1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016 HGST, a Western Digital Company. 4 */ 5 #include <linux/moduleparam.h> 6 #include <linux/slab.h> 7 #include <linux/pci-p2pdma.h> 8 #include <rdma/mr_pool.h> 9 #include <rdma/rw.h> 10 11 enum { 12 RDMA_RW_SINGLE_WR, 13 RDMA_RW_MULTI_WR, 14 RDMA_RW_MR, 15 RDMA_RW_SIG_MR, 16 }; 17 18 static bool rdma_rw_force_mr; 19 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 20 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 21 22 /* 23 * Check if the device might use memory registration. This is currently only 24 * true for iWarp devices. In the future we can hopefully fine tune this based 25 * on HCA driver input. 26 */ 27 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) 28 { 29 if (rdma_protocol_iwarp(dev, port_num)) 30 return true; 31 if (unlikely(rdma_rw_force_mr)) 32 return true; 33 return false; 34 } 35 36 /* 37 * Check if the device will use memory registration for this RW operation. 38 * We currently always use memory registrations for iWarp RDMA READs, and 39 * have a debug option to force usage of MRs. 40 * 41 * XXX: In the future we can hopefully fine tune this based on HCA driver 42 * input. 43 */ 44 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, 45 enum dma_data_direction dir, int dma_nents) 46 { 47 if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE) 48 return true; 49 if (unlikely(rdma_rw_force_mr)) 50 return true; 51 return false; 52 } 53 54 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev, 55 bool pi_support) 56 { 57 u32 max_pages; 58 59 if (pi_support) 60 max_pages = dev->attrs.max_pi_fast_reg_page_list_len; 61 else 62 max_pages = dev->attrs.max_fast_reg_page_list_len; 63 64 /* arbitrary limit to avoid allocating gigantic resources */ 65 return min_t(u32, max_pages, 256); 66 } 67 68 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg) 69 { 70 int count = 0; 71 72 if (reg->mr->need_inval) { 73 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 74 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 75 reg->inv_wr.next = ®->reg_wr.wr; 76 count++; 77 } else { 78 reg->inv_wr.next = NULL; 79 } 80 81 return count; 82 } 83 84 /* Caller must have zero-initialized *reg. */ 85 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, 86 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 87 u32 sg_cnt, u32 offset) 88 { 89 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 90 qp->integrity_en); 91 u32 nents = min(sg_cnt, pages_per_mr); 92 int count = 0, ret; 93 94 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 95 if (!reg->mr) 96 return -EAGAIN; 97 98 count += rdma_rw_inv_key(reg); 99 100 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 101 if (ret < 0 || ret < nents) { 102 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 103 return -EINVAL; 104 } 105 106 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 107 reg->reg_wr.mr = reg->mr; 108 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 109 if (rdma_protocol_iwarp(qp->device, port_num)) 110 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 111 count++; 112 113 reg->sge.addr = reg->mr->iova; 114 reg->sge.length = reg->mr->length; 115 return count; 116 } 117 118 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 119 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 120 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 121 { 122 struct rdma_rw_reg_ctx *prev = NULL; 123 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 124 qp->integrity_en); 125 int i, j, ret = 0, count = 0; 126 127 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; 128 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 129 if (!ctx->reg) { 130 ret = -ENOMEM; 131 goto out; 132 } 133 134 for (i = 0; i < ctx->nr_ops; i++) { 135 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 136 u32 nents = min(sg_cnt, pages_per_mr); 137 138 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 139 offset); 140 if (ret < 0) 141 goto out_free; 142 count += ret; 143 144 if (prev) { 145 if (reg->mr->need_inval) 146 prev->wr.wr.next = ®->inv_wr; 147 else 148 prev->wr.wr.next = ®->reg_wr.wr; 149 } 150 151 reg->reg_wr.wr.next = ®->wr.wr; 152 153 reg->wr.wr.sg_list = ®->sge; 154 reg->wr.wr.num_sge = 1; 155 reg->wr.remote_addr = remote_addr; 156 reg->wr.rkey = rkey; 157 if (dir == DMA_TO_DEVICE) { 158 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 159 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 160 reg->wr.wr.opcode = IB_WR_RDMA_READ; 161 } else { 162 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 163 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 164 } 165 count++; 166 167 remote_addr += reg->sge.length; 168 sg_cnt -= nents; 169 for (j = 0; j < nents; j++) 170 sg = sg_next(sg); 171 prev = reg; 172 offset = 0; 173 } 174 175 if (prev) 176 prev->wr.wr.next = NULL; 177 178 ctx->type = RDMA_RW_MR; 179 return count; 180 181 out_free: 182 while (--i >= 0) 183 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 184 kfree(ctx->reg); 185 out: 186 return ret; 187 } 188 189 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 190 struct scatterlist *sg, u32 sg_cnt, u32 offset, 191 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 192 { 193 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : 194 qp->max_read_sge; 195 struct ib_sge *sge; 196 u32 total_len = 0, i, j; 197 198 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 199 200 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 201 if (!ctx->map.sges) 202 goto out; 203 204 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 205 if (!ctx->map.wrs) 206 goto out_free_sges; 207 208 for (i = 0; i < ctx->nr_ops; i++) { 209 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 210 u32 nr_sge = min(sg_cnt, max_sge); 211 212 if (dir == DMA_TO_DEVICE) 213 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 214 else 215 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 216 rdma_wr->remote_addr = remote_addr + total_len; 217 rdma_wr->rkey = rkey; 218 rdma_wr->wr.num_sge = nr_sge; 219 rdma_wr->wr.sg_list = sge; 220 221 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 222 sge->addr = sg_dma_address(sg) + offset; 223 sge->length = sg_dma_len(sg) - offset; 224 sge->lkey = qp->pd->local_dma_lkey; 225 226 total_len += sge->length; 227 sge++; 228 sg_cnt--; 229 offset = 0; 230 } 231 232 rdma_wr->wr.next = i + 1 < ctx->nr_ops ? 233 &ctx->map.wrs[i + 1].wr : NULL; 234 } 235 236 ctx->type = RDMA_RW_MULTI_WR; 237 return ctx->nr_ops; 238 239 out_free_sges: 240 kfree(ctx->map.sges); 241 out: 242 return -ENOMEM; 243 } 244 245 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 246 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 247 enum dma_data_direction dir) 248 { 249 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 250 251 ctx->nr_ops = 1; 252 253 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 254 ctx->single.sge.addr = sg_dma_address(sg) + offset; 255 ctx->single.sge.length = sg_dma_len(sg) - offset; 256 257 memset(rdma_wr, 0, sizeof(*rdma_wr)); 258 if (dir == DMA_TO_DEVICE) 259 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 260 else 261 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 262 rdma_wr->wr.sg_list = &ctx->single.sge; 263 rdma_wr->wr.num_sge = 1; 264 rdma_wr->remote_addr = remote_addr; 265 rdma_wr->rkey = rkey; 266 267 ctx->type = RDMA_RW_SINGLE_WR; 268 return 1; 269 } 270 271 /** 272 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 273 * @ctx: context to initialize 274 * @qp: queue pair to operate on 275 * @port_num: port num to which the connection is bound 276 * @sg: scatterlist to READ/WRITE from/to 277 * @sg_cnt: number of entries in @sg 278 * @sg_offset: current byte offset into @sg 279 * @remote_addr:remote address to read/write (relative to @rkey) 280 * @rkey: remote key to operate on 281 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 282 * 283 * Returns the number of WQEs that will be needed on the workqueue if 284 * successful, or a negative error code. 285 */ 286 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 287 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 288 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 289 { 290 struct ib_device *dev = qp->pd->device; 291 int ret; 292 293 if (is_pci_p2pdma_page(sg_page(sg))) 294 ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir); 295 else 296 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 297 298 if (!ret) 299 return -ENOMEM; 300 sg_cnt = ret; 301 302 /* 303 * Skip to the S/G entry that sg_offset falls into: 304 */ 305 for (;;) { 306 u32 len = sg_dma_len(sg); 307 308 if (sg_offset < len) 309 break; 310 311 sg = sg_next(sg); 312 sg_offset -= len; 313 sg_cnt--; 314 } 315 316 ret = -EIO; 317 if (WARN_ON_ONCE(sg_cnt == 0)) 318 goto out_unmap_sg; 319 320 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 321 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 322 sg_offset, remote_addr, rkey, dir); 323 } else if (sg_cnt > 1) { 324 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 325 remote_addr, rkey, dir); 326 } else { 327 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 328 remote_addr, rkey, dir); 329 } 330 331 if (ret < 0) 332 goto out_unmap_sg; 333 return ret; 334 335 out_unmap_sg: 336 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 337 return ret; 338 } 339 EXPORT_SYMBOL(rdma_rw_ctx_init); 340 341 /** 342 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload 343 * @ctx: context to initialize 344 * @qp: queue pair to operate on 345 * @port_num: port num to which the connection is bound 346 * @sg: scatterlist to READ/WRITE from/to 347 * @sg_cnt: number of entries in @sg 348 * @prot_sg: scatterlist to READ/WRITE protection information from/to 349 * @prot_sg_cnt: number of entries in @prot_sg 350 * @sig_attrs: signature offloading algorithms 351 * @remote_addr:remote address to read/write (relative to @rkey) 352 * @rkey: remote key to operate on 353 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 354 * 355 * Returns the number of WQEs that will be needed on the workqueue if 356 * successful, or a negative error code. 357 */ 358 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 359 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 360 struct scatterlist *prot_sg, u32 prot_sg_cnt, 361 struct ib_sig_attrs *sig_attrs, 362 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 363 { 364 struct ib_device *dev = qp->pd->device; 365 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 366 qp->integrity_en); 367 struct ib_rdma_wr *rdma_wr; 368 int count = 0, ret; 369 370 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 371 pr_err("SG count too large: sg_cnt=%d, prot_sg_cnt=%d, pages_per_mr=%d\n", 372 sg_cnt, prot_sg_cnt, pages_per_mr); 373 return -EINVAL; 374 } 375 376 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 377 if (!ret) 378 return -ENOMEM; 379 sg_cnt = ret; 380 381 if (prot_sg_cnt) { 382 ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir); 383 if (!ret) { 384 ret = -ENOMEM; 385 goto out_unmap_sg; 386 } 387 prot_sg_cnt = ret; 388 } 389 390 ctx->type = RDMA_RW_SIG_MR; 391 ctx->nr_ops = 1; 392 ctx->reg = kcalloc(1, sizeof(*ctx->reg), GFP_KERNEL); 393 if (!ctx->reg) { 394 ret = -ENOMEM; 395 goto out_unmap_prot_sg; 396 } 397 398 ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs); 399 if (!ctx->reg->mr) { 400 ret = -EAGAIN; 401 goto out_free_ctx; 402 } 403 404 count += rdma_rw_inv_key(ctx->reg); 405 406 memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs)); 407 408 ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sg_cnt, NULL, prot_sg, 409 prot_sg_cnt, NULL, SZ_4K); 410 if (unlikely(ret)) { 411 pr_err("failed to map PI sg (%d)\n", sg_cnt + prot_sg_cnt); 412 goto out_destroy_sig_mr; 413 } 414 415 ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY; 416 ctx->reg->reg_wr.wr.wr_cqe = NULL; 417 ctx->reg->reg_wr.wr.num_sge = 0; 418 ctx->reg->reg_wr.wr.send_flags = 0; 419 ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 420 if (rdma_protocol_iwarp(qp->device, port_num)) 421 ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 422 ctx->reg->reg_wr.mr = ctx->reg->mr; 423 ctx->reg->reg_wr.key = ctx->reg->mr->lkey; 424 count++; 425 426 ctx->reg->sge.addr = ctx->reg->mr->iova; 427 ctx->reg->sge.length = ctx->reg->mr->length; 428 if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE) 429 ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length; 430 431 rdma_wr = &ctx->reg->wr; 432 rdma_wr->wr.sg_list = &ctx->reg->sge; 433 rdma_wr->wr.num_sge = 1; 434 rdma_wr->remote_addr = remote_addr; 435 rdma_wr->rkey = rkey; 436 if (dir == DMA_TO_DEVICE) 437 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 438 else 439 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 440 ctx->reg->reg_wr.wr.next = &rdma_wr->wr; 441 count++; 442 443 return count; 444 445 out_destroy_sig_mr: 446 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 447 out_free_ctx: 448 kfree(ctx->reg); 449 out_unmap_prot_sg: 450 if (prot_sg_cnt) 451 ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir); 452 out_unmap_sg: 453 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 454 return ret; 455 } 456 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 457 458 /* 459 * Now that we are going to post the WRs we can update the lkey and need_inval 460 * state on the MRs. If we were doing this at init time, we would get double 461 * or missing invalidations if a context was initialized but not actually 462 * posted. 463 */ 464 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 465 { 466 reg->mr->need_inval = need_inval; 467 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 468 reg->reg_wr.key = reg->mr->lkey; 469 reg->sge.lkey = reg->mr->lkey; 470 } 471 472 /** 473 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 474 * @ctx: context to operate on 475 * @qp: queue pair to operate on 476 * @port_num: port num to which the connection is bound 477 * @cqe: completion queue entry for the last WR 478 * @chain_wr: WR to append to the posted chain 479 * 480 * Return the WR chain for the set of RDMA READ/WRITE operations described by 481 * @ctx, as well as any memory registration operations needed. If @chain_wr 482 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 483 * If @chain_wr is not set @cqe must be set so that the caller gets a 484 * completion notification. 485 */ 486 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 487 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 488 { 489 struct ib_send_wr *first_wr, *last_wr; 490 int i; 491 492 switch (ctx->type) { 493 case RDMA_RW_SIG_MR: 494 case RDMA_RW_MR: 495 /* fallthrough */ 496 for (i = 0; i < ctx->nr_ops; i++) { 497 rdma_rw_update_lkey(&ctx->reg[i], 498 ctx->reg[i].wr.wr.opcode != 499 IB_WR_RDMA_READ_WITH_INV); 500 } 501 502 if (ctx->reg[0].inv_wr.next) 503 first_wr = &ctx->reg[0].inv_wr; 504 else 505 first_wr = &ctx->reg[0].reg_wr.wr; 506 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 507 break; 508 case RDMA_RW_MULTI_WR: 509 first_wr = &ctx->map.wrs[0].wr; 510 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 511 break; 512 case RDMA_RW_SINGLE_WR: 513 first_wr = &ctx->single.wr.wr; 514 last_wr = &ctx->single.wr.wr; 515 break; 516 default: 517 BUG(); 518 } 519 520 if (chain_wr) { 521 last_wr->next = chain_wr; 522 } else { 523 last_wr->wr_cqe = cqe; 524 last_wr->send_flags |= IB_SEND_SIGNALED; 525 } 526 527 return first_wr; 528 } 529 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 530 531 /** 532 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 533 * @ctx: context to operate on 534 * @qp: queue pair to operate on 535 * @port_num: port num to which the connection is bound 536 * @cqe: completion queue entry for the last WR 537 * @chain_wr: WR to append to the posted chain 538 * 539 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 540 * any memory registration operations needed. If @chain_wr is non-NULL the 541 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 542 * is not set @cqe must be set so that the caller gets a completion 543 * notification. 544 */ 545 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 546 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 547 { 548 struct ib_send_wr *first_wr; 549 550 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 551 return ib_post_send(qp, first_wr, NULL); 552 } 553 EXPORT_SYMBOL(rdma_rw_ctx_post); 554 555 /** 556 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 557 * @ctx: context to release 558 * @qp: queue pair to operate on 559 * @port_num: port num to which the connection is bound 560 * @sg: scatterlist that was used for the READ/WRITE 561 * @sg_cnt: number of entries in @sg 562 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 563 */ 564 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 565 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) 566 { 567 int i; 568 569 switch (ctx->type) { 570 case RDMA_RW_MR: 571 for (i = 0; i < ctx->nr_ops; i++) 572 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 573 kfree(ctx->reg); 574 break; 575 case RDMA_RW_MULTI_WR: 576 kfree(ctx->map.wrs); 577 kfree(ctx->map.sges); 578 break; 579 case RDMA_RW_SINGLE_WR: 580 break; 581 default: 582 BUG(); 583 break; 584 } 585 586 if (is_pci_p2pdma_page(sg_page(sg))) 587 pci_p2pdma_unmap_sg(qp->pd->device->dma_device, sg, 588 sg_cnt, dir); 589 else 590 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 591 } 592 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 593 594 /** 595 * rdma_rw_ctx_destroy_signature - release all resources allocated by 596 * rdma_rw_ctx_signature_init 597 * @ctx: context to release 598 * @qp: queue pair to operate on 599 * @port_num: port num to which the connection is bound 600 * @sg: scatterlist that was used for the READ/WRITE 601 * @sg_cnt: number of entries in @sg 602 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 603 * @prot_sg_cnt: number of entries in @prot_sg 604 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 605 */ 606 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 607 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 608 struct scatterlist *prot_sg, u32 prot_sg_cnt, 609 enum dma_data_direction dir) 610 { 611 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 612 return; 613 614 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 615 kfree(ctx->reg); 616 617 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 618 if (prot_sg_cnt) 619 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 620 } 621 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 622 623 /** 624 * rdma_rw_mr_factor - return number of MRs required for a payload 625 * @device: device handling the connection 626 * @port_num: port num to which the connection is bound 627 * @maxpages: maximum payload pages per rdma_rw_ctx 628 * 629 * Returns the number of MRs the device requires to move @maxpayload 630 * bytes. The returned value is used during transport creation to 631 * compute max_rdma_ctxts and the size of the transport's Send and 632 * Send Completion Queues. 633 */ 634 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num, 635 unsigned int maxpages) 636 { 637 unsigned int mr_pages; 638 639 if (rdma_rw_can_use_mr(device, port_num)) 640 mr_pages = rdma_rw_fr_page_list_len(device, false); 641 else 642 mr_pages = device->attrs.max_sge_rd; 643 return DIV_ROUND_UP(maxpages, mr_pages); 644 } 645 EXPORT_SYMBOL(rdma_rw_mr_factor); 646 647 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 648 { 649 u32 factor; 650 651 WARN_ON_ONCE(attr->port_num == 0); 652 653 /* 654 * Each context needs at least one RDMA READ or WRITE WR. 655 * 656 * For some hardware we might need more, eventually we should ask the 657 * HCA driver for a multiplier here. 658 */ 659 factor = 1; 660 661 /* 662 * If the devices needs MRs to perform RDMA READ or WRITE operations, 663 * we'll need two additional MRs for the registrations and the 664 * invalidation. 665 */ 666 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN || 667 rdma_rw_can_use_mr(dev, attr->port_num)) 668 factor += 2; /* inv + reg */ 669 670 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 671 672 /* 673 * But maybe we were just too high in the sky and the device doesn't 674 * even support all we need, and we'll have to live with what we get.. 675 */ 676 attr->cap.max_send_wr = 677 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 678 } 679 680 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 681 { 682 struct ib_device *dev = qp->pd->device; 683 u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0; 684 int ret = 0; 685 686 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) { 687 nr_sig_mrs = attr->cap.max_rdma_ctxs; 688 nr_mrs = attr->cap.max_rdma_ctxs; 689 max_num_sg = rdma_rw_fr_page_list_len(dev, true); 690 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 691 nr_mrs = attr->cap.max_rdma_ctxs; 692 max_num_sg = rdma_rw_fr_page_list_len(dev, false); 693 } 694 695 if (nr_mrs) { 696 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 697 IB_MR_TYPE_MEM_REG, 698 max_num_sg, 0); 699 if (ret) { 700 pr_err("%s: failed to allocated %d MRs\n", 701 __func__, nr_mrs); 702 return ret; 703 } 704 } 705 706 if (nr_sig_mrs) { 707 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 708 IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg); 709 if (ret) { 710 pr_err("%s: failed to allocated %d SIG MRs\n", 711 __func__, nr_sig_mrs); 712 goto out_free_rdma_mrs; 713 } 714 } 715 716 return 0; 717 718 out_free_rdma_mrs: 719 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 720 return ret; 721 } 722 723 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 724 { 725 ib_mr_pool_destroy(qp, &qp->sig_mrs); 726 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 727 } 728