xref: /openbmc/linux/drivers/infiniband/core/device.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 static struct workqueue_struct *ib_unreg_wq;
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 unsigned int rdma_dev_net_id;
115 
116 /*
117  * A list of net namespaces is maintained in an xarray. This is necessary
118  * because we can't get the locking right using the existing net ns list. We
119  * would require a init_net callback after the list is updated.
120  */
121 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122 /*
123  * rwsem to protect accessing the rdma_nets xarray entries.
124  */
125 static DECLARE_RWSEM(rdma_nets_rwsem);
126 
127 bool ib_devices_shared_netns = true;
128 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129 MODULE_PARM_DESC(netns_mode,
130 		 "Share device among net namespaces; default=1 (shared)");
131 /**
132  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133  *			     from a specified net namespace or not.
134  * @dev:	Pointer to rdma device which needs to be checked
135  * @net:	Pointer to net namesapce for which access to be checked
136  *
137  * When the rdma device is in shared mode, it ignores the net namespace.
138  * When the rdma device is exclusive to a net namespace, rdma device net
139  * namespace is checked against the specified one.
140  */
141 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142 {
143 	return (ib_devices_shared_netns ||
144 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
145 }
146 EXPORT_SYMBOL(rdma_dev_access_netns);
147 
148 /*
149  * xarray has this behavior where it won't iterate over NULL values stored in
150  * allocated arrays.  So we need our own iterator to see all values stored in
151  * the array. This does the same thing as xa_for_each except that it also
152  * returns NULL valued entries if the array is allocating. Simplified to only
153  * work on simple xarrays.
154  */
155 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 			     xa_mark_t filter)
157 {
158 	XA_STATE(xas, xa, *indexp);
159 	void *entry;
160 
161 	rcu_read_lock();
162 	do {
163 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 		if (xa_is_zero(entry))
165 			break;
166 	} while (xas_retry(&xas, entry));
167 	rcu_read_unlock();
168 
169 	if (entry) {
170 		*indexp = xas.xa_index;
171 		if (xa_is_zero(entry))
172 			return NULL;
173 		return entry;
174 	}
175 	return XA_ERROR(-ENOENT);
176 }
177 #define xan_for_each_marked(xa, index, entry, filter)                          \
178 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
179 	     !xa_is_err(entry);                                                \
180 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
181 
182 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
183 static DEFINE_SPINLOCK(ndev_hash_lock);
184 static DECLARE_HASHTABLE(ndev_hash, 5);
185 
186 static void free_netdevs(struct ib_device *ib_dev);
187 static void ib_unregister_work(struct work_struct *work);
188 static void __ib_unregister_device(struct ib_device *device);
189 static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 			      void *lsm_data);
191 static void ib_policy_change_task(struct work_struct *work);
192 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193 
194 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 			   struct va_format *vaf)
196 {
197 	if (ibdev && ibdev->dev.parent)
198 		dev_printk_emit(level[1] - '0',
199 				ibdev->dev.parent,
200 				"%s %s %s: %pV",
201 				dev_driver_string(ibdev->dev.parent),
202 				dev_name(ibdev->dev.parent),
203 				dev_name(&ibdev->dev),
204 				vaf);
205 	else if (ibdev)
206 		printk("%s%s: %pV",
207 		       level, dev_name(&ibdev->dev), vaf);
208 	else
209 		printk("%s(NULL ib_device): %pV", level, vaf);
210 }
211 
212 void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 		  const char *format, ...)
214 {
215 	struct va_format vaf;
216 	va_list args;
217 
218 	va_start(args, format);
219 
220 	vaf.fmt = format;
221 	vaf.va = &args;
222 
223 	__ibdev_printk(level, ibdev, &vaf);
224 
225 	va_end(args);
226 }
227 EXPORT_SYMBOL(ibdev_printk);
228 
229 #define define_ibdev_printk_level(func, level)                  \
230 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
231 {                                                               \
232 	struct va_format vaf;                                   \
233 	va_list args;                                           \
234 								\
235 	va_start(args, fmt);                                    \
236 								\
237 	vaf.fmt = fmt;                                          \
238 	vaf.va = &args;                                         \
239 								\
240 	__ibdev_printk(level, ibdev, &vaf);                     \
241 								\
242 	va_end(args);                                           \
243 }                                                               \
244 EXPORT_SYMBOL(func);
245 
246 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249 define_ibdev_printk_level(ibdev_err, KERN_ERR);
250 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252 define_ibdev_printk_level(ibdev_info, KERN_INFO);
253 
254 static struct notifier_block ibdev_lsm_nb = {
255 	.notifier_call = ib_security_change,
256 };
257 
258 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 				 struct net *net);
260 
261 /* Pointer to the RCU head at the start of the ib_port_data array */
262 struct ib_port_data_rcu {
263 	struct rcu_head rcu_head;
264 	struct ib_port_data pdata[];
265 };
266 
267 static void ib_device_check_mandatory(struct ib_device *device)
268 {
269 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 	static const struct {
271 		size_t offset;
272 		char  *name;
273 	} mandatory_table[] = {
274 		IB_MANDATORY_FUNC(query_device),
275 		IB_MANDATORY_FUNC(query_port),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(reg_user_mr),
289 		IB_MANDATORY_FUNC(dereg_mr),
290 		IB_MANDATORY_FUNC(get_port_immutable)
291 	};
292 	int i;
293 
294 	device->kverbs_provider = true;
295 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 		if (!*(void **) ((void *) &device->ops +
297 				 mandatory_table[i].offset)) {
298 			device->kverbs_provider = false;
299 			break;
300 		}
301 	}
302 }
303 
304 /*
305  * Caller must perform ib_device_put() to return the device reference count
306  * when ib_device_get_by_index() returns valid device pointer.
307  */
308 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309 {
310 	struct ib_device *device;
311 
312 	down_read(&devices_rwsem);
313 	device = xa_load(&devices, index);
314 	if (device) {
315 		if (!rdma_dev_access_netns(device, net)) {
316 			device = NULL;
317 			goto out;
318 		}
319 
320 		if (!ib_device_try_get(device))
321 			device = NULL;
322 	}
323 out:
324 	up_read(&devices_rwsem);
325 	return device;
326 }
327 
328 /**
329  * ib_device_put - Release IB device reference
330  * @device: device whose reference to be released
331  *
332  * ib_device_put() releases reference to the IB device to allow it to be
333  * unregistered and eventually free.
334  */
335 void ib_device_put(struct ib_device *device)
336 {
337 	if (refcount_dec_and_test(&device->refcount))
338 		complete(&device->unreg_completion);
339 }
340 EXPORT_SYMBOL(ib_device_put);
341 
342 static struct ib_device *__ib_device_get_by_name(const char *name)
343 {
344 	struct ib_device *device;
345 	unsigned long index;
346 
347 	xa_for_each (&devices, index, device)
348 		if (!strcmp(name, dev_name(&device->dev)))
349 			return device;
350 
351 	return NULL;
352 }
353 
354 /**
355  * ib_device_get_by_name - Find an IB device by name
356  * @name: The name to look for
357  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358  *
359  * Find and hold an ib_device by its name. The caller must call
360  * ib_device_put() on the returned pointer.
361  */
362 struct ib_device *ib_device_get_by_name(const char *name,
363 					enum rdma_driver_id driver_id)
364 {
365 	struct ib_device *device;
366 
367 	down_read(&devices_rwsem);
368 	device = __ib_device_get_by_name(name);
369 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 	    device->ops.driver_id != driver_id)
371 		device = NULL;
372 
373 	if (device) {
374 		if (!ib_device_try_get(device))
375 			device = NULL;
376 	}
377 	up_read(&devices_rwsem);
378 	return device;
379 }
380 EXPORT_SYMBOL(ib_device_get_by_name);
381 
382 static int rename_compat_devs(struct ib_device *device)
383 {
384 	struct ib_core_device *cdev;
385 	unsigned long index;
386 	int ret = 0;
387 
388 	mutex_lock(&device->compat_devs_mutex);
389 	xa_for_each (&device->compat_devs, index, cdev) {
390 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
391 		if (ret) {
392 			dev_warn(&cdev->dev,
393 				 "Fail to rename compatdev to new name %s\n",
394 				 dev_name(&device->dev));
395 			break;
396 		}
397 	}
398 	mutex_unlock(&device->compat_devs_mutex);
399 	return ret;
400 }
401 
402 int ib_device_rename(struct ib_device *ibdev, const char *name)
403 {
404 	unsigned long index;
405 	void *client_data;
406 	int ret;
407 
408 	down_write(&devices_rwsem);
409 	if (!strcmp(name, dev_name(&ibdev->dev))) {
410 		up_write(&devices_rwsem);
411 		return 0;
412 	}
413 
414 	if (__ib_device_get_by_name(name)) {
415 		up_write(&devices_rwsem);
416 		return -EEXIST;
417 	}
418 
419 	ret = device_rename(&ibdev->dev, name);
420 	if (ret) {
421 		up_write(&devices_rwsem);
422 		return ret;
423 	}
424 
425 	strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 	ret = rename_compat_devs(ibdev);
427 
428 	downgrade_write(&devices_rwsem);
429 	down_read(&ibdev->client_data_rwsem);
430 	xan_for_each_marked(&ibdev->client_data, index, client_data,
431 			    CLIENT_DATA_REGISTERED) {
432 		struct ib_client *client = xa_load(&clients, index);
433 
434 		if (!client || !client->rename)
435 			continue;
436 
437 		client->rename(ibdev, client_data);
438 	}
439 	up_read(&ibdev->client_data_rwsem);
440 	up_read(&devices_rwsem);
441 	return 0;
442 }
443 
444 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445 {
446 	if (use_dim > 1)
447 		return -EINVAL;
448 	ibdev->use_cq_dim = use_dim;
449 
450 	return 0;
451 }
452 
453 static int alloc_name(struct ib_device *ibdev, const char *name)
454 {
455 	struct ib_device *device;
456 	unsigned long index;
457 	struct ida inuse;
458 	int rc;
459 	int i;
460 
461 	lockdep_assert_held_write(&devices_rwsem);
462 	ida_init(&inuse);
463 	xa_for_each (&devices, index, device) {
464 		char buf[IB_DEVICE_NAME_MAX];
465 
466 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
467 			continue;
468 		if (i < 0 || i >= INT_MAX)
469 			continue;
470 		snprintf(buf, sizeof buf, name, i);
471 		if (strcmp(buf, dev_name(&device->dev)) != 0)
472 			continue;
473 
474 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
475 		if (rc < 0)
476 			goto out;
477 	}
478 
479 	rc = ida_alloc(&inuse, GFP_KERNEL);
480 	if (rc < 0)
481 		goto out;
482 
483 	rc = dev_set_name(&ibdev->dev, name, rc);
484 out:
485 	ida_destroy(&inuse);
486 	return rc;
487 }
488 
489 static void ib_device_release(struct device *device)
490 {
491 	struct ib_device *dev = container_of(device, struct ib_device, dev);
492 
493 	free_netdevs(dev);
494 	WARN_ON(refcount_read(&dev->refcount));
495 	if (dev->hw_stats_data)
496 		ib_device_release_hw_stats(dev->hw_stats_data);
497 	if (dev->port_data) {
498 		ib_cache_release_one(dev);
499 		ib_security_release_port_pkey_list(dev);
500 		rdma_counter_release(dev);
501 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 				       pdata[0]),
503 			  rcu_head);
504 	}
505 
506 	mutex_destroy(&dev->unregistration_lock);
507 	mutex_destroy(&dev->compat_devs_mutex);
508 
509 	xa_destroy(&dev->compat_devs);
510 	xa_destroy(&dev->client_data);
511 	kfree_rcu(dev, rcu_head);
512 }
513 
514 static int ib_device_uevent(const struct device *device,
515 			    struct kobj_uevent_env *env)
516 {
517 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
518 		return -ENOMEM;
519 
520 	/*
521 	 * It would be nice to pass the node GUID with the event...
522 	 */
523 
524 	return 0;
525 }
526 
527 static const void *net_namespace(const struct device *d)
528 {
529 	const struct ib_core_device *coredev =
530 			container_of(d, struct ib_core_device, dev);
531 
532 	return read_pnet(&coredev->rdma_net);
533 }
534 
535 static struct class ib_class = {
536 	.name    = "infiniband",
537 	.dev_release = ib_device_release,
538 	.dev_uevent = ib_device_uevent,
539 	.ns_type = &net_ns_type_operations,
540 	.namespace = net_namespace,
541 };
542 
543 static void rdma_init_coredev(struct ib_core_device *coredev,
544 			      struct ib_device *dev, struct net *net)
545 {
546 	/* This BUILD_BUG_ON is intended to catch layout change
547 	 * of union of ib_core_device and device.
548 	 * dev must be the first element as ib_core and providers
549 	 * driver uses it. Adding anything in ib_core_device before
550 	 * device will break this assumption.
551 	 */
552 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553 		     offsetof(struct ib_device, dev));
554 
555 	coredev->dev.class = &ib_class;
556 	coredev->dev.groups = dev->groups;
557 	device_initialize(&coredev->dev);
558 	coredev->owner = dev;
559 	INIT_LIST_HEAD(&coredev->port_list);
560 	write_pnet(&coredev->rdma_net, net);
561 }
562 
563 /**
564  * _ib_alloc_device - allocate an IB device struct
565  * @size:size of structure to allocate
566  *
567  * Low-level drivers should use ib_alloc_device() to allocate &struct
568  * ib_device.  @size is the size of the structure to be allocated,
569  * including any private data used by the low-level driver.
570  * ib_dealloc_device() must be used to free structures allocated with
571  * ib_alloc_device().
572  */
573 struct ib_device *_ib_alloc_device(size_t size)
574 {
575 	struct ib_device *device;
576 	unsigned int i;
577 
578 	if (WARN_ON(size < sizeof(struct ib_device)))
579 		return NULL;
580 
581 	device = kzalloc(size, GFP_KERNEL);
582 	if (!device)
583 		return NULL;
584 
585 	if (rdma_restrack_init(device)) {
586 		kfree(device);
587 		return NULL;
588 	}
589 
590 	rdma_init_coredev(&device->coredev, device, &init_net);
591 
592 	INIT_LIST_HEAD(&device->event_handler_list);
593 	spin_lock_init(&device->qp_open_list_lock);
594 	init_rwsem(&device->event_handler_rwsem);
595 	mutex_init(&device->unregistration_lock);
596 	/*
597 	 * client_data needs to be alloc because we don't want our mark to be
598 	 * destroyed if the user stores NULL in the client data.
599 	 */
600 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
601 	init_rwsem(&device->client_data_rwsem);
602 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
603 	mutex_init(&device->compat_devs_mutex);
604 	init_completion(&device->unreg_completion);
605 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
606 
607 	spin_lock_init(&device->cq_pools_lock);
608 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
609 		INIT_LIST_HEAD(&device->cq_pools[i]);
610 
611 	rwlock_init(&device->cache_lock);
612 
613 	device->uverbs_cmd_mask =
614 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
615 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
616 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
617 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
620 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
621 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
622 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
623 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
624 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
628 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
629 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
630 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
631 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
632 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
633 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
634 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
635 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
636 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
637 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
638 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
639 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
640 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
641 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
642 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
643 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
644 	return device;
645 }
646 EXPORT_SYMBOL(_ib_alloc_device);
647 
648 /**
649  * ib_dealloc_device - free an IB device struct
650  * @device:structure to free
651  *
652  * Free a structure allocated with ib_alloc_device().
653  */
654 void ib_dealloc_device(struct ib_device *device)
655 {
656 	if (device->ops.dealloc_driver)
657 		device->ops.dealloc_driver(device);
658 
659 	/*
660 	 * ib_unregister_driver() requires all devices to remain in the xarray
661 	 * while their ops are callable. The last op we call is dealloc_driver
662 	 * above.  This is needed to create a fence on op callbacks prior to
663 	 * allowing the driver module to unload.
664 	 */
665 	down_write(&devices_rwsem);
666 	if (xa_load(&devices, device->index) == device)
667 		xa_erase(&devices, device->index);
668 	up_write(&devices_rwsem);
669 
670 	/* Expedite releasing netdev references */
671 	free_netdevs(device);
672 
673 	WARN_ON(!xa_empty(&device->compat_devs));
674 	WARN_ON(!xa_empty(&device->client_data));
675 	WARN_ON(refcount_read(&device->refcount));
676 	rdma_restrack_clean(device);
677 	/* Balances with device_initialize */
678 	put_device(&device->dev);
679 }
680 EXPORT_SYMBOL(ib_dealloc_device);
681 
682 /*
683  * add_client_context() and remove_client_context() must be safe against
684  * parallel calls on the same device - registration/unregistration of both the
685  * device and client can be occurring in parallel.
686  *
687  * The routines need to be a fence, any caller must not return until the add
688  * or remove is fully completed.
689  */
690 static int add_client_context(struct ib_device *device,
691 			      struct ib_client *client)
692 {
693 	int ret = 0;
694 
695 	if (!device->kverbs_provider && !client->no_kverbs_req)
696 		return 0;
697 
698 	down_write(&device->client_data_rwsem);
699 	/*
700 	 * So long as the client is registered hold both the client and device
701 	 * unregistration locks.
702 	 */
703 	if (!refcount_inc_not_zero(&client->uses))
704 		goto out_unlock;
705 	refcount_inc(&device->refcount);
706 
707 	/*
708 	 * Another caller to add_client_context got here first and has already
709 	 * completely initialized context.
710 	 */
711 	if (xa_get_mark(&device->client_data, client->client_id,
712 		    CLIENT_DATA_REGISTERED))
713 		goto out;
714 
715 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
716 			      GFP_KERNEL));
717 	if (ret)
718 		goto out;
719 	downgrade_write(&device->client_data_rwsem);
720 	if (client->add) {
721 		if (client->add(device)) {
722 			/*
723 			 * If a client fails to add then the error code is
724 			 * ignored, but we won't call any more ops on this
725 			 * client.
726 			 */
727 			xa_erase(&device->client_data, client->client_id);
728 			up_read(&device->client_data_rwsem);
729 			ib_device_put(device);
730 			ib_client_put(client);
731 			return 0;
732 		}
733 	}
734 
735 	/* Readers shall not see a client until add has been completed */
736 	xa_set_mark(&device->client_data, client->client_id,
737 		    CLIENT_DATA_REGISTERED);
738 	up_read(&device->client_data_rwsem);
739 	return 0;
740 
741 out:
742 	ib_device_put(device);
743 	ib_client_put(client);
744 out_unlock:
745 	up_write(&device->client_data_rwsem);
746 	return ret;
747 }
748 
749 static void remove_client_context(struct ib_device *device,
750 				  unsigned int client_id)
751 {
752 	struct ib_client *client;
753 	void *client_data;
754 
755 	down_write(&device->client_data_rwsem);
756 	if (!xa_get_mark(&device->client_data, client_id,
757 			 CLIENT_DATA_REGISTERED)) {
758 		up_write(&device->client_data_rwsem);
759 		return;
760 	}
761 	client_data = xa_load(&device->client_data, client_id);
762 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
763 	client = xa_load(&clients, client_id);
764 	up_write(&device->client_data_rwsem);
765 
766 	/*
767 	 * Notice we cannot be holding any exclusive locks when calling the
768 	 * remove callback as the remove callback can recurse back into any
769 	 * public functions in this module and thus try for any locks those
770 	 * functions take.
771 	 *
772 	 * For this reason clients and drivers should not call the
773 	 * unregistration functions will holdling any locks.
774 	 */
775 	if (client->remove)
776 		client->remove(device, client_data);
777 
778 	xa_erase(&device->client_data, client_id);
779 	ib_device_put(device);
780 	ib_client_put(client);
781 }
782 
783 static int alloc_port_data(struct ib_device *device)
784 {
785 	struct ib_port_data_rcu *pdata_rcu;
786 	u32 port;
787 
788 	if (device->port_data)
789 		return 0;
790 
791 	/* This can only be called once the physical port range is defined */
792 	if (WARN_ON(!device->phys_port_cnt))
793 		return -EINVAL;
794 
795 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
796 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
797 		return -EINVAL;
798 
799 	/*
800 	 * device->port_data is indexed directly by the port number to make
801 	 * access to this data as efficient as possible.
802 	 *
803 	 * Therefore port_data is declared as a 1 based array with potential
804 	 * empty slots at the beginning.
805 	 */
806 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
807 					size_add(rdma_end_port(device), 1)),
808 			    GFP_KERNEL);
809 	if (!pdata_rcu)
810 		return -ENOMEM;
811 	/*
812 	 * The rcu_head is put in front of the port data array and the stored
813 	 * pointer is adjusted since we never need to see that member until
814 	 * kfree_rcu.
815 	 */
816 	device->port_data = pdata_rcu->pdata;
817 
818 	rdma_for_each_port (device, port) {
819 		struct ib_port_data *pdata = &device->port_data[port];
820 
821 		pdata->ib_dev = device;
822 		spin_lock_init(&pdata->pkey_list_lock);
823 		INIT_LIST_HEAD(&pdata->pkey_list);
824 		spin_lock_init(&pdata->netdev_lock);
825 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
826 	}
827 	return 0;
828 }
829 
830 static int verify_immutable(const struct ib_device *dev, u32 port)
831 {
832 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
833 			    rdma_max_mad_size(dev, port) != 0);
834 }
835 
836 static int setup_port_data(struct ib_device *device)
837 {
838 	u32 port;
839 	int ret;
840 
841 	ret = alloc_port_data(device);
842 	if (ret)
843 		return ret;
844 
845 	rdma_for_each_port (device, port) {
846 		struct ib_port_data *pdata = &device->port_data[port];
847 
848 		ret = device->ops.get_port_immutable(device, port,
849 						     &pdata->immutable);
850 		if (ret)
851 			return ret;
852 
853 		if (verify_immutable(device, port))
854 			return -EINVAL;
855 	}
856 	return 0;
857 }
858 
859 /**
860  * ib_port_immutable_read() - Read rdma port's immutable data
861  * @dev: IB device
862  * @port: port number whose immutable data to read. It starts with index 1 and
863  *        valid upto including rdma_end_port().
864  */
865 const struct ib_port_immutable*
866 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
867 {
868 	WARN_ON(!rdma_is_port_valid(dev, port));
869 	return &dev->port_data[port].immutable;
870 }
871 EXPORT_SYMBOL(ib_port_immutable_read);
872 
873 void ib_get_device_fw_str(struct ib_device *dev, char *str)
874 {
875 	if (dev->ops.get_dev_fw_str)
876 		dev->ops.get_dev_fw_str(dev, str);
877 	else
878 		str[0] = '\0';
879 }
880 EXPORT_SYMBOL(ib_get_device_fw_str);
881 
882 static void ib_policy_change_task(struct work_struct *work)
883 {
884 	struct ib_device *dev;
885 	unsigned long index;
886 
887 	down_read(&devices_rwsem);
888 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
889 		unsigned int i;
890 
891 		rdma_for_each_port (dev, i) {
892 			u64 sp;
893 			ib_get_cached_subnet_prefix(dev, i, &sp);
894 			ib_security_cache_change(dev, i, sp);
895 		}
896 	}
897 	up_read(&devices_rwsem);
898 }
899 
900 static int ib_security_change(struct notifier_block *nb, unsigned long event,
901 			      void *lsm_data)
902 {
903 	if (event != LSM_POLICY_CHANGE)
904 		return NOTIFY_DONE;
905 
906 	schedule_work(&ib_policy_change_work);
907 	ib_mad_agent_security_change();
908 
909 	return NOTIFY_OK;
910 }
911 
912 static void compatdev_release(struct device *dev)
913 {
914 	struct ib_core_device *cdev =
915 		container_of(dev, struct ib_core_device, dev);
916 
917 	kfree(cdev);
918 }
919 
920 static int add_one_compat_dev(struct ib_device *device,
921 			      struct rdma_dev_net *rnet)
922 {
923 	struct ib_core_device *cdev;
924 	int ret;
925 
926 	lockdep_assert_held(&rdma_nets_rwsem);
927 	if (!ib_devices_shared_netns)
928 		return 0;
929 
930 	/*
931 	 * Create and add compat device in all namespaces other than where it
932 	 * is currently bound to.
933 	 */
934 	if (net_eq(read_pnet(&rnet->net),
935 		   read_pnet(&device->coredev.rdma_net)))
936 		return 0;
937 
938 	/*
939 	 * The first of init_net() or ib_register_device() to take the
940 	 * compat_devs_mutex wins and gets to add the device. Others will wait
941 	 * for completion here.
942 	 */
943 	mutex_lock(&device->compat_devs_mutex);
944 	cdev = xa_load(&device->compat_devs, rnet->id);
945 	if (cdev) {
946 		ret = 0;
947 		goto done;
948 	}
949 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
950 	if (ret)
951 		goto done;
952 
953 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
954 	if (!cdev) {
955 		ret = -ENOMEM;
956 		goto cdev_err;
957 	}
958 
959 	cdev->dev.parent = device->dev.parent;
960 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
961 	cdev->dev.release = compatdev_release;
962 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
963 	if (ret)
964 		goto add_err;
965 
966 	ret = device_add(&cdev->dev);
967 	if (ret)
968 		goto add_err;
969 	ret = ib_setup_port_attrs(cdev);
970 	if (ret)
971 		goto port_err;
972 
973 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
974 			      cdev, GFP_KERNEL));
975 	if (ret)
976 		goto insert_err;
977 
978 	mutex_unlock(&device->compat_devs_mutex);
979 	return 0;
980 
981 insert_err:
982 	ib_free_port_attrs(cdev);
983 port_err:
984 	device_del(&cdev->dev);
985 add_err:
986 	put_device(&cdev->dev);
987 cdev_err:
988 	xa_release(&device->compat_devs, rnet->id);
989 done:
990 	mutex_unlock(&device->compat_devs_mutex);
991 	return ret;
992 }
993 
994 static void remove_one_compat_dev(struct ib_device *device, u32 id)
995 {
996 	struct ib_core_device *cdev;
997 
998 	mutex_lock(&device->compat_devs_mutex);
999 	cdev = xa_erase(&device->compat_devs, id);
1000 	mutex_unlock(&device->compat_devs_mutex);
1001 	if (cdev) {
1002 		ib_free_port_attrs(cdev);
1003 		device_del(&cdev->dev);
1004 		put_device(&cdev->dev);
1005 	}
1006 }
1007 
1008 static void remove_compat_devs(struct ib_device *device)
1009 {
1010 	struct ib_core_device *cdev;
1011 	unsigned long index;
1012 
1013 	xa_for_each (&device->compat_devs, index, cdev)
1014 		remove_one_compat_dev(device, index);
1015 }
1016 
1017 static int add_compat_devs(struct ib_device *device)
1018 {
1019 	struct rdma_dev_net *rnet;
1020 	unsigned long index;
1021 	int ret = 0;
1022 
1023 	lockdep_assert_held(&devices_rwsem);
1024 
1025 	down_read(&rdma_nets_rwsem);
1026 	xa_for_each (&rdma_nets, index, rnet) {
1027 		ret = add_one_compat_dev(device, rnet);
1028 		if (ret)
1029 			break;
1030 	}
1031 	up_read(&rdma_nets_rwsem);
1032 	return ret;
1033 }
1034 
1035 static void remove_all_compat_devs(void)
1036 {
1037 	struct ib_compat_device *cdev;
1038 	struct ib_device *dev;
1039 	unsigned long index;
1040 
1041 	down_read(&devices_rwsem);
1042 	xa_for_each (&devices, index, dev) {
1043 		unsigned long c_index = 0;
1044 
1045 		/* Hold nets_rwsem so that any other thread modifying this
1046 		 * system param can sync with this thread.
1047 		 */
1048 		down_read(&rdma_nets_rwsem);
1049 		xa_for_each (&dev->compat_devs, c_index, cdev)
1050 			remove_one_compat_dev(dev, c_index);
1051 		up_read(&rdma_nets_rwsem);
1052 	}
1053 	up_read(&devices_rwsem);
1054 }
1055 
1056 static int add_all_compat_devs(void)
1057 {
1058 	struct rdma_dev_net *rnet;
1059 	struct ib_device *dev;
1060 	unsigned long index;
1061 	int ret = 0;
1062 
1063 	down_read(&devices_rwsem);
1064 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1065 		unsigned long net_index = 0;
1066 
1067 		/* Hold nets_rwsem so that any other thread modifying this
1068 		 * system param can sync with this thread.
1069 		 */
1070 		down_read(&rdma_nets_rwsem);
1071 		xa_for_each (&rdma_nets, net_index, rnet) {
1072 			ret = add_one_compat_dev(dev, rnet);
1073 			if (ret)
1074 				break;
1075 		}
1076 		up_read(&rdma_nets_rwsem);
1077 	}
1078 	up_read(&devices_rwsem);
1079 	if (ret)
1080 		remove_all_compat_devs();
1081 	return ret;
1082 }
1083 
1084 int rdma_compatdev_set(u8 enable)
1085 {
1086 	struct rdma_dev_net *rnet;
1087 	unsigned long index;
1088 	int ret = 0;
1089 
1090 	down_write(&rdma_nets_rwsem);
1091 	if (ib_devices_shared_netns == enable) {
1092 		up_write(&rdma_nets_rwsem);
1093 		return 0;
1094 	}
1095 
1096 	/* enable/disable of compat devices is not supported
1097 	 * when more than default init_net exists.
1098 	 */
1099 	xa_for_each (&rdma_nets, index, rnet) {
1100 		ret++;
1101 		break;
1102 	}
1103 	if (!ret)
1104 		ib_devices_shared_netns = enable;
1105 	up_write(&rdma_nets_rwsem);
1106 	if (ret)
1107 		return -EBUSY;
1108 
1109 	if (enable)
1110 		ret = add_all_compat_devs();
1111 	else
1112 		remove_all_compat_devs();
1113 	return ret;
1114 }
1115 
1116 static void rdma_dev_exit_net(struct net *net)
1117 {
1118 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1119 	struct ib_device *dev;
1120 	unsigned long index;
1121 	int ret;
1122 
1123 	down_write(&rdma_nets_rwsem);
1124 	/*
1125 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1126 	 */
1127 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1128 	WARN_ON(ret);
1129 	up_write(&rdma_nets_rwsem);
1130 
1131 	down_read(&devices_rwsem);
1132 	xa_for_each (&devices, index, dev) {
1133 		get_device(&dev->dev);
1134 		/*
1135 		 * Release the devices_rwsem so that pontentially blocking
1136 		 * device_del, doesn't hold the devices_rwsem for too long.
1137 		 */
1138 		up_read(&devices_rwsem);
1139 
1140 		remove_one_compat_dev(dev, rnet->id);
1141 
1142 		/*
1143 		 * If the real device is in the NS then move it back to init.
1144 		 */
1145 		rdma_dev_change_netns(dev, net, &init_net);
1146 
1147 		put_device(&dev->dev);
1148 		down_read(&devices_rwsem);
1149 	}
1150 	up_read(&devices_rwsem);
1151 
1152 	rdma_nl_net_exit(rnet);
1153 	xa_erase(&rdma_nets, rnet->id);
1154 }
1155 
1156 static __net_init int rdma_dev_init_net(struct net *net)
1157 {
1158 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1159 	unsigned long index;
1160 	struct ib_device *dev;
1161 	int ret;
1162 
1163 	write_pnet(&rnet->net, net);
1164 
1165 	ret = rdma_nl_net_init(rnet);
1166 	if (ret)
1167 		return ret;
1168 
1169 	/* No need to create any compat devices in default init_net. */
1170 	if (net_eq(net, &init_net))
1171 		return 0;
1172 
1173 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1174 	if (ret) {
1175 		rdma_nl_net_exit(rnet);
1176 		return ret;
1177 	}
1178 
1179 	down_read(&devices_rwsem);
1180 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1181 		/* Hold nets_rwsem so that netlink command cannot change
1182 		 * system configuration for device sharing mode.
1183 		 */
1184 		down_read(&rdma_nets_rwsem);
1185 		ret = add_one_compat_dev(dev, rnet);
1186 		up_read(&rdma_nets_rwsem);
1187 		if (ret)
1188 			break;
1189 	}
1190 	up_read(&devices_rwsem);
1191 
1192 	if (ret)
1193 		rdma_dev_exit_net(net);
1194 
1195 	return ret;
1196 }
1197 
1198 /*
1199  * Assign the unique string device name and the unique device index. This is
1200  * undone by ib_dealloc_device.
1201  */
1202 static int assign_name(struct ib_device *device, const char *name)
1203 {
1204 	static u32 last_id;
1205 	int ret;
1206 
1207 	down_write(&devices_rwsem);
1208 	/* Assign a unique name to the device */
1209 	if (strchr(name, '%'))
1210 		ret = alloc_name(device, name);
1211 	else
1212 		ret = dev_set_name(&device->dev, name);
1213 	if (ret)
1214 		goto out;
1215 
1216 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1217 		ret = -ENFILE;
1218 		goto out;
1219 	}
1220 	strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1221 
1222 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1223 			&last_id, GFP_KERNEL);
1224 	if (ret > 0)
1225 		ret = 0;
1226 
1227 out:
1228 	up_write(&devices_rwsem);
1229 	return ret;
1230 }
1231 
1232 /*
1233  * setup_device() allocates memory and sets up data that requires calling the
1234  * device ops, this is the only reason these actions are not done during
1235  * ib_alloc_device. It is undone by ib_dealloc_device().
1236  */
1237 static int setup_device(struct ib_device *device)
1238 {
1239 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1240 	int ret;
1241 
1242 	ib_device_check_mandatory(device);
1243 
1244 	ret = setup_port_data(device);
1245 	if (ret) {
1246 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1247 		return ret;
1248 	}
1249 
1250 	memset(&device->attrs, 0, sizeof(device->attrs));
1251 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1252 	if (ret) {
1253 		dev_warn(&device->dev,
1254 			 "Couldn't query the device attributes\n");
1255 		return ret;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static void disable_device(struct ib_device *device)
1262 {
1263 	u32 cid;
1264 
1265 	WARN_ON(!refcount_read(&device->refcount));
1266 
1267 	down_write(&devices_rwsem);
1268 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1269 	up_write(&devices_rwsem);
1270 
1271 	/*
1272 	 * Remove clients in LIFO order, see assign_client_id. This could be
1273 	 * more efficient if xarray learns to reverse iterate. Since no new
1274 	 * clients can be added to this ib_device past this point we only need
1275 	 * the maximum possible client_id value here.
1276 	 */
1277 	down_read(&clients_rwsem);
1278 	cid = highest_client_id;
1279 	up_read(&clients_rwsem);
1280 	while (cid) {
1281 		cid--;
1282 		remove_client_context(device, cid);
1283 	}
1284 
1285 	ib_cq_pool_cleanup(device);
1286 
1287 	/* Pairs with refcount_set in enable_device */
1288 	ib_device_put(device);
1289 	wait_for_completion(&device->unreg_completion);
1290 
1291 	/*
1292 	 * compat devices must be removed after device refcount drops to zero.
1293 	 * Otherwise init_net() may add more compatdevs after removing compat
1294 	 * devices and before device is disabled.
1295 	 */
1296 	remove_compat_devs(device);
1297 }
1298 
1299 /*
1300  * An enabled device is visible to all clients and to all the public facing
1301  * APIs that return a device pointer. This always returns with a new get, even
1302  * if it fails.
1303  */
1304 static int enable_device_and_get(struct ib_device *device)
1305 {
1306 	struct ib_client *client;
1307 	unsigned long index;
1308 	int ret = 0;
1309 
1310 	/*
1311 	 * One ref belongs to the xa and the other belongs to this
1312 	 * thread. This is needed to guard against parallel unregistration.
1313 	 */
1314 	refcount_set(&device->refcount, 2);
1315 	down_write(&devices_rwsem);
1316 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1317 
1318 	/*
1319 	 * By using downgrade_write() we ensure that no other thread can clear
1320 	 * DEVICE_REGISTERED while we are completing the client setup.
1321 	 */
1322 	downgrade_write(&devices_rwsem);
1323 
1324 	if (device->ops.enable_driver) {
1325 		ret = device->ops.enable_driver(device);
1326 		if (ret)
1327 			goto out;
1328 	}
1329 
1330 	down_read(&clients_rwsem);
1331 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1332 		ret = add_client_context(device, client);
1333 		if (ret)
1334 			break;
1335 	}
1336 	up_read(&clients_rwsem);
1337 	if (!ret)
1338 		ret = add_compat_devs(device);
1339 out:
1340 	up_read(&devices_rwsem);
1341 	return ret;
1342 }
1343 
1344 static void prevent_dealloc_device(struct ib_device *ib_dev)
1345 {
1346 }
1347 
1348 /**
1349  * ib_register_device - Register an IB device with IB core
1350  * @device: Device to register
1351  * @name: unique string device name. This may include a '%' which will
1352  * 	  cause a unique index to be added to the passed device name.
1353  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1354  *	        device will be used. In this case the caller should fully
1355  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1356  *
1357  * Low-level drivers use ib_register_device() to register their
1358  * devices with the IB core.  All registered clients will receive a
1359  * callback for each device that is added. @device must be allocated
1360  * with ib_alloc_device().
1361  *
1362  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1363  * asynchronously then the device pointer may become freed as soon as this
1364  * function returns.
1365  */
1366 int ib_register_device(struct ib_device *device, const char *name,
1367 		       struct device *dma_device)
1368 {
1369 	int ret;
1370 
1371 	ret = assign_name(device, name);
1372 	if (ret)
1373 		return ret;
1374 
1375 	/*
1376 	 * If the caller does not provide a DMA capable device then the IB core
1377 	 * will set up ib_sge and scatterlist structures that stash the kernel
1378 	 * virtual address into the address field.
1379 	 */
1380 	WARN_ON(dma_device && !dma_device->dma_parms);
1381 	device->dma_device = dma_device;
1382 
1383 	ret = setup_device(device);
1384 	if (ret)
1385 		return ret;
1386 
1387 	ret = ib_cache_setup_one(device);
1388 	if (ret) {
1389 		dev_warn(&device->dev,
1390 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1391 		return ret;
1392 	}
1393 
1394 	device->groups[0] = &ib_dev_attr_group;
1395 	device->groups[1] = device->ops.device_group;
1396 	ret = ib_setup_device_attrs(device);
1397 	if (ret)
1398 		goto cache_cleanup;
1399 
1400 	ib_device_register_rdmacg(device);
1401 
1402 	rdma_counter_init(device);
1403 
1404 	/*
1405 	 * Ensure that ADD uevent is not fired because it
1406 	 * is too early amd device is not initialized yet.
1407 	 */
1408 	dev_set_uevent_suppress(&device->dev, true);
1409 	ret = device_add(&device->dev);
1410 	if (ret)
1411 		goto cg_cleanup;
1412 
1413 	ret = ib_setup_port_attrs(&device->coredev);
1414 	if (ret) {
1415 		dev_warn(&device->dev,
1416 			 "Couldn't register device with driver model\n");
1417 		goto dev_cleanup;
1418 	}
1419 
1420 	ret = enable_device_and_get(device);
1421 	if (ret) {
1422 		void (*dealloc_fn)(struct ib_device *);
1423 
1424 		/*
1425 		 * If we hit this error flow then we don't want to
1426 		 * automatically dealloc the device since the caller is
1427 		 * expected to call ib_dealloc_device() after
1428 		 * ib_register_device() fails. This is tricky due to the
1429 		 * possibility for a parallel unregistration along with this
1430 		 * error flow. Since we have a refcount here we know any
1431 		 * parallel flow is stopped in disable_device and will see the
1432 		 * special dealloc_driver pointer, causing the responsibility to
1433 		 * ib_dealloc_device() to revert back to this thread.
1434 		 */
1435 		dealloc_fn = device->ops.dealloc_driver;
1436 		device->ops.dealloc_driver = prevent_dealloc_device;
1437 		ib_device_put(device);
1438 		__ib_unregister_device(device);
1439 		device->ops.dealloc_driver = dealloc_fn;
1440 		dev_set_uevent_suppress(&device->dev, false);
1441 		return ret;
1442 	}
1443 	dev_set_uevent_suppress(&device->dev, false);
1444 	/* Mark for userspace that device is ready */
1445 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1446 	ib_device_put(device);
1447 
1448 	return 0;
1449 
1450 dev_cleanup:
1451 	device_del(&device->dev);
1452 cg_cleanup:
1453 	dev_set_uevent_suppress(&device->dev, false);
1454 	ib_device_unregister_rdmacg(device);
1455 cache_cleanup:
1456 	ib_cache_cleanup_one(device);
1457 	return ret;
1458 }
1459 EXPORT_SYMBOL(ib_register_device);
1460 
1461 /* Callers must hold a get on the device. */
1462 static void __ib_unregister_device(struct ib_device *ib_dev)
1463 {
1464 	/*
1465 	 * We have a registration lock so that all the calls to unregister are
1466 	 * fully fenced, once any unregister returns the device is truely
1467 	 * unregistered even if multiple callers are unregistering it at the
1468 	 * same time. This also interacts with the registration flow and
1469 	 * provides sane semantics if register and unregister are racing.
1470 	 */
1471 	mutex_lock(&ib_dev->unregistration_lock);
1472 	if (!refcount_read(&ib_dev->refcount))
1473 		goto out;
1474 
1475 	disable_device(ib_dev);
1476 
1477 	/* Expedite removing unregistered pointers from the hash table */
1478 	free_netdevs(ib_dev);
1479 
1480 	ib_free_port_attrs(&ib_dev->coredev);
1481 	device_del(&ib_dev->dev);
1482 	ib_device_unregister_rdmacg(ib_dev);
1483 	ib_cache_cleanup_one(ib_dev);
1484 
1485 	/*
1486 	 * Drivers using the new flow may not call ib_dealloc_device except
1487 	 * in error unwind prior to registration success.
1488 	 */
1489 	if (ib_dev->ops.dealloc_driver &&
1490 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1491 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1492 		ib_dealloc_device(ib_dev);
1493 	}
1494 out:
1495 	mutex_unlock(&ib_dev->unregistration_lock);
1496 }
1497 
1498 /**
1499  * ib_unregister_device - Unregister an IB device
1500  * @ib_dev: The device to unregister
1501  *
1502  * Unregister an IB device.  All clients will receive a remove callback.
1503  *
1504  * Callers should call this routine only once, and protect against races with
1505  * registration. Typically it should only be called as part of a remove
1506  * callback in an implementation of driver core's struct device_driver and
1507  * related.
1508  *
1509  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1510  * this function.
1511  */
1512 void ib_unregister_device(struct ib_device *ib_dev)
1513 {
1514 	get_device(&ib_dev->dev);
1515 	__ib_unregister_device(ib_dev);
1516 	put_device(&ib_dev->dev);
1517 }
1518 EXPORT_SYMBOL(ib_unregister_device);
1519 
1520 /**
1521  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1522  * @ib_dev: The device to unregister
1523  *
1524  * This is the same as ib_unregister_device(), except it includes an internal
1525  * ib_device_put() that should match a 'get' obtained by the caller.
1526  *
1527  * It is safe to call this routine concurrently from multiple threads while
1528  * holding the 'get'. When the function returns the device is fully
1529  * unregistered.
1530  *
1531  * Drivers using this flow MUST use the driver_unregister callback to clean up
1532  * their resources associated with the device and dealloc it.
1533  */
1534 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1535 {
1536 	WARN_ON(!ib_dev->ops.dealloc_driver);
1537 	get_device(&ib_dev->dev);
1538 	ib_device_put(ib_dev);
1539 	__ib_unregister_device(ib_dev);
1540 	put_device(&ib_dev->dev);
1541 }
1542 EXPORT_SYMBOL(ib_unregister_device_and_put);
1543 
1544 /**
1545  * ib_unregister_driver - Unregister all IB devices for a driver
1546  * @driver_id: The driver to unregister
1547  *
1548  * This implements a fence for device unregistration. It only returns once all
1549  * devices associated with the driver_id have fully completed their
1550  * unregistration and returned from ib_unregister_device*().
1551  *
1552  * If device's are not yet unregistered it goes ahead and starts unregistering
1553  * them.
1554  *
1555  * This does not block creation of new devices with the given driver_id, that
1556  * is the responsibility of the caller.
1557  */
1558 void ib_unregister_driver(enum rdma_driver_id driver_id)
1559 {
1560 	struct ib_device *ib_dev;
1561 	unsigned long index;
1562 
1563 	down_read(&devices_rwsem);
1564 	xa_for_each (&devices, index, ib_dev) {
1565 		if (ib_dev->ops.driver_id != driver_id)
1566 			continue;
1567 
1568 		get_device(&ib_dev->dev);
1569 		up_read(&devices_rwsem);
1570 
1571 		WARN_ON(!ib_dev->ops.dealloc_driver);
1572 		__ib_unregister_device(ib_dev);
1573 
1574 		put_device(&ib_dev->dev);
1575 		down_read(&devices_rwsem);
1576 	}
1577 	up_read(&devices_rwsem);
1578 }
1579 EXPORT_SYMBOL(ib_unregister_driver);
1580 
1581 static void ib_unregister_work(struct work_struct *work)
1582 {
1583 	struct ib_device *ib_dev =
1584 		container_of(work, struct ib_device, unregistration_work);
1585 
1586 	__ib_unregister_device(ib_dev);
1587 	put_device(&ib_dev->dev);
1588 }
1589 
1590 /**
1591  * ib_unregister_device_queued - Unregister a device using a work queue
1592  * @ib_dev: The device to unregister
1593  *
1594  * This schedules an asynchronous unregistration using a WQ for the device. A
1595  * driver should use this to avoid holding locks while doing unregistration,
1596  * such as holding the RTNL lock.
1597  *
1598  * Drivers using this API must use ib_unregister_driver before module unload
1599  * to ensure that all scheduled unregistrations have completed.
1600  */
1601 void ib_unregister_device_queued(struct ib_device *ib_dev)
1602 {
1603 	WARN_ON(!refcount_read(&ib_dev->refcount));
1604 	WARN_ON(!ib_dev->ops.dealloc_driver);
1605 	get_device(&ib_dev->dev);
1606 	if (!queue_work(ib_unreg_wq, &ib_dev->unregistration_work))
1607 		put_device(&ib_dev->dev);
1608 }
1609 EXPORT_SYMBOL(ib_unregister_device_queued);
1610 
1611 /*
1612  * The caller must pass in a device that has the kref held and the refcount
1613  * released. If the device is in cur_net and still registered then it is moved
1614  * into net.
1615  */
1616 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1617 				 struct net *net)
1618 {
1619 	int ret2 = -EINVAL;
1620 	int ret;
1621 
1622 	mutex_lock(&device->unregistration_lock);
1623 
1624 	/*
1625 	 * If a device not under ib_device_get() or if the unregistration_lock
1626 	 * is not held, the namespace can be changed, or it can be unregistered.
1627 	 * Check again under the lock.
1628 	 */
1629 	if (refcount_read(&device->refcount) == 0 ||
1630 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1631 		ret = -ENODEV;
1632 		goto out;
1633 	}
1634 
1635 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1636 	disable_device(device);
1637 
1638 	/*
1639 	 * At this point no one can be using the device, so it is safe to
1640 	 * change the namespace.
1641 	 */
1642 	write_pnet(&device->coredev.rdma_net, net);
1643 
1644 	down_read(&devices_rwsem);
1645 	/*
1646 	 * Currently rdma devices are system wide unique. So the device name
1647 	 * is guaranteed free in the new namespace. Publish the new namespace
1648 	 * at the sysfs level.
1649 	 */
1650 	ret = device_rename(&device->dev, dev_name(&device->dev));
1651 	up_read(&devices_rwsem);
1652 	if (ret) {
1653 		dev_warn(&device->dev,
1654 			 "%s: Couldn't rename device after namespace change\n",
1655 			 __func__);
1656 		/* Try and put things back and re-enable the device */
1657 		write_pnet(&device->coredev.rdma_net, cur_net);
1658 	}
1659 
1660 	ret2 = enable_device_and_get(device);
1661 	if (ret2) {
1662 		/*
1663 		 * This shouldn't really happen, but if it does, let the user
1664 		 * retry at later point. So don't disable the device.
1665 		 */
1666 		dev_warn(&device->dev,
1667 			 "%s: Couldn't re-enable device after namespace change\n",
1668 			 __func__);
1669 	}
1670 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1671 
1672 	ib_device_put(device);
1673 out:
1674 	mutex_unlock(&device->unregistration_lock);
1675 	if (ret)
1676 		return ret;
1677 	return ret2;
1678 }
1679 
1680 int ib_device_set_netns_put(struct sk_buff *skb,
1681 			    struct ib_device *dev, u32 ns_fd)
1682 {
1683 	struct net *net;
1684 	int ret;
1685 
1686 	net = get_net_ns_by_fd(ns_fd);
1687 	if (IS_ERR(net)) {
1688 		ret = PTR_ERR(net);
1689 		goto net_err;
1690 	}
1691 
1692 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1693 		ret = -EPERM;
1694 		goto ns_err;
1695 	}
1696 
1697 	/*
1698 	 * All the ib_clients, including uverbs, are reset when the namespace is
1699 	 * changed and this cannot be blocked waiting for userspace to do
1700 	 * something, so disassociation is mandatory.
1701 	 */
1702 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1703 		ret = -EOPNOTSUPP;
1704 		goto ns_err;
1705 	}
1706 
1707 	get_device(&dev->dev);
1708 	ib_device_put(dev);
1709 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1710 	put_device(&dev->dev);
1711 
1712 	put_net(net);
1713 	return ret;
1714 
1715 ns_err:
1716 	put_net(net);
1717 net_err:
1718 	ib_device_put(dev);
1719 	return ret;
1720 }
1721 
1722 static struct pernet_operations rdma_dev_net_ops = {
1723 	.init = rdma_dev_init_net,
1724 	.exit = rdma_dev_exit_net,
1725 	.id = &rdma_dev_net_id,
1726 	.size = sizeof(struct rdma_dev_net),
1727 };
1728 
1729 static int assign_client_id(struct ib_client *client)
1730 {
1731 	int ret;
1732 
1733 	lockdep_assert_held(&clients_rwsem);
1734 	/*
1735 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1736 	 * achieve this we assign client_ids so they are sorted in
1737 	 * registration order.
1738 	 */
1739 	client->client_id = highest_client_id;
1740 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1741 	if (ret)
1742 		return ret;
1743 
1744 	highest_client_id++;
1745 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1746 	return 0;
1747 }
1748 
1749 static void remove_client_id(struct ib_client *client)
1750 {
1751 	down_write(&clients_rwsem);
1752 	xa_erase(&clients, client->client_id);
1753 	for (; highest_client_id; highest_client_id--)
1754 		if (xa_load(&clients, highest_client_id - 1))
1755 			break;
1756 	up_write(&clients_rwsem);
1757 }
1758 
1759 /**
1760  * ib_register_client - Register an IB client
1761  * @client:Client to register
1762  *
1763  * Upper level users of the IB drivers can use ib_register_client() to
1764  * register callbacks for IB device addition and removal.  When an IB
1765  * device is added, each registered client's add method will be called
1766  * (in the order the clients were registered), and when a device is
1767  * removed, each client's remove method will be called (in the reverse
1768  * order that clients were registered).  In addition, when
1769  * ib_register_client() is called, the client will receive an add
1770  * callback for all devices already registered.
1771  */
1772 int ib_register_client(struct ib_client *client)
1773 {
1774 	struct ib_device *device;
1775 	unsigned long index;
1776 	bool need_unreg = false;
1777 	int ret;
1778 
1779 	refcount_set(&client->uses, 1);
1780 	init_completion(&client->uses_zero);
1781 
1782 	/*
1783 	 * The devices_rwsem is held in write mode to ensure that a racing
1784 	 * ib_register_device() sees a consisent view of clients and devices.
1785 	 */
1786 	down_write(&devices_rwsem);
1787 	down_write(&clients_rwsem);
1788 	ret = assign_client_id(client);
1789 	if (ret)
1790 		goto out;
1791 
1792 	need_unreg = true;
1793 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1794 		ret = add_client_context(device, client);
1795 		if (ret)
1796 			goto out;
1797 	}
1798 	ret = 0;
1799 out:
1800 	up_write(&clients_rwsem);
1801 	up_write(&devices_rwsem);
1802 	if (need_unreg && ret)
1803 		ib_unregister_client(client);
1804 	return ret;
1805 }
1806 EXPORT_SYMBOL(ib_register_client);
1807 
1808 /**
1809  * ib_unregister_client - Unregister an IB client
1810  * @client:Client to unregister
1811  *
1812  * Upper level users use ib_unregister_client() to remove their client
1813  * registration.  When ib_unregister_client() is called, the client
1814  * will receive a remove callback for each IB device still registered.
1815  *
1816  * This is a full fence, once it returns no client callbacks will be called,
1817  * or are running in another thread.
1818  */
1819 void ib_unregister_client(struct ib_client *client)
1820 {
1821 	struct ib_device *device;
1822 	unsigned long index;
1823 
1824 	down_write(&clients_rwsem);
1825 	ib_client_put(client);
1826 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1827 	up_write(&clients_rwsem);
1828 
1829 	/* We do not want to have locks while calling client->remove() */
1830 	rcu_read_lock();
1831 	xa_for_each (&devices, index, device) {
1832 		if (!ib_device_try_get(device))
1833 			continue;
1834 		rcu_read_unlock();
1835 
1836 		remove_client_context(device, client->client_id);
1837 
1838 		ib_device_put(device);
1839 		rcu_read_lock();
1840 	}
1841 	rcu_read_unlock();
1842 
1843 	/*
1844 	 * remove_client_context() is not a fence, it can return even though a
1845 	 * removal is ongoing. Wait until all removals are completed.
1846 	 */
1847 	wait_for_completion(&client->uses_zero);
1848 	remove_client_id(client);
1849 }
1850 EXPORT_SYMBOL(ib_unregister_client);
1851 
1852 static int __ib_get_global_client_nl_info(const char *client_name,
1853 					  struct ib_client_nl_info *res)
1854 {
1855 	struct ib_client *client;
1856 	unsigned long index;
1857 	int ret = -ENOENT;
1858 
1859 	down_read(&clients_rwsem);
1860 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1861 		if (strcmp(client->name, client_name) != 0)
1862 			continue;
1863 		if (!client->get_global_nl_info) {
1864 			ret = -EOPNOTSUPP;
1865 			break;
1866 		}
1867 		ret = client->get_global_nl_info(res);
1868 		if (WARN_ON(ret == -ENOENT))
1869 			ret = -EINVAL;
1870 		if (!ret && res->cdev)
1871 			get_device(res->cdev);
1872 		break;
1873 	}
1874 	up_read(&clients_rwsem);
1875 	return ret;
1876 }
1877 
1878 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1879 				   const char *client_name,
1880 				   struct ib_client_nl_info *res)
1881 {
1882 	unsigned long index;
1883 	void *client_data;
1884 	int ret = -ENOENT;
1885 
1886 	down_read(&ibdev->client_data_rwsem);
1887 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1888 			     CLIENT_DATA_REGISTERED) {
1889 		struct ib_client *client = xa_load(&clients, index);
1890 
1891 		if (!client || strcmp(client->name, client_name) != 0)
1892 			continue;
1893 		if (!client->get_nl_info) {
1894 			ret = -EOPNOTSUPP;
1895 			break;
1896 		}
1897 		ret = client->get_nl_info(ibdev, client_data, res);
1898 		if (WARN_ON(ret == -ENOENT))
1899 			ret = -EINVAL;
1900 
1901 		/*
1902 		 * The cdev is guaranteed valid as long as we are inside the
1903 		 * client_data_rwsem as remove_one can't be called. Keep it
1904 		 * valid for the caller.
1905 		 */
1906 		if (!ret && res->cdev)
1907 			get_device(res->cdev);
1908 		break;
1909 	}
1910 	up_read(&ibdev->client_data_rwsem);
1911 
1912 	return ret;
1913 }
1914 
1915 /**
1916  * ib_get_client_nl_info - Fetch the nl_info from a client
1917  * @ibdev: IB device
1918  * @client_name: Name of the client
1919  * @res: Result of the query
1920  */
1921 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1922 			  struct ib_client_nl_info *res)
1923 {
1924 	int ret;
1925 
1926 	if (ibdev)
1927 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1928 	else
1929 		ret = __ib_get_global_client_nl_info(client_name, res);
1930 #ifdef CONFIG_MODULES
1931 	if (ret == -ENOENT) {
1932 		request_module("rdma-client-%s", client_name);
1933 		if (ibdev)
1934 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1935 		else
1936 			ret = __ib_get_global_client_nl_info(client_name, res);
1937 	}
1938 #endif
1939 	if (ret) {
1940 		if (ret == -ENOENT)
1941 			return -EOPNOTSUPP;
1942 		return ret;
1943 	}
1944 
1945 	if (WARN_ON(!res->cdev))
1946 		return -EINVAL;
1947 	return 0;
1948 }
1949 
1950 /**
1951  * ib_set_client_data - Set IB client context
1952  * @device:Device to set context for
1953  * @client:Client to set context for
1954  * @data:Context to set
1955  *
1956  * ib_set_client_data() sets client context data that can be retrieved with
1957  * ib_get_client_data(). This can only be called while the client is
1958  * registered to the device, once the ib_client remove() callback returns this
1959  * cannot be called.
1960  */
1961 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1962 			void *data)
1963 {
1964 	void *rc;
1965 
1966 	if (WARN_ON(IS_ERR(data)))
1967 		data = NULL;
1968 
1969 	rc = xa_store(&device->client_data, client->client_id, data,
1970 		      GFP_KERNEL);
1971 	WARN_ON(xa_is_err(rc));
1972 }
1973 EXPORT_SYMBOL(ib_set_client_data);
1974 
1975 /**
1976  * ib_register_event_handler - Register an IB event handler
1977  * @event_handler:Handler to register
1978  *
1979  * ib_register_event_handler() registers an event handler that will be
1980  * called back when asynchronous IB events occur (as defined in
1981  * chapter 11 of the InfiniBand Architecture Specification). This
1982  * callback occurs in workqueue context.
1983  */
1984 void ib_register_event_handler(struct ib_event_handler *event_handler)
1985 {
1986 	down_write(&event_handler->device->event_handler_rwsem);
1987 	list_add_tail(&event_handler->list,
1988 		      &event_handler->device->event_handler_list);
1989 	up_write(&event_handler->device->event_handler_rwsem);
1990 }
1991 EXPORT_SYMBOL(ib_register_event_handler);
1992 
1993 /**
1994  * ib_unregister_event_handler - Unregister an event handler
1995  * @event_handler:Handler to unregister
1996  *
1997  * Unregister an event handler registered with
1998  * ib_register_event_handler().
1999  */
2000 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2001 {
2002 	down_write(&event_handler->device->event_handler_rwsem);
2003 	list_del(&event_handler->list);
2004 	up_write(&event_handler->device->event_handler_rwsem);
2005 }
2006 EXPORT_SYMBOL(ib_unregister_event_handler);
2007 
2008 void ib_dispatch_event_clients(struct ib_event *event)
2009 {
2010 	struct ib_event_handler *handler;
2011 
2012 	down_read(&event->device->event_handler_rwsem);
2013 
2014 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2015 		handler->handler(handler, event);
2016 
2017 	up_read(&event->device->event_handler_rwsem);
2018 }
2019 
2020 static int iw_query_port(struct ib_device *device,
2021 			   u32 port_num,
2022 			   struct ib_port_attr *port_attr)
2023 {
2024 	struct in_device *inetdev;
2025 	struct net_device *netdev;
2026 
2027 	memset(port_attr, 0, sizeof(*port_attr));
2028 
2029 	netdev = ib_device_get_netdev(device, port_num);
2030 	if (!netdev)
2031 		return -ENODEV;
2032 
2033 	port_attr->max_mtu = IB_MTU_4096;
2034 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2035 
2036 	if (!netif_carrier_ok(netdev)) {
2037 		port_attr->state = IB_PORT_DOWN;
2038 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2039 	} else {
2040 		rcu_read_lock();
2041 		inetdev = __in_dev_get_rcu(netdev);
2042 
2043 		if (inetdev && inetdev->ifa_list) {
2044 			port_attr->state = IB_PORT_ACTIVE;
2045 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2046 		} else {
2047 			port_attr->state = IB_PORT_INIT;
2048 			port_attr->phys_state =
2049 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2050 		}
2051 
2052 		rcu_read_unlock();
2053 	}
2054 
2055 	dev_put(netdev);
2056 	return device->ops.query_port(device, port_num, port_attr);
2057 }
2058 
2059 static int __ib_query_port(struct ib_device *device,
2060 			   u32 port_num,
2061 			   struct ib_port_attr *port_attr)
2062 {
2063 	int err;
2064 
2065 	memset(port_attr, 0, sizeof(*port_attr));
2066 
2067 	err = device->ops.query_port(device, port_num, port_attr);
2068 	if (err || port_attr->subnet_prefix)
2069 		return err;
2070 
2071 	if (rdma_port_get_link_layer(device, port_num) !=
2072 	    IB_LINK_LAYER_INFINIBAND)
2073 		return 0;
2074 
2075 	ib_get_cached_subnet_prefix(device, port_num,
2076 				    &port_attr->subnet_prefix);
2077 	return 0;
2078 }
2079 
2080 /**
2081  * ib_query_port - Query IB port attributes
2082  * @device:Device to query
2083  * @port_num:Port number to query
2084  * @port_attr:Port attributes
2085  *
2086  * ib_query_port() returns the attributes of a port through the
2087  * @port_attr pointer.
2088  */
2089 int ib_query_port(struct ib_device *device,
2090 		  u32 port_num,
2091 		  struct ib_port_attr *port_attr)
2092 {
2093 	if (!rdma_is_port_valid(device, port_num))
2094 		return -EINVAL;
2095 
2096 	if (rdma_protocol_iwarp(device, port_num))
2097 		return iw_query_port(device, port_num, port_attr);
2098 	else
2099 		return __ib_query_port(device, port_num, port_attr);
2100 }
2101 EXPORT_SYMBOL(ib_query_port);
2102 
2103 static void add_ndev_hash(struct ib_port_data *pdata)
2104 {
2105 	unsigned long flags;
2106 
2107 	might_sleep();
2108 
2109 	spin_lock_irqsave(&ndev_hash_lock, flags);
2110 	if (hash_hashed(&pdata->ndev_hash_link)) {
2111 		hash_del_rcu(&pdata->ndev_hash_link);
2112 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2113 		/*
2114 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2115 		 * grace period
2116 		 */
2117 		synchronize_rcu();
2118 		spin_lock_irqsave(&ndev_hash_lock, flags);
2119 	}
2120 	if (pdata->netdev)
2121 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2122 			     (uintptr_t)pdata->netdev);
2123 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2124 }
2125 
2126 /**
2127  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2128  * @ib_dev: Device to modify
2129  * @ndev: net_device to affiliate, may be NULL
2130  * @port: IB port the net_device is connected to
2131  *
2132  * Drivers should use this to link the ib_device to a netdev so the netdev
2133  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2134  * affiliated with any port.
2135  *
2136  * The caller must ensure that the given ndev is not unregistered or
2137  * unregistering, and that either the ib_device is unregistered or
2138  * ib_device_set_netdev() is called with NULL when the ndev sends a
2139  * NETDEV_UNREGISTER event.
2140  */
2141 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2142 			 u32 port)
2143 {
2144 	struct net_device *old_ndev;
2145 	struct ib_port_data *pdata;
2146 	unsigned long flags;
2147 	int ret;
2148 
2149 	if (!rdma_is_port_valid(ib_dev, port))
2150 		return -EINVAL;
2151 
2152 	/*
2153 	 * Drivers wish to call this before ib_register_driver, so we have to
2154 	 * setup the port data early.
2155 	 */
2156 	ret = alloc_port_data(ib_dev);
2157 	if (ret)
2158 		return ret;
2159 
2160 	pdata = &ib_dev->port_data[port];
2161 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2162 	old_ndev = rcu_dereference_protected(
2163 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2164 	if (old_ndev == ndev) {
2165 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2166 		return 0;
2167 	}
2168 
2169 	rcu_assign_pointer(pdata->netdev, ndev);
2170 	netdev_put(old_ndev, &pdata->netdev_tracker);
2171 	netdev_hold(ndev, &pdata->netdev_tracker, GFP_ATOMIC);
2172 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2173 
2174 	add_ndev_hash(pdata);
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL(ib_device_set_netdev);
2178 
2179 static void free_netdevs(struct ib_device *ib_dev)
2180 {
2181 	unsigned long flags;
2182 	u32 port;
2183 
2184 	if (!ib_dev->port_data)
2185 		return;
2186 
2187 	rdma_for_each_port (ib_dev, port) {
2188 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2189 		struct net_device *ndev;
2190 
2191 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2192 		ndev = rcu_dereference_protected(
2193 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2194 		if (ndev) {
2195 			spin_lock(&ndev_hash_lock);
2196 			hash_del_rcu(&pdata->ndev_hash_link);
2197 			spin_unlock(&ndev_hash_lock);
2198 
2199 			/*
2200 			 * If this is the last dev_put there is still a
2201 			 * synchronize_rcu before the netdev is kfreed, so we
2202 			 * can continue to rely on unlocked pointer
2203 			 * comparisons after the put
2204 			 */
2205 			rcu_assign_pointer(pdata->netdev, NULL);
2206 			netdev_put(ndev, &pdata->netdev_tracker);
2207 		}
2208 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2209 	}
2210 }
2211 
2212 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2213 					u32 port)
2214 {
2215 	struct ib_port_data *pdata;
2216 	struct net_device *res;
2217 
2218 	if (!rdma_is_port_valid(ib_dev, port))
2219 		return NULL;
2220 
2221 	pdata = &ib_dev->port_data[port];
2222 
2223 	/*
2224 	 * New drivers should use ib_device_set_netdev() not the legacy
2225 	 * get_netdev().
2226 	 */
2227 	if (ib_dev->ops.get_netdev)
2228 		res = ib_dev->ops.get_netdev(ib_dev, port);
2229 	else {
2230 		spin_lock(&pdata->netdev_lock);
2231 		res = rcu_dereference_protected(
2232 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2233 		dev_hold(res);
2234 		spin_unlock(&pdata->netdev_lock);
2235 	}
2236 
2237 	/*
2238 	 * If we are starting to unregister expedite things by preventing
2239 	 * propagation of an unregistering netdev.
2240 	 */
2241 	if (res && res->reg_state != NETREG_REGISTERED) {
2242 		dev_put(res);
2243 		return NULL;
2244 	}
2245 
2246 	return res;
2247 }
2248 
2249 /**
2250  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2251  * @ndev: netdev to locate
2252  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2253  *
2254  * Find and hold an ib_device that is associated with a netdev via
2255  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2256  * returned pointer.
2257  */
2258 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2259 					  enum rdma_driver_id driver_id)
2260 {
2261 	struct ib_device *res = NULL;
2262 	struct ib_port_data *cur;
2263 
2264 	rcu_read_lock();
2265 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2266 				    (uintptr_t)ndev) {
2267 		if (rcu_access_pointer(cur->netdev) == ndev &&
2268 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2269 		     cur->ib_dev->ops.driver_id == driver_id) &&
2270 		    ib_device_try_get(cur->ib_dev)) {
2271 			res = cur->ib_dev;
2272 			break;
2273 		}
2274 	}
2275 	rcu_read_unlock();
2276 
2277 	return res;
2278 }
2279 EXPORT_SYMBOL(ib_device_get_by_netdev);
2280 
2281 /**
2282  * ib_enum_roce_netdev - enumerate all RoCE ports
2283  * @ib_dev : IB device we want to query
2284  * @filter: Should we call the callback?
2285  * @filter_cookie: Cookie passed to filter
2286  * @cb: Callback to call for each found RoCE ports
2287  * @cookie: Cookie passed back to the callback
2288  *
2289  * Enumerates all of the physical RoCE ports of ib_dev
2290  * which are related to netdevice and calls callback() on each
2291  * device for which filter() function returns non zero.
2292  */
2293 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2294 			 roce_netdev_filter filter,
2295 			 void *filter_cookie,
2296 			 roce_netdev_callback cb,
2297 			 void *cookie)
2298 {
2299 	u32 port;
2300 
2301 	rdma_for_each_port (ib_dev, port)
2302 		if (rdma_protocol_roce(ib_dev, port)) {
2303 			struct net_device *idev =
2304 				ib_device_get_netdev(ib_dev, port);
2305 
2306 			if (filter(ib_dev, port, idev, filter_cookie))
2307 				cb(ib_dev, port, idev, cookie);
2308 			dev_put(idev);
2309 		}
2310 }
2311 
2312 /**
2313  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2314  * @filter: Should we call the callback?
2315  * @filter_cookie: Cookie passed to filter
2316  * @cb: Callback to call for each found RoCE ports
2317  * @cookie: Cookie passed back to the callback
2318  *
2319  * Enumerates all RoCE devices' physical ports which are related
2320  * to netdevices and calls callback() on each device for which
2321  * filter() function returns non zero.
2322  */
2323 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2324 			      void *filter_cookie,
2325 			      roce_netdev_callback cb,
2326 			      void *cookie)
2327 {
2328 	struct ib_device *dev;
2329 	unsigned long index;
2330 
2331 	down_read(&devices_rwsem);
2332 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2333 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2334 	up_read(&devices_rwsem);
2335 }
2336 
2337 /*
2338  * ib_enum_all_devs - enumerate all ib_devices
2339  * @cb: Callback to call for each found ib_device
2340  *
2341  * Enumerates all ib_devices and calls callback() on each device.
2342  */
2343 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2344 		     struct netlink_callback *cb)
2345 {
2346 	unsigned long index;
2347 	struct ib_device *dev;
2348 	unsigned int idx = 0;
2349 	int ret = 0;
2350 
2351 	down_read(&devices_rwsem);
2352 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2353 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2354 			continue;
2355 
2356 		ret = nldev_cb(dev, skb, cb, idx);
2357 		if (ret)
2358 			break;
2359 		idx++;
2360 	}
2361 	up_read(&devices_rwsem);
2362 	return ret;
2363 }
2364 
2365 /**
2366  * ib_query_pkey - Get P_Key table entry
2367  * @device:Device to query
2368  * @port_num:Port number to query
2369  * @index:P_Key table index to query
2370  * @pkey:Returned P_Key
2371  *
2372  * ib_query_pkey() fetches the specified P_Key table entry.
2373  */
2374 int ib_query_pkey(struct ib_device *device,
2375 		  u32 port_num, u16 index, u16 *pkey)
2376 {
2377 	if (!rdma_is_port_valid(device, port_num))
2378 		return -EINVAL;
2379 
2380 	if (!device->ops.query_pkey)
2381 		return -EOPNOTSUPP;
2382 
2383 	return device->ops.query_pkey(device, port_num, index, pkey);
2384 }
2385 EXPORT_SYMBOL(ib_query_pkey);
2386 
2387 /**
2388  * ib_modify_device - Change IB device attributes
2389  * @device:Device to modify
2390  * @device_modify_mask:Mask of attributes to change
2391  * @device_modify:New attribute values
2392  *
2393  * ib_modify_device() changes a device's attributes as specified by
2394  * the @device_modify_mask and @device_modify structure.
2395  */
2396 int ib_modify_device(struct ib_device *device,
2397 		     int device_modify_mask,
2398 		     struct ib_device_modify *device_modify)
2399 {
2400 	if (!device->ops.modify_device)
2401 		return -EOPNOTSUPP;
2402 
2403 	return device->ops.modify_device(device, device_modify_mask,
2404 					 device_modify);
2405 }
2406 EXPORT_SYMBOL(ib_modify_device);
2407 
2408 /**
2409  * ib_modify_port - Modifies the attributes for the specified port.
2410  * @device: The device to modify.
2411  * @port_num: The number of the port to modify.
2412  * @port_modify_mask: Mask used to specify which attributes of the port
2413  *   to change.
2414  * @port_modify: New attribute values for the port.
2415  *
2416  * ib_modify_port() changes a port's attributes as specified by the
2417  * @port_modify_mask and @port_modify structure.
2418  */
2419 int ib_modify_port(struct ib_device *device,
2420 		   u32 port_num, int port_modify_mask,
2421 		   struct ib_port_modify *port_modify)
2422 {
2423 	int rc;
2424 
2425 	if (!rdma_is_port_valid(device, port_num))
2426 		return -EINVAL;
2427 
2428 	if (device->ops.modify_port)
2429 		rc = device->ops.modify_port(device, port_num,
2430 					     port_modify_mask,
2431 					     port_modify);
2432 	else if (rdma_protocol_roce(device, port_num) &&
2433 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2434 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2435 		rc = 0;
2436 	else
2437 		rc = -EOPNOTSUPP;
2438 	return rc;
2439 }
2440 EXPORT_SYMBOL(ib_modify_port);
2441 
2442 /**
2443  * ib_find_gid - Returns the port number and GID table index where
2444  *   a specified GID value occurs. Its searches only for IB link layer.
2445  * @device: The device to query.
2446  * @gid: The GID value to search for.
2447  * @port_num: The port number of the device where the GID value was found.
2448  * @index: The index into the GID table where the GID was found.  This
2449  *   parameter may be NULL.
2450  */
2451 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2452 		u32 *port_num, u16 *index)
2453 {
2454 	union ib_gid tmp_gid;
2455 	u32 port;
2456 	int ret, i;
2457 
2458 	rdma_for_each_port (device, port) {
2459 		if (!rdma_protocol_ib(device, port))
2460 			continue;
2461 
2462 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2463 		     ++i) {
2464 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2465 			if (ret)
2466 				continue;
2467 
2468 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2469 				*port_num = port;
2470 				if (index)
2471 					*index = i;
2472 				return 0;
2473 			}
2474 		}
2475 	}
2476 
2477 	return -ENOENT;
2478 }
2479 EXPORT_SYMBOL(ib_find_gid);
2480 
2481 /**
2482  * ib_find_pkey - Returns the PKey table index where a specified
2483  *   PKey value occurs.
2484  * @device: The device to query.
2485  * @port_num: The port number of the device to search for the PKey.
2486  * @pkey: The PKey value to search for.
2487  * @index: The index into the PKey table where the PKey was found.
2488  */
2489 int ib_find_pkey(struct ib_device *device,
2490 		 u32 port_num, u16 pkey, u16 *index)
2491 {
2492 	int ret, i;
2493 	u16 tmp_pkey;
2494 	int partial_ix = -1;
2495 
2496 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2497 	     ++i) {
2498 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2499 		if (ret)
2500 			return ret;
2501 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2502 			/* if there is full-member pkey take it.*/
2503 			if (tmp_pkey & 0x8000) {
2504 				*index = i;
2505 				return 0;
2506 			}
2507 			if (partial_ix < 0)
2508 				partial_ix = i;
2509 		}
2510 	}
2511 
2512 	/*no full-member, if exists take the limited*/
2513 	if (partial_ix >= 0) {
2514 		*index = partial_ix;
2515 		return 0;
2516 	}
2517 	return -ENOENT;
2518 }
2519 EXPORT_SYMBOL(ib_find_pkey);
2520 
2521 /**
2522  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2523  * for a received CM request
2524  * @dev:	An RDMA device on which the request has been received.
2525  * @port:	Port number on the RDMA device.
2526  * @pkey:	The Pkey the request came on.
2527  * @gid:	A GID that the net_dev uses to communicate.
2528  * @addr:	Contains the IP address that the request specified as its
2529  *		destination.
2530  *
2531  */
2532 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2533 					    u32 port,
2534 					    u16 pkey,
2535 					    const union ib_gid *gid,
2536 					    const struct sockaddr *addr)
2537 {
2538 	struct net_device *net_dev = NULL;
2539 	unsigned long index;
2540 	void *client_data;
2541 
2542 	if (!rdma_protocol_ib(dev, port))
2543 		return NULL;
2544 
2545 	/*
2546 	 * Holding the read side guarantees that the client will not become
2547 	 * unregistered while we are calling get_net_dev_by_params()
2548 	 */
2549 	down_read(&dev->client_data_rwsem);
2550 	xan_for_each_marked (&dev->client_data, index, client_data,
2551 			     CLIENT_DATA_REGISTERED) {
2552 		struct ib_client *client = xa_load(&clients, index);
2553 
2554 		if (!client || !client->get_net_dev_by_params)
2555 			continue;
2556 
2557 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2558 							addr, client_data);
2559 		if (net_dev)
2560 			break;
2561 	}
2562 	up_read(&dev->client_data_rwsem);
2563 
2564 	return net_dev;
2565 }
2566 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2567 
2568 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2569 {
2570 	struct ib_device_ops *dev_ops = &dev->ops;
2571 #define SET_DEVICE_OP(ptr, name)                                               \
2572 	do {                                                                   \
2573 		if (ops->name)                                                 \
2574 			if (!((ptr)->name))				       \
2575 				(ptr)->name = ops->name;                       \
2576 	} while (0)
2577 
2578 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2579 
2580 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2581 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2582 			dev_ops->driver_id != ops->driver_id);
2583 		dev_ops->driver_id = ops->driver_id;
2584 	}
2585 	if (ops->owner) {
2586 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2587 		dev_ops->owner = ops->owner;
2588 	}
2589 	if (ops->uverbs_abi_ver)
2590 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2591 
2592 	dev_ops->uverbs_no_driver_id_binding |=
2593 		ops->uverbs_no_driver_id_binding;
2594 
2595 	SET_DEVICE_OP(dev_ops, add_gid);
2596 	SET_DEVICE_OP(dev_ops, advise_mr);
2597 	SET_DEVICE_OP(dev_ops, alloc_dm);
2598 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2599 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2600 	SET_DEVICE_OP(dev_ops, alloc_mr);
2601 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2602 	SET_DEVICE_OP(dev_ops, alloc_mw);
2603 	SET_DEVICE_OP(dev_ops, alloc_pd);
2604 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2605 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2606 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2607 	SET_DEVICE_OP(dev_ops, attach_mcast);
2608 	SET_DEVICE_OP(dev_ops, check_mr_status);
2609 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2610 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2611 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2612 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2613 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2614 	SET_DEVICE_OP(dev_ops, create_ah);
2615 	SET_DEVICE_OP(dev_ops, create_counters);
2616 	SET_DEVICE_OP(dev_ops, create_cq);
2617 	SET_DEVICE_OP(dev_ops, create_flow);
2618 	SET_DEVICE_OP(dev_ops, create_qp);
2619 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2620 	SET_DEVICE_OP(dev_ops, create_srq);
2621 	SET_DEVICE_OP(dev_ops, create_user_ah);
2622 	SET_DEVICE_OP(dev_ops, create_wq);
2623 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2624 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2625 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2626 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2627 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2628 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2629 	SET_DEVICE_OP(dev_ops, del_gid);
2630 	SET_DEVICE_OP(dev_ops, dereg_mr);
2631 	SET_DEVICE_OP(dev_ops, destroy_ah);
2632 	SET_DEVICE_OP(dev_ops, destroy_counters);
2633 	SET_DEVICE_OP(dev_ops, destroy_cq);
2634 	SET_DEVICE_OP(dev_ops, destroy_flow);
2635 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2636 	SET_DEVICE_OP(dev_ops, destroy_qp);
2637 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2638 	SET_DEVICE_OP(dev_ops, destroy_srq);
2639 	SET_DEVICE_OP(dev_ops, destroy_wq);
2640 	SET_DEVICE_OP(dev_ops, device_group);
2641 	SET_DEVICE_OP(dev_ops, detach_mcast);
2642 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2643 	SET_DEVICE_OP(dev_ops, drain_rq);
2644 	SET_DEVICE_OP(dev_ops, drain_sq);
2645 	SET_DEVICE_OP(dev_ops, enable_driver);
2646 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2647 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2648 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2649 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2650 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2651 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2652 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2653 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2654 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2655 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2656 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2657 	SET_DEVICE_OP(dev_ops, get_link_layer);
2658 	SET_DEVICE_OP(dev_ops, get_netdev);
2659 	SET_DEVICE_OP(dev_ops, get_numa_node);
2660 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2661 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2662 	SET_DEVICE_OP(dev_ops, get_vf_config);
2663 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2664 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2665 	SET_DEVICE_OP(dev_ops, iw_accept);
2666 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2667 	SET_DEVICE_OP(dev_ops, iw_connect);
2668 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2669 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2670 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2671 	SET_DEVICE_OP(dev_ops, iw_reject);
2672 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2673 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2674 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2675 	SET_DEVICE_OP(dev_ops, mmap);
2676 	SET_DEVICE_OP(dev_ops, mmap_free);
2677 	SET_DEVICE_OP(dev_ops, modify_ah);
2678 	SET_DEVICE_OP(dev_ops, modify_cq);
2679 	SET_DEVICE_OP(dev_ops, modify_device);
2680 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2681 	SET_DEVICE_OP(dev_ops, modify_port);
2682 	SET_DEVICE_OP(dev_ops, modify_qp);
2683 	SET_DEVICE_OP(dev_ops, modify_srq);
2684 	SET_DEVICE_OP(dev_ops, modify_wq);
2685 	SET_DEVICE_OP(dev_ops, peek_cq);
2686 	SET_DEVICE_OP(dev_ops, poll_cq);
2687 	SET_DEVICE_OP(dev_ops, port_groups);
2688 	SET_DEVICE_OP(dev_ops, post_recv);
2689 	SET_DEVICE_OP(dev_ops, post_send);
2690 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2691 	SET_DEVICE_OP(dev_ops, process_mad);
2692 	SET_DEVICE_OP(dev_ops, query_ah);
2693 	SET_DEVICE_OP(dev_ops, query_device);
2694 	SET_DEVICE_OP(dev_ops, query_gid);
2695 	SET_DEVICE_OP(dev_ops, query_pkey);
2696 	SET_DEVICE_OP(dev_ops, query_port);
2697 	SET_DEVICE_OP(dev_ops, query_qp);
2698 	SET_DEVICE_OP(dev_ops, query_srq);
2699 	SET_DEVICE_OP(dev_ops, query_ucontext);
2700 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2701 	SET_DEVICE_OP(dev_ops, read_counters);
2702 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2703 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2704 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2705 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2706 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2707 	SET_DEVICE_OP(dev_ops, resize_cq);
2708 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2709 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2710 
2711 	SET_OBJ_SIZE(dev_ops, ib_ah);
2712 	SET_OBJ_SIZE(dev_ops, ib_counters);
2713 	SET_OBJ_SIZE(dev_ops, ib_cq);
2714 	SET_OBJ_SIZE(dev_ops, ib_mw);
2715 	SET_OBJ_SIZE(dev_ops, ib_pd);
2716 	SET_OBJ_SIZE(dev_ops, ib_qp);
2717 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2718 	SET_OBJ_SIZE(dev_ops, ib_srq);
2719 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2720 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2721 }
2722 EXPORT_SYMBOL(ib_set_device_ops);
2723 
2724 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2725 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2726 {
2727 	struct scatterlist *s;
2728 	int i;
2729 
2730 	for_each_sg(sg, s, nents, i) {
2731 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2732 		sg_dma_len(s) = s->length;
2733 	}
2734 	return nents;
2735 }
2736 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2737 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2738 
2739 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2740 	[RDMA_NL_LS_OP_RESOLVE] = {
2741 		.doit = ib_nl_handle_resolve_resp,
2742 		.flags = RDMA_NL_ADMIN_PERM,
2743 	},
2744 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2745 		.doit = ib_nl_handle_set_timeout,
2746 		.flags = RDMA_NL_ADMIN_PERM,
2747 	},
2748 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2749 		.doit = ib_nl_handle_ip_res_resp,
2750 		.flags = RDMA_NL_ADMIN_PERM,
2751 	},
2752 };
2753 
2754 static int __init ib_core_init(void)
2755 {
2756 	int ret = -ENOMEM;
2757 
2758 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2759 	if (!ib_wq)
2760 		return -ENOMEM;
2761 
2762 	ib_unreg_wq = alloc_workqueue("ib-unreg-wq", WQ_UNBOUND,
2763 				      WQ_UNBOUND_MAX_ACTIVE);
2764 	if (!ib_unreg_wq)
2765 		goto err;
2766 
2767 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2768 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2769 	if (!ib_comp_wq)
2770 		goto err_unbound;
2771 
2772 	ib_comp_unbound_wq =
2773 		alloc_workqueue("ib-comp-unb-wq",
2774 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2775 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2776 	if (!ib_comp_unbound_wq)
2777 		goto err_comp;
2778 
2779 	ret = class_register(&ib_class);
2780 	if (ret) {
2781 		pr_warn("Couldn't create InfiniBand device class\n");
2782 		goto err_comp_unbound;
2783 	}
2784 
2785 	rdma_nl_init();
2786 
2787 	ret = addr_init();
2788 	if (ret) {
2789 		pr_warn("Couldn't init IB address resolution\n");
2790 		goto err_ibnl;
2791 	}
2792 
2793 	ret = ib_mad_init();
2794 	if (ret) {
2795 		pr_warn("Couldn't init IB MAD\n");
2796 		goto err_addr;
2797 	}
2798 
2799 	ret = ib_sa_init();
2800 	if (ret) {
2801 		pr_warn("Couldn't init SA\n");
2802 		goto err_mad;
2803 	}
2804 
2805 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2806 	if (ret) {
2807 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2808 		goto err_sa;
2809 	}
2810 
2811 	ret = register_pernet_device(&rdma_dev_net_ops);
2812 	if (ret) {
2813 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2814 		goto err_compat;
2815 	}
2816 
2817 	nldev_init();
2818 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2819 	ret = roce_gid_mgmt_init();
2820 	if (ret) {
2821 		pr_warn("Couldn't init RoCE GID management\n");
2822 		goto err_parent;
2823 	}
2824 
2825 	return 0;
2826 
2827 err_parent:
2828 	rdma_nl_unregister(RDMA_NL_LS);
2829 	nldev_exit();
2830 	unregister_pernet_device(&rdma_dev_net_ops);
2831 err_compat:
2832 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2833 err_sa:
2834 	ib_sa_cleanup();
2835 err_mad:
2836 	ib_mad_cleanup();
2837 err_addr:
2838 	addr_cleanup();
2839 err_ibnl:
2840 	class_unregister(&ib_class);
2841 err_comp_unbound:
2842 	destroy_workqueue(ib_comp_unbound_wq);
2843 err_comp:
2844 	destroy_workqueue(ib_comp_wq);
2845 err_unbound:
2846 	destroy_workqueue(ib_unreg_wq);
2847 err:
2848 	destroy_workqueue(ib_wq);
2849 	return ret;
2850 }
2851 
2852 static void __exit ib_core_cleanup(void)
2853 {
2854 	roce_gid_mgmt_cleanup();
2855 	rdma_nl_unregister(RDMA_NL_LS);
2856 	nldev_exit();
2857 	unregister_pernet_device(&rdma_dev_net_ops);
2858 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2859 	ib_sa_cleanup();
2860 	ib_mad_cleanup();
2861 	addr_cleanup();
2862 	rdma_nl_exit();
2863 	class_unregister(&ib_class);
2864 	destroy_workqueue(ib_comp_unbound_wq);
2865 	destroy_workqueue(ib_comp_wq);
2866 	/* Make sure that any pending umem accounting work is done. */
2867 	destroy_workqueue(ib_wq);
2868 	destroy_workqueue(ib_unreg_wq);
2869 	WARN_ON(!xa_empty(&clients));
2870 	WARN_ON(!xa_empty(&devices));
2871 }
2872 
2873 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2874 
2875 /* ib core relies on netdev stack to first register net_ns_type_operations
2876  * ns kobject type before ib_core initialization.
2877  */
2878 fs_initcall(ib_core_init);
2879 module_exit(ib_core_cleanup);
2880