1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2016 HGST, a Western Digital Company. 4 */ 5 #include <linux/moduleparam.h> 6 #include <linux/slab.h> 7 #include <linux/pci-p2pdma.h> 8 #include <rdma/mr_pool.h> 9 #include <rdma/rw.h> 10 11 enum { 12 RDMA_RW_SINGLE_WR, 13 RDMA_RW_MULTI_WR, 14 RDMA_RW_MR, 15 RDMA_RW_SIG_MR, 16 }; 17 18 static bool rdma_rw_force_mr; 19 module_param_named(force_mr, rdma_rw_force_mr, bool, 0); 20 MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); 21 22 /* 23 * Report whether memory registration should be used. Memory registration must 24 * be used for iWarp devices because of iWARP-specific limitations. Memory 25 * registration is also enabled if registering memory might yield better 26 * performance than using multiple SGE entries, see rdma_rw_io_needs_mr() 27 */ 28 static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) 29 { 30 if (rdma_protocol_iwarp(dev, port_num)) 31 return true; 32 if (dev->attrs.max_sgl_rd) 33 return true; 34 if (unlikely(rdma_rw_force_mr)) 35 return true; 36 return false; 37 } 38 39 /* 40 * Check if the device will use memory registration for this RW operation. 41 * For RDMA READs we must use MRs on iWarp and can optionally use them as an 42 * optimization otherwise. Additionally we have a debug option to force usage 43 * of MRs to help testing this code path. 44 */ 45 static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, 46 enum dma_data_direction dir, int dma_nents) 47 { 48 if (dir == DMA_FROM_DEVICE) { 49 if (rdma_protocol_iwarp(dev, port_num)) 50 return true; 51 if (dev->attrs.max_sgl_rd && dma_nents > dev->attrs.max_sgl_rd) 52 return true; 53 } 54 if (unlikely(rdma_rw_force_mr)) 55 return true; 56 return false; 57 } 58 59 static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev, 60 bool pi_support) 61 { 62 u32 max_pages; 63 64 if (pi_support) 65 max_pages = dev->attrs.max_pi_fast_reg_page_list_len; 66 else 67 max_pages = dev->attrs.max_fast_reg_page_list_len; 68 69 /* arbitrary limit to avoid allocating gigantic resources */ 70 return min_t(u32, max_pages, 256); 71 } 72 73 static inline int rdma_rw_inv_key(struct rdma_rw_reg_ctx *reg) 74 { 75 int count = 0; 76 77 if (reg->mr->need_inval) { 78 reg->inv_wr.opcode = IB_WR_LOCAL_INV; 79 reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; 80 reg->inv_wr.next = ®->reg_wr.wr; 81 count++; 82 } else { 83 reg->inv_wr.next = NULL; 84 } 85 86 return count; 87 } 88 89 /* Caller must have zero-initialized *reg. */ 90 static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, 91 struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, 92 u32 sg_cnt, u32 offset) 93 { 94 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 95 qp->integrity_en); 96 u32 nents = min(sg_cnt, pages_per_mr); 97 int count = 0, ret; 98 99 reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); 100 if (!reg->mr) 101 return -EAGAIN; 102 103 count += rdma_rw_inv_key(reg); 104 105 ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); 106 if (ret < 0 || ret < nents) { 107 ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); 108 return -EINVAL; 109 } 110 111 reg->reg_wr.wr.opcode = IB_WR_REG_MR; 112 reg->reg_wr.mr = reg->mr; 113 reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 114 if (rdma_protocol_iwarp(qp->device, port_num)) 115 reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 116 count++; 117 118 reg->sge.addr = reg->mr->iova; 119 reg->sge.length = reg->mr->length; 120 return count; 121 } 122 123 static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 124 u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, 125 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 126 { 127 struct rdma_rw_reg_ctx *prev = NULL; 128 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 129 qp->integrity_en); 130 int i, j, ret = 0, count = 0; 131 132 ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; 133 ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); 134 if (!ctx->reg) { 135 ret = -ENOMEM; 136 goto out; 137 } 138 139 for (i = 0; i < ctx->nr_ops; i++) { 140 struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; 141 u32 nents = min(sg_cnt, pages_per_mr); 142 143 ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, 144 offset); 145 if (ret < 0) 146 goto out_free; 147 count += ret; 148 149 if (prev) { 150 if (reg->mr->need_inval) 151 prev->wr.wr.next = ®->inv_wr; 152 else 153 prev->wr.wr.next = ®->reg_wr.wr; 154 } 155 156 reg->reg_wr.wr.next = ®->wr.wr; 157 158 reg->wr.wr.sg_list = ®->sge; 159 reg->wr.wr.num_sge = 1; 160 reg->wr.remote_addr = remote_addr; 161 reg->wr.rkey = rkey; 162 if (dir == DMA_TO_DEVICE) { 163 reg->wr.wr.opcode = IB_WR_RDMA_WRITE; 164 } else if (!rdma_cap_read_inv(qp->device, port_num)) { 165 reg->wr.wr.opcode = IB_WR_RDMA_READ; 166 } else { 167 reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; 168 reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; 169 } 170 count++; 171 172 remote_addr += reg->sge.length; 173 sg_cnt -= nents; 174 for (j = 0; j < nents; j++) 175 sg = sg_next(sg); 176 prev = reg; 177 offset = 0; 178 } 179 180 if (prev) 181 prev->wr.wr.next = NULL; 182 183 ctx->type = RDMA_RW_MR; 184 return count; 185 186 out_free: 187 while (--i >= 0) 188 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 189 kfree(ctx->reg); 190 out: 191 return ret; 192 } 193 194 static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 195 struct scatterlist *sg, u32 sg_cnt, u32 offset, 196 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 197 { 198 u32 max_sge = dir == DMA_TO_DEVICE ? qp->max_write_sge : 199 qp->max_read_sge; 200 struct ib_sge *sge; 201 u32 total_len = 0, i, j; 202 203 ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); 204 205 ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); 206 if (!ctx->map.sges) 207 goto out; 208 209 ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); 210 if (!ctx->map.wrs) 211 goto out_free_sges; 212 213 for (i = 0; i < ctx->nr_ops; i++) { 214 struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; 215 u32 nr_sge = min(sg_cnt, max_sge); 216 217 if (dir == DMA_TO_DEVICE) 218 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 219 else 220 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 221 rdma_wr->remote_addr = remote_addr + total_len; 222 rdma_wr->rkey = rkey; 223 rdma_wr->wr.num_sge = nr_sge; 224 rdma_wr->wr.sg_list = sge; 225 226 for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { 227 sge->addr = sg_dma_address(sg) + offset; 228 sge->length = sg_dma_len(sg) - offset; 229 sge->lkey = qp->pd->local_dma_lkey; 230 231 total_len += sge->length; 232 sge++; 233 sg_cnt--; 234 offset = 0; 235 } 236 237 rdma_wr->wr.next = i + 1 < ctx->nr_ops ? 238 &ctx->map.wrs[i + 1].wr : NULL; 239 } 240 241 ctx->type = RDMA_RW_MULTI_WR; 242 return ctx->nr_ops; 243 244 out_free_sges: 245 kfree(ctx->map.sges); 246 out: 247 return -ENOMEM; 248 } 249 250 static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 251 struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, 252 enum dma_data_direction dir) 253 { 254 struct ib_rdma_wr *rdma_wr = &ctx->single.wr; 255 256 ctx->nr_ops = 1; 257 258 ctx->single.sge.lkey = qp->pd->local_dma_lkey; 259 ctx->single.sge.addr = sg_dma_address(sg) + offset; 260 ctx->single.sge.length = sg_dma_len(sg) - offset; 261 262 memset(rdma_wr, 0, sizeof(*rdma_wr)); 263 if (dir == DMA_TO_DEVICE) 264 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 265 else 266 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 267 rdma_wr->wr.sg_list = &ctx->single.sge; 268 rdma_wr->wr.num_sge = 1; 269 rdma_wr->remote_addr = remote_addr; 270 rdma_wr->rkey = rkey; 271 272 ctx->type = RDMA_RW_SINGLE_WR; 273 return 1; 274 } 275 276 static void rdma_rw_unmap_sg(struct ib_device *dev, struct scatterlist *sg, 277 u32 sg_cnt, enum dma_data_direction dir) 278 { 279 if (is_pci_p2pdma_page(sg_page(sg))) 280 pci_p2pdma_unmap_sg(dev->dma_device, sg, sg_cnt, dir); 281 else 282 ib_dma_unmap_sg(dev, sg, sg_cnt, dir); 283 } 284 285 static int rdma_rw_map_sg(struct ib_device *dev, struct scatterlist *sg, 286 u32 sg_cnt, enum dma_data_direction dir) 287 { 288 if (is_pci_p2pdma_page(sg_page(sg))) 289 return pci_p2pdma_map_sg(dev->dma_device, sg, sg_cnt, dir); 290 return ib_dma_map_sg(dev, sg, sg_cnt, dir); 291 } 292 293 /** 294 * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context 295 * @ctx: context to initialize 296 * @qp: queue pair to operate on 297 * @port_num: port num to which the connection is bound 298 * @sg: scatterlist to READ/WRITE from/to 299 * @sg_cnt: number of entries in @sg 300 * @sg_offset: current byte offset into @sg 301 * @remote_addr:remote address to read/write (relative to @rkey) 302 * @rkey: remote key to operate on 303 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 304 * 305 * Returns the number of WQEs that will be needed on the workqueue if 306 * successful, or a negative error code. 307 */ 308 int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 309 struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, 310 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 311 { 312 struct ib_device *dev = qp->pd->device; 313 int ret; 314 315 ret = rdma_rw_map_sg(dev, sg, sg_cnt, dir); 316 if (!ret) 317 return -ENOMEM; 318 sg_cnt = ret; 319 320 /* 321 * Skip to the S/G entry that sg_offset falls into: 322 */ 323 for (;;) { 324 u32 len = sg_dma_len(sg); 325 326 if (sg_offset < len) 327 break; 328 329 sg = sg_next(sg); 330 sg_offset -= len; 331 sg_cnt--; 332 } 333 334 ret = -EIO; 335 if (WARN_ON_ONCE(sg_cnt == 0)) 336 goto out_unmap_sg; 337 338 if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { 339 ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, 340 sg_offset, remote_addr, rkey, dir); 341 } else if (sg_cnt > 1) { 342 ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, 343 remote_addr, rkey, dir); 344 } else { 345 ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, 346 remote_addr, rkey, dir); 347 } 348 349 if (ret < 0) 350 goto out_unmap_sg; 351 return ret; 352 353 out_unmap_sg: 354 rdma_rw_unmap_sg(dev, sg, sg_cnt, dir); 355 return ret; 356 } 357 EXPORT_SYMBOL(rdma_rw_ctx_init); 358 359 /** 360 * rdma_rw_ctx_signature_init - initialize a RW context with signature offload 361 * @ctx: context to initialize 362 * @qp: queue pair to operate on 363 * @port_num: port num to which the connection is bound 364 * @sg: scatterlist to READ/WRITE from/to 365 * @sg_cnt: number of entries in @sg 366 * @prot_sg: scatterlist to READ/WRITE protection information from/to 367 * @prot_sg_cnt: number of entries in @prot_sg 368 * @sig_attrs: signature offloading algorithms 369 * @remote_addr:remote address to read/write (relative to @rkey) 370 * @rkey: remote key to operate on 371 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 372 * 373 * Returns the number of WQEs that will be needed on the workqueue if 374 * successful, or a negative error code. 375 */ 376 int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 377 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 378 struct scatterlist *prot_sg, u32 prot_sg_cnt, 379 struct ib_sig_attrs *sig_attrs, 380 u64 remote_addr, u32 rkey, enum dma_data_direction dir) 381 { 382 struct ib_device *dev = qp->pd->device; 383 u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device, 384 qp->integrity_en); 385 struct ib_rdma_wr *rdma_wr; 386 int count = 0, ret; 387 388 if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { 389 pr_err("SG count too large: sg_cnt=%d, prot_sg_cnt=%d, pages_per_mr=%d\n", 390 sg_cnt, prot_sg_cnt, pages_per_mr); 391 return -EINVAL; 392 } 393 394 ret = rdma_rw_map_sg(dev, sg, sg_cnt, dir); 395 if (!ret) 396 return -ENOMEM; 397 sg_cnt = ret; 398 399 if (prot_sg_cnt) { 400 ret = rdma_rw_map_sg(dev, prot_sg, prot_sg_cnt, dir); 401 if (!ret) { 402 ret = -ENOMEM; 403 goto out_unmap_sg; 404 } 405 prot_sg_cnt = ret; 406 } 407 408 ctx->type = RDMA_RW_SIG_MR; 409 ctx->nr_ops = 1; 410 ctx->reg = kcalloc(1, sizeof(*ctx->reg), GFP_KERNEL); 411 if (!ctx->reg) { 412 ret = -ENOMEM; 413 goto out_unmap_prot_sg; 414 } 415 416 ctx->reg->mr = ib_mr_pool_get(qp, &qp->sig_mrs); 417 if (!ctx->reg->mr) { 418 ret = -EAGAIN; 419 goto out_free_ctx; 420 } 421 422 count += rdma_rw_inv_key(ctx->reg); 423 424 memcpy(ctx->reg->mr->sig_attrs, sig_attrs, sizeof(struct ib_sig_attrs)); 425 426 ret = ib_map_mr_sg_pi(ctx->reg->mr, sg, sg_cnt, NULL, prot_sg, 427 prot_sg_cnt, NULL, SZ_4K); 428 if (unlikely(ret)) { 429 pr_err("failed to map PI sg (%d)\n", sg_cnt + prot_sg_cnt); 430 goto out_destroy_sig_mr; 431 } 432 433 ctx->reg->reg_wr.wr.opcode = IB_WR_REG_MR_INTEGRITY; 434 ctx->reg->reg_wr.wr.wr_cqe = NULL; 435 ctx->reg->reg_wr.wr.num_sge = 0; 436 ctx->reg->reg_wr.wr.send_flags = 0; 437 ctx->reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; 438 if (rdma_protocol_iwarp(qp->device, port_num)) 439 ctx->reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; 440 ctx->reg->reg_wr.mr = ctx->reg->mr; 441 ctx->reg->reg_wr.key = ctx->reg->mr->lkey; 442 count++; 443 444 ctx->reg->sge.addr = ctx->reg->mr->iova; 445 ctx->reg->sge.length = ctx->reg->mr->length; 446 if (sig_attrs->wire.sig_type == IB_SIG_TYPE_NONE) 447 ctx->reg->sge.length -= ctx->reg->mr->sig_attrs->meta_length; 448 449 rdma_wr = &ctx->reg->wr; 450 rdma_wr->wr.sg_list = &ctx->reg->sge; 451 rdma_wr->wr.num_sge = 1; 452 rdma_wr->remote_addr = remote_addr; 453 rdma_wr->rkey = rkey; 454 if (dir == DMA_TO_DEVICE) 455 rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; 456 else 457 rdma_wr->wr.opcode = IB_WR_RDMA_READ; 458 ctx->reg->reg_wr.wr.next = &rdma_wr->wr; 459 count++; 460 461 return count; 462 463 out_destroy_sig_mr: 464 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 465 out_free_ctx: 466 kfree(ctx->reg); 467 out_unmap_prot_sg: 468 if (prot_sg_cnt) 469 rdma_rw_unmap_sg(dev, prot_sg, prot_sg_cnt, dir); 470 out_unmap_sg: 471 rdma_rw_unmap_sg(dev, sg, sg_cnt, dir); 472 return ret; 473 } 474 EXPORT_SYMBOL(rdma_rw_ctx_signature_init); 475 476 /* 477 * Now that we are going to post the WRs we can update the lkey and need_inval 478 * state on the MRs. If we were doing this at init time, we would get double 479 * or missing invalidations if a context was initialized but not actually 480 * posted. 481 */ 482 static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) 483 { 484 reg->mr->need_inval = need_inval; 485 ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); 486 reg->reg_wr.key = reg->mr->lkey; 487 reg->sge.lkey = reg->mr->lkey; 488 } 489 490 /** 491 * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation 492 * @ctx: context to operate on 493 * @qp: queue pair to operate on 494 * @port_num: port num to which the connection is bound 495 * @cqe: completion queue entry for the last WR 496 * @chain_wr: WR to append to the posted chain 497 * 498 * Return the WR chain for the set of RDMA READ/WRITE operations described by 499 * @ctx, as well as any memory registration operations needed. If @chain_wr 500 * is non-NULL the WR it points to will be appended to the chain of WRs posted. 501 * If @chain_wr is not set @cqe must be set so that the caller gets a 502 * completion notification. 503 */ 504 struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 505 u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 506 { 507 struct ib_send_wr *first_wr, *last_wr; 508 int i; 509 510 switch (ctx->type) { 511 case RDMA_RW_SIG_MR: 512 case RDMA_RW_MR: 513 /* fallthrough */ 514 for (i = 0; i < ctx->nr_ops; i++) { 515 rdma_rw_update_lkey(&ctx->reg[i], 516 ctx->reg[i].wr.wr.opcode != 517 IB_WR_RDMA_READ_WITH_INV); 518 } 519 520 if (ctx->reg[0].inv_wr.next) 521 first_wr = &ctx->reg[0].inv_wr; 522 else 523 first_wr = &ctx->reg[0].reg_wr.wr; 524 last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; 525 break; 526 case RDMA_RW_MULTI_WR: 527 first_wr = &ctx->map.wrs[0].wr; 528 last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; 529 break; 530 case RDMA_RW_SINGLE_WR: 531 first_wr = &ctx->single.wr.wr; 532 last_wr = &ctx->single.wr.wr; 533 break; 534 default: 535 BUG(); 536 } 537 538 if (chain_wr) { 539 last_wr->next = chain_wr; 540 } else { 541 last_wr->wr_cqe = cqe; 542 last_wr->send_flags |= IB_SEND_SIGNALED; 543 } 544 545 return first_wr; 546 } 547 EXPORT_SYMBOL(rdma_rw_ctx_wrs); 548 549 /** 550 * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation 551 * @ctx: context to operate on 552 * @qp: queue pair to operate on 553 * @port_num: port num to which the connection is bound 554 * @cqe: completion queue entry for the last WR 555 * @chain_wr: WR to append to the posted chain 556 * 557 * Post the set of RDMA READ/WRITE operations described by @ctx, as well as 558 * any memory registration operations needed. If @chain_wr is non-NULL the 559 * WR it points to will be appended to the chain of WRs posted. If @chain_wr 560 * is not set @cqe must be set so that the caller gets a completion 561 * notification. 562 */ 563 int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 564 struct ib_cqe *cqe, struct ib_send_wr *chain_wr) 565 { 566 struct ib_send_wr *first_wr; 567 568 first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); 569 return ib_post_send(qp, first_wr, NULL); 570 } 571 EXPORT_SYMBOL(rdma_rw_ctx_post); 572 573 /** 574 * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init 575 * @ctx: context to release 576 * @qp: queue pair to operate on 577 * @port_num: port num to which the connection is bound 578 * @sg: scatterlist that was used for the READ/WRITE 579 * @sg_cnt: number of entries in @sg 580 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 581 */ 582 void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, 583 struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) 584 { 585 int i; 586 587 switch (ctx->type) { 588 case RDMA_RW_MR: 589 for (i = 0; i < ctx->nr_ops; i++) 590 ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); 591 kfree(ctx->reg); 592 break; 593 case RDMA_RW_MULTI_WR: 594 kfree(ctx->map.wrs); 595 kfree(ctx->map.sges); 596 break; 597 case RDMA_RW_SINGLE_WR: 598 break; 599 default: 600 BUG(); 601 break; 602 } 603 604 rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 605 } 606 EXPORT_SYMBOL(rdma_rw_ctx_destroy); 607 608 /** 609 * rdma_rw_ctx_destroy_signature - release all resources allocated by 610 * rdma_rw_ctx_signature_init 611 * @ctx: context to release 612 * @qp: queue pair to operate on 613 * @port_num: port num to which the connection is bound 614 * @sg: scatterlist that was used for the READ/WRITE 615 * @sg_cnt: number of entries in @sg 616 * @prot_sg: scatterlist that was used for the READ/WRITE of the PI 617 * @prot_sg_cnt: number of entries in @prot_sg 618 * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ 619 */ 620 void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, 621 u8 port_num, struct scatterlist *sg, u32 sg_cnt, 622 struct scatterlist *prot_sg, u32 prot_sg_cnt, 623 enum dma_data_direction dir) 624 { 625 if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) 626 return; 627 628 ib_mr_pool_put(qp, &qp->sig_mrs, ctx->reg->mr); 629 kfree(ctx->reg); 630 631 if (prot_sg_cnt) 632 rdma_rw_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); 633 rdma_rw_unmap_sg(qp->pd->device, sg, sg_cnt, dir); 634 } 635 EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); 636 637 /** 638 * rdma_rw_mr_factor - return number of MRs required for a payload 639 * @device: device handling the connection 640 * @port_num: port num to which the connection is bound 641 * @maxpages: maximum payload pages per rdma_rw_ctx 642 * 643 * Returns the number of MRs the device requires to move @maxpayload 644 * bytes. The returned value is used during transport creation to 645 * compute max_rdma_ctxts and the size of the transport's Send and 646 * Send Completion Queues. 647 */ 648 unsigned int rdma_rw_mr_factor(struct ib_device *device, u8 port_num, 649 unsigned int maxpages) 650 { 651 unsigned int mr_pages; 652 653 if (rdma_rw_can_use_mr(device, port_num)) 654 mr_pages = rdma_rw_fr_page_list_len(device, false); 655 else 656 mr_pages = device->attrs.max_sge_rd; 657 return DIV_ROUND_UP(maxpages, mr_pages); 658 } 659 EXPORT_SYMBOL(rdma_rw_mr_factor); 660 661 void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) 662 { 663 u32 factor; 664 665 WARN_ON_ONCE(attr->port_num == 0); 666 667 /* 668 * Each context needs at least one RDMA READ or WRITE WR. 669 * 670 * For some hardware we might need more, eventually we should ask the 671 * HCA driver for a multiplier here. 672 */ 673 factor = 1; 674 675 /* 676 * If the devices needs MRs to perform RDMA READ or WRITE operations, 677 * we'll need two additional MRs for the registrations and the 678 * invalidation. 679 */ 680 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN || 681 rdma_rw_can_use_mr(dev, attr->port_num)) 682 factor += 2; /* inv + reg */ 683 684 attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; 685 686 /* 687 * But maybe we were just too high in the sky and the device doesn't 688 * even support all we need, and we'll have to live with what we get.. 689 */ 690 attr->cap.max_send_wr = 691 min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); 692 } 693 694 int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) 695 { 696 struct ib_device *dev = qp->pd->device; 697 u32 nr_mrs = 0, nr_sig_mrs = 0, max_num_sg = 0; 698 int ret = 0; 699 700 if (attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) { 701 nr_sig_mrs = attr->cap.max_rdma_ctxs; 702 nr_mrs = attr->cap.max_rdma_ctxs; 703 max_num_sg = rdma_rw_fr_page_list_len(dev, true); 704 } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { 705 nr_mrs = attr->cap.max_rdma_ctxs; 706 max_num_sg = rdma_rw_fr_page_list_len(dev, false); 707 } 708 709 if (nr_mrs) { 710 ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, 711 IB_MR_TYPE_MEM_REG, 712 max_num_sg, 0); 713 if (ret) { 714 pr_err("%s: failed to allocated %d MRs\n", 715 __func__, nr_mrs); 716 return ret; 717 } 718 } 719 720 if (nr_sig_mrs) { 721 ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, 722 IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_sg); 723 if (ret) { 724 pr_err("%s: failed to allocated %d SIG MRs\n", 725 __func__, nr_sig_mrs); 726 goto out_free_rdma_mrs; 727 } 728 } 729 730 return 0; 731 732 out_free_rdma_mrs: 733 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 734 return ret; 735 } 736 737 void rdma_rw_cleanup_mrs(struct ib_qp *qp) 738 { 739 ib_mr_pool_destroy(qp, &qp->sig_mrs); 740 ib_mr_pool_destroy(qp, &qp->rdma_mrs); 741 } 742