xref: /openbmc/linux/drivers/infiniband/core/rw.c (revision 38857318)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016 HGST, a Western Digital Company.
4  */
5 #include <linux/memremap.h>
6 #include <linux/moduleparam.h>
7 #include <linux/slab.h>
8 #include <linux/pci-p2pdma.h>
9 #include <rdma/mr_pool.h>
10 #include <rdma/rw.h>
11 
12 enum {
13 	RDMA_RW_SINGLE_WR,
14 	RDMA_RW_MULTI_WR,
15 	RDMA_RW_MR,
16 	RDMA_RW_SIG_MR,
17 };
18 
19 static bool rdma_rw_force_mr;
20 module_param_named(force_mr, rdma_rw_force_mr, bool, 0);
21 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations");
22 
23 /*
24  * Report whether memory registration should be used. Memory registration must
25  * be used for iWarp devices because of iWARP-specific limitations. Memory
26  * registration is also enabled if registering memory might yield better
27  * performance than using multiple SGE entries, see rdma_rw_io_needs_mr()
28  */
29 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u32 port_num)
30 {
31 	if (rdma_protocol_iwarp(dev, port_num))
32 		return true;
33 	if (dev->attrs.max_sgl_rd)
34 		return true;
35 	if (unlikely(rdma_rw_force_mr))
36 		return true;
37 	return false;
38 }
39 
40 /*
41  * Check if the device will use memory registration for this RW operation.
42  * For RDMA READs we must use MRs on iWarp and can optionally use them as an
43  * optimization otherwise.  Additionally we have a debug option to force usage
44  * of MRs to help testing this code path.
45  */
46 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u32 port_num,
47 		enum dma_data_direction dir, int dma_nents)
48 {
49 	if (dir == DMA_FROM_DEVICE) {
50 		if (rdma_protocol_iwarp(dev, port_num))
51 			return true;
52 		if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd)
53 			return true;
54 	}
55 	if (unlikely(rdma_rw_force_mr))
56 		return true;
57 	return false;
58 }
59 
60 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev,
61 					   bool pi_support)
62 {
63 	u32 max_pages;
64 
65 	if (pi_support)
66 		max_pages = dev->attrs.max_pi_fast_reg_page_list_len;
67 	else
68 		max_pages = dev->attrs.max_fast_reg_page_list_len;
69 
70 	/* arbitrary limit to avoid allocating gigantic resources */
71 	return min_t(u32, max_pages, 256);
72 }
73 
74 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg)
75 {
76 	int count = 0;
77 
78 	if (reg->mr->need_inval) {
79 		reg->inv_wr.opcode = IB_WR_LOCAL_INV;
80 		reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey;
81 		reg->inv_wr.next = &reg->reg_wr.wr;
82 		count++;
83 	} else {
84 		reg->inv_wr.next = NULL;
85 	}
86 
87 	return count;
88 }
89 
90 /* Caller must have zero-initialized *reg. */
91 static int rdma_rw_init_one_mr(struct ib_qp *qp, u32 port_num,
92 		struct rdma_rw_reg_ctx *reg, struct scatterlist *sg,
93 		u32 sg_cnt, u32 offset)
94 {
95 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
96 						    qp->integrity_en);
97 	u32 nents = min(sg_cnt, pages_per_mr);
98 	int count = 0, ret;
99 
100 	reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs);
101 	if (!reg->mr)
102 		return -EAGAIN;
103 
104 	count += rdma_rw_inv_key(reg);
105 
106 	ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE);
107 	if (ret < 0 || ret < nents) {
108 		ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr);
109 		return -EINVAL;
110 	}
111 
112 	reg->reg_wr.wr.opcode = IB_WR_REG_MR;
113 	reg->reg_wr.mr = reg->mr;
114 	reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
115 	if (rdma_protocol_iwarp(qp->device, port_num))
116 		reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
117 	count++;
118 
119 	reg->sge.addr = reg->mr->iova;
120 	reg->sge.length = reg->mr->length;
121 	return count;
122 }
123 
124 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
125 		u32 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset,
126 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
127 {
128 	struct rdma_rw_reg_ctx *prev = NULL;
129 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
130 						    qp->integrity_en);
131 	int i, j, ret = 0, count = 0;
132 
133 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, pages_per_mr);
134 	ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL);
135 	if (!ctx->reg) {
136 		ret = -ENOMEM;
137 		goto out;
138 	}
139 
140 	for (i = 0; i < ctx->nr_ops; i++) {
141 		struct rdma_rw_reg_ctx *reg = &ctx->reg[i];
142 		u32 nents = min(sg_cnt, pages_per_mr);
143 
144 		ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt,
145 				offset);
146 		if (ret < 0)
147 			goto out_free;
148 		count += ret;
149 
150 		if (prev) {
151 			if (reg->mr->need_inval)
152 				prev->wr.wr.next = &reg->inv_wr;
153 			else
154 				prev->wr.wr.next = &reg->reg_wr.wr;
155 		}
156 
157 		reg->reg_wr.wr.next = &reg->wr.wr;
158 
159 		reg->wr.wr.sg_list = &reg->sge;
160 		reg->wr.wr.num_sge = 1;
161 		reg->wr.remote_addr = remote_addr;
162 		reg->wr.rkey = rkey;
163 		if (dir == DMA_TO_DEVICE) {
164 			reg->wr.wr.opcode = IB_WR_RDMA_WRITE;
165 		} else if (!rdma_cap_read_inv(qp->device, port_num)) {
166 			reg->wr.wr.opcode = IB_WR_RDMA_READ;
167 		} else {
168 			reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV;
169 			reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey;
170 		}
171 		count++;
172 
173 		remote_addr += reg->sge.length;
174 		sg_cnt -= nents;
175 		for (j = 0; j < nents; j++)
176 			sg = sg_next(sg);
177 		prev = reg;
178 		offset = 0;
179 	}
180 
181 	if (prev)
182 		prev->wr.wr.next = NULL;
183 
184 	ctx->type = RDMA_RW_MR;
185 	return count;
186 
187 out_free:
188 	while (--i >= 0)
189 		ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
190 	kfree(ctx->reg);
191 out:
192 	return ret;
193 }
194 
195 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
196 		struct scatterlist *sg, u32 sg_cnt, u32 offset,
197 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
198 {
199 	u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge :
200 		      qp->max_read_sge;
201 	struct ib_sge *sge;
202 	u32 total_len = 0, i, j;
203 
204 	ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge);
205 
206 	ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL);
207 	if (!ctx->map.sges)
208 		goto out;
209 
210 	ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL);
211 	if (!ctx->map.wrs)
212 		goto out_free_sges;
213 
214 	for (i = 0; i < ctx->nr_ops; i++) {
215 		struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i];
216 		u32 nr_sge = min(sg_cnt, max_sge);
217 
218 		if (dir == DMA_TO_DEVICE)
219 			rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
220 		else
221 			rdma_wr->wr.opcode = IB_WR_RDMA_READ;
222 		rdma_wr->remote_addr = remote_addr + total_len;
223 		rdma_wr->rkey = rkey;
224 		rdma_wr->wr.num_sge = nr_sge;
225 		rdma_wr->wr.sg_list = sge;
226 
227 		for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) {
228 			sge->addr = sg_dma_address(sg) + offset;
229 			sge->length = sg_dma_len(sg) - offset;
230 			sge->lkey = qp->pd->local_dma_lkey;
231 
232 			total_len += sge->length;
233 			sge++;
234 			sg_cnt--;
235 			offset = 0;
236 		}
237 
238 		rdma_wr->wr.next = i + 1 < ctx->nr_ops ?
239 			&ctx->map.wrs[i + 1].wr : NULL;
240 	}
241 
242 	ctx->type = RDMA_RW_MULTI_WR;
243 	return ctx->nr_ops;
244 
245 out_free_sges:
246 	kfree(ctx->map.sges);
247 out:
248 	return -ENOMEM;
249 }
250 
251 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
252 		struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey,
253 		enum dma_data_direction dir)
254 {
255 	struct ib_rdma_wr *rdma_wr = &ctx->single.wr;
256 
257 	ctx->nr_ops = 1;
258 
259 	ctx->single.sge.lkey = qp->pd->local_dma_lkey;
260 	ctx->single.sge.addr = sg_dma_address(sg) + offset;
261 	ctx->single.sge.length = sg_dma_len(sg) - offset;
262 
263 	memset(rdma_wr, 0, sizeof(*rdma_wr));
264 	if (dir == DMA_TO_DEVICE)
265 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
266 	else
267 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
268 	rdma_wr->wr.sg_list = &ctx->single.sge;
269 	rdma_wr->wr.num_sge = 1;
270 	rdma_wr->remote_addr = remote_addr;
271 	rdma_wr->rkey = rkey;
272 
273 	ctx->type = RDMA_RW_SINGLE_WR;
274 	return 1;
275 }
276 
277 static void rdma_rw_unmap_sg(struct ib_device *dev, struct scatterlist *sg,
278 			     u32 sg_cnt, enum dma_data_direction dir)
279 {
280 	if (is_pci_p2pdma_page(sg_page(sg)))
281 		pci_p2pdma_unmap_sg(dev->dma_device, sg, sg_cnt, dir);
282 	else
283 		ib_dma_unmap_sg(dev, sg, sg_cnt, dir);
284 }
285 
286 static int rdma_rw_map_sgtable(struct ib_device *dev, struct sg_table *sgt,
287 			       enum dma_data_direction dir)
288 {
289 	int nents;
290 
291 	if (is_pci_p2pdma_page(sg_page(sgt->sgl))) {
292 		if (WARN_ON_ONCE(ib_uses_virt_dma(dev)))
293 			return 0;
294 		nents = pci_p2pdma_map_sg(dev->dma_device, sgt->sgl,
295 					  sgt->orig_nents, dir);
296 		if (!nents)
297 			return -EIO;
298 		sgt->nents = nents;
299 		return 0;
300 	}
301 	return ib_dma_map_sgtable_attrs(dev, sgt, dir, 0);
302 }
303 
304 /**
305  * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context
306  * @ctx:	context to initialize
307  * @qp:		queue pair to operate on
308  * @port_num:	port num to which the connection is bound
309  * @sg:		scatterlist to READ/WRITE from/to
310  * @sg_cnt:	number of entries in @sg
311  * @sg_offset:	current byte offset into @sg
312  * @remote_addr:remote address to read/write (relative to @rkey)
313  * @rkey:	remote key to operate on
314  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
315  *
316  * Returns the number of WQEs that will be needed on the workqueue if
317  * successful, or a negative error code.
318  */
319 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
320 		struct scatterlist *sg, u32 sg_cnt, u32 sg_offset,
321 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
322 {
323 	struct ib_device *dev = qp->pd->device;
324 	struct sg_table sgt = {
325 		.sgl = sg,
326 		.orig_nents = sg_cnt,
327 	};
328 	int ret;
329 
330 	ret = rdma_rw_map_sgtable(dev, &sgt, dir);
331 	if (ret)
332 		return ret;
333 	sg_cnt = sgt.nents;
334 
335 	/*
336 	 * Skip to the S/G entry that sg_offset falls into:
337 	 */
338 	for (;;) {
339 		u32 len = sg_dma_len(sg);
340 
341 		if (sg_offset < len)
342 			break;
343 
344 		sg = sg_next(sg);
345 		sg_offset -= len;
346 		sg_cnt--;
347 	}
348 
349 	ret = -EIO;
350 	if (WARN_ON_ONCE(sg_cnt == 0))
351 		goto out_unmap_sg;
352 
353 	if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) {
354 		ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt,
355 				sg_offset, remote_addr, rkey, dir);
356 	} else if (sg_cnt > 1) {
357 		ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset,
358 				remote_addr, rkey, dir);
359 	} else {
360 		ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset,
361 				remote_addr, rkey, dir);
362 	}
363 
364 	if (ret < 0)
365 		goto out_unmap_sg;
366 	return ret;
367 
368 out_unmap_sg:
369 	rdma_rw_unmap_sg(dev, sgt.sgl, sgt.orig_nents, dir);
370 	return ret;
371 }
372 EXPORT_SYMBOL(rdma_rw_ctx_init);
373 
374 /**
375  * rdma_rw_ctx_signature_init - initialize a RW context with signature offload
376  * @ctx:	context to initialize
377  * @qp:		queue pair to operate on
378  * @port_num:	port num to which the connection is bound
379  * @sg:		scatterlist to READ/WRITE from/to
380  * @sg_cnt:	number of entries in @sg
381  * @prot_sg:	scatterlist to READ/WRITE protection information from/to
382  * @prot_sg_cnt: number of entries in @prot_sg
383  * @sig_attrs:	signature offloading algorithms
384  * @remote_addr:remote address to read/write (relative to @rkey)
385  * @rkey:	remote key to operate on
386  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
387  *
388  * Returns the number of WQEs that will be needed on the workqueue if
389  * successful, or a negative error code.
390  */
391 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
392 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
393 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
394 		struct ib_sig_attrs *sig_attrs,
395 		u64 remote_addr, u32 rkey, enum dma_data_direction dir)
396 {
397 	struct ib_device *dev = qp->pd->device;
398 	u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device,
399 						    qp->integrity_en);
400 	struct sg_table sgt = {
401 		.sgl = sg,
402 		.orig_nents = sg_cnt,
403 	};
404 	struct sg_table prot_sgt = {
405 		.sgl = prot_sg,
406 		.orig_nents = prot_sg_cnt,
407 	};
408 	struct ib_rdma_wr *rdma_wr;
409 	int count = 0, ret;
410 
411 	if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) {
412 		pr_err("SG count too large: sg_cnt=%u, prot_sg_cnt=%u, pages_per_mr=%u\n",
413 		       sg_cnt, prot_sg_cnt, pages_per_mr);
414 		return -EINVAL;
415 	}
416 
417 	ret = rdma_rw_map_sgtable(dev, &sgt, dir);
418 	if (ret)
419 		return ret;
420 
421 	if (prot_sg_cnt) {
422 		ret = rdma_rw_map_sgtable(dev, &prot_sgt, dir);
423 		if (ret)
424 			goto out_unmap_sg;
425 	}
426 
427 	ctx->type = RDMA_RW_SIG_MR;
428 	ctx->nr_ops = 1;
429 	ctx->reg = kzalloc(sizeof(*ctx->reg), GFP_KERNEL);
430 	if (!ctx->reg) {
431 		ret = -ENOMEM;
432 		goto out_unmap_prot_sg;
433 	}
434 
435 	ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs);
436 	if (!ctx->reg->mr) {
437 		ret = -EAGAIN;
438 		goto out_free_ctx;
439 	}
440 
441 	count += rdma_rw_inv_key(ctx->reg);
442 
443 	memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs));
444 
445 	ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sgt.nents, NULL, prot_sg,
446 			      prot_sgt.nents, NULL, SZ_4K);
447 	if (unlikely(ret)) {
448 		pr_err("failed to map PI sg (%u)\n",
449 		       sgt.nents + prot_sgt.nents);
450 		goto out_destroy_sig_mr;
451 	}
452 
453 	ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY;
454 	ctx->reg->reg_wr.wr.wr_cqe = NULL;
455 	ctx->reg->reg_wr.wr.num_sge = 0;
456 	ctx->reg->reg_wr.wr.send_flags = 0;
457 	ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE;
458 	if (rdma_protocol_iwarp(qp->device, port_num))
459 		ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE;
460 	ctx->reg->reg_wr.mr = ctx->reg->mr;
461 	ctx->reg->reg_wr.key = ctx->reg->mr->lkey;
462 	count++;
463 
464 	ctx->reg->sge.addr = ctx->reg->mr->iova;
465 	ctx->reg->sge.length = ctx->reg->mr->length;
466 	if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE)
467 		ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length;
468 
469 	rdma_wr = &ctx->reg->wr;
470 	rdma_wr->wr.sg_list = &ctx->reg->sge;
471 	rdma_wr->wr.num_sge = 1;
472 	rdma_wr->remote_addr = remote_addr;
473 	rdma_wr->rkey = rkey;
474 	if (dir == DMA_TO_DEVICE)
475 		rdma_wr->wr.opcode = IB_WR_RDMA_WRITE;
476 	else
477 		rdma_wr->wr.opcode = IB_WR_RDMA_READ;
478 	ctx->reg->reg_wr.wr.next = &rdma_wr->wr;
479 	count++;
480 
481 	return count;
482 
483 out_destroy_sig_mr:
484 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
485 out_free_ctx:
486 	kfree(ctx->reg);
487 out_unmap_prot_sg:
488 	if (prot_sgt.nents)
489 		rdma_rw_unmap_sg(dev, prot_sgt.sgl, prot_sgt.orig_nents, dir);
490 out_unmap_sg:
491 	rdma_rw_unmap_sg(dev, sgt.sgl, sgt.orig_nents, dir);
492 	return ret;
493 }
494 EXPORT_SYMBOL(rdma_rw_ctx_signature_init);
495 
496 /*
497  * Now that we are going to post the WRs we can update the lkey and need_inval
498  * state on the MRs.  If we were doing this at init time, we would get double
499  * or missing invalidations if a context was initialized but not actually
500  * posted.
501  */
502 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval)
503 {
504 	reg->mr->need_inval = need_inval;
505 	ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey));
506 	reg->reg_wr.key = reg->mr->lkey;
507 	reg->sge.lkey = reg->mr->lkey;
508 }
509 
510 /**
511  * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation
512  * @ctx:	context to operate on
513  * @qp:		queue pair to operate on
514  * @port_num:	port num to which the connection is bound
515  * @cqe:	completion queue entry for the last WR
516  * @chain_wr:	WR to append to the posted chain
517  *
518  * Return the WR chain for the set of RDMA READ/WRITE operations described by
519  * @ctx, as well as any memory registration operations needed.  If @chain_wr
520  * is non-NULL the WR it points to will be appended to the chain of WRs posted.
521  * If @chain_wr is not set @cqe must be set so that the caller gets a
522  * completion notification.
523  */
524 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
525 		u32 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
526 {
527 	struct ib_send_wr *first_wr, *last_wr;
528 	int i;
529 
530 	switch (ctx->type) {
531 	case RDMA_RW_SIG_MR:
532 	case RDMA_RW_MR:
533 		for (i = 0; i < ctx->nr_ops; i++) {
534 			rdma_rw_update_lkey(&ctx->reg[i],
535 				ctx->reg[i].wr.wr.opcode !=
536 					IB_WR_RDMA_READ_WITH_INV);
537 		}
538 
539 		if (ctx->reg[0].inv_wr.next)
540 			first_wr = &ctx->reg[0].inv_wr;
541 		else
542 			first_wr = &ctx->reg[0].reg_wr.wr;
543 		last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr;
544 		break;
545 	case RDMA_RW_MULTI_WR:
546 		first_wr = &ctx->map.wrs[0].wr;
547 		last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr;
548 		break;
549 	case RDMA_RW_SINGLE_WR:
550 		first_wr = &ctx->single.wr.wr;
551 		last_wr = &ctx->single.wr.wr;
552 		break;
553 	default:
554 		BUG();
555 	}
556 
557 	if (chain_wr) {
558 		last_wr->next = chain_wr;
559 	} else {
560 		last_wr->wr_cqe = cqe;
561 		last_wr->send_flags |= IB_SEND_SIGNALED;
562 	}
563 
564 	return first_wr;
565 }
566 EXPORT_SYMBOL(rdma_rw_ctx_wrs);
567 
568 /**
569  * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation
570  * @ctx:	context to operate on
571  * @qp:		queue pair to operate on
572  * @port_num:	port num to which the connection is bound
573  * @cqe:	completion queue entry for the last WR
574  * @chain_wr:	WR to append to the posted chain
575  *
576  * Post the set of RDMA READ/WRITE operations described by @ctx, as well as
577  * any memory registration operations needed.  If @chain_wr is non-NULL the
578  * WR it points to will be appended to the chain of WRs posted.  If @chain_wr
579  * is not set @cqe must be set so that the caller gets a completion
580  * notification.
581  */
582 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u32 port_num,
583 		struct ib_cqe *cqe, struct ib_send_wr *chain_wr)
584 {
585 	struct ib_send_wr *first_wr;
586 
587 	first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr);
588 	return ib_post_send(qp, first_wr, NULL);
589 }
590 EXPORT_SYMBOL(rdma_rw_ctx_post);
591 
592 /**
593  * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init
594  * @ctx:	context to release
595  * @qp:		queue pair to operate on
596  * @port_num:	port num to which the connection is bound
597  * @sg:		scatterlist that was used for the READ/WRITE
598  * @sg_cnt:	number of entries in @sg
599  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
600  */
601 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
602 			 u32 port_num, struct scatterlist *sg, u32 sg_cnt,
603 			 enum dma_data_direction dir)
604 {
605 	int i;
606 
607 	switch (ctx->type) {
608 	case RDMA_RW_MR:
609 		for (i = 0; i < ctx->nr_ops; i++)
610 			ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr);
611 		kfree(ctx->reg);
612 		break;
613 	case RDMA_RW_MULTI_WR:
614 		kfree(ctx->map.wrs);
615 		kfree(ctx->map.sges);
616 		break;
617 	case RDMA_RW_SINGLE_WR:
618 		break;
619 	default:
620 		BUG();
621 		break;
622 	}
623 
624 	rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
625 }
626 EXPORT_SYMBOL(rdma_rw_ctx_destroy);
627 
628 /**
629  * rdma_rw_ctx_destroy_signature - release all resources allocated by
630  *	rdma_rw_ctx_signature_init
631  * @ctx:	context to release
632  * @qp:		queue pair to operate on
633  * @port_num:	port num to which the connection is bound
634  * @sg:		scatterlist that was used for the READ/WRITE
635  * @sg_cnt:	number of entries in @sg
636  * @prot_sg:	scatterlist that was used for the READ/WRITE of the PI
637  * @prot_sg_cnt: number of entries in @prot_sg
638  * @dir:	%DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ
639  */
640 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp,
641 		u32 port_num, struct scatterlist *sg, u32 sg_cnt,
642 		struct scatterlist *prot_sg, u32 prot_sg_cnt,
643 		enum dma_data_direction dir)
644 {
645 	if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR))
646 		return;
647 
648 	ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr);
649 	kfree(ctx->reg);
650 
651 	if (prot_sg_cnt)
652 		rdma_rw_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir);
653 	rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir);
654 }
655 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature);
656 
657 /**
658  * rdma_rw_mr_factor - return number of MRs required for a payload
659  * @device:	device handling the connection
660  * @port_num:	port num to which the connection is bound
661  * @maxpages:	maximum payload pages per rdma_rw_ctx
662  *
663  * Returns the number of MRs the device requires to move @maxpayload
664  * bytes. The returned value is used during transport creation to
665  * compute max_rdma_ctxts and the size of the transport's Send and
666  * Send Completion Queues.
667  */
668 unsigned int rdma_rw_mr_factor(struct ib_device *device, u32 port_num,
669 			       unsigned int maxpages)
670 {
671 	unsigned int mr_pages;
672 
673 	if (rdma_rw_can_use_mr(device, port_num))
674 		mr_pages = rdma_rw_fr_page_list_len(device, false);
675 	else
676 		mr_pages = device->attrs.max_sge_rd;
677 	return DIV_ROUND_UP(maxpages, mr_pages);
678 }
679 EXPORT_SYMBOL(rdma_rw_mr_factor);
680 
681 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr)
682 {
683 	u32 factor;
684 
685 	WARN_ON_ONCE(attr->port_num == 0);
686 
687 	/*
688 	 * Each context needs at least one RDMA READ or WRITE WR.
689 	 *
690 	 * For some hardware we might need more, eventually we should ask the
691 	 * HCA driver for a multiplier here.
692 	 */
693 	factor = 1;
694 
695 	/*
696 	 * If the devices needs MRs to perform RDMA READ or WRITE operations,
697 	 * we'll need two additional MRs for the registrations and the
698 	 * invalidation.
699 	 */
700 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN ||
701 	    rdma_rw_can_use_mr(dev, attr->port_num))
702 		factor += 2;	/* inv + reg */
703 
704 	attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs;
705 
706 	/*
707 	 * But maybe we were just too high in the sky and the device doesn't
708 	 * even support all we need, and we'll have to live with what we get..
709 	 */
710 	attr->cap.max_send_wr =
711 		min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr);
712 }
713 
714 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr)
715 {
716 	struct ib_device *dev = qp->pd->device;
717 	u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0;
718 	int ret = 0;
719 
720 	if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) {
721 		nr_sig_mrs = attr->cap.max_rdma_ctxs;
722 		nr_mrs = attr->cap.max_rdma_ctxs;
723 		max_num_sg = rdma_rw_fr_page_list_len(dev, true);
724 	} else if (rdma_rw_can_use_mr(dev, attr->port_num)) {
725 		nr_mrs = attr->cap.max_rdma_ctxs;
726 		max_num_sg = rdma_rw_fr_page_list_len(dev, false);
727 	}
728 
729 	if (nr_mrs) {
730 		ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs,
731 				IB_MR_TYPE_MEM_REG,
732 				max_num_sg, 0);
733 		if (ret) {
734 			pr_err("%s: failed to allocated %u MRs\n",
735 				__func__, nr_mrs);
736 			return ret;
737 		}
738 	}
739 
740 	if (nr_sig_mrs) {
741 		ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs,
742 				IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg);
743 		if (ret) {
744 			pr_err("%s: failed to allocated %u SIG MRs\n",
745 				__func__, nr_sig_mrs);
746 			goto out_free_rdma_mrs;
747 		}
748 	}
749 
750 	return 0;
751 
752 out_free_rdma_mrs:
753 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
754 	return ret;
755 }
756 
757 void rdma_rw_cleanup_mrs(struct ib_qp *qp)
758 {
759 	ib_mr_pool_destroy(qp, &qp->sig_mrs);
760 	ib_mr_pool_destroy(qp, &qp->rdma_mrs);
761 }
762