xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision bc33f5e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016 HGST, a Western Digital Company.
4  */
5 #include <linux/memremap.h>
6 #include <linux/moduleparam.h>
7 #include <linux/slab.h>
8 #include <linux/pci-p2pdma.h>
9 #include <rdma/mr_pool.h>
10 #include <rdma/rw.h>
11 
12 enum {
13 	RDMA_RW_SINGLE_WR,
14 	RDMA_RW_MULTI_WR,
15 	RDMA_RW_MR,
16 	RDMA_RW_SIG_MR,
17 };
18 
19 static bool rdma_rw_force_mr;
20 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
21 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
22 
23 /*
24  * Report whether memory registration should be used. Memory registration must
25  * be used for iWarp devices because of iWARP-specific limitations. Memory
26  * registration is also enabled if registering memory might yield better
27  * performance than using multiple SGE entries, see rdma_rw_io_needs_mr()
28  */
29 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num)
30 {
31 	if (rdma_protocol_iwarp(dev, port_num))
32 		return true;
33 	if (dev->attrs.max_sgl_rd)
34 		return true;
35 	if (unlikely(rdma_rw_force_mr))
36 		return true;
37 	return false;
38 }
39 
40 /*
41  * Check if the device will use memory registration for this RW operation.
42  * For RDMA READs we must use MRs on iWarp and can optionally use them as an
43  * optimization otherwise.  Additionally we have a debug option to force usage
44  * of MRs to help testing this code path.
45  */
46 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num,
47 		enum dma_data_direction dir, int dma_nents)
48 {
49 	if (dir == DMA_FROM_DEVICE) {
50 		if (rdma_protocol_iwarp(dev, port_num))
51 			return true;
52 		if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd)
53 			return true;
54 	}
55 	if (unlikely(rdma_rw_force_mr))
56 		return true;
57 	return false;
58 }
59 
60 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev,
61 					   bool pi_support)
62 {
63 	u32 max_pages;
64 
65 	if (pi_support)
66 		max_pages = dev->attrs.max_pi_fast_reg_page_list_len;
67 	else
68 		max_pages = dev->attrs.max_fast_reg_page_list_len;
69 
70 	/* arbitrary limit to avoid allocating gigantic resources */
71 	return min_t(u32, max_pages, 256);
72 }
73 
74 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
75 {
76 	int count = 0;
77 
78 	if (reg->mr->need_inval) {
79 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
80 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
81 		reg->inv_wr.next = &reg->reg_wr.wr;
82 		count++;
83 	} else {
84 		reg->inv_wr.next = NULL;
85 	}
86 
87 	return count;
88 }
89 
90 /* Caller must have zero-initialized *reg. */
91 static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num,
92 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
93 		u32 sg_cnt, u32 offset)
94 {
95 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
96 						    qp->integrity_en);
97 	u32 nents = min(sg_cnt, pages_per_mr);
98 	int count = 0, ret;
99 
100 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
101 	if (!reg->mr)
102 		return -EAGAIN;
103 
104 	count += rdma_rw_inv_key(reg);
105 
106 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
107 	if (ret < 0 || ret < nents) {
108 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
109 		return -EINVAL;
110 	}
111 
112 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
113 	reg->reg_wr.mr = reg->mr;
114 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
115 	if (rdma_protocol_iwarp(qp->device, port_num))
116 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
117 	count++;
118 
119 	reg->sge.addr = reg->mr->iova;
120 	reg->sge.length = reg->mr->length;
121 	return count;
122 }
123 
124 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
125 		u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
126 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
127 {
128 	struct rdma_rw_reg_ctx *prev = NULL;
129 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
130 						    qp->integrity_en);
131 	int i, j, ret = 0, count = 0;
132 
133 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr);
134 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
135 	if (!ctx->reg) {
136 		ret = -ENOMEM;
137 		goto out;
138 	}
139 
140 	for (i = 0; i < ctx->nr_ops; i++) {
141 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
142 		u32 nents = min(sg_cnt, pages_per_mr);
143 
144 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
145 				offset);
146 		if (ret < 0)
147 			goto out_free;
148 		count += ret;
149 
150 		if (prev) {
151 			if (reg->mr->need_inval)
152 				prev->wr.wr.next = &reg->inv_wr;
153 			else
154 				prev->wr.wr.next = &reg->reg_wr.wr;
155 		}
156 
157 		reg->reg_wr.wr.next = &reg->wr.wr;
158 
159 		reg->wr.wr.sg_list = &reg->sge;
160 		reg->wr.wr.num_sge = 1;
161 		reg->wr.remote_addr = remote_addr;
162 		reg->wr.rkey = rkey;
163 		if (dir == DMA_TO_DEVICE) {
164 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
165 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
166 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
167 		} else {
168 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
169 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
170 		}
171 		count++;
172 
173 		remote_addr += reg->sge.length;
174 		sg_cnt -= nents;
175 		for (j = 0; j < nents; j++)
176 			sg = sg_next(sg);
177 		prev = reg;
178 		offset = 0;
179 	}
180 
181 	if (prev)
182 		prev->wr.wr.next = NULL;
183 
184 	ctx->type = RDMA_RW_MR;
185 	return count;
186 
187 out_free:
188 	while (--i >= 0)
189 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
190 	kfree(ctx->reg);
191 out:
192 	return ret;
193 }
194 
195 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
196 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
197 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
198 {
199 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
200 		      qp->max_read_sge;
201 	struct ib_sge *sge;
202 	u32 total_len = 0, i, j;
203 
204 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
205 
206 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
207 	if (!ctx->map.sges)
208 		goto out;
209 
210 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
211 	if (!ctx->map.wrs)
212 		goto out_free_sges;
213 
214 	for (i = 0; i < ctx->nr_ops; i++) {
215 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
216 		u32 nr_sge = min(sg_cnt, max_sge);
217 
218 		if (dir == DMA_TO_DEVICE)
219 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
220 		else
221 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
222 		rdma_wr->remote_addr = remote_addr + total_len;
223 		rdma_wr->rkey = rkey;
224 		rdma_wr->wr.num_sge = nr_sge;
225 		rdma_wr->wr.sg_list = sge;
226 
227 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
228 			sge->addr = sg_dma_address(sg) + offset;
229 			sge->length = sg_dma_len(sg) - offset;
230 			sge->lkey = qp->pd->local_dma_lkey;
231 
232 			total_len += sge->length;
233 			sge++;
234 			sg_cnt--;
235 			offset = 0;
236 		}
237 
238 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
239 			&ctx->map.wrs[i + 1].wr : NULL;
240 	}
241 
242 	ctx->type = RDMA_RW_MULTI_WR;
243 	return ctx->nr_ops;
244 
245 out_free_sges:
246 	kfree(ctx->map.sges);
247 out:
248 	return -ENOMEM;
249 }
250 
251 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
252 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
253 		enum dma_data_direction dir)
254 {
255 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
256 
257 	ctx->nr_ops = 1;
258 
259 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
260 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
261 	ctx->single.sge.length = sg_dma_len(sg) - offset;
262 
263 	memset(rdma_wr, 0, sizeof(*rdma_wr));
264 	if (dir == DMA_TO_DEVICE)
265 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
266 	else
267 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
268 	rdma_wr->wr.sg_list = &ctx->single.sge;
269 	rdma_wr->wr.num_sge = 1;
270 	rdma_wr->remote_addr = remote_addr;
271 	rdma_wr->rkey = rkey;
272 
273 	ctx->type = RDMA_RW_SINGLE_WR;
274 	return 1;
275 }
276 
277 /**
278  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
279  * @ctx:	context to initialize
280  * @qp:		queue pair to operate on
281  * @port_num:	port num to which the connection is bound
282  * @sg:		scatterlist to READ/WRITE from/to
283  * @sg_cnt:	number of entries in @sg
284  * @sg_offset:	current byte offset into @sg
285  * @remote_addr:remote address to read/write (relative to @rkey)
286  * @rkey:	remote key to operate on
287  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
288  *
289  * Returns the number of WQEs that will be needed on the workqueue if
290  * successful, or a negative error code.
291  */
292 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
293 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
294 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
295 {
296 	struct ib_device *dev = qp->pd->device;
297 	struct sg_table sgt = {
298 		.sgl = sg,
299 		.orig_nents = sg_cnt,
300 	};
301 	int ret;
302 
303 	ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0);
304 	if (ret)
305 		return ret;
306 	sg_cnt = sgt.nents;
307 
308 	/*
309 	 * Skip to the S/G entry that sg_offset falls into:
310 	 */
311 	for (;;) {
312 		u32 len = sg_dma_len(sg);
313 
314 		if (sg_offset < len)
315 			break;
316 
317 		sg = sg_next(sg);
318 		sg_offset -= len;
319 		sg_cnt--;
320 	}
321 
322 	ret = -EIO;
323 	if (WARN_ON_ONCE(sg_cnt == 0))
324 		goto out_unmap_sg;
325 
326 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
327 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
328 				sg_offset, remote_addr, rkey, dir);
329 	} else if (sg_cnt > 1) {
330 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
331 				remote_addr, rkey, dir);
332 	} else {
333 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
334 				remote_addr, rkey, dir);
335 	}
336 
337 	if (ret < 0)
338 		goto out_unmap_sg;
339 	return ret;
340 
341 out_unmap_sg:
342 	ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0);
343 	return ret;
344 }
345 EXPORT_SYMBOL(rdma_rw_ctx_init);
346 
347 /**
348  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
349  * @ctx:	context to initialize
350  * @qp:		queue pair to operate on
351  * @port_num:	port num to which the connection is bound
352  * @sg:		scatterlist to READ/WRITE from/to
353  * @sg_cnt:	number of entries in @sg
354  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
355  * @prot_sg_cnt: number of entries in @prot_sg
356  * @sig_attrs:	signature offloading algorithms
357  * @remote_addr:remote address to read/write (relative to @rkey)
358  * @rkey:	remote key to operate on
359  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
360  *
361  * Returns the number of WQEs that will be needed on the workqueue if
362  * successful, or a negative error code.
363  */
364 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
365 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
366 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
367 		struct ib_sig_attrs *sig_attrs,
368 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
369 {
370 	struct ib_device *dev = qp->pd->device;
371 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
372 						    qp->integrity_en);
373 	struct sg_table sgt = {
374 		.sgl = sg,
375 		.orig_nents = sg_cnt,
376 	};
377 	struct sg_table prot_sgt = {
378 		.sgl = prot_sg,
379 		.orig_nents = prot_sg_cnt,
380 	};
381 	struct ib_rdma_wr *rdma_wr;
382 	int count = 0, ret;
383 
384 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
385 		pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n",
386 		       sg_cnt, prot_sg_cnt, pages_per_mr);
387 		return -EINVAL;
388 	}
389 
390 	ret = ib_dma_map_sgtable_attrs(dev, &sgt, dir, 0);
391 	if (ret)
392 		return ret;
393 
394 	if (prot_sg_cnt) {
395 		ret = ib_dma_map_sgtable_attrs(dev, &prot_sgt, dir, 0);
396 		if (ret)
397 			goto out_unmap_sg;
398 	}
399 
400 	ctx->type = RDMA_RW_SIG_MR;
401 	ctx->nr_ops = 1;
402 	ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL);
403 	if (!ctx->reg) {
404 		ret = -ENOMEM;
405 		goto out_unmap_prot_sg;
406 	}
407 
408 	ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs);
409 	if (!ctx->reg->mr) {
410 		ret = -EAGAIN;
411 		goto out_free_ctx;
412 	}
413 
414 	count += rdma_rw_inv_key(ctx->reg);
415 
416 	memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs));
417 
418 	ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg,
419 			      prot_sgt.nents, NULL, SZ_4K);
420 	if (unlikely(ret)) {
421 		pr_err("failed to map PI sg (%u)\n",
422 		       sgt.nents + prot_sgt.nents);
423 		goto out_destroy_sig_mr;
424 	}
425 
426 	ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY;
427 	ctx->reg->reg_wr.wr.wr_cqe = NULL;
428 	ctx->reg->reg_wr.wr.num_sge = 0;
429 	ctx->reg->reg_wr.wr.send_flags = 0;
430 	ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
431 	if (rdma_protocol_iwarp(qp->device, port_num))
432 		ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
433 	ctx->reg->reg_wr.mr = ctx->reg->mr;
434 	ctx->reg->reg_wr.key = ctx->reg->mr->lkey;
435 	count++;
436 
437 	ctx->reg->sge.addr = ctx->reg->mr->iova;
438 	ctx->reg->sge.length = ctx->reg->mr->length;
439 	if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE)
440 		ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length;
441 
442 	rdma_wr = &ctx->reg->wr;
443 	rdma_wr->wr.sg_list = &ctx->reg->sge;
444 	rdma_wr->wr.num_sge = 1;
445 	rdma_wr->remote_addr = remote_addr;
446 	rdma_wr->rkey = rkey;
447 	if (dir == DMA_TO_DEVICE)
448 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
449 	else
450 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
451 	ctx->reg->reg_wr.wr.next = &rdma_wr->wr;
452 	count++;
453 
454 	return count;
455 
456 out_destroy_sig_mr:
457 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
458 out_free_ctx:
459 	kfree(ctx->reg);
460 out_unmap_prot_sg:
461 	if (prot_sgt.nents)
462 		ib_dma_unmap_sgtable_attrs(dev, &prot_sgt, dir, 0);
463 out_unmap_sg:
464 	ib_dma_unmap_sgtable_attrs(dev, &sgt, dir, 0);
465 	return ret;
466 }
467 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
468 
469 /*
470  * Now that we are going to post the WRs we can update the lkey and need_inval
471  * state on the MRs.  If we were doing this at init time, we would get double
472  * or missing invalidations if a context was initialized but not actually
473  * posted.
474  */
475 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
476 {
477 	reg->mr->need_inval = need_inval;
478 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
479 	reg->reg_wr.key = reg->mr->lkey;
480 	reg->sge.lkey = reg->mr->lkey;
481 }
482 
483 /**
484  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
485  * @ctx:	context to operate on
486  * @qp:		queue pair to operate on
487  * @port_num:	port num to which the connection is bound
488  * @cqe:	completion queue entry for the last WR
489  * @chain_wr:	WR to append to the posted chain
490  *
491  * Return the WR chain for the set of RDMA READ/WRITE operations described by
492  * @ctx, as well as any memory registration operations needed.  If @chain_wr
493  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
494  * If @chain_wr is not set @cqe must be set so that the caller gets a
495  * completion notification.
496  */
497 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
498 		u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
499 {
500 	struct ib_send_wr *first_wr, *last_wr;
501 	int i;
502 
503 	switch (ctx->type) {
504 	case RDMA_RW_SIG_MR:
505 	case RDMA_RW_MR:
506 		for (i = 0; i < ctx->nr_ops; i++) {
507 			rdma_rw_update_lkey(&ctx->reg[i],
508 				ctx->reg[i].wr.wr.opcode !=
509 					IB_WR_RDMA_READ_WITH_INV);
510 		}
511 
512 		if (ctx->reg[0].inv_wr.next)
513 			first_wr = &ctx->reg[0].inv_wr;
514 		else
515 			first_wr = &ctx->reg[0].reg_wr.wr;
516 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
517 		break;
518 	case RDMA_RW_MULTI_WR:
519 		first_wr = &ctx->map.wrs[0].wr;
520 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
521 		break;
522 	case RDMA_RW_SINGLE_WR:
523 		first_wr = &ctx->single.wr.wr;
524 		last_wr = &ctx->single.wr.wr;
525 		break;
526 	default:
527 		BUG();
528 	}
529 
530 	if (chain_wr) {
531 		last_wr->next = chain_wr;
532 	} else {
533 		last_wr->wr_cqe = cqe;
534 		last_wr->send_flags |= IB_SEND_SIGNALED;
535 	}
536 
537 	return first_wr;
538 }
539 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
540 
541 /**
542  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
543  * @ctx:	context to operate on
544  * @qp:		queue pair to operate on
545  * @port_num:	port num to which the connection is bound
546  * @cqe:	completion queue entry for the last WR
547  * @chain_wr:	WR to append to the posted chain
548  *
549  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
550  * any memory registration operations needed.  If @chain_wr is non-NULL the
551  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
552  * is not set @cqe must be set so that the caller gets a completion
553  * notification.
554  */
555 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
556 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
557 {
558 	struct ib_send_wr *first_wr;
559 
560 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
561 	return ib_post_send(qp, first_wr, NULL);
562 }
563 EXPORT_SYMBOL(rdma_rw_ctx_post);
564 
565 /**
566  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
567  * @ctx:	context to release
568  * @qp:		queue pair to operate on
569  * @port_num:	port num to which the connection is bound
570  * @sg:		scatterlist that was used for the READ/WRITE
571  * @sg_cnt:	number of entries in @sg
572  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
573  */
574 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
575 			 u32 port_num, struct scatterlist *sg, u32 sg_cnt,
576 			 enum dma_data_direction dir)
577 {
578 	int i;
579 
580 	switch (ctx->type) {
581 	case RDMA_RW_MR:
582 		for (i = 0; i < ctx->nr_ops; i++)
583 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
584 		kfree(ctx->reg);
585 		break;
586 	case RDMA_RW_MULTI_WR:
587 		kfree(ctx->map.wrs);
588 		kfree(ctx->map.sges);
589 		break;
590 	case RDMA_RW_SINGLE_WR:
591 		break;
592 	default:
593 		BUG();
594 		break;
595 	}
596 
597 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
598 }
599 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
600 
601 /**
602  * rdma_rw_ctx_destroy_signature - release all resources allocated by
603  *	rdma_rw_ctx_signature_init
604  * @ctx:	context to release
605  * @qp:		queue pair to operate on
606  * @port_num:	port num to which the connection is bound
607  * @sg:		scatterlist that was used for the READ/WRITE
608  * @sg_cnt:	number of entries in @sg
609  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
610  * @prot_sg_cnt: number of entries in @prot_sg
611  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
612  */
613 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
614 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
615 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
616 		enum dma_data_direction dir)
617 {
618 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
619 		return;
620 
621 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
622 	kfree(ctx->reg);
623 
624 	if (prot_sg_cnt)
625 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
626 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
627 }
628 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
629 
630 /**
631  * rdma_rw_mr_factor - return number of MRs required for a payload
632  * @device:	device handling the connection
633  * @port_num:	port num to which the connection is bound
634  * @maxpages:	maximum payload pages per rdma_rw_ctx
635  *
636  * Returns the number of MRs the device requires to move @maxpayload
637  * bytes. The returned value is used during transport creation to
638  * compute max_rdma_ctxts and the size of the transport's Send and
639  * Send Completion Queues.
640  */
641 unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num,
642 			       unsigned int maxpages)
643 {
644 	unsigned int mr_pages;
645 
646 	if (rdma_rw_can_use_mr(device, port_num))
647 		mr_pages = rdma_rw_fr_page_list_len(device, false);
648 	else
649 		mr_pages = device->attrs.max_sge_rd;
650 	return DIV_ROUND_UP(maxpages, mr_pages);
651 }
652 EXPORT_SYMBOL(rdma_rw_mr_factor);
653 
654 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
655 {
656 	u32 factor;
657 
658 	WARN_ON_ONCE(attr->port_num == 0);
659 
660 	/*
661 	 * Each context needs at least one RDMA READ or WRITE WR.
662 	 *
663 	 * For some hardware we might need more, eventually we should ask the
664 	 * HCA driver for a multiplier here.
665 	 */
666 	factor = 1;
667 
668 	/*
669 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
670 	 * we'll need two additional MRs for the registrations and the
671 	 * invalidation.
672 	 */
673 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN ||
674 	    rdma_rw_can_use_mr(dev, attr->port_num))
675 		factor += 2;	/* inv + reg */
676 
677 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
678 
679 	/*
680 	 * But maybe we were just too high in the sky and the device doesn't
681 	 * even support all we need, and we'll have to live with what we get..
682 	 */
683 	attr->cap.max_send_wr =
684 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
685 }
686 
687 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
688 {
689 	struct ib_device *dev = qp->pd->device;
690 	u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0;
691 	int ret = 0;
692 
693 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
694 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
695 		nr_mrs = attr->cap.max_rdma_ctxs;
696 		max_num_sg = rdma_rw_fr_page_list_len(dev, true);
697 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
698 		nr_mrs = attr->cap.max_rdma_ctxs;
699 		max_num_sg = rdma_rw_fr_page_list_len(dev, false);
700 	}
701 
702 	if (nr_mrs) {
703 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
704 				IB_MR_TYPE_MEM_REG,
705 				max_num_sg, 0);
706 		if (ret) {
707 			pr_err("%s: failed to allocated %u MRs\n",
708 				__func__, nr_mrs);
709 			return ret;
710 		}
711 	}
712 
713 	if (nr_sig_mrs) {
714 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
715 				IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg);
716 		if (ret) {
717 			pr_err("%s: failed to allocated %u SIG MRs\n",
718 				__func__, nr_sig_mrs);
719 			goto out_free_rdma_mrs;
720 		}
721 	}
722 
723 	return 0;
724 
725 out_free_rdma_mrs:
726 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
727 	return ret;
728 }
729 
730 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
731 {
732 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
733 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
734 }
735