1 /*
2  * Copyright (c) 2014 Mellanox Technologies. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <linux/sched.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/task.h>
37 #include <linux/pid.h>
38 #include <linux/slab.h>
39 #include <linux/export.h>
40 #include <linux/vmalloc.h>
41 #include <linux/hugetlb.h>
42 #include <linux/interval_tree.h>
43 #include <linux/pagemap.h>
44 
45 #include <rdma/ib_verbs.h>
46 #include <rdma/ib_umem.h>
47 #include <rdma/ib_umem_odp.h>
48 
49 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp)
50 {
51 	mutex_lock(&umem_odp->umem_mutex);
52 	if (umem_odp->notifiers_count++ == 0)
53 		/*
54 		 * Initialize the completion object for waiting on
55 		 * notifiers. Since notifier_count is zero, no one should be
56 		 * waiting right now.
57 		 */
58 		reinit_completion(&umem_odp->notifier_completion);
59 	mutex_unlock(&umem_odp->umem_mutex);
60 }
61 
62 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp)
63 {
64 	mutex_lock(&umem_odp->umem_mutex);
65 	/*
66 	 * This sequence increase will notify the QP page fault that the page
67 	 * that is going to be mapped in the spte could have been freed.
68 	 */
69 	++umem_odp->notifiers_seq;
70 	if (--umem_odp->notifiers_count == 0)
71 		complete_all(&umem_odp->notifier_completion);
72 	mutex_unlock(&umem_odp->umem_mutex);
73 }
74 
75 static void ib_umem_notifier_release(struct mmu_notifier *mn,
76 				     struct mm_struct *mm)
77 {
78 	struct ib_ucontext_per_mm *per_mm =
79 		container_of(mn, struct ib_ucontext_per_mm, mn);
80 	struct rb_node *node;
81 
82 	down_read(&per_mm->umem_rwsem);
83 	if (!per_mm->active)
84 		goto out;
85 
86 	for (node = rb_first_cached(&per_mm->umem_tree); node;
87 	     node = rb_next(node)) {
88 		struct ib_umem_odp *umem_odp =
89 			rb_entry(node, struct ib_umem_odp, interval_tree.rb);
90 
91 		/*
92 		 * Increase the number of notifiers running, to prevent any
93 		 * further fault handling on this MR.
94 		 */
95 		ib_umem_notifier_start_account(umem_odp);
96 		complete_all(&umem_odp->notifier_completion);
97 		umem_odp->umem.context->invalidate_range(
98 			umem_odp, ib_umem_start(umem_odp),
99 			ib_umem_end(umem_odp));
100 	}
101 
102 out:
103 	up_read(&per_mm->umem_rwsem);
104 }
105 
106 static int invalidate_range_start_trampoline(struct ib_umem_odp *item,
107 					     u64 start, u64 end, void *cookie)
108 {
109 	ib_umem_notifier_start_account(item);
110 	item->umem.context->invalidate_range(item, start, end);
111 	return 0;
112 }
113 
114 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn,
115 				const struct mmu_notifier_range *range)
116 {
117 	struct ib_ucontext_per_mm *per_mm =
118 		container_of(mn, struct ib_ucontext_per_mm, mn);
119 	int rc;
120 
121 	if (mmu_notifier_range_blockable(range))
122 		down_read(&per_mm->umem_rwsem);
123 	else if (!down_read_trylock(&per_mm->umem_rwsem))
124 		return -EAGAIN;
125 
126 	if (!per_mm->active) {
127 		up_read(&per_mm->umem_rwsem);
128 		/*
129 		 * At this point active is permanently set and visible to this
130 		 * CPU without a lock, that fact is relied on to skip the unlock
131 		 * in range_end.
132 		 */
133 		return 0;
134 	}
135 
136 	rc = rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
137 					   range->end,
138 					   invalidate_range_start_trampoline,
139 					   mmu_notifier_range_blockable(range),
140 					   NULL);
141 	if (rc)
142 		up_read(&per_mm->umem_rwsem);
143 	return rc;
144 }
145 
146 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start,
147 					   u64 end, void *cookie)
148 {
149 	ib_umem_notifier_end_account(item);
150 	return 0;
151 }
152 
153 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn,
154 				const struct mmu_notifier_range *range)
155 {
156 	struct ib_ucontext_per_mm *per_mm =
157 		container_of(mn, struct ib_ucontext_per_mm, mn);
158 
159 	if (unlikely(!per_mm->active))
160 		return;
161 
162 	rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, range->start,
163 				      range->end,
164 				      invalidate_range_end_trampoline, true, NULL);
165 	up_read(&per_mm->umem_rwsem);
166 }
167 
168 static const struct mmu_notifier_ops ib_umem_notifiers = {
169 	.release                    = ib_umem_notifier_release,
170 	.invalidate_range_start     = ib_umem_notifier_invalidate_range_start,
171 	.invalidate_range_end       = ib_umem_notifier_invalidate_range_end,
172 };
173 
174 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp)
175 {
176 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
177 
178 	down_write(&per_mm->umem_rwsem);
179 	interval_tree_remove(&umem_odp->interval_tree, &per_mm->umem_tree);
180 	complete_all(&umem_odp->notifier_completion);
181 	up_write(&per_mm->umem_rwsem);
182 }
183 
184 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx,
185 					       struct mm_struct *mm)
186 {
187 	struct ib_ucontext_per_mm *per_mm;
188 	int ret;
189 
190 	per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL);
191 	if (!per_mm)
192 		return ERR_PTR(-ENOMEM);
193 
194 	per_mm->context = ctx;
195 	per_mm->mm = mm;
196 	per_mm->umem_tree = RB_ROOT_CACHED;
197 	init_rwsem(&per_mm->umem_rwsem);
198 	per_mm->active = true;
199 
200 	rcu_read_lock();
201 	per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID);
202 	rcu_read_unlock();
203 
204 	WARN_ON(mm != current->mm);
205 
206 	per_mm->mn.ops = &ib_umem_notifiers;
207 	ret = mmu_notifier_register(&per_mm->mn, per_mm->mm);
208 	if (ret) {
209 		dev_err(&ctx->device->dev,
210 			"Failed to register mmu_notifier %d\n", ret);
211 		goto out_pid;
212 	}
213 
214 	list_add(&per_mm->ucontext_list, &ctx->per_mm_list);
215 	return per_mm;
216 
217 out_pid:
218 	put_pid(per_mm->tgid);
219 	kfree(per_mm);
220 	return ERR_PTR(ret);
221 }
222 
223 static struct ib_ucontext_per_mm *get_per_mm(struct ib_umem_odp *umem_odp)
224 {
225 	struct ib_ucontext *ctx = umem_odp->umem.context;
226 	struct ib_ucontext_per_mm *per_mm;
227 
228 	lockdep_assert_held(&ctx->per_mm_list_lock);
229 
230 	/*
231 	 * Generally speaking we expect only one or two per_mm in this list,
232 	 * so no reason to optimize this search today.
233 	 */
234 	list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) {
235 		if (per_mm->mm == umem_odp->umem.owning_mm)
236 			return per_mm;
237 	}
238 
239 	return alloc_per_mm(ctx, umem_odp->umem.owning_mm);
240 }
241 
242 static void free_per_mm(struct rcu_head *rcu)
243 {
244 	kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu));
245 }
246 
247 static void put_per_mm(struct ib_umem_odp *umem_odp)
248 {
249 	struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm;
250 	struct ib_ucontext *ctx = umem_odp->umem.context;
251 	bool need_free;
252 
253 	mutex_lock(&ctx->per_mm_list_lock);
254 	umem_odp->per_mm = NULL;
255 	per_mm->odp_mrs_count--;
256 	need_free = per_mm->odp_mrs_count == 0;
257 	if (need_free)
258 		list_del(&per_mm->ucontext_list);
259 	mutex_unlock(&ctx->per_mm_list_lock);
260 
261 	if (!need_free)
262 		return;
263 
264 	/*
265 	 * NOTE! mmu_notifier_unregister() can happen between a start/end
266 	 * callback, resulting in an start/end, and thus an unbalanced
267 	 * lock. This doesn't really matter to us since we are about to kfree
268 	 * the memory that holds the lock, however LOCKDEP doesn't like this.
269 	 */
270 	down_write(&per_mm->umem_rwsem);
271 	per_mm->active = false;
272 	up_write(&per_mm->umem_rwsem);
273 
274 	WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root));
275 	mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm);
276 	put_pid(per_mm->tgid);
277 	mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm);
278 }
279 
280 static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp,
281 				   struct ib_ucontext_per_mm *per_mm)
282 {
283 	struct ib_ucontext *ctx = umem_odp->umem.context;
284 	int ret;
285 
286 	umem_odp->umem.is_odp = 1;
287 	if (!umem_odp->is_implicit_odp) {
288 		size_t pages = ib_umem_odp_num_pages(umem_odp);
289 
290 		if (!pages)
291 			return -EINVAL;
292 
293 		/*
294 		 * Note that the representation of the intervals in the
295 		 * interval tree considers the ending point as contained in
296 		 * the interval, while the function ib_umem_end returns the
297 		 * first address which is not contained in the umem.
298 		 */
299 		umem_odp->interval_tree.start = ib_umem_start(umem_odp);
300 		umem_odp->interval_tree.last = ib_umem_end(umem_odp) - 1;
301 
302 		umem_odp->page_list = vzalloc(
303 			array_size(sizeof(*umem_odp->page_list), pages));
304 		if (!umem_odp->page_list)
305 			return -ENOMEM;
306 
307 		umem_odp->dma_list =
308 			vzalloc(array_size(sizeof(*umem_odp->dma_list), pages));
309 		if (!umem_odp->dma_list) {
310 			ret = -ENOMEM;
311 			goto out_page_list;
312 		}
313 	}
314 
315 	mutex_lock(&ctx->per_mm_list_lock);
316 	if (!per_mm) {
317 		per_mm = get_per_mm(umem_odp);
318 		if (IS_ERR(per_mm)) {
319 			ret = PTR_ERR(per_mm);
320 			goto out_unlock;
321 		}
322 	}
323 	umem_odp->per_mm = per_mm;
324 	per_mm->odp_mrs_count++;
325 	mutex_unlock(&ctx->per_mm_list_lock);
326 
327 	mutex_init(&umem_odp->umem_mutex);
328 	init_completion(&umem_odp->notifier_completion);
329 
330 	if (!umem_odp->is_implicit_odp) {
331 		down_write(&per_mm->umem_rwsem);
332 		interval_tree_insert(&umem_odp->interval_tree,
333 				     &per_mm->umem_tree);
334 		up_write(&per_mm->umem_rwsem);
335 	}
336 
337 	return 0;
338 
339 out_unlock:
340 	mutex_unlock(&ctx->per_mm_list_lock);
341 	vfree(umem_odp->dma_list);
342 out_page_list:
343 	vfree(umem_odp->page_list);
344 	return ret;
345 }
346 
347 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_umem_odp *root,
348 				      unsigned long addr, size_t size)
349 {
350 	/*
351 	 * Caller must ensure that root cannot be freed during the call to
352 	 * ib_alloc_odp_umem.
353 	 */
354 	struct ib_umem_odp *odp_data;
355 	struct ib_umem *umem;
356 	int ret;
357 
358 	odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL);
359 	if (!odp_data)
360 		return ERR_PTR(-ENOMEM);
361 	umem = &odp_data->umem;
362 	umem->context    = root->umem.context;
363 	umem->length     = size;
364 	umem->address    = addr;
365 	umem->writable   = root->umem.writable;
366 	umem->owning_mm  = root->umem.owning_mm;
367 	odp_data->page_shift = PAGE_SHIFT;
368 
369 	ret = ib_init_umem_odp(odp_data, root->per_mm);
370 	if (ret) {
371 		kfree(odp_data);
372 		return ERR_PTR(ret);
373 	}
374 
375 	mmgrab(umem->owning_mm);
376 
377 	return odp_data;
378 }
379 EXPORT_SYMBOL(ib_alloc_odp_umem);
380 
381 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access)
382 {
383 	/*
384 	 * NOTE: This must called in a process context where umem->owning_mm
385 	 * == current->mm
386 	 */
387 	struct mm_struct *mm = umem_odp->umem.owning_mm;
388 
389 	if (umem_odp->umem.address == 0 && umem_odp->umem.length == 0)
390 		umem_odp->is_implicit_odp = 1;
391 
392 	umem_odp->page_shift = PAGE_SHIFT;
393 	if (access & IB_ACCESS_HUGETLB) {
394 		struct vm_area_struct *vma;
395 		struct hstate *h;
396 
397 		down_read(&mm->mmap_sem);
398 		vma = find_vma(mm, ib_umem_start(umem_odp));
399 		if (!vma || !is_vm_hugetlb_page(vma)) {
400 			up_read(&mm->mmap_sem);
401 			return -EINVAL;
402 		}
403 		h = hstate_vma(vma);
404 		umem_odp->page_shift = huge_page_shift(h);
405 		up_read(&mm->mmap_sem);
406 	}
407 
408 	return ib_init_umem_odp(umem_odp, NULL);
409 }
410 
411 void ib_umem_odp_release(struct ib_umem_odp *umem_odp)
412 {
413 	/*
414 	 * Ensure that no more pages are mapped in the umem.
415 	 *
416 	 * It is the driver's responsibility to ensure, before calling us,
417 	 * that the hardware will not attempt to access the MR any more.
418 	 */
419 	if (!umem_odp->is_implicit_odp) {
420 		ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
421 					    ib_umem_end(umem_odp));
422 		remove_umem_from_per_mm(umem_odp);
423 		vfree(umem_odp->dma_list);
424 		vfree(umem_odp->page_list);
425 	}
426 	put_per_mm(umem_odp);
427 }
428 
429 /*
430  * Map for DMA and insert a single page into the on-demand paging page tables.
431  *
432  * @umem: the umem to insert the page to.
433  * @page_index: index in the umem to add the page to.
434  * @page: the page struct to map and add.
435  * @access_mask: access permissions needed for this page.
436  * @current_seq: sequence number for synchronization with invalidations.
437  *               the sequence number is taken from
438  *               umem_odp->notifiers_seq.
439  *
440  * The function returns -EFAULT if the DMA mapping operation fails. It returns
441  * -EAGAIN if a concurrent invalidation prevents us from updating the page.
442  *
443  * The page is released via put_user_page even if the operation failed. For
444  * on-demand pinning, the page is released whenever it isn't stored in the
445  * umem.
446  */
447 static int ib_umem_odp_map_dma_single_page(
448 		struct ib_umem_odp *umem_odp,
449 		int page_index,
450 		struct page *page,
451 		u64 access_mask,
452 		unsigned long current_seq)
453 {
454 	struct ib_ucontext *context = umem_odp->umem.context;
455 	struct ib_device *dev = context->device;
456 	dma_addr_t dma_addr;
457 	int remove_existing_mapping = 0;
458 	int ret = 0;
459 
460 	/*
461 	 * Note: we avoid writing if seq is different from the initial seq, to
462 	 * handle case of a racing notifier. This check also allows us to bail
463 	 * early if we have a notifier running in parallel with us.
464 	 */
465 	if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) {
466 		ret = -EAGAIN;
467 		goto out;
468 	}
469 	if (!(umem_odp->dma_list[page_index])) {
470 		dma_addr =
471 			ib_dma_map_page(dev, page, 0, BIT(umem_odp->page_shift),
472 					DMA_BIDIRECTIONAL);
473 		if (ib_dma_mapping_error(dev, dma_addr)) {
474 			ret = -EFAULT;
475 			goto out;
476 		}
477 		umem_odp->dma_list[page_index] = dma_addr | access_mask;
478 		umem_odp->page_list[page_index] = page;
479 		umem_odp->npages++;
480 	} else if (umem_odp->page_list[page_index] == page) {
481 		umem_odp->dma_list[page_index] |= access_mask;
482 	} else {
483 		pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n",
484 		       umem_odp->page_list[page_index], page);
485 		/* Better remove the mapping now, to prevent any further
486 		 * damage. */
487 		remove_existing_mapping = 1;
488 	}
489 
490 out:
491 	put_user_page(page);
492 
493 	if (remove_existing_mapping) {
494 		ib_umem_notifier_start_account(umem_odp);
495 		context->invalidate_range(
496 			umem_odp,
497 			ib_umem_start(umem_odp) +
498 				(page_index << umem_odp->page_shift),
499 			ib_umem_start(umem_odp) +
500 				((page_index + 1) << umem_odp->page_shift));
501 		ib_umem_notifier_end_account(umem_odp);
502 		ret = -EAGAIN;
503 	}
504 
505 	return ret;
506 }
507 
508 /**
509  * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR.
510  *
511  * Pins the range of pages passed in the argument, and maps them to
512  * DMA addresses. The DMA addresses of the mapped pages is updated in
513  * umem_odp->dma_list.
514  *
515  * Returns the number of pages mapped in success, negative error code
516  * for failure.
517  * An -EAGAIN error code is returned when a concurrent mmu notifier prevents
518  * the function from completing its task.
519  * An -ENOENT error code indicates that userspace process is being terminated
520  * and mm was already destroyed.
521  * @umem_odp: the umem to map and pin
522  * @user_virt: the address from which we need to map.
523  * @bcnt: the minimal number of bytes to pin and map. The mapping might be
524  *        bigger due to alignment, and may also be smaller in case of an error
525  *        pinning or mapping a page. The actual pages mapped is returned in
526  *        the return value.
527  * @access_mask: bit mask of the requested access permissions for the given
528  *               range.
529  * @current_seq: the MMU notifiers sequance value for synchronization with
530  *               invalidations. the sequance number is read from
531  *               umem_odp->notifiers_seq before calling this function
532  */
533 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt,
534 			      u64 bcnt, u64 access_mask,
535 			      unsigned long current_seq)
536 {
537 	struct task_struct *owning_process  = NULL;
538 	struct mm_struct *owning_mm = umem_odp->umem.owning_mm;
539 	struct page       **local_page_list = NULL;
540 	u64 page_mask, off;
541 	int j, k, ret = 0, start_idx, npages = 0;
542 	unsigned int flags = 0, page_shift;
543 	phys_addr_t p = 0;
544 
545 	if (access_mask == 0)
546 		return -EINVAL;
547 
548 	if (user_virt < ib_umem_start(umem_odp) ||
549 	    user_virt + bcnt > ib_umem_end(umem_odp))
550 		return -EFAULT;
551 
552 	local_page_list = (struct page **)__get_free_page(GFP_KERNEL);
553 	if (!local_page_list)
554 		return -ENOMEM;
555 
556 	page_shift = umem_odp->page_shift;
557 	page_mask = ~(BIT(page_shift) - 1);
558 	off = user_virt & (~page_mask);
559 	user_virt = user_virt & page_mask;
560 	bcnt += off; /* Charge for the first page offset as well. */
561 
562 	/*
563 	 * owning_process is allowed to be NULL, this means somehow the mm is
564 	 * existing beyond the lifetime of the originating process.. Presumably
565 	 * mmget_not_zero will fail in this case.
566 	 */
567 	owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID);
568 	if (!owning_process || !mmget_not_zero(owning_mm)) {
569 		ret = -EINVAL;
570 		goto out_put_task;
571 	}
572 
573 	if (access_mask & ODP_WRITE_ALLOWED_BIT)
574 		flags |= FOLL_WRITE;
575 
576 	start_idx = (user_virt - ib_umem_start(umem_odp)) >> page_shift;
577 	k = start_idx;
578 
579 	while (bcnt > 0) {
580 		const size_t gup_num_pages = min_t(size_t,
581 				(bcnt + BIT(page_shift) - 1) >> page_shift,
582 				PAGE_SIZE / sizeof(struct page *));
583 
584 		down_read(&owning_mm->mmap_sem);
585 		/*
586 		 * Note: this might result in redundent page getting. We can
587 		 * avoid this by checking dma_list to be 0 before calling
588 		 * get_user_pages. However, this make the code much more
589 		 * complex (and doesn't gain us much performance in most use
590 		 * cases).
591 		 */
592 		npages = get_user_pages_remote(owning_process, owning_mm,
593 				user_virt, gup_num_pages,
594 				flags, local_page_list, NULL, NULL);
595 		up_read(&owning_mm->mmap_sem);
596 
597 		if (npages < 0) {
598 			if (npages != -EAGAIN)
599 				pr_warn("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
600 			else
601 				pr_debug("fail to get %zu user pages with error %d\n", gup_num_pages, npages);
602 			break;
603 		}
604 
605 		bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt);
606 		mutex_lock(&umem_odp->umem_mutex);
607 		for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) {
608 			if (user_virt & ~page_mask) {
609 				p += PAGE_SIZE;
610 				if (page_to_phys(local_page_list[j]) != p) {
611 					ret = -EFAULT;
612 					break;
613 				}
614 				put_user_page(local_page_list[j]);
615 				continue;
616 			}
617 
618 			ret = ib_umem_odp_map_dma_single_page(
619 					umem_odp, k, local_page_list[j],
620 					access_mask, current_seq);
621 			if (ret < 0) {
622 				if (ret != -EAGAIN)
623 					pr_warn("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
624 				else
625 					pr_debug("ib_umem_odp_map_dma_single_page failed with error %d\n", ret);
626 				break;
627 			}
628 
629 			p = page_to_phys(local_page_list[j]);
630 			k++;
631 		}
632 		mutex_unlock(&umem_odp->umem_mutex);
633 
634 		if (ret < 0) {
635 			/*
636 			 * Release pages, remembering that the first page
637 			 * to hit an error was already released by
638 			 * ib_umem_odp_map_dma_single_page().
639 			 */
640 			if (npages - (j + 1) > 0)
641 				put_user_pages(&local_page_list[j+1],
642 					       npages - (j + 1));
643 			break;
644 		}
645 	}
646 
647 	if (ret >= 0) {
648 		if (npages < 0 && k == start_idx)
649 			ret = npages;
650 		else
651 			ret = k - start_idx;
652 	}
653 
654 	mmput(owning_mm);
655 out_put_task:
656 	if (owning_process)
657 		put_task_struct(owning_process);
658 	free_page((unsigned long)local_page_list);
659 	return ret;
660 }
661 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages);
662 
663 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt,
664 				 u64 bound)
665 {
666 	int idx;
667 	u64 addr;
668 	struct ib_device *dev = umem_odp->umem.context->device;
669 
670 	virt = max_t(u64, virt, ib_umem_start(umem_odp));
671 	bound = min_t(u64, bound, ib_umem_end(umem_odp));
672 	/* Note that during the run of this function, the
673 	 * notifiers_count of the MR is > 0, preventing any racing
674 	 * faults from completion. We might be racing with other
675 	 * invalidations, so we must make sure we free each page only
676 	 * once. */
677 	mutex_lock(&umem_odp->umem_mutex);
678 	for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) {
679 		idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
680 		if (umem_odp->page_list[idx]) {
681 			struct page *page = umem_odp->page_list[idx];
682 			dma_addr_t dma = umem_odp->dma_list[idx];
683 			dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK;
684 
685 			WARN_ON(!dma_addr);
686 
687 			ib_dma_unmap_page(dev, dma_addr,
688 					  BIT(umem_odp->page_shift),
689 					  DMA_BIDIRECTIONAL);
690 			if (dma & ODP_WRITE_ALLOWED_BIT) {
691 				struct page *head_page = compound_head(page);
692 				/*
693 				 * set_page_dirty prefers being called with
694 				 * the page lock. However, MMU notifiers are
695 				 * called sometimes with and sometimes without
696 				 * the lock. We rely on the umem_mutex instead
697 				 * to prevent other mmu notifiers from
698 				 * continuing and allowing the page mapping to
699 				 * be removed.
700 				 */
701 				set_page_dirty(head_page);
702 			}
703 			umem_odp->page_list[idx] = NULL;
704 			umem_odp->dma_list[idx] = 0;
705 			umem_odp->npages--;
706 		}
707 	}
708 	mutex_unlock(&umem_odp->umem_mutex);
709 }
710 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);
711 
712 /* @last is not a part of the interval. See comment for function
713  * node_last.
714  */
715 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root,
716 				  u64 start, u64 last,
717 				  umem_call_back cb,
718 				  bool blockable,
719 				  void *cookie)
720 {
721 	int ret_val = 0;
722 	struct interval_tree_node *node, *next;
723 	struct ib_umem_odp *umem;
724 
725 	if (unlikely(start == last))
726 		return ret_val;
727 
728 	for (node = interval_tree_iter_first(root, start, last - 1);
729 			node; node = next) {
730 		/* TODO move the blockable decision up to the callback */
731 		if (!blockable)
732 			return -EAGAIN;
733 		next = interval_tree_iter_next(node, start, last - 1);
734 		umem = container_of(node, struct ib_umem_odp, interval_tree);
735 		ret_val = cb(umem, start, last, cookie) || ret_val;
736 	}
737 
738 	return ret_val;
739 }
740