xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision 8e913a8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016 HGST, a Western Digital Company.
4  */
5 #include <linux/moduleparam.h>
6 #include <linux/slab.h>
7 #include <linux/pci-p2pdma.h>
8 #include <rdma/mr_pool.h>
9 #include <rdma/rw.h>
10 
11 enum {
12 	RDMA_RW_SINGLE_WR,
13 	RDMA_RW_MULTI_WR,
14 	RDMA_RW_MR,
15 	RDMA_RW_SIG_MR,
16 };
17 
18 static bool rdma_rw_force_mr;
19 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
20 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
21 
22 /*
23  * Report whether memory registration should be used. Memory registration must
24  * be used for iWarp devices because of iWARP-specific limitations. Memory
25  * registration is also enabled if registering memory might yield better
26  * performance than using multiple SGE entries, see rdma_rw_io_needs_mr()
27  */
28 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num)
29 {
30 	if (rdma_protocol_iwarp(dev, port_num))
31 		return true;
32 	if (dev->attrs.max_sgl_rd)
33 		return true;
34 	if (unlikely(rdma_rw_force_mr))
35 		return true;
36 	return false;
37 }
38 
39 /*
40  * Check if the device will use memory registration for this RW operation.
41  * For RDMA READs we must use MRs on iWarp and can optionally use them as an
42  * optimization otherwise.  Additionally we have a debug option to force usage
43  * of MRs to help testing this code path.
44  */
45 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num,
46 		enum dma_data_direction dir, int dma_nents)
47 {
48 	if (dir == DMA_FROM_DEVICE) {
49 		if (rdma_protocol_iwarp(dev, port_num))
50 			return true;
51 		if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd)
52 			return true;
53 	}
54 	if (unlikely(rdma_rw_force_mr))
55 		return true;
56 	return false;
57 }
58 
59 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev,
60 					   bool pi_support)
61 {
62 	u32 max_pages;
63 
64 	if (pi_support)
65 		max_pages = dev->attrs.max_pi_fast_reg_page_list_len;
66 	else
67 		max_pages = dev->attrs.max_fast_reg_page_list_len;
68 
69 	/* arbitrary limit to avoid allocating gigantic resources */
70 	return min_t(u32, max_pages, 256);
71 }
72 
73 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
74 {
75 	int count = 0;
76 
77 	if (reg->mr->need_inval) {
78 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
79 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
80 		reg->inv_wr.next = &reg->reg_wr.wr;
81 		count++;
82 	} else {
83 		reg->inv_wr.next = NULL;
84 	}
85 
86 	return count;
87 }
88 
89 /* Caller must have zero-initialized *reg. */
90 static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num,
91 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
92 		u32 sg_cnt, u32 offset)
93 {
94 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
95 						    qp->integrity_en);
96 	u32 nents = min(sg_cnt, pages_per_mr);
97 	int count = 0, ret;
98 
99 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
100 	if (!reg->mr)
101 		return -EAGAIN;
102 
103 	count += rdma_rw_inv_key(reg);
104 
105 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
106 	if (ret < 0 || ret < nents) {
107 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
108 		return -EINVAL;
109 	}
110 
111 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
112 	reg->reg_wr.mr = reg->mr;
113 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
114 	if (rdma_protocol_iwarp(qp->device, port_num))
115 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
116 	count++;
117 
118 	reg->sge.addr = reg->mr->iova;
119 	reg->sge.length = reg->mr->length;
120 	return count;
121 }
122 
123 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
124 		u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
125 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
126 {
127 	struct rdma_rw_reg_ctx *prev = NULL;
128 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
129 						    qp->integrity_en);
130 	int i, j, ret = 0, count = 0;
131 
132 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr);
133 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
134 	if (!ctx->reg) {
135 		ret = -ENOMEM;
136 		goto out;
137 	}
138 
139 	for (i = 0; i < ctx->nr_ops; i++) {
140 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
141 		u32 nents = min(sg_cnt, pages_per_mr);
142 
143 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
144 				offset);
145 		if (ret < 0)
146 			goto out_free;
147 		count += ret;
148 
149 		if (prev) {
150 			if (reg->mr->need_inval)
151 				prev->wr.wr.next = &reg->inv_wr;
152 			else
153 				prev->wr.wr.next = &reg->reg_wr.wr;
154 		}
155 
156 		reg->reg_wr.wr.next = &reg->wr.wr;
157 
158 		reg->wr.wr.sg_list = &reg->sge;
159 		reg->wr.wr.num_sge = 1;
160 		reg->wr.remote_addr = remote_addr;
161 		reg->wr.rkey = rkey;
162 		if (dir == DMA_TO_DEVICE) {
163 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
164 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
165 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
166 		} else {
167 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
168 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
169 		}
170 		count++;
171 
172 		remote_addr += reg->sge.length;
173 		sg_cnt -= nents;
174 		for (j = 0; j < nents; j++)
175 			sg = sg_next(sg);
176 		prev = reg;
177 		offset = 0;
178 	}
179 
180 	if (prev)
181 		prev->wr.wr.next = NULL;
182 
183 	ctx->type = RDMA_RW_MR;
184 	return count;
185 
186 out_free:
187 	while (--i >= 0)
188 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
189 	kfree(ctx->reg);
190 out:
191 	return ret;
192 }
193 
194 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
195 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
196 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
197 {
198 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
199 		      qp->max_read_sge;
200 	struct ib_sge *sge;
201 	u32 total_len = 0, i, j;
202 
203 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
204 
205 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
206 	if (!ctx->map.sges)
207 		goto out;
208 
209 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
210 	if (!ctx->map.wrs)
211 		goto out_free_sges;
212 
213 	for (i = 0; i < ctx->nr_ops; i++) {
214 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
215 		u32 nr_sge = min(sg_cnt, max_sge);
216 
217 		if (dir == DMA_TO_DEVICE)
218 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
219 		else
220 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
221 		rdma_wr->remote_addr = remote_addr + total_len;
222 		rdma_wr->rkey = rkey;
223 		rdma_wr->wr.num_sge = nr_sge;
224 		rdma_wr->wr.sg_list = sge;
225 
226 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
227 			sge->addr = sg_dma_address(sg) + offset;
228 			sge->length = sg_dma_len(sg) - offset;
229 			sge->lkey = qp->pd->local_dma_lkey;
230 
231 			total_len += sge->length;
232 			sge++;
233 			sg_cnt--;
234 			offset = 0;
235 		}
236 
237 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
238 			&ctx->map.wrs[i + 1].wr : NULL;
239 	}
240 
241 	ctx->type = RDMA_RW_MULTI_WR;
242 	return ctx->nr_ops;
243 
244 out_free_sges:
245 	kfree(ctx->map.sges);
246 out:
247 	return -ENOMEM;
248 }
249 
250 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
251 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
252 		enum dma_data_direction dir)
253 {
254 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
255 
256 	ctx->nr_ops = 1;
257 
258 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
259 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
260 	ctx->single.sge.length = sg_dma_len(sg) - offset;
261 
262 	memset(rdma_wr, 0, sizeof(*rdma_wr));
263 	if (dir == DMA_TO_DEVICE)
264 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
265 	else
266 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
267 	rdma_wr->wr.sg_list = &ctx->single.sge;
268 	rdma_wr->wr.num_sge = 1;
269 	rdma_wr->remote_addr = remote_addr;
270 	rdma_wr->rkey = rkey;
271 
272 	ctx->type = RDMA_RW_SINGLE_WR;
273 	return 1;
274 }
275 
276 static void rdma_rw_unmap_sg(struct ib_device *dev, struct scatterlist *sg,
277 			     u32 sg_cnt, enum dma_data_direction dir)
278 {
279 	if (is_pci_p2pdma_page(sg_page(sg)))
280 		pci_p2pdma_unmap_sg(dev->dma_device, sg, sg_cnt, dir);
281 	else
282 		ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
283 }
284 
285 static int rdma_rw_map_sgtable(struct ib_device *dev, struct sg_table *sgt,
286 			       enum dma_data_direction dir)
287 {
288 	int nents;
289 
290 	if (is_pci_p2pdma_page(sg_page(sgt->sgl))) {
291 		if (WARN_ON_ONCE(ib_uses_virt_dma(dev)))
292 			return 0;
293 		nents = pci_p2pdma_map_sg(dev->dma_device, sgt->sgl,
294 					  sgt->orig_nents, dir);
295 		if (!nents)
296 			return -EIO;
297 		sgt->nents = nents;
298 		return 0;
299 	}
300 	return ib_dma_map_sgtable_attrs(dev, sgt, dir, 0);
301 }
302 
303 /**
304  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
305  * @ctx:	context to initialize
306  * @qp:		queue pair to operate on
307  * @port_num:	port num to which the connection is bound
308  * @sg:		scatterlist to READ/WRITE from/to
309  * @sg_cnt:	number of entries in @sg
310  * @sg_offset:	current byte offset into @sg
311  * @remote_addr:remote address to read/write (relative to @rkey)
312  * @rkey:	remote key to operate on
313  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
314  *
315  * Returns the number of WQEs that will be needed on the workqueue if
316  * successful, or a negative error code.
317  */
318 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
319 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
320 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
321 {
322 	struct ib_device *dev = qp->pd->device;
323 	struct sg_table sgt = {
324 		.sgl = sg,
325 		.orig_nents = sg_cnt,
326 	};
327 	int ret;
328 
329 	ret = rdma_rw_map_sgtable(dev, &sgt, dir);
330 	if (ret)
331 		return ret;
332 	sg_cnt = sgt.nents;
333 
334 	/*
335 	 * Skip to the S/G entry that sg_offset falls into:
336 	 */
337 	for (;;) {
338 		u32 len = sg_dma_len(sg);
339 
340 		if (sg_offset < len)
341 			break;
342 
343 		sg = sg_next(sg);
344 		sg_offset -= len;
345 		sg_cnt--;
346 	}
347 
348 	ret = -EIO;
349 	if (WARN_ON_ONCE(sg_cnt == 0))
350 		goto out_unmap_sg;
351 
352 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
353 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
354 				sg_offset, remote_addr, rkey, dir);
355 	} else if (sg_cnt > 1) {
356 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
357 				remote_addr, rkey, dir);
358 	} else {
359 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
360 				remote_addr, rkey, dir);
361 	}
362 
363 	if (ret < 0)
364 		goto out_unmap_sg;
365 	return ret;
366 
367 out_unmap_sg:
368 	rdma_rw_unmap_sg(dev, sgt.sgl, sgt.orig_nents, dir);
369 	return ret;
370 }
371 EXPORT_SYMBOL(rdma_rw_ctx_init);
372 
373 /**
374  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
375  * @ctx:	context to initialize
376  * @qp:		queue pair to operate on
377  * @port_num:	port num to which the connection is bound
378  * @sg:		scatterlist to READ/WRITE from/to
379  * @sg_cnt:	number of entries in @sg
380  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
381  * @prot_sg_cnt: number of entries in @prot_sg
382  * @sig_attrs:	signature offloading algorithms
383  * @remote_addr:remote address to read/write (relative to @rkey)
384  * @rkey:	remote key to operate on
385  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
386  *
387  * Returns the number of WQEs that will be needed on the workqueue if
388  * successful, or a negative error code.
389  */
390 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
391 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
392 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
393 		struct ib_sig_attrs *sig_attrs,
394 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
395 {
396 	struct ib_device *dev = qp->pd->device;
397 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
398 						    qp->integrity_en);
399 	struct sg_table sgt = {
400 		.sgl = sg,
401 		.orig_nents = sg_cnt,
402 	};
403 	struct sg_table prot_sgt = {
404 		.sgl = prot_sg,
405 		.orig_nents = prot_sg_cnt,
406 	};
407 	struct ib_rdma_wr *rdma_wr;
408 	int count = 0, ret;
409 
410 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
411 		pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n",
412 		       sg_cnt, prot_sg_cnt, pages_per_mr);
413 		return -EINVAL;
414 	}
415 
416 	ret = rdma_rw_map_sgtable(dev, &sgt, dir);
417 	if (ret)
418 		return ret;
419 
420 	if (prot_sg_cnt) {
421 		ret = rdma_rw_map_sgtable(dev, &prot_sgt, dir);
422 		if (ret)
423 			goto out_unmap_sg;
424 	}
425 
426 	ctx->type = RDMA_RW_SIG_MR;
427 	ctx->nr_ops = 1;
428 	ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL);
429 	if (!ctx->reg) {
430 		ret = -ENOMEM;
431 		goto out_unmap_prot_sg;
432 	}
433 
434 	ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs);
435 	if (!ctx->reg->mr) {
436 		ret = -EAGAIN;
437 		goto out_free_ctx;
438 	}
439 
440 	count += rdma_rw_inv_key(ctx->reg);
441 
442 	memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs));
443 
444 	ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg,
445 			      prot_sgt.nents, NULL, SZ_4K);
446 	if (unlikely(ret)) {
447 		pr_err("failed to map PI sg (%u)\n",
448 		       sgt.nents + prot_sgt.nents);
449 		goto out_destroy_sig_mr;
450 	}
451 
452 	ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY;
453 	ctx->reg->reg_wr.wr.wr_cqe = NULL;
454 	ctx->reg->reg_wr.wr.num_sge = 0;
455 	ctx->reg->reg_wr.wr.send_flags = 0;
456 	ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
457 	if (rdma_protocol_iwarp(qp->device, port_num))
458 		ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
459 	ctx->reg->reg_wr.mr = ctx->reg->mr;
460 	ctx->reg->reg_wr.key = ctx->reg->mr->lkey;
461 	count++;
462 
463 	ctx->reg->sge.addr = ctx->reg->mr->iova;
464 	ctx->reg->sge.length = ctx->reg->mr->length;
465 	if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE)
466 		ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length;
467 
468 	rdma_wr = &ctx->reg->wr;
469 	rdma_wr->wr.sg_list = &ctx->reg->sge;
470 	rdma_wr->wr.num_sge = 1;
471 	rdma_wr->remote_addr = remote_addr;
472 	rdma_wr->rkey = rkey;
473 	if (dir == DMA_TO_DEVICE)
474 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
475 	else
476 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
477 	ctx->reg->reg_wr.wr.next = &rdma_wr->wr;
478 	count++;
479 
480 	return count;
481 
482 out_destroy_sig_mr:
483 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
484 out_free_ctx:
485 	kfree(ctx->reg);
486 out_unmap_prot_sg:
487 	if (prot_sgt.nents)
488 		rdma_rw_unmap_sg(dev, prot_sgt.sgl, prot_sgt.orig_nents, dir);
489 out_unmap_sg:
490 	rdma_rw_unmap_sg(dev, sgt.sgl, sgt.orig_nents, dir);
491 	return ret;
492 }
493 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
494 
495 /*
496  * Now that we are going to post the WRs we can update the lkey and need_inval
497  * state on the MRs.  If we were doing this at init time, we would get double
498  * or missing invalidations if a context was initialized but not actually
499  * posted.
500  */
501 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
502 {
503 	reg->mr->need_inval = need_inval;
504 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
505 	reg->reg_wr.key = reg->mr->lkey;
506 	reg->sge.lkey = reg->mr->lkey;
507 }
508 
509 /**
510  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
511  * @ctx:	context to operate on
512  * @qp:		queue pair to operate on
513  * @port_num:	port num to which the connection is bound
514  * @cqe:	completion queue entry for the last WR
515  * @chain_wr:	WR to append to the posted chain
516  *
517  * Return the WR chain for the set of RDMA READ/WRITE operations described by
518  * @ctx, as well as any memory registration operations needed.  If @chain_wr
519  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
520  * If @chain_wr is not set @cqe must be set so that the caller gets a
521  * completion notification.
522  */
523 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
524 		u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
525 {
526 	struct ib_send_wr *first_wr, *last_wr;
527 	int i;
528 
529 	switch (ctx->type) {
530 	case RDMA_RW_SIG_MR:
531 	case RDMA_RW_MR:
532 		for (i = 0; i < ctx->nr_ops; i++) {
533 			rdma_rw_update_lkey(&ctx->reg[i],
534 				ctx->reg[i].wr.wr.opcode !=
535 					IB_WR_RDMA_READ_WITH_INV);
536 		}
537 
538 		if (ctx->reg[0].inv_wr.next)
539 			first_wr = &ctx->reg[0].inv_wr;
540 		else
541 			first_wr = &ctx->reg[0].reg_wr.wr;
542 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
543 		break;
544 	case RDMA_RW_MULTI_WR:
545 		first_wr = &ctx->map.wrs[0].wr;
546 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
547 		break;
548 	case RDMA_RW_SINGLE_WR:
549 		first_wr = &ctx->single.wr.wr;
550 		last_wr = &ctx->single.wr.wr;
551 		break;
552 	default:
553 		BUG();
554 	}
555 
556 	if (chain_wr) {
557 		last_wr->next = chain_wr;
558 	} else {
559 		last_wr->wr_cqe = cqe;
560 		last_wr->send_flags |= IB_SEND_SIGNALED;
561 	}
562 
563 	return first_wr;
564 }
565 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
566 
567 /**
568  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
569  * @ctx:	context to operate on
570  * @qp:		queue pair to operate on
571  * @port_num:	port num to which the connection is bound
572  * @cqe:	completion queue entry for the last WR
573  * @chain_wr:	WR to append to the posted chain
574  *
575  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
576  * any memory registration operations needed.  If @chain_wr is non-NULL the
577  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
578  * is not set @cqe must be set so that the caller gets a completion
579  * notification.
580  */
581 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
582 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
583 {
584 	struct ib_send_wr *first_wr;
585 
586 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
587 	return ib_post_send(qp, first_wr, NULL);
588 }
589 EXPORT_SYMBOL(rdma_rw_ctx_post);
590 
591 /**
592  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
593  * @ctx:	context to release
594  * @qp:		queue pair to operate on
595  * @port_num:	port num to which the connection is bound
596  * @sg:		scatterlist that was used for the READ/WRITE
597  * @sg_cnt:	number of entries in @sg
598  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
599  */
600 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
601 			 u32 port_num, struct scatterlist *sg, u32 sg_cnt,
602 			 enum dma_data_direction dir)
603 {
604 	int i;
605 
606 	switch (ctx->type) {
607 	case RDMA_RW_MR:
608 		for (i = 0; i < ctx->nr_ops; i++)
609 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
610 		kfree(ctx->reg);
611 		break;
612 	case RDMA_RW_MULTI_WR:
613 		kfree(ctx->map.wrs);
614 		kfree(ctx->map.sges);
615 		break;
616 	case RDMA_RW_SINGLE_WR:
617 		break;
618 	default:
619 		BUG();
620 		break;
621 	}
622 
623 	rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
624 }
625 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
626 
627 /**
628  * rdma_rw_ctx_destroy_signature - release all resources allocated by
629  *	rdma_rw_ctx_signature_init
630  * @ctx:	context to release
631  * @qp:		queue pair to operate on
632  * @port_num:	port num to which the connection is bound
633  * @sg:		scatterlist that was used for the READ/WRITE
634  * @sg_cnt:	number of entries in @sg
635  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
636  * @prot_sg_cnt: number of entries in @prot_sg
637  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
638  */
639 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
640 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
641 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
642 		enum dma_data_direction dir)
643 {
644 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
645 		return;
646 
647 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
648 	kfree(ctx->reg);
649 
650 	if (prot_sg_cnt)
651 		rdma_rw_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
652 	rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
653 }
654 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
655 
656 /**
657  * rdma_rw_mr_factor - return number of MRs required for a payload
658  * @device:	device handling the connection
659  * @port_num:	port num to which the connection is bound
660  * @maxpages:	maximum payload pages per rdma_rw_ctx
661  *
662  * Returns the number of MRs the device requires to move @maxpayload
663  * bytes. The returned value is used during transport creation to
664  * compute max_rdma_ctxts and the size of the transport's Send and
665  * Send Completion Queues.
666  */
667 unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num,
668 			       unsigned int maxpages)
669 {
670 	unsigned int mr_pages;
671 
672 	if (rdma_rw_can_use_mr(device, port_num))
673 		mr_pages = rdma_rw_fr_page_list_len(device, false);
674 	else
675 		mr_pages = device->attrs.max_sge_rd;
676 	return DIV_ROUND_UP(maxpages, mr_pages);
677 }
678 EXPORT_SYMBOL(rdma_rw_mr_factor);
679 
680 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
681 {
682 	u32 factor;
683 
684 	WARN_ON_ONCE(attr->port_num == 0);
685 
686 	/*
687 	 * Each context needs at least one RDMA READ or WRITE WR.
688 	 *
689 	 * For some hardware we might need more, eventually we should ask the
690 	 * HCA driver for a multiplier here.
691 	 */
692 	factor = 1;
693 
694 	/*
695 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
696 	 * we'll need two additional MRs for the registrations and the
697 	 * invalidation.
698 	 */
699 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN ||
700 	    rdma_rw_can_use_mr(dev, attr->port_num))
701 		factor += 2;	/* inv + reg */
702 
703 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
704 
705 	/*
706 	 * But maybe we were just too high in the sky and the device doesn't
707 	 * even support all we need, and we'll have to live with what we get..
708 	 */
709 	attr->cap.max_send_wr =
710 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
711 }
712 
713 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
714 {
715 	struct ib_device *dev = qp->pd->device;
716 	u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0;
717 	int ret = 0;
718 
719 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
720 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
721 		nr_mrs = attr->cap.max_rdma_ctxs;
722 		max_num_sg = rdma_rw_fr_page_list_len(dev, true);
723 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
724 		nr_mrs = attr->cap.max_rdma_ctxs;
725 		max_num_sg = rdma_rw_fr_page_list_len(dev, false);
726 	}
727 
728 	if (nr_mrs) {
729 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
730 				IB_MR_TYPE_MEM_REG,
731 				max_num_sg, 0);
732 		if (ret) {
733 			pr_err("%s: failed to allocated %u MRs\n",
734 				__func__, nr_mrs);
735 			return ret;
736 		}
737 	}
738 
739 	if (nr_sig_mrs) {
740 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
741 				IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg);
742 		if (ret) {
743 			pr_err("%s: failed to allocated %u SIG MRs\n",
744 				__func__, nr_sig_mrs);
745 			goto out_free_rdma_mrs;
746 		}
747 	}
748 
749 	return 0;
750 
751 out_free_rdma_mrs:
752 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
753 	return ret;
754 }
755 
756 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
757 {
758 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
759 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
760 }
761