1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016 HGST, a Western Digital Company. 4 */ 5 #include <linux/memremap.h> 6 #include <linux/moduleparam.h> 7 #include <linux/slab.h> 8 #include <linux/pci-p2pdma.h> 9 #include <rdma/mr_pool.h> 10 #include <rdma/rw.h> 11 12 enum { 13 RDMA_RW_SINGLE_WR, 14 RDMA_RW_MULTI_WR, 15 RDMA_RW_MR, 16 RDMA_RW_SIG_MR, 17 }; 18 19 static bool rdma_rw_force_mr; 20 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 21 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 22 23 /* 24 * Report whether memory registration should be used. Memory registration must 25 * be used for iWarp devices because of iWARP-specific limitations. Memory 26 * registration is also enabled if registering memory might yield better 27 * performance than using multiple SGE entries, see rdma_rw_io_needs_mr() 28 */ 29 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num) 30 { 31 if (rdma_protocol_iwarp(dev, port_num)) 32 return true; 33 if (dev->attrs.max_sgl_rd) 34 return true; 35 if (unlikely(rdma_rw_force_mr)) 36 return true; 37 return false; 38 } 39 40 /* 41 * Check if the device will use memory registration for this RW operation. 42 * For RDMA READs we must use MRs on iWarp and can optionally use them as an 43 * optimization otherwise. Additionally we have a debug option to force usage 44 * of MRs to help testing this code path. 45 */ 46 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num, 47 enum dma_data_direction dir, int dma_nents) 48 { 49 if (dir == DMA_FROM_DEVICE) { 50 if (rdma_protocol_iwarp(dev, port_num)) 51 return true; 52 if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd) 53 return true; 54 } 55 if (unlikely(rdma_rw_force_mr)) 56 return true; 57 return false; 58 } 59 60 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev, 61 bool pi_support) 62 { 63 u32 max_pages; 64 65 if (pi_support) 66 max_pages = dev->attrs.max_pi_fast_reg_page_list_len; 67 else 68 max_pages = dev->attrs.max_fast_reg_page_list_len; 69 70 /* arbitrary limit to avoid allocating gigantic resources */ 71 return min_t(u32, max_pages, 256); 72 } 73 74 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg) 75 { 76 int count = 0; 77 78 if (reg->mr->need_inval) { 79 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 80 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 81 reg->inv_wr.next = ®->reg_wr.wr; 82 count++; 83 } else { 84 reg->inv_wr.next = NULL; 85 } 86 87 return count; 88 } 89 90 /* Caller must have zero-initialized *reg. */ 91 static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num, 92 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 93 u32 sg_cnt, u32 offset) 94 { 95 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 96 qp->integrity_en); 97 u32 nents = min(sg_cnt, pages_per_mr); 98 int count = 0, ret; 99 100 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 101 if (!reg->mr) 102 return -EAGAIN; 103 104 count += rdma_rw_inv_key(reg); 105 106 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 107 if (ret < 0 || ret < nents) { 108 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 109 return -EINVAL; 110 } 111 112 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 113 reg->reg_wr.mr = reg->mr; 114 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 115 if (rdma_protocol_iwarp(qp->device, port_num)) 116 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 117 count++; 118 119 reg->sge.addr = reg->mr->iova; 120 reg->sge.length = reg->mr->length; 121 return count; 122 } 123 124 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 125 u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 126 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 127 { 128 struct rdma_rw_reg_ctx *prev = NULL; 129 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 130 qp->integrity_en); 131 int i, j, ret = 0, count = 0; 132 133 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr); 134 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 135 if (!ctx->reg) { 136 ret = -ENOMEM; 137 goto out; 138 } 139 140 for (i = 0; i < ctx->nr_ops; i++) { 141 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 142 u32 nents = min(sg_cnt, pages_per_mr); 143 144 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 145 offset); 146 if (ret < 0) 147 goto out_free; 148 count += ret; 149 150 if (prev) { 151 if (reg->mr->need_inval) 152 prev->wr.wr.next = ®->inv_wr; 153 else 154 prev->wr.wr.next = ®->reg_wr.wr; 155 } 156 157 reg->reg_wr.wr.next = ®->wr.wr; 158 159 reg->wr.wr.sg_list = ®->sge; 160 reg->wr.wr.num_sge = 1; 161 reg->wr.remote_addr = remote_addr; 162 reg->wr.rkey = rkey; 163 if (dir == DMA_TO_DEVICE) { 164 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 165 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 166 reg->wr.wr.opcode = IB_WR_RDMA_READ; 167 } else { 168 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 169 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 170 } 171 count++; 172 173 remote_addr += reg->sge.length; 174 sg_cnt -= nents; 175 for (j = 0; j < nents; j++) 176 sg = sg_next(sg); 177 prev = reg; 178 offset = 0; 179 } 180 181 if (prev) 182 prev->wr.wr.next = NULL; 183 184 ctx->type = RDMA_RW_MR; 185 return count; 186 187 out_free: 188 while (--i >= 0) 189 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 190 kfree(ctx->reg); 191 out: 192 return ret; 193 } 194 195 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 196 struct scatterlist *sg, u32 sg_cnt, u32 offset, 197 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 198 { 199 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : 200 qp->max_read_sge; 201 struct ib_sge *sge; 202 u32 total_len = 0, i, j; 203 204 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 205 206 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 207 if (!ctx->map.sges) 208 goto out; 209 210 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 211 if (!ctx->map.wrs) 212 goto out_free_sges; 213 214 for (i = 0; i < ctx->nr_ops; i++) { 215 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 216 u32 nr_sge = min(sg_cnt, max_sge); 217 218 if (dir == DMA_TO_DEVICE) 219 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 220 else 221 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 222 rdma_wr->remote_addr = remote_addr + total_len; 223 rdma_wr->rkey = rkey; 224 rdma_wr->wr.num_sge = nr_sge; 225 rdma_wr->wr.sg_list = sge; 226 227 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 228 sge->addr = sg_dma_address(sg) + offset; 229 sge->length = sg_dma_len(sg) - offset; 230 sge->lkey = qp->pd->local_dma_lkey; 231 232 total_len += sge->length; 233 sge++; 234 sg_cnt--; 235 offset = 0; 236 } 237 238 rdma_wr->wr.next = i + 1 < ctx->nr_ops ? 239 &ctx->map.wrs[i + 1].wr : NULL; 240 } 241 242 ctx->type = RDMA_RW_MULTI_WR; 243 return ctx->nr_ops; 244 245 out_free_sges: 246 kfree(ctx->map.sges); 247 out: 248 return -ENOMEM; 249 } 250 251 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 252 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 253 enum dma_data_direction dir) 254 { 255 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 256 257 ctx->nr_ops = 1; 258 259 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 260 ctx->single.sge.addr = sg_dma_address(sg) + offset; 261 ctx->single.sge.length = sg_dma_len(sg) - offset; 262 263 memset(rdma_wr, 0, sizeof(*rdma_wr)); 264 if (dir == DMA_TO_DEVICE) 265 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 266 else 267 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 268 rdma_wr->wr.sg_list = &ctx->single.sge; 269 rdma_wr->wr.num_sge = 1; 270 rdma_wr->remote_addr = remote_addr; 271 rdma_wr->rkey = rkey; 272 273 ctx->type = RDMA_RW_SINGLE_WR; 274 return 1; 275 } 276 277 static void rdma_rw_unmap_sg(struct ib_device *dev, struct scatterlist *sg, 278 u32 sg_cnt, enum dma_data_direction dir) 279 { 280 if (is_pci_p2pdma_page(sg_page(sg))) 281 pci_p2pdma_unmap_sg(dev->dma_device, sg, sg_cnt, dir); 282 else 283 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 284 } 285 286 static int rdma_rw_map_sgtable(struct ib_device *dev, struct sg_table *sgt, 287 enum dma_data_direction dir) 288 { 289 int nents; 290 291 if (is_pci_p2pdma_page(sg_page(sgt->sgl))) { 292 if (WARN_ON_ONCE(ib_uses_virt_dma(dev))) 293 return 0; 294 nents = pci_p2pdma_map_sg(dev->dma_device, sgt->sgl, 295 sgt->orig_nents, dir); 296 if (!nents) 297 return -EIO; 298 sgt->nents = nents; 299 return 0; 300 } 301 return ib_dma_map_sgtable_attrs(dev, sgt, dir, 0); 302 } 303 304 /** 305 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 306 * @ctx: context to initialize 307 * @qp: queue pair to operate on 308 * @port_num: port num to which the connection is bound 309 * @sg: scatterlist to READ/WRITE from/to 310 * @sg_cnt: number of entries in @sg 311 * @sg_offset: current byte offset into @sg 312 * @remote_addr:remote address to read/write (relative to @rkey) 313 * @rkey: remote key to operate on 314 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 315 * 316 * Returns the number of WQEs that will be needed on the workqueue if 317 * successful, or a negative error code. 318 */ 319 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, 320 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 321 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 322 { 323 struct ib_device *dev = qp->pd->device; 324 struct sg_table sgt = { 325 .sgl = sg, 326 .orig_nents = sg_cnt, 327 }; 328 int ret; 329 330 ret = rdma_rw_map_sgtable(dev, &sgt, dir); 331 if (ret) 332 return ret; 333 sg_cnt = sgt.nents; 334 335 /* 336 * Skip to the S/G entry that sg_offset falls into: 337 */ 338 for (;;) { 339 u32 len = sg_dma_len(sg); 340 341 if (sg_offset < len) 342 break; 343 344 sg = sg_next(sg); 345 sg_offset -= len; 346 sg_cnt--; 347 } 348 349 ret = -EIO; 350 if (WARN_ON_ONCE(sg_cnt == 0)) 351 goto out_unmap_sg; 352 353 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 354 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 355 sg_offset, remote_addr, rkey, dir); 356 } else if (sg_cnt > 1) { 357 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 358 remote_addr, rkey, dir); 359 } else { 360 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 361 remote_addr, rkey, dir); 362 } 363 364 if (ret < 0) 365 goto out_unmap_sg; 366 return ret; 367 368 out_unmap_sg: 369 rdma_rw_unmap_sg(dev, sgt.sgl, sgt.orig_nents, dir); 370 return ret; 371 } 372 EXPORT_SYMBOL(rdma_rw_ctx_init); 373 374 /** 375 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload 376 * @ctx: context to initialize 377 * @qp: queue pair to operate on 378 * @port_num: port num to which the connection is bound 379 * @sg: scatterlist to READ/WRITE from/to 380 * @sg_cnt: number of entries in @sg 381 * @prot_sg: scatterlist to READ/WRITE protection information from/to 382 * @prot_sg_cnt: number of entries in @prot_sg 383 * @sig_attrs: signature offloading algorithms 384 * @remote_addr:remote address to read/write (relative to @rkey) 385 * @rkey: remote key to operate on 386 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 387 * 388 * Returns the number of WQEs that will be needed on the workqueue if 389 * successful, or a negative error code. 390 */ 391 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 392 u32 port_num, struct scatterlist *sg, u32 sg_cnt, 393 struct scatterlist *prot_sg, u32 prot_sg_cnt, 394 struct ib_sig_attrs *sig_attrs, 395 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 396 { 397 struct ib_device *dev = qp->pd->device; 398 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 399 qp->integrity_en); 400 struct sg_table sgt = { 401 .sgl = sg, 402 .orig_nents = sg_cnt, 403 }; 404 struct sg_table prot_sgt = { 405 .sgl = prot_sg, 406 .orig_nents = prot_sg_cnt, 407 }; 408 struct ib_rdma_wr *rdma_wr; 409 int count = 0, ret; 410 411 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 412 pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n", 413 sg_cnt, prot_sg_cnt, pages_per_mr); 414 return -EINVAL; 415 } 416 417 ret = rdma_rw_map_sgtable(dev, &sgt, dir); 418 if (ret) 419 return ret; 420 421 if (prot_sg_cnt) { 422 ret = rdma_rw_map_sgtable(dev, &prot_sgt, dir); 423 if (ret) 424 goto out_unmap_sg; 425 } 426 427 ctx->type = RDMA_RW_SIG_MR; 428 ctx->nr_ops = 1; 429 ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL); 430 if (!ctx->reg) { 431 ret = -ENOMEM; 432 goto out_unmap_prot_sg; 433 } 434 435 ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs); 436 if (!ctx->reg->mr) { 437 ret = -EAGAIN; 438 goto out_free_ctx; 439 } 440 441 count += rdma_rw_inv_key(ctx->reg); 442 443 memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs)); 444 445 ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg, 446 prot_sgt.nents, NULL, SZ_4K); 447 if (unlikely(ret)) { 448 pr_err("failed to map PI sg (%u)\n", 449 sgt.nents + prot_sgt.nents); 450 goto out_destroy_sig_mr; 451 } 452 453 ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY; 454 ctx->reg->reg_wr.wr.wr_cqe = NULL; 455 ctx->reg->reg_wr.wr.num_sge = 0; 456 ctx->reg->reg_wr.wr.send_flags = 0; 457 ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 458 if (rdma_protocol_iwarp(qp->device, port_num)) 459 ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 460 ctx->reg->reg_wr.mr = ctx->reg->mr; 461 ctx->reg->reg_wr.key = ctx->reg->mr->lkey; 462 count++; 463 464 ctx->reg->sge.addr = ctx->reg->mr->iova; 465 ctx->reg->sge.length = ctx->reg->mr->length; 466 if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE) 467 ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length; 468 469 rdma_wr = &ctx->reg->wr; 470 rdma_wr->wr.sg_list = &ctx->reg->sge; 471 rdma_wr->wr.num_sge = 1; 472 rdma_wr->remote_addr = remote_addr; 473 rdma_wr->rkey = rkey; 474 if (dir == DMA_TO_DEVICE) 475 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 476 else 477 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 478 ctx->reg->reg_wr.wr.next = &rdma_wr->wr; 479 count++; 480 481 return count; 482 483 out_destroy_sig_mr: 484 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 485 out_free_ctx: 486 kfree(ctx->reg); 487 out_unmap_prot_sg: 488 if (prot_sgt.nents) 489 rdma_rw_unmap_sg(dev, prot_sgt.sgl, prot_sgt.orig_nents, dir); 490 out_unmap_sg: 491 rdma_rw_unmap_sg(dev, sgt.sgl, sgt.orig_nents, dir); 492 return ret; 493 } 494 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 495 496 /* 497 * Now that we are going to post the WRs we can update the lkey and need_inval 498 * state on the MRs. If we were doing this at init time, we would get double 499 * or missing invalidations if a context was initialized but not actually 500 * posted. 501 */ 502 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 503 { 504 reg->mr->need_inval = need_inval; 505 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 506 reg->reg_wr.key = reg->mr->lkey; 507 reg->sge.lkey = reg->mr->lkey; 508 } 509 510 /** 511 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 512 * @ctx: context to operate on 513 * @qp: queue pair to operate on 514 * @port_num: port num to which the connection is bound 515 * @cqe: completion queue entry for the last WR 516 * @chain_wr: WR to append to the posted chain 517 * 518 * Return the WR chain for the set of RDMA READ/WRITE operations described by 519 * @ctx, as well as any memory registration operations needed. If @chain_wr 520 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 521 * If @chain_wr is not set @cqe must be set so that the caller gets a 522 * completion notification. 523 */ 524 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 525 u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 526 { 527 struct ib_send_wr *first_wr, *last_wr; 528 int i; 529 530 switch (ctx->type) { 531 case RDMA_RW_SIG_MR: 532 case RDMA_RW_MR: 533 for (i = 0; i < ctx->nr_ops; i++) { 534 rdma_rw_update_lkey(&ctx->reg[i], 535 ctx->reg[i].wr.wr.opcode != 536 IB_WR_RDMA_READ_WITH_INV); 537 } 538 539 if (ctx->reg[0].inv_wr.next) 540 first_wr = &ctx->reg[0].inv_wr; 541 else 542 first_wr = &ctx->reg[0].reg_wr.wr; 543 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 544 break; 545 case RDMA_RW_MULTI_WR: 546 first_wr = &ctx->map.wrs[0].wr; 547 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 548 break; 549 case RDMA_RW_SINGLE_WR: 550 first_wr = &ctx->single.wr.wr; 551 last_wr = &ctx->single.wr.wr; 552 break; 553 default: 554 BUG(); 555 } 556 557 if (chain_wr) { 558 last_wr->next = chain_wr; 559 } else { 560 last_wr->wr_cqe = cqe; 561 last_wr->send_flags |= IB_SEND_SIGNALED; 562 } 563 564 return first_wr; 565 } 566 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 567 568 /** 569 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 570 * @ctx: context to operate on 571 * @qp: queue pair to operate on 572 * @port_num: port num to which the connection is bound 573 * @cqe: completion queue entry for the last WR 574 * @chain_wr: WR to append to the posted chain 575 * 576 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 577 * any memory registration operations needed. If @chain_wr is non-NULL the 578 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 579 * is not set @cqe must be set so that the caller gets a completion 580 * notification. 581 */ 582 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num, 583 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 584 { 585 struct ib_send_wr *first_wr; 586 587 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 588 return ib_post_send(qp, first_wr, NULL); 589 } 590 EXPORT_SYMBOL(rdma_rw_ctx_post); 591 592 /** 593 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 594 * @ctx: context to release 595 * @qp: queue pair to operate on 596 * @port_num: port num to which the connection is bound 597 * @sg: scatterlist that was used for the READ/WRITE 598 * @sg_cnt: number of entries in @sg 599 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 600 */ 601 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 602 u32 port_num, struct scatterlist *sg, u32 sg_cnt, 603 enum dma_data_direction dir) 604 { 605 int i; 606 607 switch (ctx->type) { 608 case RDMA_RW_MR: 609 for (i = 0; i < ctx->nr_ops; i++) 610 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 611 kfree(ctx->reg); 612 break; 613 case RDMA_RW_MULTI_WR: 614 kfree(ctx->map.wrs); 615 kfree(ctx->map.sges); 616 break; 617 case RDMA_RW_SINGLE_WR: 618 break; 619 default: 620 BUG(); 621 break; 622 } 623 624 rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 625 } 626 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 627 628 /** 629 * rdma_rw_ctx_destroy_signature - release all resources allocated by 630 * rdma_rw_ctx_signature_init 631 * @ctx: context to release 632 * @qp: queue pair to operate on 633 * @port_num: port num to which the connection is bound 634 * @sg: scatterlist that was used for the READ/WRITE 635 * @sg_cnt: number of entries in @sg 636 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 637 * @prot_sg_cnt: number of entries in @prot_sg 638 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 639 */ 640 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 641 u32 port_num, struct scatterlist *sg, u32 sg_cnt, 642 struct scatterlist *prot_sg, u32 prot_sg_cnt, 643 enum dma_data_direction dir) 644 { 645 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 646 return; 647 648 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 649 kfree(ctx->reg); 650 651 if (prot_sg_cnt) 652 rdma_rw_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 653 rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 654 } 655 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 656 657 /** 658 * rdma_rw_mr_factor - return number of MRs required for a payload 659 * @device: device handling the connection 660 * @port_num: port num to which the connection is bound 661 * @maxpages: maximum payload pages per rdma_rw_ctx 662 * 663 * Returns the number of MRs the device requires to move @maxpayload 664 * bytes. The returned value is used during transport creation to 665 * compute max_rdma_ctxts and the size of the transport's Send and 666 * Send Completion Queues. 667 */ 668 unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num, 669 unsigned int maxpages) 670 { 671 unsigned int mr_pages; 672 673 if (rdma_rw_can_use_mr(device, port_num)) 674 mr_pages = rdma_rw_fr_page_list_len(device, false); 675 else 676 mr_pages = device->attrs.max_sge_rd; 677 return DIV_ROUND_UP(maxpages, mr_pages); 678 } 679 EXPORT_SYMBOL(rdma_rw_mr_factor); 680 681 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 682 { 683 u32 factor; 684 685 WARN_ON_ONCE(attr->port_num == 0); 686 687 /* 688 * Each context needs at least one RDMA READ or WRITE WR. 689 * 690 * For some hardware we might need more, eventually we should ask the 691 * HCA driver for a multiplier here. 692 */ 693 factor = 1; 694 695 /* 696 * If the devices needs MRs to perform RDMA READ or WRITE operations, 697 * we'll need two additional MRs for the registrations and the 698 * invalidation. 699 */ 700 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN || 701 rdma_rw_can_use_mr(dev, attr->port_num)) 702 factor += 2; /* inv + reg */ 703 704 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 705 706 /* 707 * But maybe we were just too high in the sky and the device doesn't 708 * even support all we need, and we'll have to live with what we get.. 709 */ 710 attr->cap.max_send_wr = 711 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 712 } 713 714 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 715 { 716 struct ib_device *dev = qp->pd->device; 717 u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0; 718 int ret = 0; 719 720 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) { 721 nr_sig_mrs = attr->cap.max_rdma_ctxs; 722 nr_mrs = attr->cap.max_rdma_ctxs; 723 max_num_sg = rdma_rw_fr_page_list_len(dev, true); 724 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 725 nr_mrs = attr->cap.max_rdma_ctxs; 726 max_num_sg = rdma_rw_fr_page_list_len(dev, false); 727 } 728 729 if (nr_mrs) { 730 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 731 IB_MR_TYPE_MEM_REG, 732 max_num_sg, 0); 733 if (ret) { 734 pr_err("%s: failed to allocated %u MRs\n", 735 __func__, nr_mrs); 736 return ret; 737 } 738 } 739 740 if (nr_sig_mrs) { 741 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 742 IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg); 743 if (ret) { 744 pr_err("%s: failed to allocated %u SIG MRs\n", 745 __func__, nr_sig_mrs); 746 goto out_free_rdma_mrs; 747 } 748 } 749 750 return 0; 751 752 out_free_rdma_mrs: 753 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 754 return ret; 755 } 756 757 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 758 { 759 ib_mr_pool_destroy(qp, &qp->sig_mrs); 760 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 761 } 762