xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision d40605b6d088b20827e442903022c65f0f165c84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016 HGST, a Western Digital Company.
4  */
5 #include <linux/moduleparam.h>
6 #include <linux/slab.h>
7 #include <linux/pci-p2pdma.h>
8 #include <rdma/mr_pool.h>
9 #include <rdma/rw.h>
10 
11 enum {
12 	RDMA_RW_SINGLE_WR,
13 	RDMA_RW_MULTI_WR,
14 	RDMA_RW_MR,
15 	RDMA_RW_SIG_MR,
16 };
17 
18 static bool rdma_rw_force_mr;
19 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
20 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
21 
22 /*
23  * Check if the device might use memory registration.  This is currently only
24  * true for iWarp devices. In the future we can hopefully fine tune this based
25  * on HCA driver input.
26  */
27 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
28 {
29 	if (rdma_protocol_iwarp(dev, port_num))
30 		return true;
31 	if (unlikely(rdma_rw_force_mr))
32 		return true;
33 	return false;
34 }
35 
36 /*
37  * Check if the device will use memory registration for this RW operation.
38  * We currently always use memory registrations for iWarp RDMA READs, and
39  * have a debug option to force usage of MRs.
40  *
41  * XXX: In the future we can hopefully fine tune this based on HCA driver
42  * input.
43  */
44 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
45 		enum dma_data_direction dir, int dma_nents)
46 {
47 	if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
48 		return true;
49 	if (unlikely(rdma_rw_force_mr))
50 		return true;
51 	return false;
52 }
53 
54 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
55 {
56 	/* arbitrary limit to avoid allocating gigantic resources */
57 	return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
58 }
59 
60 /* Caller must have zero-initialized *reg. */
61 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
62 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
63 		u32 sg_cnt, u32 offset)
64 {
65 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
66 	u32 nents = min(sg_cnt, pages_per_mr);
67 	int count = 0, ret;
68 
69 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
70 	if (!reg->mr)
71 		return -EAGAIN;
72 
73 	if (reg->mr->need_inval) {
74 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
75 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
76 		reg->inv_wr.next = &reg->reg_wr.wr;
77 		count++;
78 	} else {
79 		reg->inv_wr.next = NULL;
80 	}
81 
82 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
83 	if (ret < 0 || ret < nents) {
84 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
85 		return -EINVAL;
86 	}
87 
88 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
89 	reg->reg_wr.mr = reg->mr;
90 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
91 	if (rdma_protocol_iwarp(qp->device, port_num))
92 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
93 	count++;
94 
95 	reg->sge.addr = reg->mr->iova;
96 	reg->sge.length = reg->mr->length;
97 	return count;
98 }
99 
100 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
101 		u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
102 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
103 {
104 	struct rdma_rw_reg_ctx *prev = NULL;
105 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
106 	int i, j, ret = 0, count = 0;
107 
108 	ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
109 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
110 	if (!ctx->reg) {
111 		ret = -ENOMEM;
112 		goto out;
113 	}
114 
115 	for (i = 0; i < ctx->nr_ops; i++) {
116 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
117 		u32 nents = min(sg_cnt, pages_per_mr);
118 
119 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
120 				offset);
121 		if (ret < 0)
122 			goto out_free;
123 		count += ret;
124 
125 		if (prev) {
126 			if (reg->mr->need_inval)
127 				prev->wr.wr.next = &reg->inv_wr;
128 			else
129 				prev->wr.wr.next = &reg->reg_wr.wr;
130 		}
131 
132 		reg->reg_wr.wr.next = &reg->wr.wr;
133 
134 		reg->wr.wr.sg_list = &reg->sge;
135 		reg->wr.wr.num_sge = 1;
136 		reg->wr.remote_addr = remote_addr;
137 		reg->wr.rkey = rkey;
138 		if (dir == DMA_TO_DEVICE) {
139 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
140 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
141 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
142 		} else {
143 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
144 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
145 		}
146 		count++;
147 
148 		remote_addr += reg->sge.length;
149 		sg_cnt -= nents;
150 		for (j = 0; j < nents; j++)
151 			sg = sg_next(sg);
152 		prev = reg;
153 		offset = 0;
154 	}
155 
156 	if (prev)
157 		prev->wr.wr.next = NULL;
158 
159 	ctx->type = RDMA_RW_MR;
160 	return count;
161 
162 out_free:
163 	while (--i >= 0)
164 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
165 	kfree(ctx->reg);
166 out:
167 	return ret;
168 }
169 
170 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
171 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
172 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
173 {
174 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
175 		      qp->max_read_sge;
176 	struct ib_sge *sge;
177 	u32 total_len = 0, i, j;
178 
179 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
180 
181 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
182 	if (!ctx->map.sges)
183 		goto out;
184 
185 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
186 	if (!ctx->map.wrs)
187 		goto out_free_sges;
188 
189 	for (i = 0; i < ctx->nr_ops; i++) {
190 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
191 		u32 nr_sge = min(sg_cnt, max_sge);
192 
193 		if (dir == DMA_TO_DEVICE)
194 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
195 		else
196 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
197 		rdma_wr->remote_addr = remote_addr + total_len;
198 		rdma_wr->rkey = rkey;
199 		rdma_wr->wr.num_sge = nr_sge;
200 		rdma_wr->wr.sg_list = sge;
201 
202 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
203 			sge->addr = sg_dma_address(sg) + offset;
204 			sge->length = sg_dma_len(sg) - offset;
205 			sge->lkey = qp->pd->local_dma_lkey;
206 
207 			total_len += sge->length;
208 			sge++;
209 			sg_cnt--;
210 			offset = 0;
211 		}
212 
213 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
214 			&ctx->map.wrs[i + 1].wr : NULL;
215 	}
216 
217 	ctx->type = RDMA_RW_MULTI_WR;
218 	return ctx->nr_ops;
219 
220 out_free_sges:
221 	kfree(ctx->map.sges);
222 out:
223 	return -ENOMEM;
224 }
225 
226 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
227 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
228 		enum dma_data_direction dir)
229 {
230 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
231 
232 	ctx->nr_ops = 1;
233 
234 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
235 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
236 	ctx->single.sge.length = sg_dma_len(sg) - offset;
237 
238 	memset(rdma_wr, 0, sizeof(*rdma_wr));
239 	if (dir == DMA_TO_DEVICE)
240 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
241 	else
242 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
243 	rdma_wr->wr.sg_list = &ctx->single.sge;
244 	rdma_wr->wr.num_sge = 1;
245 	rdma_wr->remote_addr = remote_addr;
246 	rdma_wr->rkey = rkey;
247 
248 	ctx->type = RDMA_RW_SINGLE_WR;
249 	return 1;
250 }
251 
252 /**
253  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
254  * @ctx:	context to initialize
255  * @qp:		queue pair to operate on
256  * @port_num:	port num to which the connection is bound
257  * @sg:		scatterlist to READ/WRITE from/to
258  * @sg_cnt:	number of entries in @sg
259  * @sg_offset:	current byte offset into @sg
260  * @remote_addr:remote address to read/write (relative to @rkey)
261  * @rkey:	remote key to operate on
262  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
263  *
264  * Returns the number of WQEs that will be needed on the workqueue if
265  * successful, or a negative error code.
266  */
267 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
268 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
269 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
270 {
271 	struct ib_device *dev = qp->pd->device;
272 	int ret;
273 
274 	if (is_pci_p2pdma_page(sg_page(sg)))
275 		ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
276 	else
277 		ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
278 
279 	if (!ret)
280 		return -ENOMEM;
281 	sg_cnt = ret;
282 
283 	/*
284 	 * Skip to the S/G entry that sg_offset falls into:
285 	 */
286 	for (;;) {
287 		u32 len = sg_dma_len(sg);
288 
289 		if (sg_offset < len)
290 			break;
291 
292 		sg = sg_next(sg);
293 		sg_offset -= len;
294 		sg_cnt--;
295 	}
296 
297 	ret = -EIO;
298 	if (WARN_ON_ONCE(sg_cnt == 0))
299 		goto out_unmap_sg;
300 
301 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
302 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
303 				sg_offset, remote_addr, rkey, dir);
304 	} else if (sg_cnt > 1) {
305 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
306 				remote_addr, rkey, dir);
307 	} else {
308 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
309 				remote_addr, rkey, dir);
310 	}
311 
312 	if (ret < 0)
313 		goto out_unmap_sg;
314 	return ret;
315 
316 out_unmap_sg:
317 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
318 	return ret;
319 }
320 EXPORT_SYMBOL(rdma_rw_ctx_init);
321 
322 /**
323  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
324  * @ctx:	context to initialize
325  * @qp:		queue pair to operate on
326  * @port_num:	port num to which the connection is bound
327  * @sg:		scatterlist to READ/WRITE from/to
328  * @sg_cnt:	number of entries in @sg
329  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
330  * @prot_sg_cnt: number of entries in @prot_sg
331  * @sig_attrs:	signature offloading algorithms
332  * @remote_addr:remote address to read/write (relative to @rkey)
333  * @rkey:	remote key to operate on
334  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
335  *
336  * Returns the number of WQEs that will be needed on the workqueue if
337  * successful, or a negative error code.
338  */
339 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
340 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
341 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
342 		struct ib_sig_attrs *sig_attrs,
343 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
344 {
345 	struct ib_device *dev = qp->pd->device;
346 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
347 	struct ib_rdma_wr *rdma_wr;
348 	struct ib_send_wr *prev_wr = NULL;
349 	int count = 0, ret;
350 
351 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
352 		pr_err("SG count too large\n");
353 		return -EINVAL;
354 	}
355 
356 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
357 	if (!ret)
358 		return -ENOMEM;
359 	sg_cnt = ret;
360 
361 	ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
362 	if (!ret) {
363 		ret = -ENOMEM;
364 		goto out_unmap_sg;
365 	}
366 	prot_sg_cnt = ret;
367 
368 	ctx->type = RDMA_RW_SIG_MR;
369 	ctx->nr_ops = 1;
370 	ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
371 	if (!ctx->sig) {
372 		ret = -ENOMEM;
373 		goto out_unmap_prot_sg;
374 	}
375 
376 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
377 	if (ret < 0)
378 		goto out_free_ctx;
379 	count += ret;
380 	prev_wr = &ctx->sig->data.reg_wr.wr;
381 
382 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
383 				  prot_sg, prot_sg_cnt, 0);
384 	if (ret < 0)
385 		goto out_destroy_data_mr;
386 	count += ret;
387 
388 	if (ctx->sig->prot.inv_wr.next)
389 		prev_wr->next = &ctx->sig->prot.inv_wr;
390 	else
391 		prev_wr->next = &ctx->sig->prot.reg_wr.wr;
392 	prev_wr = &ctx->sig->prot.reg_wr.wr;
393 
394 	ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
395 	if (!ctx->sig->sig_mr) {
396 		ret = -EAGAIN;
397 		goto out_destroy_prot_mr;
398 	}
399 
400 	if (ctx->sig->sig_mr->need_inval) {
401 		memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
402 
403 		ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
404 		ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
405 
406 		prev_wr->next = &ctx->sig->sig_inv_wr;
407 		prev_wr = &ctx->sig->sig_inv_wr;
408 	}
409 
410 	ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
411 	ctx->sig->sig_wr.wr.wr_cqe = NULL;
412 	ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
413 	ctx->sig->sig_wr.wr.num_sge = 1;
414 	ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
415 	ctx->sig->sig_wr.sig_attrs = sig_attrs;
416 	ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
417 	if (prot_sg_cnt)
418 		ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
419 	prev_wr->next = &ctx->sig->sig_wr.wr;
420 	prev_wr = &ctx->sig->sig_wr.wr;
421 	count++;
422 
423 	ctx->sig->sig_sge.addr = 0;
424 	ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
425 	if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
426 		ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
427 
428 	rdma_wr = &ctx->sig->data.wr;
429 	rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
430 	rdma_wr->wr.num_sge = 1;
431 	rdma_wr->remote_addr = remote_addr;
432 	rdma_wr->rkey = rkey;
433 	if (dir == DMA_TO_DEVICE)
434 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
435 	else
436 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
437 	prev_wr->next = &rdma_wr->wr;
438 	prev_wr = &rdma_wr->wr;
439 	count++;
440 
441 	return count;
442 
443 out_destroy_prot_mr:
444 	if (prot_sg_cnt)
445 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
446 out_destroy_data_mr:
447 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
448 out_free_ctx:
449 	kfree(ctx->sig);
450 out_unmap_prot_sg:
451 	ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
452 out_unmap_sg:
453 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
454 	return ret;
455 }
456 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
457 
458 /*
459  * Now that we are going to post the WRs we can update the lkey and need_inval
460  * state on the MRs.  If we were doing this at init time, we would get double
461  * or missing invalidations if a context was initialized but not actually
462  * posted.
463  */
464 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
465 {
466 	reg->mr->need_inval = need_inval;
467 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
468 	reg->reg_wr.key = reg->mr->lkey;
469 	reg->sge.lkey = reg->mr->lkey;
470 }
471 
472 /**
473  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
474  * @ctx:	context to operate on
475  * @qp:		queue pair to operate on
476  * @port_num:	port num to which the connection is bound
477  * @cqe:	completion queue entry for the last WR
478  * @chain_wr:	WR to append to the posted chain
479  *
480  * Return the WR chain for the set of RDMA READ/WRITE operations described by
481  * @ctx, as well as any memory registration operations needed.  If @chain_wr
482  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
483  * If @chain_wr is not set @cqe must be set so that the caller gets a
484  * completion notification.
485  */
486 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
487 		u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
488 {
489 	struct ib_send_wr *first_wr, *last_wr;
490 	int i;
491 
492 	switch (ctx->type) {
493 	case RDMA_RW_SIG_MR:
494 		rdma_rw_update_lkey(&ctx->sig->data, true);
495 		if (ctx->sig->prot.mr)
496 			rdma_rw_update_lkey(&ctx->sig->prot, true);
497 
498 		ctx->sig->sig_mr->need_inval = true;
499 		ib_update_fast_reg_key(ctx->sig->sig_mr,
500 			ib_inc_rkey(ctx->sig->sig_mr->lkey));
501 		ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
502 
503 		if (ctx->sig->data.inv_wr.next)
504 			first_wr = &ctx->sig->data.inv_wr;
505 		else
506 			first_wr = &ctx->sig->data.reg_wr.wr;
507 		last_wr = &ctx->sig->data.wr.wr;
508 		break;
509 	case RDMA_RW_MR:
510 		for (i = 0; i < ctx->nr_ops; i++) {
511 			rdma_rw_update_lkey(&ctx->reg[i],
512 				ctx->reg[i].wr.wr.opcode !=
513 					IB_WR_RDMA_READ_WITH_INV);
514 		}
515 
516 		if (ctx->reg[0].inv_wr.next)
517 			first_wr = &ctx->reg[0].inv_wr;
518 		else
519 			first_wr = &ctx->reg[0].reg_wr.wr;
520 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
521 		break;
522 	case RDMA_RW_MULTI_WR:
523 		first_wr = &ctx->map.wrs[0].wr;
524 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
525 		break;
526 	case RDMA_RW_SINGLE_WR:
527 		first_wr = &ctx->single.wr.wr;
528 		last_wr = &ctx->single.wr.wr;
529 		break;
530 	default:
531 		BUG();
532 	}
533 
534 	if (chain_wr) {
535 		last_wr->next = chain_wr;
536 	} else {
537 		last_wr->wr_cqe = cqe;
538 		last_wr->send_flags |= IB_SEND_SIGNALED;
539 	}
540 
541 	return first_wr;
542 }
543 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
544 
545 /**
546  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
547  * @ctx:	context to operate on
548  * @qp:		queue pair to operate on
549  * @port_num:	port num to which the connection is bound
550  * @cqe:	completion queue entry for the last WR
551  * @chain_wr:	WR to append to the posted chain
552  *
553  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
554  * any memory registration operations needed.  If @chain_wr is non-NULL the
555  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
556  * is not set @cqe must be set so that the caller gets a completion
557  * notification.
558  */
559 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
560 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
561 {
562 	struct ib_send_wr *first_wr;
563 
564 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
565 	return ib_post_send(qp, first_wr, NULL);
566 }
567 EXPORT_SYMBOL(rdma_rw_ctx_post);
568 
569 /**
570  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
571  * @ctx:	context to release
572  * @qp:		queue pair to operate on
573  * @port_num:	port num to which the connection is bound
574  * @sg:		scatterlist that was used for the READ/WRITE
575  * @sg_cnt:	number of entries in @sg
576  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
577  */
578 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
579 		struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
580 {
581 	int i;
582 
583 	switch (ctx->type) {
584 	case RDMA_RW_MR:
585 		for (i = 0; i < ctx->nr_ops; i++)
586 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
587 		kfree(ctx->reg);
588 		break;
589 	case RDMA_RW_MULTI_WR:
590 		kfree(ctx->map.wrs);
591 		kfree(ctx->map.sges);
592 		break;
593 	case RDMA_RW_SINGLE_WR:
594 		break;
595 	default:
596 		BUG();
597 		break;
598 	}
599 
600 	/* P2PDMA contexts do not need to be unmapped */
601 	if (!is_pci_p2pdma_page(sg_page(sg)))
602 		ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
603 }
604 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
605 
606 /**
607  * rdma_rw_ctx_destroy_signature - release all resources allocated by
608  *	rdma_rw_ctx_init_signature
609  * @ctx:	context to release
610  * @qp:		queue pair to operate on
611  * @port_num:	port num to which the connection is bound
612  * @sg:		scatterlist that was used for the READ/WRITE
613  * @sg_cnt:	number of entries in @sg
614  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
615  * @prot_sg_cnt: number of entries in @prot_sg
616  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
617  */
618 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
619 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
620 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
621 		enum dma_data_direction dir)
622 {
623 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
624 		return;
625 
626 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
627 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
628 
629 	if (ctx->sig->prot.mr) {
630 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
631 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
632 	}
633 
634 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
635 	kfree(ctx->sig);
636 }
637 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
638 
639 /**
640  * rdma_rw_mr_factor - return number of MRs required for a payload
641  * @device:	device handling the connection
642  * @port_num:	port num to which the connection is bound
643  * @maxpages:	maximum payload pages per rdma_rw_ctx
644  *
645  * Returns the number of MRs the device requires to move @maxpayload
646  * bytes. The returned value is used during transport creation to
647  * compute max_rdma_ctxts and the size of the transport's Send and
648  * Send Completion Queues.
649  */
650 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
651 			       unsigned int maxpages)
652 {
653 	unsigned int mr_pages;
654 
655 	if (rdma_rw_can_use_mr(device, port_num))
656 		mr_pages = rdma_rw_fr_page_list_len(device);
657 	else
658 		mr_pages = device->attrs.max_sge_rd;
659 	return DIV_ROUND_UP(maxpages, mr_pages);
660 }
661 EXPORT_SYMBOL(rdma_rw_mr_factor);
662 
663 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
664 {
665 	u32 factor;
666 
667 	WARN_ON_ONCE(attr->port_num == 0);
668 
669 	/*
670 	 * Each context needs at least one RDMA READ or WRITE WR.
671 	 *
672 	 * For some hardware we might need more, eventually we should ask the
673 	 * HCA driver for a multiplier here.
674 	 */
675 	factor = 1;
676 
677 	/*
678 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
679 	 * we'll need two additional MRs for the registrations and the
680 	 * invalidation.
681 	 */
682 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
683 		factor += 6;	/* (inv + reg) * (data + prot + sig) */
684 	else if (rdma_rw_can_use_mr(dev, attr->port_num))
685 		factor += 2;	/* inv + reg */
686 
687 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
688 
689 	/*
690 	 * But maybe we were just too high in the sky and the device doesn't
691 	 * even support all we need, and we'll have to live with what we get..
692 	 */
693 	attr->cap.max_send_wr =
694 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
695 }
696 
697 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
698 {
699 	struct ib_device *dev = qp->pd->device;
700 	u32 nr_mrs = 0, nr_sig_mrs = 0;
701 	int ret = 0;
702 
703 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
704 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
705 		nr_mrs = attr->cap.max_rdma_ctxs * 2;
706 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
707 		nr_mrs = attr->cap.max_rdma_ctxs;
708 	}
709 
710 	if (nr_mrs) {
711 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
712 				IB_MR_TYPE_MEM_REG,
713 				rdma_rw_fr_page_list_len(dev));
714 		if (ret) {
715 			pr_err("%s: failed to allocated %d MRs\n",
716 				__func__, nr_mrs);
717 			return ret;
718 		}
719 	}
720 
721 	if (nr_sig_mrs) {
722 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
723 				IB_MR_TYPE_SIGNATURE, 2);
724 		if (ret) {
725 			pr_err("%s: failed to allocated %d SIG MRs\n",
726 				__func__, nr_mrs);
727 			goto out_free_rdma_mrs;
728 		}
729 	}
730 
731 	return 0;
732 
733 out_free_rdma_mrs:
734 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
735 	return ret;
736 }
737 
738 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
739 {
740 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
741 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
742 }
743