1 /* 2 * Copyright (c) 2016 HGST, a Western Digital Company. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 */ 13 #include <linux/moduleparam.h> 14 #include <linux/slab.h> 15 #include <rdma/mr_pool.h> 16 #include <rdma/rw.h> 17 18 enum { 19 RDMA_RW_SINGLE_WR, 20 RDMA_RW_MULTI_WR, 21 RDMA_RW_MR, 22 RDMA_RW_SIG_MR, 23 }; 24 25 static bool rdma_rw_force_mr; 26 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 27 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 28 29 /* 30 * Check if the device might use memory registration. This is currently only 31 * true for iWarp devices. In the future we can hopefully fine tune this based 32 * on HCA driver input. 33 */ 34 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) 35 { 36 if (rdma_protocol_iwarp(dev, port_num)) 37 return true; 38 if (unlikely(rdma_rw_force_mr)) 39 return true; 40 return false; 41 } 42 43 /* 44 * Check if the device will use memory registration for this RW operation. 45 * We currently always use memory registrations for iWarp RDMA READs, and 46 * have a debug option to force usage of MRs. 47 * 48 * XXX: In the future we can hopefully fine tune this based on HCA driver 49 * input. 50 */ 51 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, 52 enum dma_data_direction dir, int dma_nents) 53 { 54 if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE) 55 return true; 56 if (unlikely(rdma_rw_force_mr)) 57 return true; 58 return false; 59 } 60 61 static inline u32 rdma_rw_max_sge(struct ib_device *dev, 62 enum dma_data_direction dir) 63 { 64 return dir == DMA_TO_DEVICE ? 65 dev->attrs.max_sge : dev->attrs.max_sge_rd; 66 } 67 68 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev) 69 { 70 /* arbitrary limit to avoid allocating gigantic resources */ 71 return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256); 72 } 73 74 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, 75 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 76 u32 sg_cnt, u32 offset) 77 { 78 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 79 u32 nents = min(sg_cnt, pages_per_mr); 80 int count = 0, ret; 81 82 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 83 if (!reg->mr) 84 return -EAGAIN; 85 86 if (reg->mr->need_inval) { 87 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 88 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 89 reg->inv_wr.next = ®->reg_wr.wr; 90 count++; 91 } else { 92 reg->inv_wr.next = NULL; 93 } 94 95 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 96 if (ret < nents) { 97 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 98 return -EINVAL; 99 } 100 101 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 102 reg->reg_wr.mr = reg->mr; 103 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 104 if (rdma_protocol_iwarp(qp->device, port_num)) 105 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 106 count++; 107 108 reg->sge.addr = reg->mr->iova; 109 reg->sge.length = reg->mr->length; 110 return count; 111 } 112 113 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 114 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 115 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 116 { 117 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 118 int i, j, ret = 0, count = 0; 119 120 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; 121 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 122 if (!ctx->reg) { 123 ret = -ENOMEM; 124 goto out; 125 } 126 127 for (i = 0; i < ctx->nr_ops; i++) { 128 struct rdma_rw_reg_ctx *prev = i ? &ctx->reg[i - 1] : NULL; 129 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 130 u32 nents = min(sg_cnt, pages_per_mr); 131 132 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 133 offset); 134 if (ret < 0) 135 goto out_free; 136 count += ret; 137 138 if (prev) { 139 if (reg->mr->need_inval) 140 prev->wr.wr.next = ®->inv_wr; 141 else 142 prev->wr.wr.next = ®->reg_wr.wr; 143 } 144 145 reg->reg_wr.wr.next = ®->wr.wr; 146 147 reg->wr.wr.sg_list = ®->sge; 148 reg->wr.wr.num_sge = 1; 149 reg->wr.remote_addr = remote_addr; 150 reg->wr.rkey = rkey; 151 if (dir == DMA_TO_DEVICE) { 152 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 153 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 154 reg->wr.wr.opcode = IB_WR_RDMA_READ; 155 } else { 156 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 157 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 158 } 159 count++; 160 161 remote_addr += reg->sge.length; 162 sg_cnt -= nents; 163 for (j = 0; j < nents; j++) 164 sg = sg_next(sg); 165 offset = 0; 166 } 167 168 ctx->type = RDMA_RW_MR; 169 return count; 170 171 out_free: 172 while (--i >= 0) 173 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 174 kfree(ctx->reg); 175 out: 176 return ret; 177 } 178 179 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 180 struct scatterlist *sg, u32 sg_cnt, u32 offset, 181 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 182 { 183 struct ib_device *dev = qp->pd->device; 184 u32 max_sge = rdma_rw_max_sge(dev, dir); 185 struct ib_sge *sge; 186 u32 total_len = 0, i, j; 187 188 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 189 190 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 191 if (!ctx->map.sges) 192 goto out; 193 194 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 195 if (!ctx->map.wrs) 196 goto out_free_sges; 197 198 for (i = 0; i < ctx->nr_ops; i++) { 199 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 200 u32 nr_sge = min(sg_cnt, max_sge); 201 202 if (dir == DMA_TO_DEVICE) 203 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 204 else 205 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 206 rdma_wr->remote_addr = remote_addr + total_len; 207 rdma_wr->rkey = rkey; 208 rdma_wr->wr.sg_list = sge; 209 210 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 211 rdma_wr->wr.num_sge++; 212 213 sge->addr = ib_sg_dma_address(dev, sg) + offset; 214 sge->length = ib_sg_dma_len(dev, sg) - offset; 215 sge->lkey = qp->pd->local_dma_lkey; 216 217 total_len += sge->length; 218 sge++; 219 sg_cnt--; 220 offset = 0; 221 } 222 223 if (i + 1 < ctx->nr_ops) 224 rdma_wr->wr.next = &ctx->map.wrs[i + 1].wr; 225 } 226 227 ctx->type = RDMA_RW_MULTI_WR; 228 return ctx->nr_ops; 229 230 out_free_sges: 231 kfree(ctx->map.sges); 232 out: 233 return -ENOMEM; 234 } 235 236 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 237 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 238 enum dma_data_direction dir) 239 { 240 struct ib_device *dev = qp->pd->device; 241 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 242 243 ctx->nr_ops = 1; 244 245 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 246 ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset; 247 ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset; 248 249 memset(rdma_wr, 0, sizeof(*rdma_wr)); 250 if (dir == DMA_TO_DEVICE) 251 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 252 else 253 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 254 rdma_wr->wr.sg_list = &ctx->single.sge; 255 rdma_wr->wr.num_sge = 1; 256 rdma_wr->remote_addr = remote_addr; 257 rdma_wr->rkey = rkey; 258 259 ctx->type = RDMA_RW_SINGLE_WR; 260 return 1; 261 } 262 263 /** 264 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 265 * @ctx: context to initialize 266 * @qp: queue pair to operate on 267 * @port_num: port num to which the connection is bound 268 * @sg: scatterlist to READ/WRITE from/to 269 * @sg_cnt: number of entries in @sg 270 * @sg_offset: current byte offset into @sg 271 * @remote_addr:remote address to read/write (relative to @rkey) 272 * @rkey: remote key to operate on 273 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 274 * 275 * Returns the number of WQEs that will be needed on the workqueue if 276 * successful, or a negative error code. 277 */ 278 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 279 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 280 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 281 { 282 struct ib_device *dev = qp->pd->device; 283 int ret; 284 285 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 286 if (!ret) 287 return -ENOMEM; 288 sg_cnt = ret; 289 290 /* 291 * Skip to the S/G entry that sg_offset falls into: 292 */ 293 for (;;) { 294 u32 len = ib_sg_dma_len(dev, sg); 295 296 if (sg_offset < len) 297 break; 298 299 sg = sg_next(sg); 300 sg_offset -= len; 301 sg_cnt--; 302 } 303 304 ret = -EIO; 305 if (WARN_ON_ONCE(sg_cnt == 0)) 306 goto out_unmap_sg; 307 308 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 309 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 310 sg_offset, remote_addr, rkey, dir); 311 } else if (sg_cnt > 1) { 312 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 313 remote_addr, rkey, dir); 314 } else { 315 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 316 remote_addr, rkey, dir); 317 } 318 319 if (ret < 0) 320 goto out_unmap_sg; 321 return ret; 322 323 out_unmap_sg: 324 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 325 return ret; 326 } 327 EXPORT_SYMBOL(rdma_rw_ctx_init); 328 329 /** 330 * rdma_rw_ctx_signature init - initialize a RW context with signature offload 331 * @ctx: context to initialize 332 * @qp: queue pair to operate on 333 * @port_num: port num to which the connection is bound 334 * @sg: scatterlist to READ/WRITE from/to 335 * @sg_cnt: number of entries in @sg 336 * @prot_sg: scatterlist to READ/WRITE protection information from/to 337 * @prot_sg_cnt: number of entries in @prot_sg 338 * @sig_attrs: signature offloading algorithms 339 * @remote_addr:remote address to read/write (relative to @rkey) 340 * @rkey: remote key to operate on 341 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 342 * 343 * Returns the number of WQEs that will be needed on the workqueue if 344 * successful, or a negative error code. 345 */ 346 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 347 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 348 struct scatterlist *prot_sg, u32 prot_sg_cnt, 349 struct ib_sig_attrs *sig_attrs, 350 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 351 { 352 struct ib_device *dev = qp->pd->device; 353 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); 354 struct ib_rdma_wr *rdma_wr; 355 struct ib_send_wr *prev_wr = NULL; 356 int count = 0, ret; 357 358 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 359 pr_err("SG count too large\n"); 360 return -EINVAL; 361 } 362 363 ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); 364 if (!ret) 365 return -ENOMEM; 366 sg_cnt = ret; 367 368 ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir); 369 if (!ret) { 370 ret = -ENOMEM; 371 goto out_unmap_sg; 372 } 373 prot_sg_cnt = ret; 374 375 ctx->type = RDMA_RW_SIG_MR; 376 ctx->nr_ops = 1; 377 ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL); 378 if (!ctx->sig) { 379 ret = -ENOMEM; 380 goto out_unmap_prot_sg; 381 } 382 383 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0); 384 if (ret < 0) 385 goto out_free_ctx; 386 count += ret; 387 prev_wr = &ctx->sig->data.reg_wr.wr; 388 389 if (prot_sg_cnt) { 390 ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot, 391 prot_sg, prot_sg_cnt, 0); 392 if (ret < 0) 393 goto out_destroy_data_mr; 394 count += ret; 395 396 if (ctx->sig->prot.inv_wr.next) 397 prev_wr->next = &ctx->sig->prot.inv_wr; 398 else 399 prev_wr->next = &ctx->sig->prot.reg_wr.wr; 400 prev_wr = &ctx->sig->prot.reg_wr.wr; 401 } else { 402 ctx->sig->prot.mr = NULL; 403 } 404 405 ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs); 406 if (!ctx->sig->sig_mr) { 407 ret = -EAGAIN; 408 goto out_destroy_prot_mr; 409 } 410 411 if (ctx->sig->sig_mr->need_inval) { 412 memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr)); 413 414 ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV; 415 ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey; 416 417 prev_wr->next = &ctx->sig->sig_inv_wr; 418 prev_wr = &ctx->sig->sig_inv_wr; 419 } 420 421 ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR; 422 ctx->sig->sig_wr.wr.wr_cqe = NULL; 423 ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge; 424 ctx->sig->sig_wr.wr.num_sge = 1; 425 ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE; 426 ctx->sig->sig_wr.sig_attrs = sig_attrs; 427 ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr; 428 if (prot_sg_cnt) 429 ctx->sig->sig_wr.prot = &ctx->sig->prot.sge; 430 prev_wr->next = &ctx->sig->sig_wr.wr; 431 prev_wr = &ctx->sig->sig_wr.wr; 432 count++; 433 434 ctx->sig->sig_sge.addr = 0; 435 ctx->sig->sig_sge.length = ctx->sig->data.sge.length; 436 if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE) 437 ctx->sig->sig_sge.length += ctx->sig->prot.sge.length; 438 439 rdma_wr = &ctx->sig->data.wr; 440 rdma_wr->wr.sg_list = &ctx->sig->sig_sge; 441 rdma_wr->wr.num_sge = 1; 442 rdma_wr->remote_addr = remote_addr; 443 rdma_wr->rkey = rkey; 444 if (dir == DMA_TO_DEVICE) 445 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 446 else 447 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 448 prev_wr->next = &rdma_wr->wr; 449 prev_wr = &rdma_wr->wr; 450 count++; 451 452 return count; 453 454 out_destroy_prot_mr: 455 if (prot_sg_cnt) 456 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); 457 out_destroy_data_mr: 458 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); 459 out_free_ctx: 460 kfree(ctx->sig); 461 out_unmap_prot_sg: 462 ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir); 463 out_unmap_sg: 464 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 465 return ret; 466 } 467 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 468 469 /* 470 * Now that we are going to post the WRs we can update the lkey and need_inval 471 * state on the MRs. If we were doing this at init time, we would get double 472 * or missing invalidations if a context was initialized but not actually 473 * posted. 474 */ 475 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 476 { 477 reg->mr->need_inval = need_inval; 478 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 479 reg->reg_wr.key = reg->mr->lkey; 480 reg->sge.lkey = reg->mr->lkey; 481 } 482 483 /** 484 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 485 * @ctx: context to operate on 486 * @qp: queue pair to operate on 487 * @port_num: port num to which the connection is bound 488 * @cqe: completion queue entry for the last WR 489 * @chain_wr: WR to append to the posted chain 490 * 491 * Return the WR chain for the set of RDMA READ/WRITE operations described by 492 * @ctx, as well as any memory registration operations needed. If @chain_wr 493 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 494 * If @chain_wr is not set @cqe must be set so that the caller gets a 495 * completion notification. 496 */ 497 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 498 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 499 { 500 struct ib_send_wr *first_wr, *last_wr; 501 int i; 502 503 switch (ctx->type) { 504 case RDMA_RW_SIG_MR: 505 rdma_rw_update_lkey(&ctx->sig->data, true); 506 if (ctx->sig->prot.mr) 507 rdma_rw_update_lkey(&ctx->sig->prot, true); 508 509 ctx->sig->sig_mr->need_inval = true; 510 ib_update_fast_reg_key(ctx->sig->sig_mr, 511 ib_inc_rkey(ctx->sig->sig_mr->lkey)); 512 ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey; 513 514 if (ctx->sig->data.inv_wr.next) 515 first_wr = &ctx->sig->data.inv_wr; 516 else 517 first_wr = &ctx->sig->data.reg_wr.wr; 518 last_wr = &ctx->sig->data.wr.wr; 519 break; 520 case RDMA_RW_MR: 521 for (i = 0; i < ctx->nr_ops; i++) { 522 rdma_rw_update_lkey(&ctx->reg[i], 523 ctx->reg[i].wr.wr.opcode != 524 IB_WR_RDMA_READ_WITH_INV); 525 } 526 527 if (ctx->reg[0].inv_wr.next) 528 first_wr = &ctx->reg[0].inv_wr; 529 else 530 first_wr = &ctx->reg[0].reg_wr.wr; 531 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 532 break; 533 case RDMA_RW_MULTI_WR: 534 first_wr = &ctx->map.wrs[0].wr; 535 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 536 break; 537 case RDMA_RW_SINGLE_WR: 538 first_wr = &ctx->single.wr.wr; 539 last_wr = &ctx->single.wr.wr; 540 break; 541 default: 542 BUG(); 543 } 544 545 if (chain_wr) { 546 last_wr->next = chain_wr; 547 } else { 548 last_wr->wr_cqe = cqe; 549 last_wr->send_flags |= IB_SEND_SIGNALED; 550 } 551 552 return first_wr; 553 } 554 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 555 556 /** 557 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 558 * @ctx: context to operate on 559 * @qp: queue pair to operate on 560 * @port_num: port num to which the connection is bound 561 * @cqe: completion queue entry for the last WR 562 * @chain_wr: WR to append to the posted chain 563 * 564 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 565 * any memory registration operations needed. If @chain_wr is non-NULL the 566 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 567 * is not set @cqe must be set so that the caller gets a completion 568 * notification. 569 */ 570 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 571 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 572 { 573 struct ib_send_wr *first_wr, *bad_wr; 574 575 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 576 return ib_post_send(qp, first_wr, &bad_wr); 577 } 578 EXPORT_SYMBOL(rdma_rw_ctx_post); 579 580 /** 581 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 582 * @ctx: context to release 583 * @qp: queue pair to operate on 584 * @port_num: port num to which the connection is bound 585 * @sg: scatterlist that was used for the READ/WRITE 586 * @sg_cnt: number of entries in @sg 587 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 588 */ 589 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 590 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) 591 { 592 int i; 593 594 switch (ctx->type) { 595 case RDMA_RW_MR: 596 for (i = 0; i < ctx->nr_ops; i++) 597 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 598 kfree(ctx->reg); 599 break; 600 case RDMA_RW_MULTI_WR: 601 kfree(ctx->map.wrs); 602 kfree(ctx->map.sges); 603 break; 604 case RDMA_RW_SINGLE_WR: 605 break; 606 default: 607 BUG(); 608 break; 609 } 610 611 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 612 } 613 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 614 615 /** 616 * rdma_rw_ctx_destroy_signature - release all resources allocated by 617 * rdma_rw_ctx_init_signature 618 * @ctx: context to release 619 * @qp: queue pair to operate on 620 * @port_num: port num to which the connection is bound 621 * @sg: scatterlist that was used for the READ/WRITE 622 * @sg_cnt: number of entries in @sg 623 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 624 * @prot_sg_cnt: number of entries in @prot_sg 625 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 626 */ 627 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 628 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 629 struct scatterlist *prot_sg, u32 prot_sg_cnt, 630 enum dma_data_direction dir) 631 { 632 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 633 return; 634 635 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); 636 ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 637 638 if (ctx->sig->prot.mr) { 639 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); 640 ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 641 } 642 643 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr); 644 kfree(ctx->sig); 645 } 646 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 647 648 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 649 { 650 u32 factor; 651 652 WARN_ON_ONCE(attr->port_num == 0); 653 654 /* 655 * Each context needs at least one RDMA READ or WRITE WR. 656 * 657 * For some hardware we might need more, eventually we should ask the 658 * HCA driver for a multiplier here. 659 */ 660 factor = 1; 661 662 /* 663 * If the devices needs MRs to perform RDMA READ or WRITE operations, 664 * we'll need two additional MRs for the registrations and the 665 * invalidation. 666 */ 667 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) 668 factor += 6; /* (inv + reg) * (data + prot + sig) */ 669 else if (rdma_rw_can_use_mr(dev, attr->port_num)) 670 factor += 2; /* inv + reg */ 671 672 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 673 674 /* 675 * But maybe we were just too high in the sky and the device doesn't 676 * even support all we need, and we'll have to live with what we get.. 677 */ 678 attr->cap.max_send_wr = 679 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 680 } 681 682 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 683 { 684 struct ib_device *dev = qp->pd->device; 685 u32 nr_mrs = 0, nr_sig_mrs = 0; 686 int ret = 0; 687 688 if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) { 689 nr_sig_mrs = attr->cap.max_rdma_ctxs; 690 nr_mrs = attr->cap.max_rdma_ctxs * 2; 691 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 692 nr_mrs = attr->cap.max_rdma_ctxs; 693 } 694 695 if (nr_mrs) { 696 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 697 IB_MR_TYPE_MEM_REG, 698 rdma_rw_fr_page_list_len(dev)); 699 if (ret) { 700 pr_err("%s: failed to allocated %d MRs\n", 701 __func__, nr_mrs); 702 return ret; 703 } 704 } 705 706 if (nr_sig_mrs) { 707 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 708 IB_MR_TYPE_SIGNATURE, 2); 709 if (ret) { 710 pr_err("%s: failed to allocated %d SIG MRs\n", 711 __func__, nr_mrs); 712 goto out_free_rdma_mrs; 713 } 714 } 715 716 return 0; 717 718 out_free_rdma_mrs: 719 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 720 return ret; 721 } 722 723 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 724 { 725 ib_mr_pool_destroy(qp, &qp->sig_mrs); 726 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 727 } 728