xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision 6cb2d5b1)
1 /*
2  * Copyright (c) 2016 HGST, a Western Digital Company.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  */
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <linux/pci-p2pdma.h>
16 #include <rdma/mr_pool.h>
17 #include <rdma/rw.h>
18 
19 enum {
20 	RDMA_RW_SINGLE_WR,
21 	RDMA_RW_MULTI_WR,
22 	RDMA_RW_MR,
23 	RDMA_RW_SIG_MR,
24 };
25 
26 static bool rdma_rw_force_mr;
27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
29 
30 /*
31  * Check if the device might use memory registration.  This is currently only
32  * true for iWarp devices. In the future we can hopefully fine tune this based
33  * on HCA driver input.
34  */
35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
36 {
37 	if (rdma_protocol_iwarp(dev, port_num))
38 		return true;
39 	if (unlikely(rdma_rw_force_mr))
40 		return true;
41 	return false;
42 }
43 
44 /*
45  * Check if the device will use memory registration for this RW operation.
46  * We currently always use memory registrations for iWarp RDMA READs, and
47  * have a debug option to force usage of MRs.
48  *
49  * XXX: In the future we can hopefully fine tune this based on HCA driver
50  * input.
51  */
52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
53 		enum dma_data_direction dir, int dma_nents)
54 {
55 	if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
56 		return true;
57 	if (unlikely(rdma_rw_force_mr))
58 		return true;
59 	return false;
60 }
61 
62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
63 {
64 	/* arbitrary limit to avoid allocating gigantic resources */
65 	return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
66 }
67 
68 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
69 {
70 	int count = 0;
71 
72 	if (reg->mr->need_inval) {
73 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
74 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
75 		reg->inv_wr.next = &reg->reg_wr.wr;
76 		count++;
77 	} else {
78 		reg->inv_wr.next = NULL;
79 	}
80 
81 	return count;
82 }
83 
84 /* Caller must have zero-initialized *reg. */
85 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
86 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
87 		u32 sg_cnt, u32 offset)
88 {
89 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
90 	u32 nents = min(sg_cnt, pages_per_mr);
91 	int count = 0, ret;
92 
93 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
94 	if (!reg->mr)
95 		return -EAGAIN;
96 
97 	count += rdma_rw_inv_key(reg);
98 
99 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
100 	if (ret < 0 || ret < nents) {
101 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
102 		return -EINVAL;
103 	}
104 
105 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
106 	reg->reg_wr.mr = reg->mr;
107 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
108 	if (rdma_protocol_iwarp(qp->device, port_num))
109 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
110 	count++;
111 
112 	reg->sge.addr = reg->mr->iova;
113 	reg->sge.length = reg->mr->length;
114 	return count;
115 }
116 
117 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
118 		u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
119 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
120 {
121 	struct rdma_rw_reg_ctx *prev = NULL;
122 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
123 	int i, j, ret = 0, count = 0;
124 
125 	ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
126 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
127 	if (!ctx->reg) {
128 		ret = -ENOMEM;
129 		goto out;
130 	}
131 
132 	for (i = 0; i < ctx->nr_ops; i++) {
133 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
134 		u32 nents = min(sg_cnt, pages_per_mr);
135 
136 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
137 				offset);
138 		if (ret < 0)
139 			goto out_free;
140 		count += ret;
141 
142 		if (prev) {
143 			if (reg->mr->need_inval)
144 				prev->wr.wr.next = &reg->inv_wr;
145 			else
146 				prev->wr.wr.next = &reg->reg_wr.wr;
147 		}
148 
149 		reg->reg_wr.wr.next = &reg->wr.wr;
150 
151 		reg->wr.wr.sg_list = &reg->sge;
152 		reg->wr.wr.num_sge = 1;
153 		reg->wr.remote_addr = remote_addr;
154 		reg->wr.rkey = rkey;
155 		if (dir == DMA_TO_DEVICE) {
156 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
157 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
158 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
159 		} else {
160 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
161 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
162 		}
163 		count++;
164 
165 		remote_addr += reg->sge.length;
166 		sg_cnt -= nents;
167 		for (j = 0; j < nents; j++)
168 			sg = sg_next(sg);
169 		prev = reg;
170 		offset = 0;
171 	}
172 
173 	if (prev)
174 		prev->wr.wr.next = NULL;
175 
176 	ctx->type = RDMA_RW_MR;
177 	return count;
178 
179 out_free:
180 	while (--i >= 0)
181 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
182 	kfree(ctx->reg);
183 out:
184 	return ret;
185 }
186 
187 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
188 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
189 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
190 {
191 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
192 		      qp->max_read_sge;
193 	struct ib_sge *sge;
194 	u32 total_len = 0, i, j;
195 
196 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
197 
198 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
199 	if (!ctx->map.sges)
200 		goto out;
201 
202 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
203 	if (!ctx->map.wrs)
204 		goto out_free_sges;
205 
206 	for (i = 0; i < ctx->nr_ops; i++) {
207 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
208 		u32 nr_sge = min(sg_cnt, max_sge);
209 
210 		if (dir == DMA_TO_DEVICE)
211 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
212 		else
213 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
214 		rdma_wr->remote_addr = remote_addr + total_len;
215 		rdma_wr->rkey = rkey;
216 		rdma_wr->wr.num_sge = nr_sge;
217 		rdma_wr->wr.sg_list = sge;
218 
219 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
220 			sge->addr = sg_dma_address(sg) + offset;
221 			sge->length = sg_dma_len(sg) - offset;
222 			sge->lkey = qp->pd->local_dma_lkey;
223 
224 			total_len += sge->length;
225 			sge++;
226 			sg_cnt--;
227 			offset = 0;
228 		}
229 
230 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
231 			&ctx->map.wrs[i + 1].wr : NULL;
232 	}
233 
234 	ctx->type = RDMA_RW_MULTI_WR;
235 	return ctx->nr_ops;
236 
237 out_free_sges:
238 	kfree(ctx->map.sges);
239 out:
240 	return -ENOMEM;
241 }
242 
243 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
244 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
245 		enum dma_data_direction dir)
246 {
247 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
248 
249 	ctx->nr_ops = 1;
250 
251 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
252 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
253 	ctx->single.sge.length = sg_dma_len(sg) - offset;
254 
255 	memset(rdma_wr, 0, sizeof(*rdma_wr));
256 	if (dir == DMA_TO_DEVICE)
257 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
258 	else
259 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
260 	rdma_wr->wr.sg_list = &ctx->single.sge;
261 	rdma_wr->wr.num_sge = 1;
262 	rdma_wr->remote_addr = remote_addr;
263 	rdma_wr->rkey = rkey;
264 
265 	ctx->type = RDMA_RW_SINGLE_WR;
266 	return 1;
267 }
268 
269 /**
270  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
271  * @ctx:	context to initialize
272  * @qp:		queue pair to operate on
273  * @port_num:	port num to which the connection is bound
274  * @sg:		scatterlist to READ/WRITE from/to
275  * @sg_cnt:	number of entries in @sg
276  * @sg_offset:	current byte offset into @sg
277  * @remote_addr:remote address to read/write (relative to @rkey)
278  * @rkey:	remote key to operate on
279  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
280  *
281  * Returns the number of WQEs that will be needed on the workqueue if
282  * successful, or a negative error code.
283  */
284 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
285 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
286 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
287 {
288 	struct ib_device *dev = qp->pd->device;
289 	int ret;
290 
291 	if (is_pci_p2pdma_page(sg_page(sg)))
292 		ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
293 	else
294 		ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
295 
296 	if (!ret)
297 		return -ENOMEM;
298 	sg_cnt = ret;
299 
300 	/*
301 	 * Skip to the S/G entry that sg_offset falls into:
302 	 */
303 	for (;;) {
304 		u32 len = sg_dma_len(sg);
305 
306 		if (sg_offset < len)
307 			break;
308 
309 		sg = sg_next(sg);
310 		sg_offset -= len;
311 		sg_cnt--;
312 	}
313 
314 	ret = -EIO;
315 	if (WARN_ON_ONCE(sg_cnt == 0))
316 		goto out_unmap_sg;
317 
318 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
319 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
320 				sg_offset, remote_addr, rkey, dir);
321 	} else if (sg_cnt > 1) {
322 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
323 				remote_addr, rkey, dir);
324 	} else {
325 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
326 				remote_addr, rkey, dir);
327 	}
328 
329 	if (ret < 0)
330 		goto out_unmap_sg;
331 	return ret;
332 
333 out_unmap_sg:
334 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
335 	return ret;
336 }
337 EXPORT_SYMBOL(rdma_rw_ctx_init);
338 
339 /**
340  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
341  * @ctx:	context to initialize
342  * @qp:		queue pair to operate on
343  * @port_num:	port num to which the connection is bound
344  * @sg:		scatterlist to READ/WRITE from/to
345  * @sg_cnt:	number of entries in @sg
346  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
347  * @prot_sg_cnt: number of entries in @prot_sg
348  * @sig_attrs:	signature offloading algorithms
349  * @remote_addr:remote address to read/write (relative to @rkey)
350  * @rkey:	remote key to operate on
351  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
352  *
353  * Returns the number of WQEs that will be needed on the workqueue if
354  * successful, or a negative error code.
355  */
356 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
357 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
358 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
359 		struct ib_sig_attrs *sig_attrs,
360 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
361 {
362 	struct ib_device *dev = qp->pd->device;
363 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
364 	struct ib_rdma_wr *rdma_wr;
365 	struct ib_send_wr *prev_wr = NULL;
366 	int count = 0, ret;
367 
368 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
369 		pr_err("SG count too large: sg_cnt=%d, prot_sg_cnt=%d, pages_per_mr=%d\n",
370 		       sg_cnt, prot_sg_cnt, pages_per_mr);
371 		return -EINVAL;
372 	}
373 
374 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
375 	if (!ret)
376 		return -ENOMEM;
377 	sg_cnt = ret;
378 
379 	ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
380 	if (!ret) {
381 		ret = -ENOMEM;
382 		goto out_unmap_sg;
383 	}
384 	prot_sg_cnt = ret;
385 
386 	ctx->type = RDMA_RW_SIG_MR;
387 	ctx->nr_ops = 1;
388 	ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
389 	if (!ctx->sig) {
390 		ret = -ENOMEM;
391 		goto out_unmap_prot_sg;
392 	}
393 
394 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
395 	if (ret < 0)
396 		goto out_free_ctx;
397 	count += ret;
398 	prev_wr = &ctx->sig->data.reg_wr.wr;
399 
400 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
401 				  prot_sg, prot_sg_cnt, 0);
402 	if (ret < 0)
403 		goto out_destroy_data_mr;
404 	count += ret;
405 
406 	if (ctx->sig->prot.inv_wr.next)
407 		prev_wr->next = &ctx->sig->prot.inv_wr;
408 	else
409 		prev_wr->next = &ctx->sig->prot.reg_wr.wr;
410 	prev_wr = &ctx->sig->prot.reg_wr.wr;
411 
412 	ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
413 	if (!ctx->sig->sig_mr) {
414 		ret = -EAGAIN;
415 		goto out_destroy_prot_mr;
416 	}
417 
418 	if (ctx->sig->sig_mr->need_inval) {
419 		memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
420 
421 		ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
422 		ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
423 
424 		prev_wr->next = &ctx->sig->sig_inv_wr;
425 		prev_wr = &ctx->sig->sig_inv_wr;
426 	}
427 
428 	ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
429 	ctx->sig->sig_wr.wr.wr_cqe = NULL;
430 	ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
431 	ctx->sig->sig_wr.wr.num_sge = 1;
432 	ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
433 	ctx->sig->sig_wr.sig_attrs = sig_attrs;
434 	ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
435 	if (prot_sg_cnt)
436 		ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
437 	prev_wr->next = &ctx->sig->sig_wr.wr;
438 	prev_wr = &ctx->sig->sig_wr.wr;
439 	count++;
440 
441 	ctx->sig->sig_sge.addr = 0;
442 	ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
443 	if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
444 		ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
445 
446 	rdma_wr = &ctx->sig->data.wr;
447 	rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
448 	rdma_wr->wr.num_sge = 1;
449 	rdma_wr->remote_addr = remote_addr;
450 	rdma_wr->rkey = rkey;
451 	if (dir == DMA_TO_DEVICE)
452 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
453 	else
454 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
455 	prev_wr->next = &rdma_wr->wr;
456 	prev_wr = &rdma_wr->wr;
457 	count++;
458 
459 	return count;
460 
461 out_destroy_prot_mr:
462 	if (prot_sg_cnt)
463 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
464 out_destroy_data_mr:
465 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
466 out_free_ctx:
467 	kfree(ctx->sig);
468 out_unmap_prot_sg:
469 	ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
470 out_unmap_sg:
471 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
472 	return ret;
473 }
474 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
475 
476 /*
477  * Now that we are going to post the WRs we can update the lkey and need_inval
478  * state on the MRs.  If we were doing this at init time, we would get double
479  * or missing invalidations if a context was initialized but not actually
480  * posted.
481  */
482 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
483 {
484 	reg->mr->need_inval = need_inval;
485 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
486 	reg->reg_wr.key = reg->mr->lkey;
487 	reg->sge.lkey = reg->mr->lkey;
488 }
489 
490 /**
491  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
492  * @ctx:	context to operate on
493  * @qp:		queue pair to operate on
494  * @port_num:	port num to which the connection is bound
495  * @cqe:	completion queue entry for the last WR
496  * @chain_wr:	WR to append to the posted chain
497  *
498  * Return the WR chain for the set of RDMA READ/WRITE operations described by
499  * @ctx, as well as any memory registration operations needed.  If @chain_wr
500  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
501  * If @chain_wr is not set @cqe must be set so that the caller gets a
502  * completion notification.
503  */
504 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
505 		u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
506 {
507 	struct ib_send_wr *first_wr, *last_wr;
508 	int i;
509 
510 	switch (ctx->type) {
511 	case RDMA_RW_SIG_MR:
512 		rdma_rw_update_lkey(&ctx->sig->data, true);
513 		if (ctx->sig->prot.mr)
514 			rdma_rw_update_lkey(&ctx->sig->prot, true);
515 
516 		ctx->sig->sig_mr->need_inval = true;
517 		ib_update_fast_reg_key(ctx->sig->sig_mr,
518 			ib_inc_rkey(ctx->sig->sig_mr->lkey));
519 		ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
520 
521 		if (ctx->sig->data.inv_wr.next)
522 			first_wr = &ctx->sig->data.inv_wr;
523 		else
524 			first_wr = &ctx->sig->data.reg_wr.wr;
525 		last_wr = &ctx->sig->data.wr.wr;
526 		break;
527 	case RDMA_RW_MR:
528 		for (i = 0; i < ctx->nr_ops; i++) {
529 			rdma_rw_update_lkey(&ctx->reg[i],
530 				ctx->reg[i].wr.wr.opcode !=
531 					IB_WR_RDMA_READ_WITH_INV);
532 		}
533 
534 		if (ctx->reg[0].inv_wr.next)
535 			first_wr = &ctx->reg[0].inv_wr;
536 		else
537 			first_wr = &ctx->reg[0].reg_wr.wr;
538 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
539 		break;
540 	case RDMA_RW_MULTI_WR:
541 		first_wr = &ctx->map.wrs[0].wr;
542 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
543 		break;
544 	case RDMA_RW_SINGLE_WR:
545 		first_wr = &ctx->single.wr.wr;
546 		last_wr = &ctx->single.wr.wr;
547 		break;
548 	default:
549 		BUG();
550 	}
551 
552 	if (chain_wr) {
553 		last_wr->next = chain_wr;
554 	} else {
555 		last_wr->wr_cqe = cqe;
556 		last_wr->send_flags |= IB_SEND_SIGNALED;
557 	}
558 
559 	return first_wr;
560 }
561 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
562 
563 /**
564  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
565  * @ctx:	context to operate on
566  * @qp:		queue pair to operate on
567  * @port_num:	port num to which the connection is bound
568  * @cqe:	completion queue entry for the last WR
569  * @chain_wr:	WR to append to the posted chain
570  *
571  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
572  * any memory registration operations needed.  If @chain_wr is non-NULL the
573  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
574  * is not set @cqe must be set so that the caller gets a completion
575  * notification.
576  */
577 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
578 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
579 {
580 	struct ib_send_wr *first_wr;
581 
582 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
583 	return ib_post_send(qp, first_wr, NULL);
584 }
585 EXPORT_SYMBOL(rdma_rw_ctx_post);
586 
587 /**
588  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
589  * @ctx:	context to release
590  * @qp:		queue pair to operate on
591  * @port_num:	port num to which the connection is bound
592  * @sg:		scatterlist that was used for the READ/WRITE
593  * @sg_cnt:	number of entries in @sg
594  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
595  */
596 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
597 		struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
598 {
599 	int i;
600 
601 	switch (ctx->type) {
602 	case RDMA_RW_MR:
603 		for (i = 0; i < ctx->nr_ops; i++)
604 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
605 		kfree(ctx->reg);
606 		break;
607 	case RDMA_RW_MULTI_WR:
608 		kfree(ctx->map.wrs);
609 		kfree(ctx->map.sges);
610 		break;
611 	case RDMA_RW_SINGLE_WR:
612 		break;
613 	default:
614 		BUG();
615 		break;
616 	}
617 
618 	/* P2PDMA contexts do not need to be unmapped */
619 	if (!is_pci_p2pdma_page(sg_page(sg)))
620 		ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
621 }
622 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
623 
624 /**
625  * rdma_rw_ctx_destroy_signature - release all resources allocated by
626  *	rdma_rw_ctx_signature_init
627  * @ctx:	context to release
628  * @qp:		queue pair to operate on
629  * @port_num:	port num to which the connection is bound
630  * @sg:		scatterlist that was used for the READ/WRITE
631  * @sg_cnt:	number of entries in @sg
632  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
633  * @prot_sg_cnt: number of entries in @prot_sg
634  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
635  */
636 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
637 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
638 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
639 		enum dma_data_direction dir)
640 {
641 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
642 		return;
643 
644 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
645 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
646 
647 	if (ctx->sig->prot.mr) {
648 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
649 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
650 	}
651 
652 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
653 	kfree(ctx->sig);
654 }
655 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
656 
657 /**
658  * rdma_rw_mr_factor - return number of MRs required for a payload
659  * @device:	device handling the connection
660  * @port_num:	port num to which the connection is bound
661  * @maxpages:	maximum payload pages per rdma_rw_ctx
662  *
663  * Returns the number of MRs the device requires to move @maxpayload
664  * bytes. The returned value is used during transport creation to
665  * compute max_rdma_ctxts and the size of the transport's Send and
666  * Send Completion Queues.
667  */
668 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
669 			       unsigned int maxpages)
670 {
671 	unsigned int mr_pages;
672 
673 	if (rdma_rw_can_use_mr(device, port_num))
674 		mr_pages = rdma_rw_fr_page_list_len(device);
675 	else
676 		mr_pages = device->attrs.max_sge_rd;
677 	return DIV_ROUND_UP(maxpages, mr_pages);
678 }
679 EXPORT_SYMBOL(rdma_rw_mr_factor);
680 
681 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
682 {
683 	u32 factor;
684 
685 	WARN_ON_ONCE(attr->port_num == 0);
686 
687 	/*
688 	 * Each context needs at least one RDMA READ or WRITE WR.
689 	 *
690 	 * For some hardware we might need more, eventually we should ask the
691 	 * HCA driver for a multiplier here.
692 	 */
693 	factor = 1;
694 
695 	/*
696 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
697 	 * we'll need two additional MRs for the registrations and the
698 	 * invalidation.
699 	 */
700 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
701 		factor += 6;	/* (inv + reg) * (data + prot + sig) */
702 	else if (rdma_rw_can_use_mr(dev, attr->port_num))
703 		factor += 2;	/* inv + reg */
704 
705 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
706 
707 	/*
708 	 * But maybe we were just too high in the sky and the device doesn't
709 	 * even support all we need, and we'll have to live with what we get..
710 	 */
711 	attr->cap.max_send_wr =
712 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
713 }
714 
715 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
716 {
717 	struct ib_device *dev = qp->pd->device;
718 	u32 nr_mrs = 0, nr_sig_mrs = 0;
719 	int ret = 0;
720 
721 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
722 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
723 		nr_mrs = attr->cap.max_rdma_ctxs * 2;
724 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
725 		nr_mrs = attr->cap.max_rdma_ctxs;
726 	}
727 
728 	if (nr_mrs) {
729 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
730 				IB_MR_TYPE_MEM_REG,
731 				rdma_rw_fr_page_list_len(dev), 0);
732 		if (ret) {
733 			pr_err("%s: failed to allocated %d MRs\n",
734 				__func__, nr_mrs);
735 			return ret;
736 		}
737 	}
738 
739 	if (nr_sig_mrs) {
740 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
741 				IB_MR_TYPE_SIGNATURE, 2, 0);
742 		if (ret) {
743 			pr_err("%s: failed to allocated %d SIG MRs\n",
744 				__func__, nr_sig_mrs);
745 			goto out_free_rdma_mrs;
746 		}
747 	}
748 
749 	return 0;
750 
751 out_free_rdma_mrs:
752 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
753 	return ret;
754 }
755 
756 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
757 {
758 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
759 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
760 }
761