1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 #include <linux/pagemap.h> 44 45 #include <rdma/ib_verbs.h> 46 #include <rdma/ib_umem.h> 47 #include <rdma/ib_umem_odp.h> 48 49 /* 50 * The ib_umem list keeps track of memory regions for which the HW 51 * device request to receive notification when the related memory 52 * mapping is changed. 53 * 54 * ib_umem_lock protects the list. 55 */ 56 57 static u64 node_start(struct umem_odp_node *n) 58 { 59 struct ib_umem_odp *umem_odp = 60 container_of(n, struct ib_umem_odp, interval_tree); 61 62 return ib_umem_start(umem_odp); 63 } 64 65 /* Note that the representation of the intervals in the interval tree 66 * considers the ending point as contained in the interval, while the 67 * function ib_umem_end returns the first address which is not contained 68 * in the umem. 69 */ 70 static u64 node_last(struct umem_odp_node *n) 71 { 72 struct ib_umem_odp *umem_odp = 73 container_of(n, struct ib_umem_odp, interval_tree); 74 75 return ib_umem_end(umem_odp) - 1; 76 } 77 78 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 79 node_start, node_last, static, rbt_ib_umem) 80 81 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) 82 { 83 mutex_lock(&umem_odp->umem_mutex); 84 if (umem_odp->notifiers_count++ == 0) 85 /* 86 * Initialize the completion object for waiting on 87 * notifiers. Since notifier_count is zero, no one should be 88 * waiting right now. 89 */ 90 reinit_completion(&umem_odp->notifier_completion); 91 mutex_unlock(&umem_odp->umem_mutex); 92 } 93 94 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) 95 { 96 mutex_lock(&umem_odp->umem_mutex); 97 /* 98 * This sequence increase will notify the QP page fault that the page 99 * that is going to be mapped in the spte could have been freed. 100 */ 101 ++umem_odp->notifiers_seq; 102 if (--umem_odp->notifiers_count == 0) 103 complete_all(&umem_odp->notifier_completion); 104 mutex_unlock(&umem_odp->umem_mutex); 105 } 106 107 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, 108 u64 start, u64 end, void *cookie) 109 { 110 /* 111 * Increase the number of notifiers running, to 112 * prevent any further fault handling on this MR. 113 */ 114 ib_umem_notifier_start_account(umem_odp); 115 complete_all(&umem_odp->notifier_completion); 116 umem_odp->umem.context->invalidate_range( 117 umem_odp, ib_umem_start(umem_odp), ib_umem_end(umem_odp)); 118 return 0; 119 } 120 121 static void ib_umem_notifier_release(struct mmu_notifier *mn, 122 struct mm_struct *mm) 123 { 124 struct ib_ucontext_per_mm *per_mm = 125 container_of(mn, struct ib_ucontext_per_mm, mn); 126 127 down_read(&per_mm->umem_rwsem); 128 if (per_mm->active) 129 rbt_ib_umem_for_each_in_range( 130 &per_mm->umem_tree, 0, ULLONG_MAX, 131 ib_umem_notifier_release_trampoline, true, NULL); 132 up_read(&per_mm->umem_rwsem); 133 } 134 135 static int invalidate_range_start_trampoline(struct ib_umem_odp *item, 136 u64 start, u64 end, void *cookie) 137 { 138 ib_umem_notifier_start_account(item); 139 item->umem.context->invalidate_range(item, start, end); 140 return 0; 141 } 142 143 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 144 const struct mmu_notifier_range *range) 145 { 146 struct ib_ucontext_per_mm *per_mm = 147 container_of(mn, struct ib_ucontext_per_mm, mn); 148 int rc; 149 150 if (mmu_notifier_range_blockable(range)) 151 down_read(&per_mm->umem_rwsem); 152 else if (!down_read_trylock(&per_mm->umem_rwsem)) 153 return -EAGAIN; 154 155 if (!per_mm->active) { 156 up_read(&per_mm->umem_rwsem); 157 /* 158 * At this point active is permanently set and visible to this 159 * CPU without a lock, that fact is relied on to skip the unlock 160 * in range_end. 161 */ 162 return 0; 163 } 164 165 rc = rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 166 range->end, 167 invalidate_range_start_trampoline, 168 mmu_notifier_range_blockable(range), 169 NULL); 170 if (rc) 171 up_read(&per_mm->umem_rwsem); 172 return rc; 173 } 174 175 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, 176 u64 end, void *cookie) 177 { 178 ib_umem_notifier_end_account(item); 179 return 0; 180 } 181 182 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 183 const struct mmu_notifier_range *range) 184 { 185 struct ib_ucontext_per_mm *per_mm = 186 container_of(mn, struct ib_ucontext_per_mm, mn); 187 188 if (unlikely(!per_mm->active)) 189 return; 190 191 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start, 192 range->end, 193 invalidate_range_end_trampoline, true, NULL); 194 up_read(&per_mm->umem_rwsem); 195 } 196 197 static const struct mmu_notifier_ops ib_umem_notifiers = { 198 .release = ib_umem_notifier_release, 199 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 200 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 201 }; 202 203 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) 204 { 205 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 206 207 down_write(&per_mm->umem_rwsem); 208 if (likely(ib_umem_start(umem_odp) != ib_umem_end(umem_odp))) 209 rbt_ib_umem_insert(&umem_odp->interval_tree, 210 &per_mm->umem_tree); 211 up_write(&per_mm->umem_rwsem); 212 } 213 214 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) 215 { 216 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 217 218 down_write(&per_mm->umem_rwsem); 219 if (likely(ib_umem_start(umem_odp) != ib_umem_end(umem_odp))) 220 rbt_ib_umem_remove(&umem_odp->interval_tree, 221 &per_mm->umem_tree); 222 complete_all(&umem_odp->notifier_completion); 223 224 up_write(&per_mm->umem_rwsem); 225 } 226 227 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, 228 struct mm_struct *mm) 229 { 230 struct ib_ucontext_per_mm *per_mm; 231 int ret; 232 233 per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); 234 if (!per_mm) 235 return ERR_PTR(-ENOMEM); 236 237 per_mm->context = ctx; 238 per_mm->mm = mm; 239 per_mm->umem_tree = RB_ROOT_CACHED; 240 init_rwsem(&per_mm->umem_rwsem); 241 per_mm->active = true; 242 243 rcu_read_lock(); 244 per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); 245 rcu_read_unlock(); 246 247 WARN_ON(mm != current->mm); 248 249 per_mm->mn.ops = &ib_umem_notifiers; 250 ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); 251 if (ret) { 252 dev_err(&ctx->device->dev, 253 "Failed to register mmu_notifier %d\n", ret); 254 goto out_pid; 255 } 256 257 list_add(&per_mm->ucontext_list, &ctx->per_mm_list); 258 return per_mm; 259 260 out_pid: 261 put_pid(per_mm->tgid); 262 kfree(per_mm); 263 return ERR_PTR(ret); 264 } 265 266 static int get_per_mm(struct ib_umem_odp *umem_odp) 267 { 268 struct ib_ucontext *ctx = umem_odp->umem.context; 269 struct ib_ucontext_per_mm *per_mm; 270 271 /* 272 * Generally speaking we expect only one or two per_mm in this list, 273 * so no reason to optimize this search today. 274 */ 275 mutex_lock(&ctx->per_mm_list_lock); 276 list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { 277 if (per_mm->mm == umem_odp->umem.owning_mm) 278 goto found; 279 } 280 281 per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); 282 if (IS_ERR(per_mm)) { 283 mutex_unlock(&ctx->per_mm_list_lock); 284 return PTR_ERR(per_mm); 285 } 286 287 found: 288 umem_odp->per_mm = per_mm; 289 per_mm->odp_mrs_count++; 290 mutex_unlock(&ctx->per_mm_list_lock); 291 292 return 0; 293 } 294 295 static void free_per_mm(struct rcu_head *rcu) 296 { 297 kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); 298 } 299 300 static void put_per_mm(struct ib_umem_odp *umem_odp) 301 { 302 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 303 struct ib_ucontext *ctx = umem_odp->umem.context; 304 bool need_free; 305 306 mutex_lock(&ctx->per_mm_list_lock); 307 umem_odp->per_mm = NULL; 308 per_mm->odp_mrs_count--; 309 need_free = per_mm->odp_mrs_count == 0; 310 if (need_free) 311 list_del(&per_mm->ucontext_list); 312 mutex_unlock(&ctx->per_mm_list_lock); 313 314 if (!need_free) 315 return; 316 317 /* 318 * NOTE! mmu_notifier_unregister() can happen between a start/end 319 * callback, resulting in an start/end, and thus an unbalanced 320 * lock. This doesn't really matter to us since we are about to kfree 321 * the memory that holds the lock, however LOCKDEP doesn't like this. 322 */ 323 down_write(&per_mm->umem_rwsem); 324 per_mm->active = false; 325 up_write(&per_mm->umem_rwsem); 326 327 WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); 328 mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); 329 put_pid(per_mm->tgid); 330 mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); 331 } 332 333 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root, 334 unsigned long addr, size_t size) 335 { 336 struct ib_ucontext_per_mm *per_mm = root->per_mm; 337 struct ib_ucontext *ctx = per_mm->context; 338 struct ib_umem_odp *odp_data; 339 struct ib_umem *umem; 340 int pages = size >> PAGE_SHIFT; 341 int ret; 342 343 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 344 if (!odp_data) 345 return ERR_PTR(-ENOMEM); 346 umem = &odp_data->umem; 347 umem->context = ctx; 348 umem->length = size; 349 umem->address = addr; 350 odp_data->page_shift = PAGE_SHIFT; 351 umem->writable = root->umem.writable; 352 umem->is_odp = 1; 353 odp_data->per_mm = per_mm; 354 umem->owning_mm = per_mm->mm; 355 mmgrab(umem->owning_mm); 356 357 mutex_init(&odp_data->umem_mutex); 358 init_completion(&odp_data->notifier_completion); 359 360 odp_data->page_list = 361 vzalloc(array_size(pages, sizeof(*odp_data->page_list))); 362 if (!odp_data->page_list) { 363 ret = -ENOMEM; 364 goto out_odp_data; 365 } 366 367 odp_data->dma_list = 368 vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); 369 if (!odp_data->dma_list) { 370 ret = -ENOMEM; 371 goto out_page_list; 372 } 373 374 /* 375 * Caller must ensure that the umem_odp that the per_mm came from 376 * cannot be freed during the call to ib_alloc_odp_umem. 377 */ 378 mutex_lock(&ctx->per_mm_list_lock); 379 per_mm->odp_mrs_count++; 380 mutex_unlock(&ctx->per_mm_list_lock); 381 add_umem_to_per_mm(odp_data); 382 383 return odp_data; 384 385 out_page_list: 386 vfree(odp_data->page_list); 387 out_odp_data: 388 mmdrop(umem->owning_mm); 389 kfree(odp_data); 390 return ERR_PTR(ret); 391 } 392 EXPORT_SYMBOL(ib_alloc_odp_umem); 393 394 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) 395 { 396 struct ib_umem *umem = &umem_odp->umem; 397 /* 398 * NOTE: This must called in a process context where umem->owning_mm 399 * == current->mm 400 */ 401 struct mm_struct *mm = umem->owning_mm; 402 int ret_val; 403 404 umem_odp->page_shift = PAGE_SHIFT; 405 if (access & IB_ACCESS_HUGETLB) { 406 struct vm_area_struct *vma; 407 struct hstate *h; 408 409 down_read(&mm->mmap_sem); 410 vma = find_vma(mm, ib_umem_start(umem_odp)); 411 if (!vma || !is_vm_hugetlb_page(vma)) { 412 up_read(&mm->mmap_sem); 413 return -EINVAL; 414 } 415 h = hstate_vma(vma); 416 umem_odp->page_shift = huge_page_shift(h); 417 up_read(&mm->mmap_sem); 418 } 419 420 mutex_init(&umem_odp->umem_mutex); 421 422 init_completion(&umem_odp->notifier_completion); 423 424 if (ib_umem_odp_num_pages(umem_odp)) { 425 umem_odp->page_list = 426 vzalloc(array_size(sizeof(*umem_odp->page_list), 427 ib_umem_odp_num_pages(umem_odp))); 428 if (!umem_odp->page_list) 429 return -ENOMEM; 430 431 umem_odp->dma_list = 432 vzalloc(array_size(sizeof(*umem_odp->dma_list), 433 ib_umem_odp_num_pages(umem_odp))); 434 if (!umem_odp->dma_list) { 435 ret_val = -ENOMEM; 436 goto out_page_list; 437 } 438 } 439 440 ret_val = get_per_mm(umem_odp); 441 if (ret_val) 442 goto out_dma_list; 443 add_umem_to_per_mm(umem_odp); 444 445 return 0; 446 447 out_dma_list: 448 vfree(umem_odp->dma_list); 449 out_page_list: 450 vfree(umem_odp->page_list); 451 return ret_val; 452 } 453 454 void ib_umem_odp_release(struct ib_umem_odp *umem_odp) 455 { 456 /* 457 * Ensure that no more pages are mapped in the umem. 458 * 459 * It is the driver's responsibility to ensure, before calling us, 460 * that the hardware will not attempt to access the MR any more. 461 */ 462 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), 463 ib_umem_end(umem_odp)); 464 465 remove_umem_from_per_mm(umem_odp); 466 put_per_mm(umem_odp); 467 vfree(umem_odp->dma_list); 468 vfree(umem_odp->page_list); 469 } 470 471 /* 472 * Map for DMA and insert a single page into the on-demand paging page tables. 473 * 474 * @umem: the umem to insert the page to. 475 * @page_index: index in the umem to add the page to. 476 * @page: the page struct to map and add. 477 * @access_mask: access permissions needed for this page. 478 * @current_seq: sequence number for synchronization with invalidations. 479 * the sequence number is taken from 480 * umem_odp->notifiers_seq. 481 * 482 * The function returns -EFAULT if the DMA mapping operation fails. It returns 483 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 484 * 485 * The page is released via put_user_page even if the operation failed. For 486 * on-demand pinning, the page is released whenever it isn't stored in the 487 * umem. 488 */ 489 static int ib_umem_odp_map_dma_single_page( 490 struct ib_umem_odp *umem_odp, 491 int page_index, 492 struct page *page, 493 u64 access_mask, 494 unsigned long current_seq) 495 { 496 struct ib_ucontext *context = umem_odp->umem.context; 497 struct ib_device *dev = context->device; 498 dma_addr_t dma_addr; 499 int remove_existing_mapping = 0; 500 int ret = 0; 501 502 /* 503 * Note: we avoid writing if seq is different from the initial seq, to 504 * handle case of a racing notifier. This check also allows us to bail 505 * early if we have a notifier running in parallel with us. 506 */ 507 if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { 508 ret = -EAGAIN; 509 goto out; 510 } 511 if (!(umem_odp->dma_list[page_index])) { 512 dma_addr = 513 ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift), 514 DMA_BIDIRECTIONAL); 515 if (ib_dma_mapping_error(dev, dma_addr)) { 516 ret = -EFAULT; 517 goto out; 518 } 519 umem_odp->dma_list[page_index] = dma_addr | access_mask; 520 umem_odp->page_list[page_index] = page; 521 umem_odp->npages++; 522 } else if (umem_odp->page_list[page_index] == page) { 523 umem_odp->dma_list[page_index] |= access_mask; 524 } else { 525 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 526 umem_odp->page_list[page_index], page); 527 /* Better remove the mapping now, to prevent any further 528 * damage. */ 529 remove_existing_mapping = 1; 530 } 531 532 out: 533 put_user_page(page); 534 535 if (remove_existing_mapping) { 536 ib_umem_notifier_start_account(umem_odp); 537 context->invalidate_range( 538 umem_odp, 539 ib_umem_start(umem_odp) + 540 (page_index << umem_odp->page_shift), 541 ib_umem_start(umem_odp) + 542 ((page_index + 1) << umem_odp->page_shift)); 543 ib_umem_notifier_end_account(umem_odp); 544 ret = -EAGAIN; 545 } 546 547 return ret; 548 } 549 550 /** 551 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 552 * 553 * Pins the range of pages passed in the argument, and maps them to 554 * DMA addresses. The DMA addresses of the mapped pages is updated in 555 * umem_odp->dma_list. 556 * 557 * Returns the number of pages mapped in success, negative error code 558 * for failure. 559 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 560 * the function from completing its task. 561 * An -ENOENT error code indicates that userspace process is being terminated 562 * and mm was already destroyed. 563 * @umem_odp: the umem to map and pin 564 * @user_virt: the address from which we need to map. 565 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 566 * bigger due to alignment, and may also be smaller in case of an error 567 * pinning or mapping a page. The actual pages mapped is returned in 568 * the return value. 569 * @access_mask: bit mask of the requested access permissions for the given 570 * range. 571 * @current_seq: the MMU notifiers sequance value for synchronization with 572 * invalidations. the sequance number is read from 573 * umem_odp->notifiers_seq before calling this function 574 */ 575 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, 576 u64 bcnt, u64 access_mask, 577 unsigned long current_seq) 578 { 579 struct task_struct *owning_process = NULL; 580 struct mm_struct *owning_mm = umem_odp->umem.owning_mm; 581 struct page **local_page_list = NULL; 582 u64 page_mask, off; 583 int j, k, ret = 0, start_idx, npages = 0; 584 unsigned int flags = 0, page_shift; 585 phys_addr_t p = 0; 586 587 if (access_mask == 0) 588 return -EINVAL; 589 590 if (user_virt < ib_umem_start(umem_odp) || 591 user_virt + bcnt > ib_umem_end(umem_odp)) 592 return -EFAULT; 593 594 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 595 if (!local_page_list) 596 return -ENOMEM; 597 598 page_shift = umem_odp->page_shift; 599 page_mask = ~(BIT(page_shift) - 1); 600 off = user_virt & (~page_mask); 601 user_virt = user_virt & page_mask; 602 bcnt += off; /* Charge for the first page offset as well. */ 603 604 /* 605 * owning_process is allowed to be NULL, this means somehow the mm is 606 * existing beyond the lifetime of the originating process.. Presumably 607 * mmget_not_zero will fail in this case. 608 */ 609 owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); 610 if (!owning_process || !mmget_not_zero(owning_mm)) { 611 ret = -EINVAL; 612 goto out_put_task; 613 } 614 615 if (access_mask & ODP_WRITE_ALLOWED_BIT) 616 flags |= FOLL_WRITE; 617 618 start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift; 619 k = start_idx; 620 621 while (bcnt > 0) { 622 const size_t gup_num_pages = min_t(size_t, 623 (bcnt + BIT(page_shift) - 1) >> page_shift, 624 PAGE_SIZE / sizeof(struct page *)); 625 626 down_read(&owning_mm->mmap_sem); 627 /* 628 * Note: this might result in redundent page getting. We can 629 * avoid this by checking dma_list to be 0 before calling 630 * get_user_pages. However, this make the code much more 631 * complex (and doesn't gain us much performance in most use 632 * cases). 633 */ 634 npages = get_user_pages_remote(owning_process, owning_mm, 635 user_virt, gup_num_pages, 636 flags, local_page_list, NULL, NULL); 637 up_read(&owning_mm->mmap_sem); 638 639 if (npages < 0) { 640 if (npages != -EAGAIN) 641 pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 642 else 643 pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages); 644 break; 645 } 646 647 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 648 mutex_lock(&umem_odp->umem_mutex); 649 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 650 if (user_virt & ~page_mask) { 651 p += PAGE_SIZE; 652 if (page_to_phys(local_page_list[j]) != p) { 653 ret = -EFAULT; 654 break; 655 } 656 put_user_page(local_page_list[j]); 657 continue; 658 } 659 660 ret = ib_umem_odp_map_dma_single_page( 661 umem_odp, k, local_page_list[j], 662 access_mask, current_seq); 663 if (ret < 0) { 664 if (ret != -EAGAIN) 665 pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 666 else 667 pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret); 668 break; 669 } 670 671 p = page_to_phys(local_page_list[j]); 672 k++; 673 } 674 mutex_unlock(&umem_odp->umem_mutex); 675 676 if (ret < 0) { 677 /* 678 * Release pages, remembering that the first page 679 * to hit an error was already released by 680 * ib_umem_odp_map_dma_single_page(). 681 */ 682 if (npages - (j + 1) > 0) 683 put_user_pages(&local_page_list[j+1], 684 npages - (j + 1)); 685 break; 686 } 687 } 688 689 if (ret >= 0) { 690 if (npages < 0 && k == start_idx) 691 ret = npages; 692 else 693 ret = k - start_idx; 694 } 695 696 mmput(owning_mm); 697 out_put_task: 698 if (owning_process) 699 put_task_struct(owning_process); 700 free_page((unsigned long)local_page_list); 701 return ret; 702 } 703 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 704 705 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, 706 u64 bound) 707 { 708 int idx; 709 u64 addr; 710 struct ib_device *dev = umem_odp->umem.context->device; 711 712 virt = max_t(u64, virt, ib_umem_start(umem_odp)); 713 bound = min_t(u64, bound, ib_umem_end(umem_odp)); 714 /* Note that during the run of this function, the 715 * notifiers_count of the MR is > 0, preventing any racing 716 * faults from completion. We might be racing with other 717 * invalidations, so we must make sure we free each page only 718 * once. */ 719 mutex_lock(&umem_odp->umem_mutex); 720 for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { 721 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; 722 if (umem_odp->page_list[idx]) { 723 struct page *page = umem_odp->page_list[idx]; 724 dma_addr_t dma = umem_odp->dma_list[idx]; 725 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 726 727 WARN_ON(!dma_addr); 728 729 ib_dma_unmap_page(dev, dma_addr, 730 BIT(umem_odp->page_shift), 731 DMA_BIDIRECTIONAL); 732 if (dma & ODP_WRITE_ALLOWED_BIT) { 733 struct page *head_page = compound_head(page); 734 /* 735 * set_page_dirty prefers being called with 736 * the page lock. However, MMU notifiers are 737 * called sometimes with and sometimes without 738 * the lock. We rely on the umem_mutex instead 739 * to prevent other mmu notifiers from 740 * continuing and allowing the page mapping to 741 * be removed. 742 */ 743 set_page_dirty(head_page); 744 } 745 umem_odp->page_list[idx] = NULL; 746 umem_odp->dma_list[idx] = 0; 747 umem_odp->npages--; 748 } 749 } 750 mutex_unlock(&umem_odp->umem_mutex); 751 } 752 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 753 754 /* @last is not a part of the interval. See comment for function 755 * node_last. 756 */ 757 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 758 u64 start, u64 last, 759 umem_call_back cb, 760 bool blockable, 761 void *cookie) 762 { 763 int ret_val = 0; 764 struct umem_odp_node *node, *next; 765 struct ib_umem_odp *umem; 766 767 if (unlikely(start == last)) 768 return ret_val; 769 770 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 771 node; node = next) { 772 /* TODO move the blockable decision up to the callback */ 773 if (!blockable) 774 return -EAGAIN; 775 next = rbt_ib_umem_iter_next(node, start, last - 1); 776 umem = container_of(node, struct ib_umem_odp, interval_tree); 777 ret_val = cb(umem, start, last, cookie) || ret_val; 778 } 779 780 return ret_val; 781 } 782 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 783 784 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 785 u64 addr, u64 length) 786 { 787 struct umem_odp_node *node; 788 789 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 790 if (node) 791 return container_of(node, struct ib_umem_odp, interval_tree); 792 return NULL; 793 794 } 795 EXPORT_SYMBOL(rbt_ib_umem_lookup); 796