xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision e9a53e73)
1 /*
2  * Copyright (c) 2016 HGST, a Western Digital Company.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  */
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <linux/pci-p2pdma.h>
16 #include <rdma/mr_pool.h>
17 #include <rdma/rw.h>
18 
19 enum {
20 	RDMA_RW_SINGLE_WR,
21 	RDMA_RW_MULTI_WR,
22 	RDMA_RW_MR,
23 	RDMA_RW_SIG_MR,
24 };
25 
26 static bool rdma_rw_force_mr;
27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
29 
30 /*
31  * Check if the device might use memory registration.  This is currently only
32  * true for iWarp devices. In the future we can hopefully fine tune this based
33  * on HCA driver input.
34  */
35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
36 {
37 	if (rdma_protocol_iwarp(dev, port_num))
38 		return true;
39 	if (unlikely(rdma_rw_force_mr))
40 		return true;
41 	return false;
42 }
43 
44 /*
45  * Check if the device will use memory registration for this RW operation.
46  * We currently always use memory registrations for iWarp RDMA READs, and
47  * have a debug option to force usage of MRs.
48  *
49  * XXX: In the future we can hopefully fine tune this based on HCA driver
50  * input.
51  */
52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
53 		enum dma_data_direction dir, int dma_nents)
54 {
55 	if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
56 		return true;
57 	if (unlikely(rdma_rw_force_mr))
58 		return true;
59 	return false;
60 }
61 
62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev,
63 					   bool pi_support)
64 {
65 	u32 max_pages;
66 
67 	if (pi_support)
68 		max_pages = dev->attrs.max_pi_fast_reg_page_list_len;
69 	else
70 		max_pages = dev->attrs.max_fast_reg_page_list_len;
71 
72 	/* arbitrary limit to avoid allocating gigantic resources */
73 	return min_t(u32, max_pages, 256);
74 }
75 
76 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
77 {
78 	int count = 0;
79 
80 	if (reg->mr->need_inval) {
81 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
82 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
83 		reg->inv_wr.next = &reg->reg_wr.wr;
84 		count++;
85 	} else {
86 		reg->inv_wr.next = NULL;
87 	}
88 
89 	return count;
90 }
91 
92 /* Caller must have zero-initialized *reg. */
93 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
94 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
95 		u32 sg_cnt, u32 offset)
96 {
97 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
98 						    qp->integrity_en);
99 	u32 nents = min(sg_cnt, pages_per_mr);
100 	int count = 0, ret;
101 
102 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
103 	if (!reg->mr)
104 		return -EAGAIN;
105 
106 	count += rdma_rw_inv_key(reg);
107 
108 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
109 	if (ret < 0 || ret < nents) {
110 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
111 		return -EINVAL;
112 	}
113 
114 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
115 	reg->reg_wr.mr = reg->mr;
116 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
117 	if (rdma_protocol_iwarp(qp->device, port_num))
118 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
119 	count++;
120 
121 	reg->sge.addr = reg->mr->iova;
122 	reg->sge.length = reg->mr->length;
123 	return count;
124 }
125 
126 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
127 		u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
128 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
129 {
130 	struct rdma_rw_reg_ctx *prev = NULL;
131 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
132 						    qp->integrity_en);
133 	int i, j, ret = 0, count = 0;
134 
135 	ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
136 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
137 	if (!ctx->reg) {
138 		ret = -ENOMEM;
139 		goto out;
140 	}
141 
142 	for (i = 0; i < ctx->nr_ops; i++) {
143 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
144 		u32 nents = min(sg_cnt, pages_per_mr);
145 
146 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
147 				offset);
148 		if (ret < 0)
149 			goto out_free;
150 		count += ret;
151 
152 		if (prev) {
153 			if (reg->mr->need_inval)
154 				prev->wr.wr.next = &reg->inv_wr;
155 			else
156 				prev->wr.wr.next = &reg->reg_wr.wr;
157 		}
158 
159 		reg->reg_wr.wr.next = &reg->wr.wr;
160 
161 		reg->wr.wr.sg_list = &reg->sge;
162 		reg->wr.wr.num_sge = 1;
163 		reg->wr.remote_addr = remote_addr;
164 		reg->wr.rkey = rkey;
165 		if (dir == DMA_TO_DEVICE) {
166 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
167 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
168 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
169 		} else {
170 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
171 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
172 		}
173 		count++;
174 
175 		remote_addr += reg->sge.length;
176 		sg_cnt -= nents;
177 		for (j = 0; j < nents; j++)
178 			sg = sg_next(sg);
179 		prev = reg;
180 		offset = 0;
181 	}
182 
183 	if (prev)
184 		prev->wr.wr.next = NULL;
185 
186 	ctx->type = RDMA_RW_MR;
187 	return count;
188 
189 out_free:
190 	while (--i >= 0)
191 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
192 	kfree(ctx->reg);
193 out:
194 	return ret;
195 }
196 
197 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
198 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
199 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
200 {
201 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
202 		      qp->max_read_sge;
203 	struct ib_sge *sge;
204 	u32 total_len = 0, i, j;
205 
206 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
207 
208 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
209 	if (!ctx->map.sges)
210 		goto out;
211 
212 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
213 	if (!ctx->map.wrs)
214 		goto out_free_sges;
215 
216 	for (i = 0; i < ctx->nr_ops; i++) {
217 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
218 		u32 nr_sge = min(sg_cnt, max_sge);
219 
220 		if (dir == DMA_TO_DEVICE)
221 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
222 		else
223 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
224 		rdma_wr->remote_addr = remote_addr + total_len;
225 		rdma_wr->rkey = rkey;
226 		rdma_wr->wr.num_sge = nr_sge;
227 		rdma_wr->wr.sg_list = sge;
228 
229 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
230 			sge->addr = sg_dma_address(sg) + offset;
231 			sge->length = sg_dma_len(sg) - offset;
232 			sge->lkey = qp->pd->local_dma_lkey;
233 
234 			total_len += sge->length;
235 			sge++;
236 			sg_cnt--;
237 			offset = 0;
238 		}
239 
240 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
241 			&ctx->map.wrs[i + 1].wr : NULL;
242 	}
243 
244 	ctx->type = RDMA_RW_MULTI_WR;
245 	return ctx->nr_ops;
246 
247 out_free_sges:
248 	kfree(ctx->map.sges);
249 out:
250 	return -ENOMEM;
251 }
252 
253 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
254 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
255 		enum dma_data_direction dir)
256 {
257 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
258 
259 	ctx->nr_ops = 1;
260 
261 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
262 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
263 	ctx->single.sge.length = sg_dma_len(sg) - offset;
264 
265 	memset(rdma_wr, 0, sizeof(*rdma_wr));
266 	if (dir == DMA_TO_DEVICE)
267 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
268 	else
269 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
270 	rdma_wr->wr.sg_list = &ctx->single.sge;
271 	rdma_wr->wr.num_sge = 1;
272 	rdma_wr->remote_addr = remote_addr;
273 	rdma_wr->rkey = rkey;
274 
275 	ctx->type = RDMA_RW_SINGLE_WR;
276 	return 1;
277 }
278 
279 /**
280  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
281  * @ctx:	context to initialize
282  * @qp:		queue pair to operate on
283  * @port_num:	port num to which the connection is bound
284  * @sg:		scatterlist to READ/WRITE from/to
285  * @sg_cnt:	number of entries in @sg
286  * @sg_offset:	current byte offset into @sg
287  * @remote_addr:remote address to read/write (relative to @rkey)
288  * @rkey:	remote key to operate on
289  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
290  *
291  * Returns the number of WQEs that will be needed on the workqueue if
292  * successful, or a negative error code.
293  */
294 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
295 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
296 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
297 {
298 	struct ib_device *dev = qp->pd->device;
299 	int ret;
300 
301 	if (is_pci_p2pdma_page(sg_page(sg)))
302 		ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
303 	else
304 		ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
305 
306 	if (!ret)
307 		return -ENOMEM;
308 	sg_cnt = ret;
309 
310 	/*
311 	 * Skip to the S/G entry that sg_offset falls into:
312 	 */
313 	for (;;) {
314 		u32 len = sg_dma_len(sg);
315 
316 		if (sg_offset < len)
317 			break;
318 
319 		sg = sg_next(sg);
320 		sg_offset -= len;
321 		sg_cnt--;
322 	}
323 
324 	ret = -EIO;
325 	if (WARN_ON_ONCE(sg_cnt == 0))
326 		goto out_unmap_sg;
327 
328 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
329 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
330 				sg_offset, remote_addr, rkey, dir);
331 	} else if (sg_cnt > 1) {
332 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
333 				remote_addr, rkey, dir);
334 	} else {
335 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
336 				remote_addr, rkey, dir);
337 	}
338 
339 	if (ret < 0)
340 		goto out_unmap_sg;
341 	return ret;
342 
343 out_unmap_sg:
344 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
345 	return ret;
346 }
347 EXPORT_SYMBOL(rdma_rw_ctx_init);
348 
349 /**
350  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
351  * @ctx:	context to initialize
352  * @qp:		queue pair to operate on
353  * @port_num:	port num to which the connection is bound
354  * @sg:		scatterlist to READ/WRITE from/to
355  * @sg_cnt:	number of entries in @sg
356  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
357  * @prot_sg_cnt: number of entries in @prot_sg
358  * @sig_attrs:	signature offloading algorithms
359  * @remote_addr:remote address to read/write (relative to @rkey)
360  * @rkey:	remote key to operate on
361  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
362  *
363  * Returns the number of WQEs that will be needed on the workqueue if
364  * successful, or a negative error code.
365  */
366 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
367 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
368 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
369 		struct ib_sig_attrs *sig_attrs,
370 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
371 {
372 	struct ib_device *dev = qp->pd->device;
373 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
374 						    qp->integrity_en);
375 	struct ib_rdma_wr *rdma_wr;
376 	int count = 0, ret;
377 
378 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
379 		pr_err("SG count too large: sg_cnt=%d, prot_sg_cnt=%d, pages_per_mr=%d\n",
380 		       sg_cnt, prot_sg_cnt, pages_per_mr);
381 		return -EINVAL;
382 	}
383 
384 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
385 	if (!ret)
386 		return -ENOMEM;
387 	sg_cnt = ret;
388 
389 	if (prot_sg_cnt) {
390 		ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
391 		if (!ret) {
392 			ret = -ENOMEM;
393 			goto out_unmap_sg;
394 		}
395 		prot_sg_cnt = ret;
396 	}
397 
398 	ctx->type = RDMA_RW_SIG_MR;
399 	ctx->nr_ops = 1;
400 	ctx->reg = kcalloc(1, sizeof(*ctx->reg), GFP_KERNEL);
401 	if (!ctx->reg) {
402 		ret = -ENOMEM;
403 		goto out_unmap_prot_sg;
404 	}
405 
406 	ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs);
407 	if (!ctx->reg->mr) {
408 		ret = -EAGAIN;
409 		goto out_free_ctx;
410 	}
411 
412 	count += rdma_rw_inv_key(ctx->reg);
413 
414 	memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs));
415 
416 	ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sg_cnt, NULL, prot_sg,
417 			      prot_sg_cnt, NULL, SZ_4K);
418 	if (unlikely(ret)) {
419 		pr_err("failed to map PI sg (%d)\n", sg_cnt + prot_sg_cnt);
420 		goto out_destroy_sig_mr;
421 	}
422 
423 	ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY;
424 	ctx->reg->reg_wr.wr.wr_cqe = NULL;
425 	ctx->reg->reg_wr.wr.num_sge = 0;
426 	ctx->reg->reg_wr.wr.send_flags = 0;
427 	ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
428 	if (rdma_protocol_iwarp(qp->device, port_num))
429 		ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
430 	ctx->reg->reg_wr.mr = ctx->reg->mr;
431 	ctx->reg->reg_wr.key = ctx->reg->mr->lkey;
432 	count++;
433 
434 	ctx->reg->sge.addr = ctx->reg->mr->iova;
435 	ctx->reg->sge.length = ctx->reg->mr->length;
436 	if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE)
437 		ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length;
438 
439 	rdma_wr = &ctx->reg->wr;
440 	rdma_wr->wr.sg_list = &ctx->reg->sge;
441 	rdma_wr->wr.num_sge = 1;
442 	rdma_wr->remote_addr = remote_addr;
443 	rdma_wr->rkey = rkey;
444 	if (dir == DMA_TO_DEVICE)
445 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
446 	else
447 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
448 	ctx->reg->reg_wr.wr.next = &rdma_wr->wr;
449 	count++;
450 
451 	return count;
452 
453 out_destroy_sig_mr:
454 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
455 out_free_ctx:
456 	kfree(ctx->reg);
457 out_unmap_prot_sg:
458 	if (prot_sg_cnt)
459 		ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
460 out_unmap_sg:
461 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
462 	return ret;
463 }
464 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
465 
466 /*
467  * Now that we are going to post the WRs we can update the lkey and need_inval
468  * state on the MRs.  If we were doing this at init time, we would get double
469  * or missing invalidations if a context was initialized but not actually
470  * posted.
471  */
472 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
473 {
474 	reg->mr->need_inval = need_inval;
475 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
476 	reg->reg_wr.key = reg->mr->lkey;
477 	reg->sge.lkey = reg->mr->lkey;
478 }
479 
480 /**
481  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
482  * @ctx:	context to operate on
483  * @qp:		queue pair to operate on
484  * @port_num:	port num to which the connection is bound
485  * @cqe:	completion queue entry for the last WR
486  * @chain_wr:	WR to append to the posted chain
487  *
488  * Return the WR chain for the set of RDMA READ/WRITE operations described by
489  * @ctx, as well as any memory registration operations needed.  If @chain_wr
490  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
491  * If @chain_wr is not set @cqe must be set so that the caller gets a
492  * completion notification.
493  */
494 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
495 		u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
496 {
497 	struct ib_send_wr *first_wr, *last_wr;
498 	int i;
499 
500 	switch (ctx->type) {
501 	case RDMA_RW_SIG_MR:
502 	case RDMA_RW_MR:
503 		/* fallthrough */
504 		for (i = 0; i < ctx->nr_ops; i++) {
505 			rdma_rw_update_lkey(&ctx->reg[i],
506 				ctx->reg[i].wr.wr.opcode !=
507 					IB_WR_RDMA_READ_WITH_INV);
508 		}
509 
510 		if (ctx->reg[0].inv_wr.next)
511 			first_wr = &ctx->reg[0].inv_wr;
512 		else
513 			first_wr = &ctx->reg[0].reg_wr.wr;
514 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
515 		break;
516 	case RDMA_RW_MULTI_WR:
517 		first_wr = &ctx->map.wrs[0].wr;
518 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
519 		break;
520 	case RDMA_RW_SINGLE_WR:
521 		first_wr = &ctx->single.wr.wr;
522 		last_wr = &ctx->single.wr.wr;
523 		break;
524 	default:
525 		BUG();
526 	}
527 
528 	if (chain_wr) {
529 		last_wr->next = chain_wr;
530 	} else {
531 		last_wr->wr_cqe = cqe;
532 		last_wr->send_flags |= IB_SEND_SIGNALED;
533 	}
534 
535 	return first_wr;
536 }
537 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
538 
539 /**
540  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
541  * @ctx:	context to operate on
542  * @qp:		queue pair to operate on
543  * @port_num:	port num to which the connection is bound
544  * @cqe:	completion queue entry for the last WR
545  * @chain_wr:	WR to append to the posted chain
546  *
547  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
548  * any memory registration operations needed.  If @chain_wr is non-NULL the
549  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
550  * is not set @cqe must be set so that the caller gets a completion
551  * notification.
552  */
553 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
554 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
555 {
556 	struct ib_send_wr *first_wr;
557 
558 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
559 	return ib_post_send(qp, first_wr, NULL);
560 }
561 EXPORT_SYMBOL(rdma_rw_ctx_post);
562 
563 /**
564  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
565  * @ctx:	context to release
566  * @qp:		queue pair to operate on
567  * @port_num:	port num to which the connection is bound
568  * @sg:		scatterlist that was used for the READ/WRITE
569  * @sg_cnt:	number of entries in @sg
570  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
571  */
572 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
573 		struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
574 {
575 	int i;
576 
577 	switch (ctx->type) {
578 	case RDMA_RW_MR:
579 		for (i = 0; i < ctx->nr_ops; i++)
580 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
581 		kfree(ctx->reg);
582 		break;
583 	case RDMA_RW_MULTI_WR:
584 		kfree(ctx->map.wrs);
585 		kfree(ctx->map.sges);
586 		break;
587 	case RDMA_RW_SINGLE_WR:
588 		break;
589 	default:
590 		BUG();
591 		break;
592 	}
593 
594 	/* P2PDMA contexts do not need to be unmapped */
595 	if (!is_pci_p2pdma_page(sg_page(sg)))
596 		ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
597 }
598 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
599 
600 /**
601  * rdma_rw_ctx_destroy_signature - release all resources allocated by
602  *	rdma_rw_ctx_signature_init
603  * @ctx:	context to release
604  * @qp:		queue pair to operate on
605  * @port_num:	port num to which the connection is bound
606  * @sg:		scatterlist that was used for the READ/WRITE
607  * @sg_cnt:	number of entries in @sg
608  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
609  * @prot_sg_cnt: number of entries in @prot_sg
610  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
611  */
612 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
613 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
614 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
615 		enum dma_data_direction dir)
616 {
617 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
618 		return;
619 
620 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
621 	kfree(ctx->reg);
622 
623 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
624 	if (prot_sg_cnt)
625 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
626 }
627 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
628 
629 /**
630  * rdma_rw_mr_factor - return number of MRs required for a payload
631  * @device:	device handling the connection
632  * @port_num:	port num to which the connection is bound
633  * @maxpages:	maximum payload pages per rdma_rw_ctx
634  *
635  * Returns the number of MRs the device requires to move @maxpayload
636  * bytes. The returned value is used during transport creation to
637  * compute max_rdma_ctxts and the size of the transport's Send and
638  * Send Completion Queues.
639  */
640 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
641 			       unsigned int maxpages)
642 {
643 	unsigned int mr_pages;
644 
645 	if (rdma_rw_can_use_mr(device, port_num))
646 		mr_pages = rdma_rw_fr_page_list_len(device, false);
647 	else
648 		mr_pages = device->attrs.max_sge_rd;
649 	return DIV_ROUND_UP(maxpages, mr_pages);
650 }
651 EXPORT_SYMBOL(rdma_rw_mr_factor);
652 
653 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
654 {
655 	u32 factor;
656 
657 	WARN_ON_ONCE(attr->port_num == 0);
658 
659 	/*
660 	 * Each context needs at least one RDMA READ or WRITE WR.
661 	 *
662 	 * For some hardware we might need more, eventually we should ask the
663 	 * HCA driver for a multiplier here.
664 	 */
665 	factor = 1;
666 
667 	/*
668 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
669 	 * we'll need two additional MRs for the registrations and the
670 	 * invalidation.
671 	 */
672 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN ||
673 	    rdma_rw_can_use_mr(dev, attr->port_num))
674 		factor += 2;	/* inv + reg */
675 
676 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
677 
678 	/*
679 	 * But maybe we were just too high in the sky and the device doesn't
680 	 * even support all we need, and we'll have to live with what we get..
681 	 */
682 	attr->cap.max_send_wr =
683 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
684 }
685 
686 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
687 {
688 	struct ib_device *dev = qp->pd->device;
689 	u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0;
690 	int ret = 0;
691 
692 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
693 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
694 		nr_mrs = attr->cap.max_rdma_ctxs;
695 		max_num_sg = rdma_rw_fr_page_list_len(dev, true);
696 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
697 		nr_mrs = attr->cap.max_rdma_ctxs;
698 		max_num_sg = rdma_rw_fr_page_list_len(dev, false);
699 	}
700 
701 	if (nr_mrs) {
702 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
703 				IB_MR_TYPE_MEM_REG,
704 				max_num_sg, 0);
705 		if (ret) {
706 			pr_err("%s: failed to allocated %d MRs\n",
707 				__func__, nr_mrs);
708 			return ret;
709 		}
710 	}
711 
712 	if (nr_sig_mrs) {
713 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
714 				IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg);
715 		if (ret) {
716 			pr_err("%s: failed to allocated %d SIG MRs\n",
717 				__func__, nr_sig_mrs);
718 			goto out_free_rdma_mrs;
719 		}
720 	}
721 
722 	return 0;
723 
724 out_free_rdma_mrs:
725 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
726 	return ret;
727 }
728 
729 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
730 {
731 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
732 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
733 }
734