odp = 1;
140 	umem_odp->page_shift = PAGE_SHIFT;
141 
142 	umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
143 	ret = ib_init_umem_odp(umem_odp, NULL);
144 	if (ret) {
145 		put_pid(umem_odp->tgid);
146 		kfree(umem_odp);
147 		return ERR_PTR(ret);
148 	}
149 	return umem_odp;
150 }
151 EXPORT_SYMBOL(ib_umem_odp_alloc_implicit);
152 
153 /**
154  * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit
155  *                           parent ODP umem
156  *
157  * @root: The parent umem enclosing the child. This must be allocated using
158  *        ib_alloc_implicit_odp_umem()
159  * @addr: The starting userspace VA
160  * @size: The length of the userspace VA
161  */
162 struct ib_umem_odp *
163 ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr,
164 			size_t size,
165 			const struct mmu_interval_notifier_ops *ops)
166 {
167 	/*
168 	 * Caller must ensure that root cannot be freed during the call to
169 	 * ib_alloc_odp_umem.
170 	 */
171 	struct ib_umem_odp *odp_data;
172 	struct ib_umem *umem;
173 	int ret;
174 
175 	if (WARN_ON(!root->is_implicit_odp))
176 		return ERR_PTR(-EINVAL);
177 
178 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
179 	if (!odp_data)
180 		return ERR_PTR(-ENOMEM);
181 	umem = &odp_data->umem;
182 	umem->ibdev = root->umem.ibdev;
183 	umem->length     = size;
184 	umem->address    = addr;
185 	umem->writable   = root->umem.writable;
186 	umem->owning_mm  = root->umem.owning_mm;
187 	odp_data->page_shift = PAGE_SHIFT;
188 	odp_data->notifier.ops = ops;
189 
190 	odp_data->tgid = get_pid(root->tgid);
191 	ret = ib_init_umem_odp(odp_data, ops);
192 	if (ret) {
193 		put_pid(odp_data->tgid);
194 		kfree(odp_data);
195 		return ERR_PTR(ret);
196 	}
197 	return odp_data;
198 }
199 EXPORT_SYMBOL(ib_umem_odp_alloc_child);
200 
201 /**
202  * ib_umem_odp_get - Create a umem_odp for a userspace va
203  *
204  * @udata: userspace context to pin memory for
205  * @addr: userspace virtual address to start at
206  * @size: length of region to pin
207  * @access: IB_ACCESS_xxx flags for memory being pinned
208  *
209  * The driver should use when the access flags indicate ODP memory. It avoids
210  * pinning, instead, stores the mm for future page fault handling in
211  * conjunction with MMU notifiers.
212  */
213 struct ib_umem_odp *ib_umem_odp_get(struct ib_udata *udata, unsigned long addr,
214 				    size_t size, int access,
215 				    const struct mmu_interval_notifier_ops *ops)
216 {
217 	struct ib_umem_odp *umem_odp;
218 	struct ib_ucontext *context;
219 	struct mm_struct *mm;
220 	int ret;
221 
222 	if (!udata)
223 		return ERR_PTR(-EIO);
224 
225 	context = container_of(udata, struct uverbs_attr_bundle, driver_udata)
226 			  ->context;
227 	if (!context)
228 		return ERR_PTR(-EIO);
229 
230 	if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND)))
231 		return ERR_PTR(-EINVAL);
232 
233 	umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL);
234 	if (!umem_odp)
235 		return ERR_PTR(-ENOMEM);
236 
237 	umem_odp->umem.ibdev = context->device;
238 	umem_odp->umem.length = size;
239 	umem_odp->umem.address = addr;
240 	umem_odp->umem.writable = ib_access_writable(access);
241 	umem_odp->umem.owning_mm = mm = current->mm;
242 	umem_odp->notifier.ops = ops;
243 
244 	umem_odp->page_shift = PAGE_SHIFT;
245 	if (access & IB_ACCESS_HUGETLB) {
246 		struct vm_area_struct *vma;
247 		struct hstate *h;
248 
249 		down_read(&mm->mmap_sem);
250 		vma = find_vma(mm, ib_umem_start(umem_odp));
251 		if (!vma || !is_vm_hugetlb_page(vma)) {
252 			up_read(&mm->mmap_sem);
253 			ret = -EINVAL;
254 			goto err_free;
255 		}
256 		h = hstate_vma(vma);
257 		umem_odp->page_shift = huge_page_shift(h);
258 		up_read(&mm->mmap_sem);
259 	}
260 
261 	umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
262 	ret = ib_init_umem_odp(umem_odp, ops);
263 	if (ret)
264 		goto err_put_pid;
265 	return umem_odp;
266 
267 err_put_pid:
268 	put_pid(umem_odp->tgid);
269 err_free:
270 	kfree(umem_odp);
271 	return ERR_PTR(ret);
272 }
273 EXPORT_SYMBOL(ib_umem_odp_get);
274 
275 void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
276 {
277 	/*
278 	 * Ensure that no more pages are mapped in the umem.
279 	 *
280 	 * It is the driver's responsibility to ensure, before calling us,
281 	 * that the hardware will not attempt to access the MR any more.
282 	 */
283 	if (!umem_odp->is_implicit_odp) {
284 		mutex_lock(&umem_odp->umem_mutex);
285 		ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
286 					    ib_umem_end(umem_odp));
287 		mutex_unlock(&umem_odp->umem_mutex);
288 		mmu_interval_notifier_remove(&umem_odp->notifier);
289 		kvfree(umem_odp->dma_list);
290 		kvfree(umem_odp->page_list);
291 		put_pid(umem_odp->tgid);
292 	}
293 	kfree(umem_odp);
294 }
295 EXPORT_SYMBOL(ib_umem_odp_release);
296 
297 /*
298  * Map for DMA and insert a single page into the on-demand paging page tables.
299  *
300  * @umem: the umem to insert the page to.
301  * @page_index: index in the umem to add the page to.
302  * @page: the page struct to map and add.
303  * @access_mask: access permissions needed for this page.
304  * @current_seq: sequence number for synchronization with invalidations.
305  *               the sequence number is taken from
306  *               umem_odp->notifiers_seq.
307  *
308  * The function returns -EFAULT if the DMA mapping operation fails. It returns
309  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
310  *
311  * The page is released via put_user_page even if the operation failed. For
312  * on-demand pinning, the page is released whenever it isn't stored in the
313  * umem.
314  */
315 static int ib_umem_odp_map_dma_single_page(
316 		struct ib_umem_odp *umem_odp,
317 		unsigned int page_index,
318 		struct page *page,
319 		u64 access_mask,
320 		unsigned long current_seq)
321 {
322 	struct ib_device *dev = umem_odp->umem.ibdev;
323 	dma_addr_t dma_addr;
324 	int ret = 0;
325 
326 	if (mmu_interval_check_retry(&umem_odp->notifier, current_seq)) {
327 		ret = -EAGAIN;
328 		goto out;
329 	}
330 	if (!(umem_odp->dma_list[page_index])) {
331 		dma_addr =
332 			ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift),
333 					DMA_BIDIRECTIONAL);
334 		if (ib_dma_mapping_error(dev, dma_addr)) {
335 			ret = -EFAULT;
336 			goto out;
337 		}
338 		umem_odp->dma_list[page_index] = dma_addr | access_mask;
339 		umem_odp->page_list[page_index] = page;
340 		umem_odp->npages++;
341 	} else if (umem_odp->page_list[page_index] == page) {
342 		umem_odp->dma_list[page_index] |= access_mask;
343 	} else {
344 		/*
345 		 * This is a race here where we could have done:
346 		 *
347 		 *         CPU0                             CPU1
348 		 *   get_user_pages()
349 		 *                                       invalidate()
350 		 *                                       page_fault()
351 		 *   mutex_lock(umem_mutex)
352 		 *    page from GUP != page in ODP
353 		 *
354 		 * It should be prevented by the retry test above as reading
355 		 * the seq number should be reliable under the
356 		 * umem_mutex. Thus something is really not working right if
357 		 * things get here.
358 		 */
359 		WARN(true,
360 		     "Got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
361 		     umem_odp->page_list[page_index], page);
362 		ret = -EAGAIN;
363 	}
364 
365 out:
366 	put_user_page(page);
367 	return ret;
368 }
369 
370 /**
371  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
372  *
373  * Pins the range of pages passed in the argument, and maps them to
374  * DMA addresses. The DMA addresses of the mapped pages is updated in
375  * umem_odp->dma_list.
376  *
377  * Returns the number of pages mapped in success, negative error code
378  * for failure.
379  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
380  * the function from completing its task.
381  * An -ENOENT error code indicates that userspace process is being terminated
382  * and mm was already destroyed.
383  * @umem_odp: the umem to map and pin
384  * @user_virt: the address from which we need to map.
385  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
386  *        bigger due to alignment, and may also be smaller in case of an error
387  *        pinning or mapping a page. The actual pages mapped is returned in
388  *        the return value.
389  * @access_mask: bit mask of the requested access permissions for the given
390  *               range.
391  * @current_seq: the MMU notifiers sequance value for synchronization with
392  *               invalidations. the sequance number is read from
393  *               umem_odp->notifiers_seq before calling this function
394  */
395 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
396 			      u64 bcnt, u64 access_mask,
397 			      unsigned long current_seq)
398 {
399 	struct task_struct *owning_process  = NULL;
400 	struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
401 	struct page       **local_page_list = NULL;
402 	u64 page_mask, off;
403 	int j, k, ret = 0, start_idx, npages = 0;
404 	unsigned int flags = 0, page_shift;
405 	phys_addr_t p = 0;
406 
407 	if (access_mask == 0)
408 		return -EINVAL;
409 
410 	if (user_virt < ib_umem_start(umem_odp) ||
411 	    user_virt + bcnt > ib_umem_end(umem_odp))
412 		return -EFAULT;
413 
414 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
415 	if (!local_page_list)
416 		return -ENOMEM;
417 
418 	page_shift = umem_odp->page_shift;
419 	page_mask = ~(BIT(page_shift) - 1);
420 	off = user_virt & (~page_mask);
421 	user_virt = user_virt & page_mask;
422 	bcnt += off; /* Charge for the first page offset as well. */
423 
424 	/*
425 	 * owning_process is allowed to be NULL, this means somehow the mm is
426 	 * existing beyond the lifetime of the originating process.. Presumably
427 	 * mmget_not_zero will fail in this case.
428 	 */
429 	owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID);
430 	if (!owning_process || !mmget_not_zero(owning_mm)) {
431 		ret = -EINVAL;
432 		goto out_put_task;
433 	}
434 
435 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
436 		flags |= FOLL_WRITE;
437 
438 	start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift;
439 	k = start_idx;
440 
441 	while (bcnt > 0) {
442 		const size_t gup_num_pages = min_t(size_t,
443 				(bcnt + BIT(page_shift) - 1) >> page_shift,
444 				PAGE_SIZE / sizeof(struct page *));
445 
446 		down_read(&owning_mm->mmap_sem);
447 		/*
448 		 * Note: this might result in redundent page getting. We can
449 		 * avoid this by checking dma_list to be 0 before calling
450 		 * get_user_pages. However, this make the code much more
451 		 * complex (and doesn't gain us much performance in most use
452 		 * cases).
453 		 */
454 		npages = get_user_pages_remote(owning_process, owning_mm,
455 				user_virt, gup_num_pages,
456 				flags, local_page_list, NULL, NULL);
457 		up_read(&owning_mm->mmap_sem);
458 
459 		if (npages < 0) {
460 			if (npages != -EAGAIN)
461 				pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
462 			else
463 				pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
464 			break;
465 		}
466 
467 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
468 		mutex_lock(&umem_odp->umem_mutex);
469 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
470 			if (user_virt & ~page_mask) {
471 				p += PAGE_SIZE;
472 				if (page_to_phys(local_page_list[j]) != p) {
473 					ret = -EFAULT;
474 					break;
475 				}
476 				put_user_page(local_page_list[j]);
477 				continue;
478 			}
479 
480 			ret = ib_umem_odp_map_dma_single_page(
481 					umem_odp, k, local_page_list[j],
482 					access_mask, current_seq);
483 			if (ret < 0) {
484 				if (ret != -EAGAIN)
485 					pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
486 				else
487 					pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
488 				break;
489 			}
490 
491 			p = page_to_phys(local_page_list[j]);
492 			k++;
493 		}
494 		mutex_unlock(&umem_odp->umem_mutex);
495 
496 		if (ret < 0) {
497 			/*
498 			 * Release pages, remembering that the first page
499 			 * to hit an error was already released by
500 			 * ib_umem_odp_map_dma_single_page().
501 			 */
502 			if (npages - (j + 1) > 0)
503 				put_user_pages(&local_page_list[j+1],
504 					       npages - (j + 1));
505 			break;
506 		}
507 	}
508 
509 	if (ret >= 0) {
510 		if (npages < 0 && k == start_idx)
511 			ret = npages;
512 		else
513 			ret = k - start_idx;
514 	}
515 
516 	mmput(owning_mm);
517 out_put_task:
518 	if (owning_process)
519 		put_task_struct(owning_process);
520 	free_page((unsigned long)local_page_list);
521 	return ret;
522 }
523 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
524 
525 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
526 				 u64 bound)
527 {
528 	int idx;
529 	u64 addr;
530 	struct ib_device *dev = umem_odp->umem.ibdev;
531 
532 	lockdep_assert_held(&umem_odp->umem_mutex);
533 
534 	virt = max_t(u64, virt, ib_umem_start(umem_odp));
535 	bound = min_t(u64, bound, ib_umem_end(umem_odp));
536 	/* Note that during the run of this function, the
537 	 * notifiers_count of the MR is > 0, preventing any racing
538 	 * faults from completion. We might be racing with other
539 	 * invalidations, so we must make sure we free each page only
540 	 * once. */
541 	for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) {
542 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
543 		if (umem_odp->page_list[idx]) {
544 			struct page *page = umem_odp->page_list[idx];
545 			dma_addr_t dma = umem_odp->dma_list[idx];
546 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
547 
548 			WARN_ON(!dma_addr);
549 
550 			ib_dma_unmap_page(dev, dma_addr,
551 					  BIT(umem_odp->page_shift),
552 					  DMA_BIDIRECTIONAL);
553 			if (dma & ODP_WRITE_ALLOWED_BIT) {
554 				struct page *head_page = compound_head(page);
555 				/*
556 				 * set_page_dirty prefers being called with
557 				 * the page lock. However, MMU notifiers are
558 				 * called sometimes with and sometimes without
559 				 * the lock. We rely on the umem_mutex instead
560 				 * to prevent other mmu notifiers from
561 				 * continuing and allowing the page mapping to
562 				 * be removed.
563 				 */
564 				set_page_dirty(head_page);
565 			}
566 			umem_odp->page_list[idx] = NULL;
567 			umem_odp->dma_list[idx] = 0;
568 			umem_odp->npages--;
569 		}
570 	}
571 }
572 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
573