1 /* 2 * Copyright (c) 2014 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/task.h> 37 #include <linux/pid.h> 38 #include <linux/slab.h> 39 #include <linux/export.h> 40 #include <linux/vmalloc.h> 41 #include <linux/hugetlb.h> 42 #include <linux/interval_tree_generic.h> 43 44 #include <rdma/ib_verbs.h> 45 #include <rdma/ib_umem.h> 46 #include <rdma/ib_umem_odp.h> 47 48 /* 49 * The ib_umem list keeps track of memory regions for which the HW 50 * device request to receive notification when the related memory 51 * mapping is changed. 52 * 53 * ib_umem_lock protects the list. 54 */ 55 56 static u64 node_start(struct umem_odp_node *n) 57 { 58 struct ib_umem_odp *umem_odp = 59 container_of(n, struct ib_umem_odp, interval_tree); 60 61 return ib_umem_start(&umem_odp->umem); 62 } 63 64 /* Note that the representation of the intervals in the interval tree 65 * considers the ending point as contained in the interval, while the 66 * function ib_umem_end returns the first address which is not contained 67 * in the umem. 68 */ 69 static u64 node_last(struct umem_odp_node *n) 70 { 71 struct ib_umem_odp *umem_odp = 72 container_of(n, struct ib_umem_odp, interval_tree); 73 74 return ib_umem_end(&umem_odp->umem) - 1; 75 } 76 77 INTERVAL_TREE_DEFINE(struct umem_odp_node, rb, u64, __subtree_last, 78 node_start, node_last, static, rbt_ib_umem) 79 80 static void ib_umem_notifier_start_account(struct ib_umem_odp *umem_odp) 81 { 82 mutex_lock(&umem_odp->umem_mutex); 83 if (umem_odp->notifiers_count++ == 0) 84 /* 85 * Initialize the completion object for waiting on 86 * notifiers. Since notifier_count is zero, no one should be 87 * waiting right now. 88 */ 89 reinit_completion(&umem_odp->notifier_completion); 90 mutex_unlock(&umem_odp->umem_mutex); 91 } 92 93 static void ib_umem_notifier_end_account(struct ib_umem_odp *umem_odp) 94 { 95 mutex_lock(&umem_odp->umem_mutex); 96 /* 97 * This sequence increase will notify the QP page fault that the page 98 * that is going to be mapped in the spte could have been freed. 99 */ 100 ++umem_odp->notifiers_seq; 101 if (--umem_odp->notifiers_count == 0) 102 complete_all(&umem_odp->notifier_completion); 103 mutex_unlock(&umem_odp->umem_mutex); 104 } 105 106 static int ib_umem_notifier_release_trampoline(struct ib_umem_odp *umem_odp, 107 u64 start, u64 end, void *cookie) 108 { 109 struct ib_umem *umem = &umem_odp->umem; 110 111 /* 112 * Increase the number of notifiers running, to 113 * prevent any further fault handling on this MR. 114 */ 115 ib_umem_notifier_start_account(umem_odp); 116 umem_odp->dying = 1; 117 /* Make sure that the fact the umem is dying is out before we release 118 * all pending page faults. */ 119 smp_wmb(); 120 complete_all(&umem_odp->notifier_completion); 121 umem->context->invalidate_range(umem_odp, ib_umem_start(umem), 122 ib_umem_end(umem)); 123 return 0; 124 } 125 126 static void ib_umem_notifier_release(struct mmu_notifier *mn, 127 struct mm_struct *mm) 128 { 129 struct ib_ucontext_per_mm *per_mm = 130 container_of(mn, struct ib_ucontext_per_mm, mn); 131 132 down_read(&per_mm->umem_rwsem); 133 if (per_mm->active) 134 rbt_ib_umem_for_each_in_range( 135 &per_mm->umem_tree, 0, ULLONG_MAX, 136 ib_umem_notifier_release_trampoline, true, NULL); 137 up_read(&per_mm->umem_rwsem); 138 } 139 140 static int invalidate_page_trampoline(struct ib_umem_odp *item, u64 start, 141 u64 end, void *cookie) 142 { 143 ib_umem_notifier_start_account(item); 144 item->umem.context->invalidate_range(item, start, start + PAGE_SIZE); 145 ib_umem_notifier_end_account(item); 146 return 0; 147 } 148 149 static int invalidate_range_start_trampoline(struct ib_umem_odp *item, 150 u64 start, u64 end, void *cookie) 151 { 152 ib_umem_notifier_start_account(item); 153 item->umem.context->invalidate_range(item, start, end); 154 return 0; 155 } 156 157 static int ib_umem_notifier_invalidate_range_start(struct mmu_notifier *mn, 158 struct mm_struct *mm, 159 unsigned long start, 160 unsigned long end, 161 bool blockable) 162 { 163 struct ib_ucontext_per_mm *per_mm = 164 container_of(mn, struct ib_ucontext_per_mm, mn); 165 166 if (blockable) 167 down_read(&per_mm->umem_rwsem); 168 else if (!down_read_trylock(&per_mm->umem_rwsem)) 169 return -EAGAIN; 170 171 if (!per_mm->active) { 172 up_read(&per_mm->umem_rwsem); 173 /* 174 * At this point active is permanently set and visible to this 175 * CPU without a lock, that fact is relied on to skip the unlock 176 * in range_end. 177 */ 178 return 0; 179 } 180 181 return rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, start, end, 182 invalidate_range_start_trampoline, 183 blockable, NULL); 184 } 185 186 static int invalidate_range_end_trampoline(struct ib_umem_odp *item, u64 start, 187 u64 end, void *cookie) 188 { 189 ib_umem_notifier_end_account(item); 190 return 0; 191 } 192 193 static void ib_umem_notifier_invalidate_range_end(struct mmu_notifier *mn, 194 struct mm_struct *mm, 195 unsigned long start, 196 unsigned long end) 197 { 198 struct ib_ucontext_per_mm *per_mm = 199 container_of(mn, struct ib_ucontext_per_mm, mn); 200 201 if (unlikely(!per_mm->active)) 202 return; 203 204 rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, start, 205 end, 206 invalidate_range_end_trampoline, true, NULL); 207 up_read(&per_mm->umem_rwsem); 208 } 209 210 static const struct mmu_notifier_ops ib_umem_notifiers = { 211 .release = ib_umem_notifier_release, 212 .invalidate_range_start = ib_umem_notifier_invalidate_range_start, 213 .invalidate_range_end = ib_umem_notifier_invalidate_range_end, 214 }; 215 216 static void add_umem_to_per_mm(struct ib_umem_odp *umem_odp) 217 { 218 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 219 struct ib_umem *umem = &umem_odp->umem; 220 221 down_write(&per_mm->umem_rwsem); 222 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 223 rbt_ib_umem_insert(&umem_odp->interval_tree, 224 &per_mm->umem_tree); 225 up_write(&per_mm->umem_rwsem); 226 } 227 228 static void remove_umem_from_per_mm(struct ib_umem_odp *umem_odp) 229 { 230 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 231 struct ib_umem *umem = &umem_odp->umem; 232 233 down_write(&per_mm->umem_rwsem); 234 if (likely(ib_umem_start(umem) != ib_umem_end(umem))) 235 rbt_ib_umem_remove(&umem_odp->interval_tree, 236 &per_mm->umem_tree); 237 complete_all(&umem_odp->notifier_completion); 238 239 up_write(&per_mm->umem_rwsem); 240 } 241 242 static struct ib_ucontext_per_mm *alloc_per_mm(struct ib_ucontext *ctx, 243 struct mm_struct *mm) 244 { 245 struct ib_ucontext_per_mm *per_mm; 246 int ret; 247 248 per_mm = kzalloc(sizeof(*per_mm), GFP_KERNEL); 249 if (!per_mm) 250 return ERR_PTR(-ENOMEM); 251 252 per_mm->context = ctx; 253 per_mm->mm = mm; 254 per_mm->umem_tree = RB_ROOT_CACHED; 255 init_rwsem(&per_mm->umem_rwsem); 256 per_mm->active = ctx->invalidate_range; 257 258 rcu_read_lock(); 259 per_mm->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); 260 rcu_read_unlock(); 261 262 WARN_ON(mm != current->mm); 263 264 per_mm->mn.ops = &ib_umem_notifiers; 265 ret = mmu_notifier_register(&per_mm->mn, per_mm->mm); 266 if (ret) { 267 dev_err(&ctx->device->dev, 268 "Failed to register mmu_notifier %d\n", ret); 269 goto out_pid; 270 } 271 272 list_add(&per_mm->ucontext_list, &ctx->per_mm_list); 273 return per_mm; 274 275 out_pid: 276 put_pid(per_mm->tgid); 277 kfree(per_mm); 278 return ERR_PTR(ret); 279 } 280 281 static int get_per_mm(struct ib_umem_odp *umem_odp) 282 { 283 struct ib_ucontext *ctx = umem_odp->umem.context; 284 struct ib_ucontext_per_mm *per_mm; 285 286 /* 287 * Generally speaking we expect only one or two per_mm in this list, 288 * so no reason to optimize this search today. 289 */ 290 mutex_lock(&ctx->per_mm_list_lock); 291 list_for_each_entry(per_mm, &ctx->per_mm_list, ucontext_list) { 292 if (per_mm->mm == umem_odp->umem.owning_mm) 293 goto found; 294 } 295 296 per_mm = alloc_per_mm(ctx, umem_odp->umem.owning_mm); 297 if (IS_ERR(per_mm)) { 298 mutex_unlock(&ctx->per_mm_list_lock); 299 return PTR_ERR(per_mm); 300 } 301 302 found: 303 umem_odp->per_mm = per_mm; 304 per_mm->odp_mrs_count++; 305 mutex_unlock(&ctx->per_mm_list_lock); 306 307 return 0; 308 } 309 310 static void free_per_mm(struct rcu_head *rcu) 311 { 312 kfree(container_of(rcu, struct ib_ucontext_per_mm, rcu)); 313 } 314 315 void put_per_mm(struct ib_umem_odp *umem_odp) 316 { 317 struct ib_ucontext_per_mm *per_mm = umem_odp->per_mm; 318 struct ib_ucontext *ctx = umem_odp->umem.context; 319 bool need_free; 320 321 mutex_lock(&ctx->per_mm_list_lock); 322 umem_odp->per_mm = NULL; 323 per_mm->odp_mrs_count--; 324 need_free = per_mm->odp_mrs_count == 0; 325 if (need_free) 326 list_del(&per_mm->ucontext_list); 327 mutex_unlock(&ctx->per_mm_list_lock); 328 329 if (!need_free) 330 return; 331 332 /* 333 * NOTE! mmu_notifier_unregister() can happen between a start/end 334 * callback, resulting in an start/end, and thus an unbalanced 335 * lock. This doesn't really matter to us since we are about to kfree 336 * the memory that holds the lock, however LOCKDEP doesn't like this. 337 */ 338 down_write(&per_mm->umem_rwsem); 339 per_mm->active = false; 340 up_write(&per_mm->umem_rwsem); 341 342 WARN_ON(!RB_EMPTY_ROOT(&per_mm->umem_tree.rb_root)); 343 mmu_notifier_unregister_no_release(&per_mm->mn, per_mm->mm); 344 put_pid(per_mm->tgid); 345 mmu_notifier_call_srcu(&per_mm->rcu, free_per_mm); 346 } 347 348 struct ib_umem_odp *ib_alloc_odp_umem(struct ib_ucontext_per_mm *per_mm, 349 unsigned long addr, size_t size) 350 { 351 struct ib_ucontext *ctx = per_mm->context; 352 struct ib_umem_odp *odp_data; 353 struct ib_umem *umem; 354 int pages = size >> PAGE_SHIFT; 355 int ret; 356 357 odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); 358 if (!odp_data) 359 return ERR_PTR(-ENOMEM); 360 umem = &odp_data->umem; 361 umem->context = ctx; 362 umem->length = size; 363 umem->address = addr; 364 umem->page_shift = PAGE_SHIFT; 365 umem->writable = 1; 366 umem->is_odp = 1; 367 odp_data->per_mm = per_mm; 368 369 mutex_init(&odp_data->umem_mutex); 370 init_completion(&odp_data->notifier_completion); 371 372 odp_data->page_list = 373 vzalloc(array_size(pages, sizeof(*odp_data->page_list))); 374 if (!odp_data->page_list) { 375 ret = -ENOMEM; 376 goto out_odp_data; 377 } 378 379 odp_data->dma_list = 380 vzalloc(array_size(pages, sizeof(*odp_data->dma_list))); 381 if (!odp_data->dma_list) { 382 ret = -ENOMEM; 383 goto out_page_list; 384 } 385 386 /* 387 * Caller must ensure that the umem_odp that the per_mm came from 388 * cannot be freed during the call to ib_alloc_odp_umem. 389 */ 390 mutex_lock(&ctx->per_mm_list_lock); 391 per_mm->odp_mrs_count++; 392 mutex_unlock(&ctx->per_mm_list_lock); 393 add_umem_to_per_mm(odp_data); 394 395 return odp_data; 396 397 out_page_list: 398 vfree(odp_data->page_list); 399 out_odp_data: 400 kfree(odp_data); 401 return ERR_PTR(ret); 402 } 403 EXPORT_SYMBOL(ib_alloc_odp_umem); 404 405 int ib_umem_odp_get(struct ib_umem_odp *umem_odp, int access) 406 { 407 struct ib_umem *umem = &umem_odp->umem; 408 /* 409 * NOTE: This must called in a process context where umem->owning_mm 410 * == current->mm 411 */ 412 struct mm_struct *mm = umem->owning_mm; 413 int ret_val; 414 415 if (access & IB_ACCESS_HUGETLB) { 416 struct vm_area_struct *vma; 417 struct hstate *h; 418 419 down_read(&mm->mmap_sem); 420 vma = find_vma(mm, ib_umem_start(umem)); 421 if (!vma || !is_vm_hugetlb_page(vma)) { 422 up_read(&mm->mmap_sem); 423 return -EINVAL; 424 } 425 h = hstate_vma(vma); 426 umem->page_shift = huge_page_shift(h); 427 up_read(&mm->mmap_sem); 428 umem->hugetlb = 1; 429 } else { 430 umem->hugetlb = 0; 431 } 432 433 mutex_init(&umem_odp->umem_mutex); 434 435 init_completion(&umem_odp->notifier_completion); 436 437 if (ib_umem_num_pages(umem)) { 438 umem_odp->page_list = 439 vzalloc(array_size(sizeof(*umem_odp->page_list), 440 ib_umem_num_pages(umem))); 441 if (!umem_odp->page_list) 442 return -ENOMEM; 443 444 umem_odp->dma_list = 445 vzalloc(array_size(sizeof(*umem_odp->dma_list), 446 ib_umem_num_pages(umem))); 447 if (!umem_odp->dma_list) { 448 ret_val = -ENOMEM; 449 goto out_page_list; 450 } 451 } 452 453 ret_val = get_per_mm(umem_odp); 454 if (ret_val) 455 goto out_dma_list; 456 add_umem_to_per_mm(umem_odp); 457 458 return 0; 459 460 out_dma_list: 461 vfree(umem_odp->dma_list); 462 out_page_list: 463 vfree(umem_odp->page_list); 464 return ret_val; 465 } 466 467 void ib_umem_odp_release(struct ib_umem_odp *umem_odp) 468 { 469 struct ib_umem *umem = &umem_odp->umem; 470 471 /* 472 * Ensure that no more pages are mapped in the umem. 473 * 474 * It is the driver's responsibility to ensure, before calling us, 475 * that the hardware will not attempt to access the MR any more. 476 */ 477 ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem), 478 ib_umem_end(umem)); 479 480 remove_umem_from_per_mm(umem_odp); 481 put_per_mm(umem_odp); 482 vfree(umem_odp->dma_list); 483 vfree(umem_odp->page_list); 484 } 485 486 /* 487 * Map for DMA and insert a single page into the on-demand paging page tables. 488 * 489 * @umem: the umem to insert the page to. 490 * @page_index: index in the umem to add the page to. 491 * @page: the page struct to map and add. 492 * @access_mask: access permissions needed for this page. 493 * @current_seq: sequence number for synchronization with invalidations. 494 * the sequence number is taken from 495 * umem_odp->notifiers_seq. 496 * 497 * The function returns -EFAULT if the DMA mapping operation fails. It returns 498 * -EAGAIN if a concurrent invalidation prevents us from updating the page. 499 * 500 * The page is released via put_page even if the operation failed. For 501 * on-demand pinning, the page is released whenever it isn't stored in the 502 * umem. 503 */ 504 static int ib_umem_odp_map_dma_single_page( 505 struct ib_umem_odp *umem_odp, 506 int page_index, 507 struct page *page, 508 u64 access_mask, 509 unsigned long current_seq) 510 { 511 struct ib_umem *umem = &umem_odp->umem; 512 struct ib_device *dev = umem->context->device; 513 dma_addr_t dma_addr; 514 int stored_page = 0; 515 int remove_existing_mapping = 0; 516 int ret = 0; 517 518 /* 519 * Note: we avoid writing if seq is different from the initial seq, to 520 * handle case of a racing notifier. This check also allows us to bail 521 * early if we have a notifier running in parallel with us. 522 */ 523 if (ib_umem_mmu_notifier_retry(umem_odp, current_seq)) { 524 ret = -EAGAIN; 525 goto out; 526 } 527 if (!(umem_odp->dma_list[page_index])) { 528 dma_addr = ib_dma_map_page(dev, 529 page, 530 0, BIT(umem->page_shift), 531 DMA_BIDIRECTIONAL); 532 if (ib_dma_mapping_error(dev, dma_addr)) { 533 ret = -EFAULT; 534 goto out; 535 } 536 umem_odp->dma_list[page_index] = dma_addr | access_mask; 537 umem_odp->page_list[page_index] = page; 538 umem->npages++; 539 stored_page = 1; 540 } else if (umem_odp->page_list[page_index] == page) { 541 umem_odp->dma_list[page_index] |= access_mask; 542 } else { 543 pr_err("error: got different pages in IB device and from get_user_pages. IB device page: %p, gup page: %p\n", 544 umem_odp->page_list[page_index], page); 545 /* Better remove the mapping now, to prevent any further 546 * damage. */ 547 remove_existing_mapping = 1; 548 } 549 550 out: 551 /* On Demand Paging - avoid pinning the page */ 552 if (umem->context->invalidate_range || !stored_page) 553 put_page(page); 554 555 if (remove_existing_mapping && umem->context->invalidate_range) { 556 invalidate_page_trampoline( 557 umem_odp, 558 ib_umem_start(umem) + (page_index >> umem->page_shift), 559 ib_umem_start(umem) + ((page_index + 1) >> 560 umem->page_shift), 561 NULL); 562 ret = -EAGAIN; 563 } 564 565 return ret; 566 } 567 568 /** 569 * ib_umem_odp_map_dma_pages - Pin and DMA map userspace memory in an ODP MR. 570 * 571 * Pins the range of pages passed in the argument, and maps them to 572 * DMA addresses. The DMA addresses of the mapped pages is updated in 573 * umem_odp->dma_list. 574 * 575 * Returns the number of pages mapped in success, negative error code 576 * for failure. 577 * An -EAGAIN error code is returned when a concurrent mmu notifier prevents 578 * the function from completing its task. 579 * An -ENOENT error code indicates that userspace process is being terminated 580 * and mm was already destroyed. 581 * @umem_odp: the umem to map and pin 582 * @user_virt: the address from which we need to map. 583 * @bcnt: the minimal number of bytes to pin and map. The mapping might be 584 * bigger due to alignment, and may also be smaller in case of an error 585 * pinning or mapping a page. The actual pages mapped is returned in 586 * the return value. 587 * @access_mask: bit mask of the requested access permissions for the given 588 * range. 589 * @current_seq: the MMU notifiers sequance value for synchronization with 590 * invalidations. the sequance number is read from 591 * umem_odp->notifiers_seq before calling this function 592 */ 593 int ib_umem_odp_map_dma_pages(struct ib_umem_odp *umem_odp, u64 user_virt, 594 u64 bcnt, u64 access_mask, 595 unsigned long current_seq) 596 { 597 struct ib_umem *umem = &umem_odp->umem; 598 struct task_struct *owning_process = NULL; 599 struct mm_struct *owning_mm = umem_odp->umem.owning_mm; 600 struct page **local_page_list = NULL; 601 u64 page_mask, off; 602 int j, k, ret = 0, start_idx, npages = 0, page_shift; 603 unsigned int flags = 0; 604 phys_addr_t p = 0; 605 606 if (access_mask == 0) 607 return -EINVAL; 608 609 if (user_virt < ib_umem_start(umem) || 610 user_virt + bcnt > ib_umem_end(umem)) 611 return -EFAULT; 612 613 local_page_list = (struct page **)__get_free_page(GFP_KERNEL); 614 if (!local_page_list) 615 return -ENOMEM; 616 617 page_shift = umem->page_shift; 618 page_mask = ~(BIT(page_shift) - 1); 619 off = user_virt & (~page_mask); 620 user_virt = user_virt & page_mask; 621 bcnt += off; /* Charge for the first page offset as well. */ 622 623 /* 624 * owning_process is allowed to be NULL, this means somehow the mm is 625 * existing beyond the lifetime of the originating process.. Presumably 626 * mmget_not_zero will fail in this case. 627 */ 628 owning_process = get_pid_task(umem_odp->per_mm->tgid, PIDTYPE_PID); 629 if (WARN_ON(!mmget_not_zero(umem_odp->umem.owning_mm))) { 630 ret = -EINVAL; 631 goto out_put_task; 632 } 633 634 if (access_mask & ODP_WRITE_ALLOWED_BIT) 635 flags |= FOLL_WRITE; 636 637 start_idx = (user_virt - ib_umem_start(umem)) >> page_shift; 638 k = start_idx; 639 640 while (bcnt > 0) { 641 const size_t gup_num_pages = min_t(size_t, 642 (bcnt + BIT(page_shift) - 1) >> page_shift, 643 PAGE_SIZE / sizeof(struct page *)); 644 645 down_read(&owning_mm->mmap_sem); 646 /* 647 * Note: this might result in redundent page getting. We can 648 * avoid this by checking dma_list to be 0 before calling 649 * get_user_pages. However, this make the code much more 650 * complex (and doesn't gain us much performance in most use 651 * cases). 652 */ 653 npages = get_user_pages_remote(owning_process, owning_mm, 654 user_virt, gup_num_pages, 655 flags, local_page_list, NULL, NULL); 656 up_read(&owning_mm->mmap_sem); 657 658 if (npages < 0) 659 break; 660 661 bcnt -= min_t(size_t, npages << PAGE_SHIFT, bcnt); 662 mutex_lock(&umem_odp->umem_mutex); 663 for (j = 0; j < npages; j++, user_virt += PAGE_SIZE) { 664 if (user_virt & ~page_mask) { 665 p += PAGE_SIZE; 666 if (page_to_phys(local_page_list[j]) != p) { 667 ret = -EFAULT; 668 break; 669 } 670 put_page(local_page_list[j]); 671 continue; 672 } 673 674 ret = ib_umem_odp_map_dma_single_page( 675 umem_odp, k, local_page_list[j], 676 access_mask, current_seq); 677 if (ret < 0) 678 break; 679 680 p = page_to_phys(local_page_list[j]); 681 k++; 682 } 683 mutex_unlock(&umem_odp->umem_mutex); 684 685 if (ret < 0) { 686 /* Release left over pages when handling errors. */ 687 for (++j; j < npages; ++j) 688 put_page(local_page_list[j]); 689 break; 690 } 691 } 692 693 if (ret >= 0) { 694 if (npages < 0 && k == start_idx) 695 ret = npages; 696 else 697 ret = k - start_idx; 698 } 699 700 mmput(owning_mm); 701 out_put_task: 702 if (owning_process) 703 put_task_struct(owning_process); 704 free_page((unsigned long)local_page_list); 705 return ret; 706 } 707 EXPORT_SYMBOL(ib_umem_odp_map_dma_pages); 708 709 void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, 710 u64 bound) 711 { 712 struct ib_umem *umem = &umem_odp->umem; 713 int idx; 714 u64 addr; 715 struct ib_device *dev = umem->context->device; 716 717 virt = max_t(u64, virt, ib_umem_start(umem)); 718 bound = min_t(u64, bound, ib_umem_end(umem)); 719 /* Note that during the run of this function, the 720 * notifiers_count of the MR is > 0, preventing any racing 721 * faults from completion. We might be racing with other 722 * invalidations, so we must make sure we free each page only 723 * once. */ 724 mutex_lock(&umem_odp->umem_mutex); 725 for (addr = virt; addr < bound; addr += BIT(umem->page_shift)) { 726 idx = (addr - ib_umem_start(umem)) >> umem->page_shift; 727 if (umem_odp->page_list[idx]) { 728 struct page *page = umem_odp->page_list[idx]; 729 dma_addr_t dma = umem_odp->dma_list[idx]; 730 dma_addr_t dma_addr = dma & ODP_DMA_ADDR_MASK; 731 732 WARN_ON(!dma_addr); 733 734 ib_dma_unmap_page(dev, dma_addr, PAGE_SIZE, 735 DMA_BIDIRECTIONAL); 736 if (dma & ODP_WRITE_ALLOWED_BIT) { 737 struct page *head_page = compound_head(page); 738 /* 739 * set_page_dirty prefers being called with 740 * the page lock. However, MMU notifiers are 741 * called sometimes with and sometimes without 742 * the lock. We rely on the umem_mutex instead 743 * to prevent other mmu notifiers from 744 * continuing and allowing the page mapping to 745 * be removed. 746 */ 747 set_page_dirty(head_page); 748 } 749 /* on demand pinning support */ 750 if (!umem->context->invalidate_range) 751 put_page(page); 752 umem_odp->page_list[idx] = NULL; 753 umem_odp->dma_list[idx] = 0; 754 umem->npages--; 755 } 756 } 757 mutex_unlock(&umem_odp->umem_mutex); 758 } 759 EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); 760 761 /* @last is not a part of the interval. See comment for function 762 * node_last. 763 */ 764 int rbt_ib_umem_for_each_in_range(struct rb_root_cached *root, 765 u64 start, u64 last, 766 umem_call_back cb, 767 bool blockable, 768 void *cookie) 769 { 770 int ret_val = 0; 771 struct umem_odp_node *node, *next; 772 struct ib_umem_odp *umem; 773 774 if (unlikely(start == last)) 775 return ret_val; 776 777 for (node = rbt_ib_umem_iter_first(root, start, last - 1); 778 node; node = next) { 779 /* TODO move the blockable decision up to the callback */ 780 if (!blockable) 781 return -EAGAIN; 782 next = rbt_ib_umem_iter_next(node, start, last - 1); 783 umem = container_of(node, struct ib_umem_odp, interval_tree); 784 ret_val = cb(umem, start, last, cookie) || ret_val; 785 } 786 787 return ret_val; 788 } 789 EXPORT_SYMBOL(rbt_ib_umem_for_each_in_range); 790 791 struct ib_umem_odp *rbt_ib_umem_lookup(struct rb_root_cached *root, 792 u64 addr, u64 length) 793 { 794 struct umem_odp_node *node; 795 796 node = rbt_ib_umem_iter_first(root, addr, addr + length - 1); 797 if (node) 798 return container_of(node, struct ib_umem_odp, interval_tree); 799 return NULL; 800 801 } 802 EXPORT_SYMBOL(rbt_ib_umem_lookup); 803