xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision 50b7d220)
1 /*
2  * Copyright (c) 2016 HGST, a Western Digital Company.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  */
13 #include <linux/moduleparam.h>
14 #include <linux/slab.h>
15 #include <linux/pci-p2pdma.h>
16 #include <rdma/mr_pool.h>
17 #include <rdma/rw.h>
18 
19 enum {
20 	RDMA_RW_SINGLE_WR,
21 	RDMA_RW_MULTI_WR,
22 	RDMA_RW_MR,
23 	RDMA_RW_SIG_MR,
24 };
25 
26 static bool rdma_rw_force_mr;
27 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
28 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
29 
30 /*
31  * Check if the device might use memory registration.  This is currently only
32  * true for iWarp devices. In the future we can hopefully fine tune this based
33  * on HCA driver input.
34  */
35 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num)
36 {
37 	if (rdma_protocol_iwarp(dev, port_num))
38 		return true;
39 	if (unlikely(rdma_rw_force_mr))
40 		return true;
41 	return false;
42 }
43 
44 /*
45  * Check if the device will use memory registration for this RW operation.
46  * We currently always use memory registrations for iWarp RDMA READs, and
47  * have a debug option to force usage of MRs.
48  *
49  * XXX: In the future we can hopefully fine tune this based on HCA driver
50  * input.
51  */
52 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num,
53 		enum dma_data_direction dir, int dma_nents)
54 {
55 	if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE)
56 		return true;
57 	if (unlikely(rdma_rw_force_mr))
58 		return true;
59 	return false;
60 }
61 
62 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev)
63 {
64 	/* arbitrary limit to avoid allocating gigantic resources */
65 	return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256);
66 }
67 
68 /* Caller must have zero-initialized *reg. */
69 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num,
70 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
71 		u32 sg_cnt, u32 offset)
72 {
73 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
74 	u32 nents = min(sg_cnt, pages_per_mr);
75 	int count = 0, ret;
76 
77 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
78 	if (!reg->mr)
79 		return -EAGAIN;
80 
81 	if (reg->mr->need_inval) {
82 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
83 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
84 		reg->inv_wr.next = &reg->reg_wr.wr;
85 		count++;
86 	} else {
87 		reg->inv_wr.next = NULL;
88 	}
89 
90 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
91 	if (ret < 0 || ret < nents) {
92 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
93 		return -EINVAL;
94 	}
95 
96 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
97 	reg->reg_wr.mr = reg->mr;
98 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
99 	if (rdma_protocol_iwarp(qp->device, port_num))
100 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
101 	count++;
102 
103 	reg->sge.addr = reg->mr->iova;
104 	reg->sge.length = reg->mr->length;
105 	return count;
106 }
107 
108 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
109 		u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
110 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
111 {
112 	struct rdma_rw_reg_ctx *prev = NULL;
113 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
114 	int i, j, ret = 0, count = 0;
115 
116 	ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr;
117 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
118 	if (!ctx->reg) {
119 		ret = -ENOMEM;
120 		goto out;
121 	}
122 
123 	for (i = 0; i < ctx->nr_ops; i++) {
124 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
125 		u32 nents = min(sg_cnt, pages_per_mr);
126 
127 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
128 				offset);
129 		if (ret < 0)
130 			goto out_free;
131 		count += ret;
132 
133 		if (prev) {
134 			if (reg->mr->need_inval)
135 				prev->wr.wr.next = &reg->inv_wr;
136 			else
137 				prev->wr.wr.next = &reg->reg_wr.wr;
138 		}
139 
140 		reg->reg_wr.wr.next = &reg->wr.wr;
141 
142 		reg->wr.wr.sg_list = &reg->sge;
143 		reg->wr.wr.num_sge = 1;
144 		reg->wr.remote_addr = remote_addr;
145 		reg->wr.rkey = rkey;
146 		if (dir == DMA_TO_DEVICE) {
147 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
148 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
149 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
150 		} else {
151 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
152 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
153 		}
154 		count++;
155 
156 		remote_addr += reg->sge.length;
157 		sg_cnt -= nents;
158 		for (j = 0; j < nents; j++)
159 			sg = sg_next(sg);
160 		prev = reg;
161 		offset = 0;
162 	}
163 
164 	if (prev)
165 		prev->wr.wr.next = NULL;
166 
167 	ctx->type = RDMA_RW_MR;
168 	return count;
169 
170 out_free:
171 	while (--i >= 0)
172 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
173 	kfree(ctx->reg);
174 out:
175 	return ret;
176 }
177 
178 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
179 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
180 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
181 {
182 	struct ib_device *dev = qp->pd->device;
183 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
184 		      qp->max_read_sge;
185 	struct ib_sge *sge;
186 	u32 total_len = 0, i, j;
187 
188 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
189 
190 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
191 	if (!ctx->map.sges)
192 		goto out;
193 
194 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
195 	if (!ctx->map.wrs)
196 		goto out_free_sges;
197 
198 	for (i = 0; i < ctx->nr_ops; i++) {
199 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
200 		u32 nr_sge = min(sg_cnt, max_sge);
201 
202 		if (dir == DMA_TO_DEVICE)
203 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
204 		else
205 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
206 		rdma_wr->remote_addr = remote_addr + total_len;
207 		rdma_wr->rkey = rkey;
208 		rdma_wr->wr.num_sge = nr_sge;
209 		rdma_wr->wr.sg_list = sge;
210 
211 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
212 			sge->addr = ib_sg_dma_address(dev, sg) + offset;
213 			sge->length = ib_sg_dma_len(dev, sg) - offset;
214 			sge->lkey = qp->pd->local_dma_lkey;
215 
216 			total_len += sge->length;
217 			sge++;
218 			sg_cnt--;
219 			offset = 0;
220 		}
221 
222 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
223 			&ctx->map.wrs[i + 1].wr : NULL;
224 	}
225 
226 	ctx->type = RDMA_RW_MULTI_WR;
227 	return ctx->nr_ops;
228 
229 out_free_sges:
230 	kfree(ctx->map.sges);
231 out:
232 	return -ENOMEM;
233 }
234 
235 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
236 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
237 		enum dma_data_direction dir)
238 {
239 	struct ib_device *dev = qp->pd->device;
240 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
241 
242 	ctx->nr_ops = 1;
243 
244 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
245 	ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset;
246 	ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset;
247 
248 	memset(rdma_wr, 0, sizeof(*rdma_wr));
249 	if (dir == DMA_TO_DEVICE)
250 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
251 	else
252 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
253 	rdma_wr->wr.sg_list = &ctx->single.sge;
254 	rdma_wr->wr.num_sge = 1;
255 	rdma_wr->remote_addr = remote_addr;
256 	rdma_wr->rkey = rkey;
257 
258 	ctx->type = RDMA_RW_SINGLE_WR;
259 	return 1;
260 }
261 
262 /**
263  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
264  * @ctx:	context to initialize
265  * @qp:		queue pair to operate on
266  * @port_num:	port num to which the connection is bound
267  * @sg:		scatterlist to READ/WRITE from/to
268  * @sg_cnt:	number of entries in @sg
269  * @sg_offset:	current byte offset into @sg
270  * @remote_addr:remote address to read/write (relative to @rkey)
271  * @rkey:	remote key to operate on
272  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
273  *
274  * Returns the number of WQEs that will be needed on the workqueue if
275  * successful, or a negative error code.
276  */
277 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
278 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
279 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
280 {
281 	struct ib_device *dev = qp->pd->device;
282 	int ret;
283 
284 	if (is_pci_p2pdma_page(sg_page(sg)))
285 		ret = pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir);
286 	else
287 		ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
288 
289 	if (!ret)
290 		return -ENOMEM;
291 	sg_cnt = ret;
292 
293 	/*
294 	 * Skip to the S/G entry that sg_offset falls into:
295 	 */
296 	for (;;) {
297 		u32 len = ib_sg_dma_len(dev, sg);
298 
299 		if (sg_offset < len)
300 			break;
301 
302 		sg = sg_next(sg);
303 		sg_offset -= len;
304 		sg_cnt--;
305 	}
306 
307 	ret = -EIO;
308 	if (WARN_ON_ONCE(sg_cnt == 0))
309 		goto out_unmap_sg;
310 
311 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
312 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
313 				sg_offset, remote_addr, rkey, dir);
314 	} else if (sg_cnt > 1) {
315 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
316 				remote_addr, rkey, dir);
317 	} else {
318 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
319 				remote_addr, rkey, dir);
320 	}
321 
322 	if (ret < 0)
323 		goto out_unmap_sg;
324 	return ret;
325 
326 out_unmap_sg:
327 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
328 	return ret;
329 }
330 EXPORT_SYMBOL(rdma_rw_ctx_init);
331 
332 /**
333  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
334  * @ctx:	context to initialize
335  * @qp:		queue pair to operate on
336  * @port_num:	port num to which the connection is bound
337  * @sg:		scatterlist to READ/WRITE from/to
338  * @sg_cnt:	number of entries in @sg
339  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
340  * @prot_sg_cnt: number of entries in @prot_sg
341  * @sig_attrs:	signature offloading algorithms
342  * @remote_addr:remote address to read/write (relative to @rkey)
343  * @rkey:	remote key to operate on
344  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
345  *
346  * Returns the number of WQEs that will be needed on the workqueue if
347  * successful, or a negative error code.
348  */
349 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
350 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
351 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
352 		struct ib_sig_attrs *sig_attrs,
353 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
354 {
355 	struct ib_device *dev = qp->pd->device;
356 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device);
357 	struct ib_rdma_wr *rdma_wr;
358 	struct ib_send_wr *prev_wr = NULL;
359 	int count = 0, ret;
360 
361 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
362 		pr_err("SG count too large\n");
363 		return -EINVAL;
364 	}
365 
366 	ret = ib_dma_map_sg(dev, sg, sg_cnt, dir);
367 	if (!ret)
368 		return -ENOMEM;
369 	sg_cnt = ret;
370 
371 	ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir);
372 	if (!ret) {
373 		ret = -ENOMEM;
374 		goto out_unmap_sg;
375 	}
376 	prot_sg_cnt = ret;
377 
378 	ctx->type = RDMA_RW_SIG_MR;
379 	ctx->nr_ops = 1;
380 	ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL);
381 	if (!ctx->sig) {
382 		ret = -ENOMEM;
383 		goto out_unmap_prot_sg;
384 	}
385 
386 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0);
387 	if (ret < 0)
388 		goto out_free_ctx;
389 	count += ret;
390 	prev_wr = &ctx->sig->data.reg_wr.wr;
391 
392 	ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot,
393 				  prot_sg, prot_sg_cnt, 0);
394 	if (ret < 0)
395 		goto out_destroy_data_mr;
396 	count += ret;
397 
398 	if (ctx->sig->prot.inv_wr.next)
399 		prev_wr->next = &ctx->sig->prot.inv_wr;
400 	else
401 		prev_wr->next = &ctx->sig->prot.reg_wr.wr;
402 	prev_wr = &ctx->sig->prot.reg_wr.wr;
403 
404 	ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs);
405 	if (!ctx->sig->sig_mr) {
406 		ret = -EAGAIN;
407 		goto out_destroy_prot_mr;
408 	}
409 
410 	if (ctx->sig->sig_mr->need_inval) {
411 		memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr));
412 
413 		ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV;
414 		ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey;
415 
416 		prev_wr->next = &ctx->sig->sig_inv_wr;
417 		prev_wr = &ctx->sig->sig_inv_wr;
418 	}
419 
420 	ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR;
421 	ctx->sig->sig_wr.wr.wr_cqe = NULL;
422 	ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge;
423 	ctx->sig->sig_wr.wr.num_sge = 1;
424 	ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE;
425 	ctx->sig->sig_wr.sig_attrs = sig_attrs;
426 	ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr;
427 	if (prot_sg_cnt)
428 		ctx->sig->sig_wr.prot = &ctx->sig->prot.sge;
429 	prev_wr->next = &ctx->sig->sig_wr.wr;
430 	prev_wr = &ctx->sig->sig_wr.wr;
431 	count++;
432 
433 	ctx->sig->sig_sge.addr = 0;
434 	ctx->sig->sig_sge.length = ctx->sig->data.sge.length;
435 	if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE)
436 		ctx->sig->sig_sge.length += ctx->sig->prot.sge.length;
437 
438 	rdma_wr = &ctx->sig->data.wr;
439 	rdma_wr->wr.sg_list = &ctx->sig->sig_sge;
440 	rdma_wr->wr.num_sge = 1;
441 	rdma_wr->remote_addr = remote_addr;
442 	rdma_wr->rkey = rkey;
443 	if (dir == DMA_TO_DEVICE)
444 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
445 	else
446 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
447 	prev_wr->next = &rdma_wr->wr;
448 	prev_wr = &rdma_wr->wr;
449 	count++;
450 
451 	return count;
452 
453 out_destroy_prot_mr:
454 	if (prot_sg_cnt)
455 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
456 out_destroy_data_mr:
457 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
458 out_free_ctx:
459 	kfree(ctx->sig);
460 out_unmap_prot_sg:
461 	ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir);
462 out_unmap_sg:
463 	ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
464 	return ret;
465 }
466 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
467 
468 /*
469  * Now that we are going to post the WRs we can update the lkey and need_inval
470  * state on the MRs.  If we were doing this at init time, we would get double
471  * or missing invalidations if a context was initialized but not actually
472  * posted.
473  */
474 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
475 {
476 	reg->mr->need_inval = need_inval;
477 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
478 	reg->reg_wr.key = reg->mr->lkey;
479 	reg->sge.lkey = reg->mr->lkey;
480 }
481 
482 /**
483  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
484  * @ctx:	context to operate on
485  * @qp:		queue pair to operate on
486  * @port_num:	port num to which the connection is bound
487  * @cqe:	completion queue entry for the last WR
488  * @chain_wr:	WR to append to the posted chain
489  *
490  * Return the WR chain for the set of RDMA READ/WRITE operations described by
491  * @ctx, as well as any memory registration operations needed.  If @chain_wr
492  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
493  * If @chain_wr is not set @cqe must be set so that the caller gets a
494  * completion notification.
495  */
496 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
497 		u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
498 {
499 	struct ib_send_wr *first_wr, *last_wr;
500 	int i;
501 
502 	switch (ctx->type) {
503 	case RDMA_RW_SIG_MR:
504 		rdma_rw_update_lkey(&ctx->sig->data, true);
505 		if (ctx->sig->prot.mr)
506 			rdma_rw_update_lkey(&ctx->sig->prot, true);
507 
508 		ctx->sig->sig_mr->need_inval = true;
509 		ib_update_fast_reg_key(ctx->sig->sig_mr,
510 			ib_inc_rkey(ctx->sig->sig_mr->lkey));
511 		ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey;
512 
513 		if (ctx->sig->data.inv_wr.next)
514 			first_wr = &ctx->sig->data.inv_wr;
515 		else
516 			first_wr = &ctx->sig->data.reg_wr.wr;
517 		last_wr = &ctx->sig->data.wr.wr;
518 		break;
519 	case RDMA_RW_MR:
520 		for (i = 0; i < ctx->nr_ops; i++) {
521 			rdma_rw_update_lkey(&ctx->reg[i],
522 				ctx->reg[i].wr.wr.opcode !=
523 					IB_WR_RDMA_READ_WITH_INV);
524 		}
525 
526 		if (ctx->reg[0].inv_wr.next)
527 			first_wr = &ctx->reg[0].inv_wr;
528 		else
529 			first_wr = &ctx->reg[0].reg_wr.wr;
530 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
531 		break;
532 	case RDMA_RW_MULTI_WR:
533 		first_wr = &ctx->map.wrs[0].wr;
534 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
535 		break;
536 	case RDMA_RW_SINGLE_WR:
537 		first_wr = &ctx->single.wr.wr;
538 		last_wr = &ctx->single.wr.wr;
539 		break;
540 	default:
541 		BUG();
542 	}
543 
544 	if (chain_wr) {
545 		last_wr->next = chain_wr;
546 	} else {
547 		last_wr->wr_cqe = cqe;
548 		last_wr->send_flags |= IB_SEND_SIGNALED;
549 	}
550 
551 	return first_wr;
552 }
553 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
554 
555 /**
556  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
557  * @ctx:	context to operate on
558  * @qp:		queue pair to operate on
559  * @port_num:	port num to which the connection is bound
560  * @cqe:	completion queue entry for the last WR
561  * @chain_wr:	WR to append to the posted chain
562  *
563  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
564  * any memory registration operations needed.  If @chain_wr is non-NULL the
565  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
566  * is not set @cqe must be set so that the caller gets a completion
567  * notification.
568  */
569 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
570 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
571 {
572 	struct ib_send_wr *first_wr;
573 
574 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
575 	return ib_post_send(qp, first_wr, NULL);
576 }
577 EXPORT_SYMBOL(rdma_rw_ctx_post);
578 
579 /**
580  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
581  * @ctx:	context to release
582  * @qp:		queue pair to operate on
583  * @port_num:	port num to which the connection is bound
584  * @sg:		scatterlist that was used for the READ/WRITE
585  * @sg_cnt:	number of entries in @sg
586  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
587  */
588 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num,
589 		struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir)
590 {
591 	int i;
592 
593 	switch (ctx->type) {
594 	case RDMA_RW_MR:
595 		for (i = 0; i < ctx->nr_ops; i++)
596 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
597 		kfree(ctx->reg);
598 		break;
599 	case RDMA_RW_MULTI_WR:
600 		kfree(ctx->map.wrs);
601 		kfree(ctx->map.sges);
602 		break;
603 	case RDMA_RW_SINGLE_WR:
604 		break;
605 	default:
606 		BUG();
607 		break;
608 	}
609 
610 	/* P2PDMA contexts do not need to be unmapped */
611 	if (!is_pci_p2pdma_page(sg_page(sg)))
612 		ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
613 }
614 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
615 
616 /**
617  * rdma_rw_ctx_destroy_signature - release all resources allocated by
618  *	rdma_rw_ctx_init_signature
619  * @ctx:	context to release
620  * @qp:		queue pair to operate on
621  * @port_num:	port num to which the connection is bound
622  * @sg:		scatterlist that was used for the READ/WRITE
623  * @sg_cnt:	number of entries in @sg
624  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
625  * @prot_sg_cnt: number of entries in @prot_sg
626  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
627  */
628 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
629 		u8 port_num, struct scatterlist *sg, u32 sg_cnt,
630 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
631 		enum dma_data_direction dir)
632 {
633 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
634 		return;
635 
636 	ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr);
637 	ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
638 
639 	if (ctx->sig->prot.mr) {
640 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr);
641 		ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
642 	}
643 
644 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr);
645 	kfree(ctx->sig);
646 }
647 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
648 
649 /**
650  * rdma_rw_mr_factor - return number of MRs required for a payload
651  * @device:	device handling the connection
652  * @port_num:	port num to which the connection is bound
653  * @maxpages:	maximum payload pages per rdma_rw_ctx
654  *
655  * Returns the number of MRs the device requires to move @maxpayload
656  * bytes. The returned value is used during transport creation to
657  * compute max_rdma_ctxts and the size of the transport's Send and
658  * Send Completion Queues.
659  */
660 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num,
661 			       unsigned int maxpages)
662 {
663 	unsigned int mr_pages;
664 
665 	if (rdma_rw_can_use_mr(device, port_num))
666 		mr_pages = rdma_rw_fr_page_list_len(device);
667 	else
668 		mr_pages = device->attrs.max_sge_rd;
669 	return DIV_ROUND_UP(maxpages, mr_pages);
670 }
671 EXPORT_SYMBOL(rdma_rw_mr_factor);
672 
673 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
674 {
675 	u32 factor;
676 
677 	WARN_ON_ONCE(attr->port_num == 0);
678 
679 	/*
680 	 * Each context needs at least one RDMA READ or WRITE WR.
681 	 *
682 	 * For some hardware we might need more, eventually we should ask the
683 	 * HCA driver for a multiplier here.
684 	 */
685 	factor = 1;
686 
687 	/*
688 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
689 	 * we'll need two additional MRs for the registrations and the
690 	 * invalidation.
691 	 */
692 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN)
693 		factor += 6;	/* (inv + reg) * (data + prot + sig) */
694 	else if (rdma_rw_can_use_mr(dev, attr->port_num))
695 		factor += 2;	/* inv + reg */
696 
697 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
698 
699 	/*
700 	 * But maybe we were just too high in the sky and the device doesn't
701 	 * even support all we need, and we'll have to live with what we get..
702 	 */
703 	attr->cap.max_send_wr =
704 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
705 }
706 
707 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
708 {
709 	struct ib_device *dev = qp->pd->device;
710 	u32 nr_mrs = 0, nr_sig_mrs = 0;
711 	int ret = 0;
712 
713 	if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) {
714 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
715 		nr_mrs = attr->cap.max_rdma_ctxs * 2;
716 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
717 		nr_mrs = attr->cap.max_rdma_ctxs;
718 	}
719 
720 	if (nr_mrs) {
721 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
722 				IB_MR_TYPE_MEM_REG,
723 				rdma_rw_fr_page_list_len(dev));
724 		if (ret) {
725 			pr_err("%s: failed to allocated %d MRs\n",
726 				__func__, nr_mrs);
727 			return ret;
728 		}
729 	}
730 
731 	if (nr_sig_mrs) {
732 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
733 				IB_MR_TYPE_SIGNATURE, 2);
734 		if (ret) {
735 			pr_err("%s: failed to allocated %d SIG MRs\n",
736 				__func__, nr_mrs);
737 			goto out_free_rdma_mrs;
738 		}
739 	}
740 
741 	return 0;
742 
743 out_free_rdma_mrs:
744 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
745 	return ret;
746 }
747 
748 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
749 {
750 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
751 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
752 }
753