1 /* 2 * Copyright (c) 2016 HGST, a Western Digital Company. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 */ 13 #include <linux/moduleparam.h> 14 #include <linux/slab.h> 15 #include <linux/pci-p2pdma.h> 16 #include <rdma/mr_pool.h> 17 #include <rdma/rw.h> 18 19 enum { 20 RDMA_RW_SINGLE_WR, 21 RDMA_RW_MULTI_WR, 22 RDMA_RW_MR, 23 RDMA_RW_SIG_MR, 24 }; 25 26 static bool rdma_rw_force_mr; 27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 29 30 /* 31 * Check if the device might use memory registration. This is currently only 32 * true for iWarp devices. In the future we can hopefully fine tune this based 33 * on HCA driver input. 34 */ 35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) 36 { 37 if (rdma_protocol_iwarp(dev, port_num)) 38 return true; 39 if (unlikely(rdma_rw_force_mr)) 40 return true; 41 return false; 42 } 43 44 /* 45 * Check if the device will use memory registration for this RW operation. 46 * We currently always use memory registrations for iWarp RDMA READs, and 47 * have a debug option to force usage of MRs. 48 * 49 * XXX: In the future we can hopefully fine tune this based on HCA driver 50 * input. 51 */ 52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, 53 enum dma_data_direction dir, int dma_nents) 54 { 55 if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE) 56 return true; 57 if (unlikely(rdma_rw_force_mr)) 58 return true; 59 return false; 60 } 61 62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev) 63 { 64 /* arbitrary limit to avoid allocating gigantic resources */ 65 return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256); 66 } 67 68 /* Caller must have zero-initialized *reg. */ 69 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, 70 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 71 u32 sg_cnt, u32 offset) 72 { 73 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 74 u32 nents = min(sg_cnt, pages_per_mr); 75 int count = 0, ret; 76 77 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 78 if (!reg->mr) 79 return -EAGAIN; 80 81 if (reg->mr->need_inval) { 82 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 83 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 84 reg->inv_wr.next = ®->reg_wr.wr; 85 count++; 86 } else { 87 reg->inv_wr.next = NULL; 88 } 89 90 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 91 if (ret < 0 || ret < nents) { 92 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 93 return -EINVAL; 94 } 95 96 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 97 reg->reg_wr.mr = reg->mr; 98 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 99 if (rdma_protocol_iwarp(qp->device, port_num)) 100 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 101 count++; 102 103 reg->sge.addr = reg->mr->iova; 104 reg->sge.length = reg->mr->length; 105 return count; 106 } 107 108 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 109 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 110 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 111 { 112 struct rdma_rw_reg_ctx *prev = NULL; 113 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 114 int i, j, ret = 0, count = 0; 115 116 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; 117 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 118 if (!ctx->reg) { 119 ret = -ENOMEM; 120 goto out; 121 } 122 123 for (i = 0; i < ctx->nr_ops; i++) { 124 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 125 u32 nents = min(sg_cnt, pages_per_mr); 126 127 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 128 offset); 129 if (ret < 0) 130 goto out_free; 131 count += ret; 132 133 if (prev) { 134 if (reg->mr->need_inval) 135 prev->wr.wr.next = ®->inv_wr; 136 else 137 prev->wr.wr.next = ®->reg_wr.wr; 138 } 139 140 reg->reg_wr.wr.next = ®->wr.wr; 141 142 reg->wr.wr.sg_list = ®->sge; 143 reg->wr.wr.num_sge = 1; 144 reg->wr.remote_addr = remote_addr; 145 reg->wr.rkey = rkey; 146 if (dir == DMA_TO_DEVICE) { 147 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 148 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 149 reg->wr.wr.opcode = IB_WR_RDMA_READ; 150 } else { 151 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 152 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 153 } 154 count++; 155 156 remote_addr += reg->sge.length; 157 sg_cnt -= nents; 158 for (j = 0; j < nents; j++) 159 sg = sg_next(sg); 160 prev = reg; 161 offset = 0; 162 } 163 164 if (prev) 165 prev->wr.wr.next = NULL; 166 167 ctx->type = RDMA_RW_MR; 168 return count; 169 170 out_free: 171 while (--i >= 0) 172 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 173 kfree(ctx->reg); 174 out: 175 return ret; 176 } 177 178 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 179 struct scatterlist *sg, u32 sg_cnt, u32 offset, 180 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 181 { 182 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : 183 qp->max_read_sge; 184 struct ib_sge *sge; 185 u32 total_len = 0, i, j; 186 187 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 188 189 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 190 if (!ctx->map.sges) 191 goto out; 192 193 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 194 if (!ctx->map.wrs) 195 goto out_free_sges; 196 197 for (i = 0; i < ctx->nr_ops; i++) { 198 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 199 u32 nr_sge = min(sg_cnt, max_sge); 200 201 if (dir == DMA_TO_DEVICE) 202 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 203 else 204 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 205 rdma_wr->remote_addr = remote_addr + total_len; 206 rdma_wr->rkey = rkey; 207 rdma_wr->wr.num_sge = nr_sge; 208 rdma_wr->wr.sg_list = sge; 209 210 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 211 sge->addr = sg_dma_address(sg) + offset; 212 sge->length = sg_dma_len(sg) - offset; 213 sge->lkey = qp->pd->local_dma_lkey; 214 215 total_len += sge->length; 216 sge++; 217 sg_cnt--; 218 offset = 0; 219 } 220 221 rdma_wr->wr.next = i + 1 < ctx->nr_ops ? 222 &ctx->map.wrs[i + 1].wr : NULL; 223 } 224 225 ctx->type = RDMA_RW_MULTI_WR; 226 return ctx->nr_ops; 227 228 out_free_sges: 229 kfree(ctx->map.sges); 230 out: 231 return -ENOMEM; 232 } 233 234 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 235 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 236 enum dma_data_direction dir) 237 { 238 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 239 240 ctx->nr_ops = 1; 241 242 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 243 ctx->single.sge.addr = sg_dma_address(sg) + offset; 244 ctx->single.sge.length = sg_dma_len(sg) - offset; 245 246 memset(rdma_wr, 0, sizeof(*rdma_wr)); 247 if (dir == DMA_TO_DEVICE) 248 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 249 else 250 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 251 rdma_wr->wr.sg_list = &ctx->single.sge; 252 rdma_wr->wr.num_sge = 1; 253 rdma_wr->remote_addr = remote_addr; 254 rdma_wr->rkey = rkey; 255 256 ctx->type = RDMA_RW_SINGLE_WR; 257 return 1; 258 } 259 260 /** 261 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 262 * @ctx: context to initialize 263 * @qp: queue pair to operate on 264 * @port_num: port num to which the connection is bound 265 * @sg: scatterlist to READ/WRITE from/to 266 * @sg_cnt: number of entries in @sg 267 * @sg_offset: current byte offset into @sg 268 * @remote_addr:remote address to read/write (relative to @rkey) 269 * @rkey: remote key to operate on 270 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 271 * 272 * Returns the number of WQEs that will be needed on the workqueue if 273 * successful, or a negative error code. 274 */ 275 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 276 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 277 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 278 { 279 struct ib_device *dev = qp->pd->device; 280 int ret; 281 282 if (is_pci_p2pdma_page(sg_page(sg))) 283 ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir); 284 else 285 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 286 287 if (!ret) 288 return -ENOMEM; 289 sg_cnt = ret; 290 291 /* 292 * Skip to the S/G entry that sg_offset falls into: 293 */ 294 for (;;) { 295 u32 len = sg_dma_len(sg); 296 297 if (sg_offset < len) 298 break; 299 300 sg = sg_next(sg); 301 sg_offset -= len; 302 sg_cnt--; 303 } 304 305 ret = -EIO; 306 if (WARN_ON_ONCE(sg_cnt == 0)) 307 goto out_unmap_sg; 308 309 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 310 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 311 sg_offset, remote_addr, rkey, dir); 312 } else if (sg_cnt > 1) { 313 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 314 remote_addr, rkey, dir); 315 } else { 316 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 317 remote_addr, rkey, dir); 318 } 319 320 if (ret < 0) 321 goto out_unmap_sg; 322 return ret; 323 324 out_unmap_sg: 325 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 326 return ret; 327 } 328 EXPORT_SYMBOL(rdma_rw_ctx_init); 329 330 /** 331 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload 332 * @ctx: context to initialize 333 * @qp: queue pair to operate on 334 * @port_num: port num to which the connection is bound 335 * @sg: scatterlist to READ/WRITE from/to 336 * @sg_cnt: number of entries in @sg 337 * @prot_sg: scatterlist to READ/WRITE protection information from/to 338 * @prot_sg_cnt: number of entries in @prot_sg 339 * @sig_attrs: signature offloading algorithms 340 * @remote_addr:remote address to read/write (relative to @rkey) 341 * @rkey: remote key to operate on 342 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 343 * 344 * Returns the number of WQEs that will be needed on the workqueue if 345 * successful, or a negative error code. 346 */ 347 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 348 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 349 struct scatterlist *prot_sg, u32 prot_sg_cnt, 350 struct ib_sig_attrs *sig_attrs, 351 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 352 { 353 struct ib_device *dev = qp->pd->device; 354 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 355 struct ib_rdma_wr *rdma_wr; 356 struct ib_send_wr *prev_wr = NULL; 357 int count = 0, ret; 358 359 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 360 pr_err("SG count too large\n"); 361 return -EINVAL; 362 } 363 364 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 365 if (!ret) 366 return -ENOMEM; 367 sg_cnt = ret; 368 369 ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir); 370 if (!ret) { 371 ret = -ENOMEM; 372 goto out_unmap_sg; 373 } 374 prot_sg_cnt = ret; 375 376 ctx->type = RDMA_RW_SIG_MR; 377 ctx->nr_ops = 1; 378 ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL); 379 if (!ctx->sig) { 380 ret = -ENOMEM; 381 goto out_unmap_prot_sg; 382 } 383 384 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0); 385 if (ret < 0) 386 goto out_free_ctx; 387 count += ret; 388 prev_wr = &ctx->sig->data.reg_wr.wr; 389 390 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot, 391 prot_sg, prot_sg_cnt, 0); 392 if (ret < 0) 393 goto out_destroy_data_mr; 394 count += ret; 395 396 if (ctx->sig->prot.inv_wr.next) 397 prev_wr->next = &ctx->sig->prot.inv_wr; 398 else 399 prev_wr->next = &ctx->sig->prot.reg_wr.wr; 400 prev_wr = &ctx->sig->prot.reg_wr.wr; 401 402 ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs); 403 if (!ctx->sig->sig_mr) { 404 ret = -EAGAIN; 405 goto out_destroy_prot_mr; 406 } 407 408 if (ctx->sig->sig_mr->need_inval) { 409 memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr)); 410 411 ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV; 412 ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey; 413 414 prev_wr->next = &ctx->sig->sig_inv_wr; 415 prev_wr = &ctx->sig->sig_inv_wr; 416 } 417 418 ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR; 419 ctx->sig->sig_wr.wr.wr_cqe = NULL; 420 ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge; 421 ctx->sig->sig_wr.wr.num_sge = 1; 422 ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE; 423 ctx->sig->sig_wr.sig_attrs = sig_attrs; 424 ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr; 425 if (prot_sg_cnt) 426 ctx->sig->sig_wr.prot = &ctx->sig->prot.sge; 427 prev_wr->next = &ctx->sig->sig_wr.wr; 428 prev_wr = &ctx->sig->sig_wr.wr; 429 count++; 430 431 ctx->sig->sig_sge.addr = 0; 432 ctx->sig->sig_sge.length = ctx->sig->data.sge.length; 433 if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE) 434 ctx->sig->sig_sge.length += ctx->sig->prot.sge.length; 435 436 rdma_wr = &ctx->sig->data.wr; 437 rdma_wr->wr.sg_list = &ctx->sig->sig_sge; 438 rdma_wr->wr.num_sge = 1; 439 rdma_wr->remote_addr = remote_addr; 440 rdma_wr->rkey = rkey; 441 if (dir == DMA_TO_DEVICE) 442 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 443 else 444 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 445 prev_wr->next = &rdma_wr->wr; 446 prev_wr = &rdma_wr->wr; 447 count++; 448 449 return count; 450 451 out_destroy_prot_mr: 452 if (prot_sg_cnt) 453 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); 454 out_destroy_data_mr: 455 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); 456 out_free_ctx: 457 kfree(ctx->sig); 458 out_unmap_prot_sg: 459 ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir); 460 out_unmap_sg: 461 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 462 return ret; 463 } 464 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 465 466 /* 467 * Now that we are going to post the WRs we can update the lkey and need_inval 468 * state on the MRs. If we were doing this at init time, we would get double 469 * or missing invalidations if a context was initialized but not actually 470 * posted. 471 */ 472 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 473 { 474 reg->mr->need_inval = need_inval; 475 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 476 reg->reg_wr.key = reg->mr->lkey; 477 reg->sge.lkey = reg->mr->lkey; 478 } 479 480 /** 481 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 482 * @ctx: context to operate on 483 * @qp: queue pair to operate on 484 * @port_num: port num to which the connection is bound 485 * @cqe: completion queue entry for the last WR 486 * @chain_wr: WR to append to the posted chain 487 * 488 * Return the WR chain for the set of RDMA READ/WRITE operations described by 489 * @ctx, as well as any memory registration operations needed. If @chain_wr 490 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 491 * If @chain_wr is not set @cqe must be set so that the caller gets a 492 * completion notification. 493 */ 494 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 495 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 496 { 497 struct ib_send_wr *first_wr, *last_wr; 498 int i; 499 500 switch (ctx->type) { 501 case RDMA_RW_SIG_MR: 502 rdma_rw_update_lkey(&ctx->sig->data, true); 503 if (ctx->sig->prot.mr) 504 rdma_rw_update_lkey(&ctx->sig->prot, true); 505 506 ctx->sig->sig_mr->need_inval = true; 507 ib_update_fast_reg_key(ctx->sig->sig_mr, 508 ib_inc_rkey(ctx->sig->sig_mr->lkey)); 509 ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey; 510 511 if (ctx->sig->data.inv_wr.next) 512 first_wr = &ctx->sig->data.inv_wr; 513 else 514 first_wr = &ctx->sig->data.reg_wr.wr; 515 last_wr = &ctx->sig->data.wr.wr; 516 break; 517 case RDMA_RW_MR: 518 for (i = 0; i < ctx->nr_ops; i++) { 519 rdma_rw_update_lkey(&ctx->reg[i], 520 ctx->reg[i].wr.wr.opcode != 521 IB_WR_RDMA_READ_WITH_INV); 522 } 523 524 if (ctx->reg[0].inv_wr.next) 525 first_wr = &ctx->reg[0].inv_wr; 526 else 527 first_wr = &ctx->reg[0].reg_wr.wr; 528 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 529 break; 530 case RDMA_RW_MULTI_WR: 531 first_wr = &ctx->map.wrs[0].wr; 532 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 533 break; 534 case RDMA_RW_SINGLE_WR: 535 first_wr = &ctx->single.wr.wr; 536 last_wr = &ctx->single.wr.wr; 537 break; 538 default: 539 BUG(); 540 } 541 542 if (chain_wr) { 543 last_wr->next = chain_wr; 544 } else { 545 last_wr->wr_cqe = cqe; 546 last_wr->send_flags |= IB_SEND_SIGNALED; 547 } 548 549 return first_wr; 550 } 551 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 552 553 /** 554 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 555 * @ctx: context to operate on 556 * @qp: queue pair to operate on 557 * @port_num: port num to which the connection is bound 558 * @cqe: completion queue entry for the last WR 559 * @chain_wr: WR to append to the posted chain 560 * 561 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 562 * any memory registration operations needed. If @chain_wr is non-NULL the 563 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 564 * is not set @cqe must be set so that the caller gets a completion 565 * notification. 566 */ 567 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 568 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 569 { 570 struct ib_send_wr *first_wr; 571 572 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 573 return ib_post_send(qp, first_wr, NULL); 574 } 575 EXPORT_SYMBOL(rdma_rw_ctx_post); 576 577 /** 578 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 579 * @ctx: context to release 580 * @qp: queue pair to operate on 581 * @port_num: port num to which the connection is bound 582 * @sg: scatterlist that was used for the READ/WRITE 583 * @sg_cnt: number of entries in @sg 584 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 585 */ 586 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 587 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) 588 { 589 int i; 590 591 switch (ctx->type) { 592 case RDMA_RW_MR: 593 for (i = 0; i < ctx->nr_ops; i++) 594 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 595 kfree(ctx->reg); 596 break; 597 case RDMA_RW_MULTI_WR: 598 kfree(ctx->map.wrs); 599 kfree(ctx->map.sges); 600 break; 601 case RDMA_RW_SINGLE_WR: 602 break; 603 default: 604 BUG(); 605 break; 606 } 607 608 /* P2PDMA contexts do not need to be unmapped */ 609 if (!is_pci_p2pdma_page(sg_page(sg))) 610 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 611 } 612 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 613 614 /** 615 * rdma_rw_ctx_destroy_signature - release all resources allocated by 616 * rdma_rw_ctx_init_signature 617 * @ctx: context to release 618 * @qp: queue pair to operate on 619 * @port_num: port num to which the connection is bound 620 * @sg: scatterlist that was used for the READ/WRITE 621 * @sg_cnt: number of entries in @sg 622 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 623 * @prot_sg_cnt: number of entries in @prot_sg 624 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 625 */ 626 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 627 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 628 struct scatterlist *prot_sg, u32 prot_sg_cnt, 629 enum dma_data_direction dir) 630 { 631 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 632 return; 633 634 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); 635 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 636 637 if (ctx->sig->prot.mr) { 638 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); 639 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 640 } 641 642 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr); 643 kfree(ctx->sig); 644 } 645 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 646 647 /** 648 * rdma_rw_mr_factor - return number of MRs required for a payload 649 * @device: device handling the connection 650 * @port_num: port num to which the connection is bound 651 * @maxpages: maximum payload pages per rdma_rw_ctx 652 * 653 * Returns the number of MRs the device requires to move @maxpayload 654 * bytes. The returned value is used during transport creation to 655 * compute max_rdma_ctxts and the size of the transport's Send and 656 * Send Completion Queues. 657 */ 658 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num, 659 unsigned int maxpages) 660 { 661 unsigned int mr_pages; 662 663 if (rdma_rw_can_use_mr(device, port_num)) 664 mr_pages = rdma_rw_fr_page_list_len(device); 665 else 666 mr_pages = device->attrs.max_sge_rd; 667 return DIV_ROUND_UP(maxpages, mr_pages); 668 } 669 EXPORT_SYMBOL(rdma_rw_mr_factor); 670 671 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 672 { 673 u32 factor; 674 675 WARN_ON_ONCE(attr->port_num == 0); 676 677 /* 678 * Each context needs at least one RDMA READ or WRITE WR. 679 * 680 * For some hardware we might need more, eventually we should ask the 681 * HCA driver for a multiplier here. 682 */ 683 factor = 1; 684 685 /* 686 * If the devices needs MRs to perform RDMA READ or WRITE operations, 687 * we'll need two additional MRs for the registrations and the 688 * invalidation. 689 */ 690 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) 691 factor += 6; /* (inv + reg) * (data + prot + sig) */ 692 else if (rdma_rw_can_use_mr(dev, attr->port_num)) 693 factor += 2; /* inv + reg */ 694 695 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 696 697 /* 698 * But maybe we were just too high in the sky and the device doesn't 699 * even support all we need, and we'll have to live with what we get.. 700 */ 701 attr->cap.max_send_wr = 702 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 703 } 704 705 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 706 { 707 struct ib_device *dev = qp->pd->device; 708 u32 nr_mrs = 0, nr_sig_mrs = 0; 709 int ret = 0; 710 711 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) { 712 nr_sig_mrs = attr->cap.max_rdma_ctxs; 713 nr_mrs = attr->cap.max_rdma_ctxs * 2; 714 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 715 nr_mrs = attr->cap.max_rdma_ctxs; 716 } 717 718 if (nr_mrs) { 719 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 720 IB_MR_TYPE_MEM_REG, 721 rdma_rw_fr_page_list_len(dev)); 722 if (ret) { 723 pr_err("%s: failed to allocated %d MRs\n", 724 __func__, nr_mrs); 725 return ret; 726 } 727 } 728 729 if (nr_sig_mrs) { 730 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 731 IB_MR_TYPE_SIGNATURE, 2); 732 if (ret) { 733 pr_err("%s: failed to allocated %d SIG MRs\n", 734 __func__, nr_mrs); 735 goto out_free_rdma_mrs; 736 } 737 } 738 739 return 0; 740 741 out_free_rdma_mrs: 742 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 743 return ret; 744 } 745 746 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 747 { 748 ib_mr_pool_destroy(qp, &qp->sig_mrs); 749 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 750 } 751