xref: /openbmc/linux/drivers/infiniband/core/device.c (revision ee8ec048)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(reg_user_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->hw_stats_data)
495 		ib_device_release_hw_stats(dev->hw_stats_data);
496 	if (dev->port_data) {
497 		ib_cache_release_one(dev);
498 		ib_security_release_port_pkey_list(dev);
499 		rdma_counter_release(dev);
500 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
501 				       pdata[0]),
502 			  rcu_head);
503 	}
504 
505 	mutex_destroy(&dev->unregistration_lock);
506 	mutex_destroy(&dev->compat_devs_mutex);
507 
508 	xa_destroy(&dev->compat_devs);
509 	xa_destroy(&dev->client_data);
510 	kfree_rcu(dev, rcu_head);
511 }
512 
513 static int ib_device_uevent(struct device *device,
514 			    struct kobj_uevent_env *env)
515 {
516 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
517 		return -ENOMEM;
518 
519 	/*
520 	 * It would be nice to pass the node GUID with the event...
521 	 */
522 
523 	return 0;
524 }
525 
526 static const void *net_namespace(struct device *d)
527 {
528 	struct ib_core_device *coredev =
529 			container_of(d, struct ib_core_device, dev);
530 
531 	return read_pnet(&coredev->rdma_net);
532 }
533 
534 static struct class ib_class = {
535 	.name    = "infiniband",
536 	.dev_release = ib_device_release,
537 	.dev_uevent = ib_device_uevent,
538 	.ns_type = &net_ns_type_operations,
539 	.namespace = net_namespace,
540 };
541 
542 static void rdma_init_coredev(struct ib_core_device *coredev,
543 			      struct ib_device *dev, struct net *net)
544 {
545 	/* This BUILD_BUG_ON is intended to catch layout change
546 	 * of union of ib_core_device and device.
547 	 * dev must be the first element as ib_core and providers
548 	 * driver uses it. Adding anything in ib_core_device before
549 	 * device will break this assumption.
550 	 */
551 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
552 		     offsetof(struct ib_device, dev));
553 
554 	coredev->dev.class = &ib_class;
555 	coredev->dev.groups = dev->groups;
556 	device_initialize(&coredev->dev);
557 	coredev->owner = dev;
558 	INIT_LIST_HEAD(&coredev->port_list);
559 	write_pnet(&coredev->rdma_net, net);
560 }
561 
562 /**
563  * _ib_alloc_device - allocate an IB device struct
564  * @size:size of structure to allocate
565  *
566  * Low-level drivers should use ib_alloc_device() to allocate &struct
567  * ib_device.  @size is the size of the structure to be allocated,
568  * including any private data used by the low-level driver.
569  * ib_dealloc_device() must be used to free structures allocated with
570  * ib_alloc_device().
571  */
572 struct ib_device *_ib_alloc_device(size_t size)
573 {
574 	struct ib_device *device;
575 	unsigned int i;
576 
577 	if (WARN_ON(size < sizeof(struct ib_device)))
578 		return NULL;
579 
580 	device = kzalloc(size, GFP_KERNEL);
581 	if (!device)
582 		return NULL;
583 
584 	if (rdma_restrack_init(device)) {
585 		kfree(device);
586 		return NULL;
587 	}
588 
589 	rdma_init_coredev(&device->coredev, device, &init_net);
590 
591 	INIT_LIST_HEAD(&device->event_handler_list);
592 	spin_lock_init(&device->qp_open_list_lock);
593 	init_rwsem(&device->event_handler_rwsem);
594 	mutex_init(&device->unregistration_lock);
595 	/*
596 	 * client_data needs to be alloc because we don't want our mark to be
597 	 * destroyed if the user stores NULL in the client data.
598 	 */
599 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
600 	init_rwsem(&device->client_data_rwsem);
601 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
602 	mutex_init(&device->compat_devs_mutex);
603 	init_completion(&device->unreg_completion);
604 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
605 
606 	spin_lock_init(&device->cq_pools_lock);
607 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
608 		INIT_LIST_HEAD(&device->cq_pools[i]);
609 
610 	rwlock_init(&device->cache_lock);
611 
612 	device->uverbs_cmd_mask =
613 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
614 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
615 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
616 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
617 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
620 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
621 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
622 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
623 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
624 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
628 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
629 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
630 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
631 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
632 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
633 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
634 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
635 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
636 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
637 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
638 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
639 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
640 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
641 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
642 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
643 	return device;
644 }
645 EXPORT_SYMBOL(_ib_alloc_device);
646 
647 /**
648  * ib_dealloc_device - free an IB device struct
649  * @device:structure to free
650  *
651  * Free a structure allocated with ib_alloc_device().
652  */
653 void ib_dealloc_device(struct ib_device *device)
654 {
655 	if (device->ops.dealloc_driver)
656 		device->ops.dealloc_driver(device);
657 
658 	/*
659 	 * ib_unregister_driver() requires all devices to remain in the xarray
660 	 * while their ops are callable. The last op we call is dealloc_driver
661 	 * above.  This is needed to create a fence on op callbacks prior to
662 	 * allowing the driver module to unload.
663 	 */
664 	down_write(&devices_rwsem);
665 	if (xa_load(&devices, device->index) == device)
666 		xa_erase(&devices, device->index);
667 	up_write(&devices_rwsem);
668 
669 	/* Expedite releasing netdev references */
670 	free_netdevs(device);
671 
672 	WARN_ON(!xa_empty(&device->compat_devs));
673 	WARN_ON(!xa_empty(&device->client_data));
674 	WARN_ON(refcount_read(&device->refcount));
675 	rdma_restrack_clean(device);
676 	/* Balances with device_initialize */
677 	put_device(&device->dev);
678 }
679 EXPORT_SYMBOL(ib_dealloc_device);
680 
681 /*
682  * add_client_context() and remove_client_context() must be safe against
683  * parallel calls on the same device - registration/unregistration of both the
684  * device and client can be occurring in parallel.
685  *
686  * The routines need to be a fence, any caller must not return until the add
687  * or remove is fully completed.
688  */
689 static int add_client_context(struct ib_device *device,
690 			      struct ib_client *client)
691 {
692 	int ret = 0;
693 
694 	if (!device->kverbs_provider && !client->no_kverbs_req)
695 		return 0;
696 
697 	down_write(&device->client_data_rwsem);
698 	/*
699 	 * So long as the client is registered hold both the client and device
700 	 * unregistration locks.
701 	 */
702 	if (!refcount_inc_not_zero(&client->uses))
703 		goto out_unlock;
704 	refcount_inc(&device->refcount);
705 
706 	/*
707 	 * Another caller to add_client_context got here first and has already
708 	 * completely initialized context.
709 	 */
710 	if (xa_get_mark(&device->client_data, client->client_id,
711 		    CLIENT_DATA_REGISTERED))
712 		goto out;
713 
714 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
715 			      GFP_KERNEL));
716 	if (ret)
717 		goto out;
718 	downgrade_write(&device->client_data_rwsem);
719 	if (client->add) {
720 		if (client->add(device)) {
721 			/*
722 			 * If a client fails to add then the error code is
723 			 * ignored, but we won't call any more ops on this
724 			 * client.
725 			 */
726 			xa_erase(&device->client_data, client->client_id);
727 			up_read(&device->client_data_rwsem);
728 			ib_device_put(device);
729 			ib_client_put(client);
730 			return 0;
731 		}
732 	}
733 
734 	/* Readers shall not see a client until add has been completed */
735 	xa_set_mark(&device->client_data, client->client_id,
736 		    CLIENT_DATA_REGISTERED);
737 	up_read(&device->client_data_rwsem);
738 	return 0;
739 
740 out:
741 	ib_device_put(device);
742 	ib_client_put(client);
743 out_unlock:
744 	up_write(&device->client_data_rwsem);
745 	return ret;
746 }
747 
748 static void remove_client_context(struct ib_device *device,
749 				  unsigned int client_id)
750 {
751 	struct ib_client *client;
752 	void *client_data;
753 
754 	down_write(&device->client_data_rwsem);
755 	if (!xa_get_mark(&device->client_data, client_id,
756 			 CLIENT_DATA_REGISTERED)) {
757 		up_write(&device->client_data_rwsem);
758 		return;
759 	}
760 	client_data = xa_load(&device->client_data, client_id);
761 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
762 	client = xa_load(&clients, client_id);
763 	up_write(&device->client_data_rwsem);
764 
765 	/*
766 	 * Notice we cannot be holding any exclusive locks when calling the
767 	 * remove callback as the remove callback can recurse back into any
768 	 * public functions in this module and thus try for any locks those
769 	 * functions take.
770 	 *
771 	 * For this reason clients and drivers should not call the
772 	 * unregistration functions will holdling any locks.
773 	 */
774 	if (client->remove)
775 		client->remove(device, client_data);
776 
777 	xa_erase(&device->client_data, client_id);
778 	ib_device_put(device);
779 	ib_client_put(client);
780 }
781 
782 static int alloc_port_data(struct ib_device *device)
783 {
784 	struct ib_port_data_rcu *pdata_rcu;
785 	u32 port;
786 
787 	if (device->port_data)
788 		return 0;
789 
790 	/* This can only be called once the physical port range is defined */
791 	if (WARN_ON(!device->phys_port_cnt))
792 		return -EINVAL;
793 
794 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
795 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
796 		return -EINVAL;
797 
798 	/*
799 	 * device->port_data is indexed directly by the port number to make
800 	 * access to this data as efficient as possible.
801 	 *
802 	 * Therefore port_data is declared as a 1 based array with potential
803 	 * empty slots at the beginning.
804 	 */
805 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
806 					rdma_end_port(device) + 1),
807 			    GFP_KERNEL);
808 	if (!pdata_rcu)
809 		return -ENOMEM;
810 	/*
811 	 * The rcu_head is put in front of the port data array and the stored
812 	 * pointer is adjusted since we never need to see that member until
813 	 * kfree_rcu.
814 	 */
815 	device->port_data = pdata_rcu->pdata;
816 
817 	rdma_for_each_port (device, port) {
818 		struct ib_port_data *pdata = &device->port_data[port];
819 
820 		pdata->ib_dev = device;
821 		spin_lock_init(&pdata->pkey_list_lock);
822 		INIT_LIST_HEAD(&pdata->pkey_list);
823 		spin_lock_init(&pdata->netdev_lock);
824 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
825 	}
826 	return 0;
827 }
828 
829 static int verify_immutable(const struct ib_device *dev, u32 port)
830 {
831 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
832 			    rdma_max_mad_size(dev, port) != 0);
833 }
834 
835 static int setup_port_data(struct ib_device *device)
836 {
837 	u32 port;
838 	int ret;
839 
840 	ret = alloc_port_data(device);
841 	if (ret)
842 		return ret;
843 
844 	rdma_for_each_port (device, port) {
845 		struct ib_port_data *pdata = &device->port_data[port];
846 
847 		ret = device->ops.get_port_immutable(device, port,
848 						     &pdata->immutable);
849 		if (ret)
850 			return ret;
851 
852 		if (verify_immutable(device, port))
853 			return -EINVAL;
854 	}
855 	return 0;
856 }
857 
858 /**
859  * ib_port_immutable_read() - Read rdma port's immutable data
860  * @dev: IB device
861  * @port: port number whose immutable data to read. It starts with index 1 and
862  *        valid upto including rdma_end_port().
863  */
864 const struct ib_port_immutable*
865 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
866 {
867 	WARN_ON(!rdma_is_port_valid(dev, port));
868 	return &dev->port_data[port].immutable;
869 }
870 EXPORT_SYMBOL(ib_port_immutable_read);
871 
872 void ib_get_device_fw_str(struct ib_device *dev, char *str)
873 {
874 	if (dev->ops.get_dev_fw_str)
875 		dev->ops.get_dev_fw_str(dev, str);
876 	else
877 		str[0] = '\0';
878 }
879 EXPORT_SYMBOL(ib_get_device_fw_str);
880 
881 static void ib_policy_change_task(struct work_struct *work)
882 {
883 	struct ib_device *dev;
884 	unsigned long index;
885 
886 	down_read(&devices_rwsem);
887 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
888 		unsigned int i;
889 
890 		rdma_for_each_port (dev, i) {
891 			u64 sp;
892 			ib_get_cached_subnet_prefix(dev, i, &sp);
893 			ib_security_cache_change(dev, i, sp);
894 		}
895 	}
896 	up_read(&devices_rwsem);
897 }
898 
899 static int ib_security_change(struct notifier_block *nb, unsigned long event,
900 			      void *lsm_data)
901 {
902 	if (event != LSM_POLICY_CHANGE)
903 		return NOTIFY_DONE;
904 
905 	schedule_work(&ib_policy_change_work);
906 	ib_mad_agent_security_change();
907 
908 	return NOTIFY_OK;
909 }
910 
911 static void compatdev_release(struct device *dev)
912 {
913 	struct ib_core_device *cdev =
914 		container_of(dev, struct ib_core_device, dev);
915 
916 	kfree(cdev);
917 }
918 
919 static int add_one_compat_dev(struct ib_device *device,
920 			      struct rdma_dev_net *rnet)
921 {
922 	struct ib_core_device *cdev;
923 	int ret;
924 
925 	lockdep_assert_held(&rdma_nets_rwsem);
926 	if (!ib_devices_shared_netns)
927 		return 0;
928 
929 	/*
930 	 * Create and add compat device in all namespaces other than where it
931 	 * is currently bound to.
932 	 */
933 	if (net_eq(read_pnet(&rnet->net),
934 		   read_pnet(&device->coredev.rdma_net)))
935 		return 0;
936 
937 	/*
938 	 * The first of init_net() or ib_register_device() to take the
939 	 * compat_devs_mutex wins and gets to add the device. Others will wait
940 	 * for completion here.
941 	 */
942 	mutex_lock(&device->compat_devs_mutex);
943 	cdev = xa_load(&device->compat_devs, rnet->id);
944 	if (cdev) {
945 		ret = 0;
946 		goto done;
947 	}
948 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
949 	if (ret)
950 		goto done;
951 
952 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
953 	if (!cdev) {
954 		ret = -ENOMEM;
955 		goto cdev_err;
956 	}
957 
958 	cdev->dev.parent = device->dev.parent;
959 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
960 	cdev->dev.release = compatdev_release;
961 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
962 	if (ret)
963 		goto add_err;
964 
965 	ret = device_add(&cdev->dev);
966 	if (ret)
967 		goto add_err;
968 	ret = ib_setup_port_attrs(cdev);
969 	if (ret)
970 		goto port_err;
971 
972 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
973 			      cdev, GFP_KERNEL));
974 	if (ret)
975 		goto insert_err;
976 
977 	mutex_unlock(&device->compat_devs_mutex);
978 	return 0;
979 
980 insert_err:
981 	ib_free_port_attrs(cdev);
982 port_err:
983 	device_del(&cdev->dev);
984 add_err:
985 	put_device(&cdev->dev);
986 cdev_err:
987 	xa_release(&device->compat_devs, rnet->id);
988 done:
989 	mutex_unlock(&device->compat_devs_mutex);
990 	return ret;
991 }
992 
993 static void remove_one_compat_dev(struct ib_device *device, u32 id)
994 {
995 	struct ib_core_device *cdev;
996 
997 	mutex_lock(&device->compat_devs_mutex);
998 	cdev = xa_erase(&device->compat_devs, id);
999 	mutex_unlock(&device->compat_devs_mutex);
1000 	if (cdev) {
1001 		ib_free_port_attrs(cdev);
1002 		device_del(&cdev->dev);
1003 		put_device(&cdev->dev);
1004 	}
1005 }
1006 
1007 static void remove_compat_devs(struct ib_device *device)
1008 {
1009 	struct ib_core_device *cdev;
1010 	unsigned long index;
1011 
1012 	xa_for_each (&device->compat_devs, index, cdev)
1013 		remove_one_compat_dev(device, index);
1014 }
1015 
1016 static int add_compat_devs(struct ib_device *device)
1017 {
1018 	struct rdma_dev_net *rnet;
1019 	unsigned long index;
1020 	int ret = 0;
1021 
1022 	lockdep_assert_held(&devices_rwsem);
1023 
1024 	down_read(&rdma_nets_rwsem);
1025 	xa_for_each (&rdma_nets, index, rnet) {
1026 		ret = add_one_compat_dev(device, rnet);
1027 		if (ret)
1028 			break;
1029 	}
1030 	up_read(&rdma_nets_rwsem);
1031 	return ret;
1032 }
1033 
1034 static void remove_all_compat_devs(void)
1035 {
1036 	struct ib_compat_device *cdev;
1037 	struct ib_device *dev;
1038 	unsigned long index;
1039 
1040 	down_read(&devices_rwsem);
1041 	xa_for_each (&devices, index, dev) {
1042 		unsigned long c_index = 0;
1043 
1044 		/* Hold nets_rwsem so that any other thread modifying this
1045 		 * system param can sync with this thread.
1046 		 */
1047 		down_read(&rdma_nets_rwsem);
1048 		xa_for_each (&dev->compat_devs, c_index, cdev)
1049 			remove_one_compat_dev(dev, c_index);
1050 		up_read(&rdma_nets_rwsem);
1051 	}
1052 	up_read(&devices_rwsem);
1053 }
1054 
1055 static int add_all_compat_devs(void)
1056 {
1057 	struct rdma_dev_net *rnet;
1058 	struct ib_device *dev;
1059 	unsigned long index;
1060 	int ret = 0;
1061 
1062 	down_read(&devices_rwsem);
1063 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1064 		unsigned long net_index = 0;
1065 
1066 		/* Hold nets_rwsem so that any other thread modifying this
1067 		 * system param can sync with this thread.
1068 		 */
1069 		down_read(&rdma_nets_rwsem);
1070 		xa_for_each (&rdma_nets, net_index, rnet) {
1071 			ret = add_one_compat_dev(dev, rnet);
1072 			if (ret)
1073 				break;
1074 		}
1075 		up_read(&rdma_nets_rwsem);
1076 	}
1077 	up_read(&devices_rwsem);
1078 	if (ret)
1079 		remove_all_compat_devs();
1080 	return ret;
1081 }
1082 
1083 int rdma_compatdev_set(u8 enable)
1084 {
1085 	struct rdma_dev_net *rnet;
1086 	unsigned long index;
1087 	int ret = 0;
1088 
1089 	down_write(&rdma_nets_rwsem);
1090 	if (ib_devices_shared_netns == enable) {
1091 		up_write(&rdma_nets_rwsem);
1092 		return 0;
1093 	}
1094 
1095 	/* enable/disable of compat devices is not supported
1096 	 * when more than default init_net exists.
1097 	 */
1098 	xa_for_each (&rdma_nets, index, rnet) {
1099 		ret++;
1100 		break;
1101 	}
1102 	if (!ret)
1103 		ib_devices_shared_netns = enable;
1104 	up_write(&rdma_nets_rwsem);
1105 	if (ret)
1106 		return -EBUSY;
1107 
1108 	if (enable)
1109 		ret = add_all_compat_devs();
1110 	else
1111 		remove_all_compat_devs();
1112 	return ret;
1113 }
1114 
1115 static void rdma_dev_exit_net(struct net *net)
1116 {
1117 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118 	struct ib_device *dev;
1119 	unsigned long index;
1120 	int ret;
1121 
1122 	down_write(&rdma_nets_rwsem);
1123 	/*
1124 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1125 	 */
1126 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1127 	WARN_ON(ret);
1128 	up_write(&rdma_nets_rwsem);
1129 
1130 	down_read(&devices_rwsem);
1131 	xa_for_each (&devices, index, dev) {
1132 		get_device(&dev->dev);
1133 		/*
1134 		 * Release the devices_rwsem so that pontentially blocking
1135 		 * device_del, doesn't hold the devices_rwsem for too long.
1136 		 */
1137 		up_read(&devices_rwsem);
1138 
1139 		remove_one_compat_dev(dev, rnet->id);
1140 
1141 		/*
1142 		 * If the real device is in the NS then move it back to init.
1143 		 */
1144 		rdma_dev_change_netns(dev, net, &init_net);
1145 
1146 		put_device(&dev->dev);
1147 		down_read(&devices_rwsem);
1148 	}
1149 	up_read(&devices_rwsem);
1150 
1151 	rdma_nl_net_exit(rnet);
1152 	xa_erase(&rdma_nets, rnet->id);
1153 }
1154 
1155 static __net_init int rdma_dev_init_net(struct net *net)
1156 {
1157 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1158 	unsigned long index;
1159 	struct ib_device *dev;
1160 	int ret;
1161 
1162 	write_pnet(&rnet->net, net);
1163 
1164 	ret = rdma_nl_net_init(rnet);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* No need to create any compat devices in default init_net. */
1169 	if (net_eq(net, &init_net))
1170 		return 0;
1171 
1172 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1173 	if (ret) {
1174 		rdma_nl_net_exit(rnet);
1175 		return ret;
1176 	}
1177 
1178 	down_read(&devices_rwsem);
1179 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1180 		/* Hold nets_rwsem so that netlink command cannot change
1181 		 * system configuration for device sharing mode.
1182 		 */
1183 		down_read(&rdma_nets_rwsem);
1184 		ret = add_one_compat_dev(dev, rnet);
1185 		up_read(&rdma_nets_rwsem);
1186 		if (ret)
1187 			break;
1188 	}
1189 	up_read(&devices_rwsem);
1190 
1191 	if (ret)
1192 		rdma_dev_exit_net(net);
1193 
1194 	return ret;
1195 }
1196 
1197 /*
1198  * Assign the unique string device name and the unique device index. This is
1199  * undone by ib_dealloc_device.
1200  */
1201 static int assign_name(struct ib_device *device, const char *name)
1202 {
1203 	static u32 last_id;
1204 	int ret;
1205 
1206 	down_write(&devices_rwsem);
1207 	/* Assign a unique name to the device */
1208 	if (strchr(name, '%'))
1209 		ret = alloc_name(device, name);
1210 	else
1211 		ret = dev_set_name(&device->dev, name);
1212 	if (ret)
1213 		goto out;
1214 
1215 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1216 		ret = -ENFILE;
1217 		goto out;
1218 	}
1219 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1220 
1221 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1222 			&last_id, GFP_KERNEL);
1223 	if (ret > 0)
1224 		ret = 0;
1225 
1226 out:
1227 	up_write(&devices_rwsem);
1228 	return ret;
1229 }
1230 
1231 /*
1232  * setup_device() allocates memory and sets up data that requires calling the
1233  * device ops, this is the only reason these actions are not done during
1234  * ib_alloc_device. It is undone by ib_dealloc_device().
1235  */
1236 static int setup_device(struct ib_device *device)
1237 {
1238 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239 	int ret;
1240 
1241 	ib_device_check_mandatory(device);
1242 
1243 	ret = setup_port_data(device);
1244 	if (ret) {
1245 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1246 		return ret;
1247 	}
1248 
1249 	memset(&device->attrs, 0, sizeof(device->attrs));
1250 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1251 	if (ret) {
1252 		dev_warn(&device->dev,
1253 			 "Couldn't query the device attributes\n");
1254 		return ret;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static void disable_device(struct ib_device *device)
1261 {
1262 	u32 cid;
1263 
1264 	WARN_ON(!refcount_read(&device->refcount));
1265 
1266 	down_write(&devices_rwsem);
1267 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1268 	up_write(&devices_rwsem);
1269 
1270 	/*
1271 	 * Remove clients in LIFO order, see assign_client_id. This could be
1272 	 * more efficient if xarray learns to reverse iterate. Since no new
1273 	 * clients can be added to this ib_device past this point we only need
1274 	 * the maximum possible client_id value here.
1275 	 */
1276 	down_read(&clients_rwsem);
1277 	cid = highest_client_id;
1278 	up_read(&clients_rwsem);
1279 	while (cid) {
1280 		cid--;
1281 		remove_client_context(device, cid);
1282 	}
1283 
1284 	ib_cq_pool_cleanup(device);
1285 
1286 	/* Pairs with refcount_set in enable_device */
1287 	ib_device_put(device);
1288 	wait_for_completion(&device->unreg_completion);
1289 
1290 	/*
1291 	 * compat devices must be removed after device refcount drops to zero.
1292 	 * Otherwise init_net() may add more compatdevs after removing compat
1293 	 * devices and before device is disabled.
1294 	 */
1295 	remove_compat_devs(device);
1296 }
1297 
1298 /*
1299  * An enabled device is visible to all clients and to all the public facing
1300  * APIs that return a device pointer. This always returns with a new get, even
1301  * if it fails.
1302  */
1303 static int enable_device_and_get(struct ib_device *device)
1304 {
1305 	struct ib_client *client;
1306 	unsigned long index;
1307 	int ret = 0;
1308 
1309 	/*
1310 	 * One ref belongs to the xa and the other belongs to this
1311 	 * thread. This is needed to guard against parallel unregistration.
1312 	 */
1313 	refcount_set(&device->refcount, 2);
1314 	down_write(&devices_rwsem);
1315 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1316 
1317 	/*
1318 	 * By using downgrade_write() we ensure that no other thread can clear
1319 	 * DEVICE_REGISTERED while we are completing the client setup.
1320 	 */
1321 	downgrade_write(&devices_rwsem);
1322 
1323 	if (device->ops.enable_driver) {
1324 		ret = device->ops.enable_driver(device);
1325 		if (ret)
1326 			goto out;
1327 	}
1328 
1329 	down_read(&clients_rwsem);
1330 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1331 		ret = add_client_context(device, client);
1332 		if (ret)
1333 			break;
1334 	}
1335 	up_read(&clients_rwsem);
1336 	if (!ret)
1337 		ret = add_compat_devs(device);
1338 out:
1339 	up_read(&devices_rwsem);
1340 	return ret;
1341 }
1342 
1343 static void prevent_dealloc_device(struct ib_device *ib_dev)
1344 {
1345 }
1346 
1347 /**
1348  * ib_register_device - Register an IB device with IB core
1349  * @device: Device to register
1350  * @name: unique string device name. This may include a '%' which will
1351  * 	  cause a unique index to be added to the passed device name.
1352  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1353  *	        device will be used. In this case the caller should fully
1354  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1355  *
1356  * Low-level drivers use ib_register_device() to register their
1357  * devices with the IB core.  All registered clients will receive a
1358  * callback for each device that is added. @device must be allocated
1359  * with ib_alloc_device().
1360  *
1361  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1362  * asynchronously then the device pointer may become freed as soon as this
1363  * function returns.
1364  */
1365 int ib_register_device(struct ib_device *device, const char *name,
1366 		       struct device *dma_device)
1367 {
1368 	int ret;
1369 
1370 	ret = assign_name(device, name);
1371 	if (ret)
1372 		return ret;
1373 
1374 	/*
1375 	 * If the caller does not provide a DMA capable device then the IB core
1376 	 * will set up ib_sge and scatterlist structures that stash the kernel
1377 	 * virtual address into the address field.
1378 	 */
1379 	WARN_ON(dma_device && !dma_device->dma_parms);
1380 	device->dma_device = dma_device;
1381 
1382 	ret = setup_device(device);
1383 	if (ret)
1384 		return ret;
1385 
1386 	ret = ib_cache_setup_one(device);
1387 	if (ret) {
1388 		dev_warn(&device->dev,
1389 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1390 		return ret;
1391 	}
1392 
1393 	device->groups[0] = &ib_dev_attr_group;
1394 	device->groups[1] = device->ops.device_group;
1395 	ret = ib_setup_device_attrs(device);
1396 	if (ret)
1397 		goto cache_cleanup;
1398 
1399 	ib_device_register_rdmacg(device);
1400 
1401 	rdma_counter_init(device);
1402 
1403 	/*
1404 	 * Ensure that ADD uevent is not fired because it
1405 	 * is too early amd device is not initialized yet.
1406 	 */
1407 	dev_set_uevent_suppress(&device->dev, true);
1408 	ret = device_add(&device->dev);
1409 	if (ret)
1410 		goto cg_cleanup;
1411 
1412 	ret = ib_setup_port_attrs(&device->coredev);
1413 	if (ret) {
1414 		dev_warn(&device->dev,
1415 			 "Couldn't register device with driver model\n");
1416 		goto dev_cleanup;
1417 	}
1418 
1419 	ret = enable_device_and_get(device);
1420 	if (ret) {
1421 		void (*dealloc_fn)(struct ib_device *);
1422 
1423 		/*
1424 		 * If we hit this error flow then we don't want to
1425 		 * automatically dealloc the device since the caller is
1426 		 * expected to call ib_dealloc_device() after
1427 		 * ib_register_device() fails. This is tricky due to the
1428 		 * possibility for a parallel unregistration along with this
1429 		 * error flow. Since we have a refcount here we know any
1430 		 * parallel flow is stopped in disable_device and will see the
1431 		 * special dealloc_driver pointer, causing the responsibility to
1432 		 * ib_dealloc_device() to revert back to this thread.
1433 		 */
1434 		dealloc_fn = device->ops.dealloc_driver;
1435 		device->ops.dealloc_driver = prevent_dealloc_device;
1436 		ib_device_put(device);
1437 		__ib_unregister_device(device);
1438 		device->ops.dealloc_driver = dealloc_fn;
1439 		dev_set_uevent_suppress(&device->dev, false);
1440 		return ret;
1441 	}
1442 	dev_set_uevent_suppress(&device->dev, false);
1443 	/* Mark for userspace that device is ready */
1444 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1445 	ib_device_put(device);
1446 
1447 	return 0;
1448 
1449 dev_cleanup:
1450 	device_del(&device->dev);
1451 cg_cleanup:
1452 	dev_set_uevent_suppress(&device->dev, false);
1453 	ib_device_unregister_rdmacg(device);
1454 cache_cleanup:
1455 	ib_cache_cleanup_one(device);
1456 	return ret;
1457 }
1458 EXPORT_SYMBOL(ib_register_device);
1459 
1460 /* Callers must hold a get on the device. */
1461 static void __ib_unregister_device(struct ib_device *ib_dev)
1462 {
1463 	/*
1464 	 * We have a registration lock so that all the calls to unregister are
1465 	 * fully fenced, once any unregister returns the device is truely
1466 	 * unregistered even if multiple callers are unregistering it at the
1467 	 * same time. This also interacts with the registration flow and
1468 	 * provides sane semantics if register and unregister are racing.
1469 	 */
1470 	mutex_lock(&ib_dev->unregistration_lock);
1471 	if (!refcount_read(&ib_dev->refcount))
1472 		goto out;
1473 
1474 	disable_device(ib_dev);
1475 
1476 	/* Expedite removing unregistered pointers from the hash table */
1477 	free_netdevs(ib_dev);
1478 
1479 	ib_free_port_attrs(&ib_dev->coredev);
1480 	device_del(&ib_dev->dev);
1481 	ib_device_unregister_rdmacg(ib_dev);
1482 	ib_cache_cleanup_one(ib_dev);
1483 
1484 	/*
1485 	 * Drivers using the new flow may not call ib_dealloc_device except
1486 	 * in error unwind prior to registration success.
1487 	 */
1488 	if (ib_dev->ops.dealloc_driver &&
1489 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1490 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1491 		ib_dealloc_device(ib_dev);
1492 	}
1493 out:
1494 	mutex_unlock(&ib_dev->unregistration_lock);
1495 }
1496 
1497 /**
1498  * ib_unregister_device - Unregister an IB device
1499  * @ib_dev: The device to unregister
1500  *
1501  * Unregister an IB device.  All clients will receive a remove callback.
1502  *
1503  * Callers should call this routine only once, and protect against races with
1504  * registration. Typically it should only be called as part of a remove
1505  * callback in an implementation of driver core's struct device_driver and
1506  * related.
1507  *
1508  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1509  * this function.
1510  */
1511 void ib_unregister_device(struct ib_device *ib_dev)
1512 {
1513 	get_device(&ib_dev->dev);
1514 	__ib_unregister_device(ib_dev);
1515 	put_device(&ib_dev->dev);
1516 }
1517 EXPORT_SYMBOL(ib_unregister_device);
1518 
1519 /**
1520  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1521  * @ib_dev: The device to unregister
1522  *
1523  * This is the same as ib_unregister_device(), except it includes an internal
1524  * ib_device_put() that should match a 'get' obtained by the caller.
1525  *
1526  * It is safe to call this routine concurrently from multiple threads while
1527  * holding the 'get'. When the function returns the device is fully
1528  * unregistered.
1529  *
1530  * Drivers using this flow MUST use the driver_unregister callback to clean up
1531  * their resources associated with the device and dealloc it.
1532  */
1533 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1534 {
1535 	WARN_ON(!ib_dev->ops.dealloc_driver);
1536 	get_device(&ib_dev->dev);
1537 	ib_device_put(ib_dev);
1538 	__ib_unregister_device(ib_dev);
1539 	put_device(&ib_dev->dev);
1540 }
1541 EXPORT_SYMBOL(ib_unregister_device_and_put);
1542 
1543 /**
1544  * ib_unregister_driver - Unregister all IB devices for a driver
1545  * @driver_id: The driver to unregister
1546  *
1547  * This implements a fence for device unregistration. It only returns once all
1548  * devices associated with the driver_id have fully completed their
1549  * unregistration and returned from ib_unregister_device*().
1550  *
1551  * If device's are not yet unregistered it goes ahead and starts unregistering
1552  * them.
1553  *
1554  * This does not block creation of new devices with the given driver_id, that
1555  * is the responsibility of the caller.
1556  */
1557 void ib_unregister_driver(enum rdma_driver_id driver_id)
1558 {
1559 	struct ib_device *ib_dev;
1560 	unsigned long index;
1561 
1562 	down_read(&devices_rwsem);
1563 	xa_for_each (&devices, index, ib_dev) {
1564 		if (ib_dev->ops.driver_id != driver_id)
1565 			continue;
1566 
1567 		get_device(&ib_dev->dev);
1568 		up_read(&devices_rwsem);
1569 
1570 		WARN_ON(!ib_dev->ops.dealloc_driver);
1571 		__ib_unregister_device(ib_dev);
1572 
1573 		put_device(&ib_dev->dev);
1574 		down_read(&devices_rwsem);
1575 	}
1576 	up_read(&devices_rwsem);
1577 }
1578 EXPORT_SYMBOL(ib_unregister_driver);
1579 
1580 static void ib_unregister_work(struct work_struct *work)
1581 {
1582 	struct ib_device *ib_dev =
1583 		container_of(work, struct ib_device, unregistration_work);
1584 
1585 	__ib_unregister_device(ib_dev);
1586 	put_device(&ib_dev->dev);
1587 }
1588 
1589 /**
1590  * ib_unregister_device_queued - Unregister a device using a work queue
1591  * @ib_dev: The device to unregister
1592  *
1593  * This schedules an asynchronous unregistration using a WQ for the device. A
1594  * driver should use this to avoid holding locks while doing unregistration,
1595  * such as holding the RTNL lock.
1596  *
1597  * Drivers using this API must use ib_unregister_driver before module unload
1598  * to ensure that all scheduled unregistrations have completed.
1599  */
1600 void ib_unregister_device_queued(struct ib_device *ib_dev)
1601 {
1602 	WARN_ON(!refcount_read(&ib_dev->refcount));
1603 	WARN_ON(!ib_dev->ops.dealloc_driver);
1604 	get_device(&ib_dev->dev);
1605 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1606 		put_device(&ib_dev->dev);
1607 }
1608 EXPORT_SYMBOL(ib_unregister_device_queued);
1609 
1610 /*
1611  * The caller must pass in a device that has the kref held and the refcount
1612  * released. If the device is in cur_net and still registered then it is moved
1613  * into net.
1614  */
1615 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1616 				 struct net *net)
1617 {
1618 	int ret2 = -EINVAL;
1619 	int ret;
1620 
1621 	mutex_lock(&device->unregistration_lock);
1622 
1623 	/*
1624 	 * If a device not under ib_device_get() or if the unregistration_lock
1625 	 * is not held, the namespace can be changed, or it can be unregistered.
1626 	 * Check again under the lock.
1627 	 */
1628 	if (refcount_read(&device->refcount) == 0 ||
1629 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1630 		ret = -ENODEV;
1631 		goto out;
1632 	}
1633 
1634 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1635 	disable_device(device);
1636 
1637 	/*
1638 	 * At this point no one can be using the device, so it is safe to
1639 	 * change the namespace.
1640 	 */
1641 	write_pnet(&device->coredev.rdma_net, net);
1642 
1643 	down_read(&devices_rwsem);
1644 	/*
1645 	 * Currently rdma devices are system wide unique. So the device name
1646 	 * is guaranteed free in the new namespace. Publish the new namespace
1647 	 * at the sysfs level.
1648 	 */
1649 	ret = device_rename(&device->dev, dev_name(&device->dev));
1650 	up_read(&devices_rwsem);
1651 	if (ret) {
1652 		dev_warn(&device->dev,
1653 			 "%s: Couldn't rename device after namespace change\n",
1654 			 __func__);
1655 		/* Try and put things back and re-enable the device */
1656 		write_pnet(&device->coredev.rdma_net, cur_net);
1657 	}
1658 
1659 	ret2 = enable_device_and_get(device);
1660 	if (ret2) {
1661 		/*
1662 		 * This shouldn't really happen, but if it does, let the user
1663 		 * retry at later point. So don't disable the device.
1664 		 */
1665 		dev_warn(&device->dev,
1666 			 "%s: Couldn't re-enable device after namespace change\n",
1667 			 __func__);
1668 	}
1669 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1670 
1671 	ib_device_put(device);
1672 out:
1673 	mutex_unlock(&device->unregistration_lock);
1674 	if (ret)
1675 		return ret;
1676 	return ret2;
1677 }
1678 
1679 int ib_device_set_netns_put(struct sk_buff *skb,
1680 			    struct ib_device *dev, u32 ns_fd)
1681 {
1682 	struct net *net;
1683 	int ret;
1684 
1685 	net = get_net_ns_by_fd(ns_fd);
1686 	if (IS_ERR(net)) {
1687 		ret = PTR_ERR(net);
1688 		goto net_err;
1689 	}
1690 
1691 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1692 		ret = -EPERM;
1693 		goto ns_err;
1694 	}
1695 
1696 	/*
1697 	 * All the ib_clients, including uverbs, are reset when the namespace is
1698 	 * changed and this cannot be blocked waiting for userspace to do
1699 	 * something, so disassociation is mandatory.
1700 	 */
1701 	if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1702 		ret = -EOPNOTSUPP;
1703 		goto ns_err;
1704 	}
1705 
1706 	get_device(&dev->dev);
1707 	ib_device_put(dev);
1708 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1709 	put_device(&dev->dev);
1710 
1711 	put_net(net);
1712 	return ret;
1713 
1714 ns_err:
1715 	put_net(net);
1716 net_err:
1717 	ib_device_put(dev);
1718 	return ret;
1719 }
1720 
1721 static struct pernet_operations rdma_dev_net_ops = {
1722 	.init = rdma_dev_init_net,
1723 	.exit = rdma_dev_exit_net,
1724 	.id = &rdma_dev_net_id,
1725 	.size = sizeof(struct rdma_dev_net),
1726 };
1727 
1728 static int assign_client_id(struct ib_client *client)
1729 {
1730 	int ret;
1731 
1732 	down_write(&clients_rwsem);
1733 	/*
1734 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1735 	 * achieve this we assign client_ids so they are sorted in
1736 	 * registration order.
1737 	 */
1738 	client->client_id = highest_client_id;
1739 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1740 	if (ret)
1741 		goto out;
1742 
1743 	highest_client_id++;
1744 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1745 
1746 out:
1747 	up_write(&clients_rwsem);
1748 	return ret;
1749 }
1750 
1751 static void remove_client_id(struct ib_client *client)
1752 {
1753 	down_write(&clients_rwsem);
1754 	xa_erase(&clients, client->client_id);
1755 	for (; highest_client_id; highest_client_id--)
1756 		if (xa_load(&clients, highest_client_id - 1))
1757 			break;
1758 	up_write(&clients_rwsem);
1759 }
1760 
1761 /**
1762  * ib_register_client - Register an IB client
1763  * @client:Client to register
1764  *
1765  * Upper level users of the IB drivers can use ib_register_client() to
1766  * register callbacks for IB device addition and removal.  When an IB
1767  * device is added, each registered client's add method will be called
1768  * (in the order the clients were registered), and when a device is
1769  * removed, each client's remove method will be called (in the reverse
1770  * order that clients were registered).  In addition, when
1771  * ib_register_client() is called, the client will receive an add
1772  * callback for all devices already registered.
1773  */
1774 int ib_register_client(struct ib_client *client)
1775 {
1776 	struct ib_device *device;
1777 	unsigned long index;
1778 	int ret;
1779 
1780 	refcount_set(&client->uses, 1);
1781 	init_completion(&client->uses_zero);
1782 	ret = assign_client_id(client);
1783 	if (ret)
1784 		return ret;
1785 
1786 	down_read(&devices_rwsem);
1787 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1788 		ret = add_client_context(device, client);
1789 		if (ret) {
1790 			up_read(&devices_rwsem);
1791 			ib_unregister_client(client);
1792 			return ret;
1793 		}
1794 	}
1795 	up_read(&devices_rwsem);
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL(ib_register_client);
1799 
1800 /**
1801  * ib_unregister_client - Unregister an IB client
1802  * @client:Client to unregister
1803  *
1804  * Upper level users use ib_unregister_client() to remove their client
1805  * registration.  When ib_unregister_client() is called, the client
1806  * will receive a remove callback for each IB device still registered.
1807  *
1808  * This is a full fence, once it returns no client callbacks will be called,
1809  * or are running in another thread.
1810  */
1811 void ib_unregister_client(struct ib_client *client)
1812 {
1813 	struct ib_device *device;
1814 	unsigned long index;
1815 
1816 	down_write(&clients_rwsem);
1817 	ib_client_put(client);
1818 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1819 	up_write(&clients_rwsem);
1820 
1821 	/* We do not want to have locks while calling client->remove() */
1822 	rcu_read_lock();
1823 	xa_for_each (&devices, index, device) {
1824 		if (!ib_device_try_get(device))
1825 			continue;
1826 		rcu_read_unlock();
1827 
1828 		remove_client_context(device, client->client_id);
1829 
1830 		ib_device_put(device);
1831 		rcu_read_lock();
1832 	}
1833 	rcu_read_unlock();
1834 
1835 	/*
1836 	 * remove_client_context() is not a fence, it can return even though a
1837 	 * removal is ongoing. Wait until all removals are completed.
1838 	 */
1839 	wait_for_completion(&client->uses_zero);
1840 	remove_client_id(client);
1841 }
1842 EXPORT_SYMBOL(ib_unregister_client);
1843 
1844 static int __ib_get_global_client_nl_info(const char *client_name,
1845 					  struct ib_client_nl_info *res)
1846 {
1847 	struct ib_client *client;
1848 	unsigned long index;
1849 	int ret = -ENOENT;
1850 
1851 	down_read(&clients_rwsem);
1852 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1853 		if (strcmp(client->name, client_name) != 0)
1854 			continue;
1855 		if (!client->get_global_nl_info) {
1856 			ret = -EOPNOTSUPP;
1857 			break;
1858 		}
1859 		ret = client->get_global_nl_info(res);
1860 		if (WARN_ON(ret == -ENOENT))
1861 			ret = -EINVAL;
1862 		if (!ret && res->cdev)
1863 			get_device(res->cdev);
1864 		break;
1865 	}
1866 	up_read(&clients_rwsem);
1867 	return ret;
1868 }
1869 
1870 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1871 				   const char *client_name,
1872 				   struct ib_client_nl_info *res)
1873 {
1874 	unsigned long index;
1875 	void *client_data;
1876 	int ret = -ENOENT;
1877 
1878 	down_read(&ibdev->client_data_rwsem);
1879 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1880 			     CLIENT_DATA_REGISTERED) {
1881 		struct ib_client *client = xa_load(&clients, index);
1882 
1883 		if (!client || strcmp(client->name, client_name) != 0)
1884 			continue;
1885 		if (!client->get_nl_info) {
1886 			ret = -EOPNOTSUPP;
1887 			break;
1888 		}
1889 		ret = client->get_nl_info(ibdev, client_data, res);
1890 		if (WARN_ON(ret == -ENOENT))
1891 			ret = -EINVAL;
1892 
1893 		/*
1894 		 * The cdev is guaranteed valid as long as we are inside the
1895 		 * client_data_rwsem as remove_one can't be called. Keep it
1896 		 * valid for the caller.
1897 		 */
1898 		if (!ret && res->cdev)
1899 			get_device(res->cdev);
1900 		break;
1901 	}
1902 	up_read(&ibdev->client_data_rwsem);
1903 
1904 	return ret;
1905 }
1906 
1907 /**
1908  * ib_get_client_nl_info - Fetch the nl_info from a client
1909  * @ibdev: IB device
1910  * @client_name: Name of the client
1911  * @res: Result of the query
1912  */
1913 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1914 			  struct ib_client_nl_info *res)
1915 {
1916 	int ret;
1917 
1918 	if (ibdev)
1919 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1920 	else
1921 		ret = __ib_get_global_client_nl_info(client_name, res);
1922 #ifdef CONFIG_MODULES
1923 	if (ret == -ENOENT) {
1924 		request_module("rdma-client-%s", client_name);
1925 		if (ibdev)
1926 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1927 		else
1928 			ret = __ib_get_global_client_nl_info(client_name, res);
1929 	}
1930 #endif
1931 	if (ret) {
1932 		if (ret == -ENOENT)
1933 			return -EOPNOTSUPP;
1934 		return ret;
1935 	}
1936 
1937 	if (WARN_ON(!res->cdev))
1938 		return -EINVAL;
1939 	return 0;
1940 }
1941 
1942 /**
1943  * ib_set_client_data - Set IB client context
1944  * @device:Device to set context for
1945  * @client:Client to set context for
1946  * @data:Context to set
1947  *
1948  * ib_set_client_data() sets client context data that can be retrieved with
1949  * ib_get_client_data(). This can only be called while the client is
1950  * registered to the device, once the ib_client remove() callback returns this
1951  * cannot be called.
1952  */
1953 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1954 			void *data)
1955 {
1956 	void *rc;
1957 
1958 	if (WARN_ON(IS_ERR(data)))
1959 		data = NULL;
1960 
1961 	rc = xa_store(&device->client_data, client->client_id, data,
1962 		      GFP_KERNEL);
1963 	WARN_ON(xa_is_err(rc));
1964 }
1965 EXPORT_SYMBOL(ib_set_client_data);
1966 
1967 /**
1968  * ib_register_event_handler - Register an IB event handler
1969  * @event_handler:Handler to register
1970  *
1971  * ib_register_event_handler() registers an event handler that will be
1972  * called back when asynchronous IB events occur (as defined in
1973  * chapter 11 of the InfiniBand Architecture Specification). This
1974  * callback occurs in workqueue context.
1975  */
1976 void ib_register_event_handler(struct ib_event_handler *event_handler)
1977 {
1978 	down_write(&event_handler->device->event_handler_rwsem);
1979 	list_add_tail(&event_handler->list,
1980 		      &event_handler->device->event_handler_list);
1981 	up_write(&event_handler->device->event_handler_rwsem);
1982 }
1983 EXPORT_SYMBOL(ib_register_event_handler);
1984 
1985 /**
1986  * ib_unregister_event_handler - Unregister an event handler
1987  * @event_handler:Handler to unregister
1988  *
1989  * Unregister an event handler registered with
1990  * ib_register_event_handler().
1991  */
1992 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1993 {
1994 	down_write(&event_handler->device->event_handler_rwsem);
1995 	list_del(&event_handler->list);
1996 	up_write(&event_handler->device->event_handler_rwsem);
1997 }
1998 EXPORT_SYMBOL(ib_unregister_event_handler);
1999 
2000 void ib_dispatch_event_clients(struct ib_event *event)
2001 {
2002 	struct ib_event_handler *handler;
2003 
2004 	down_read(&event->device->event_handler_rwsem);
2005 
2006 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2007 		handler->handler(handler, event);
2008 
2009 	up_read(&event->device->event_handler_rwsem);
2010 }
2011 
2012 static int iw_query_port(struct ib_device *device,
2013 			   u32 port_num,
2014 			   struct ib_port_attr *port_attr)
2015 {
2016 	struct in_device *inetdev;
2017 	struct net_device *netdev;
2018 
2019 	memset(port_attr, 0, sizeof(*port_attr));
2020 
2021 	netdev = ib_device_get_netdev(device, port_num);
2022 	if (!netdev)
2023 		return -ENODEV;
2024 
2025 	port_attr->max_mtu = IB_MTU_4096;
2026 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2027 
2028 	if (!netif_carrier_ok(netdev)) {
2029 		port_attr->state = IB_PORT_DOWN;
2030 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2031 	} else {
2032 		rcu_read_lock();
2033 		inetdev = __in_dev_get_rcu(netdev);
2034 
2035 		if (inetdev && inetdev->ifa_list) {
2036 			port_attr->state = IB_PORT_ACTIVE;
2037 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2038 		} else {
2039 			port_attr->state = IB_PORT_INIT;
2040 			port_attr->phys_state =
2041 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2042 		}
2043 
2044 		rcu_read_unlock();
2045 	}
2046 
2047 	dev_put(netdev);
2048 	return device->ops.query_port(device, port_num, port_attr);
2049 }
2050 
2051 static int __ib_query_port(struct ib_device *device,
2052 			   u32 port_num,
2053 			   struct ib_port_attr *port_attr)
2054 {
2055 	int err;
2056 
2057 	memset(port_attr, 0, sizeof(*port_attr));
2058 
2059 	err = device->ops.query_port(device, port_num, port_attr);
2060 	if (err || port_attr->subnet_prefix)
2061 		return err;
2062 
2063 	if (rdma_port_get_link_layer(device, port_num) !=
2064 	    IB_LINK_LAYER_INFINIBAND)
2065 		return 0;
2066 
2067 	ib_get_cached_subnet_prefix(device, port_num,
2068 				    &port_attr->subnet_prefix);
2069 	return 0;
2070 }
2071 
2072 /**
2073  * ib_query_port - Query IB port attributes
2074  * @device:Device to query
2075  * @port_num:Port number to query
2076  * @port_attr:Port attributes
2077  *
2078  * ib_query_port() returns the attributes of a port through the
2079  * @port_attr pointer.
2080  */
2081 int ib_query_port(struct ib_device *device,
2082 		  u32 port_num,
2083 		  struct ib_port_attr *port_attr)
2084 {
2085 	if (!rdma_is_port_valid(device, port_num))
2086 		return -EINVAL;
2087 
2088 	if (rdma_protocol_iwarp(device, port_num))
2089 		return iw_query_port(device, port_num, port_attr);
2090 	else
2091 		return __ib_query_port(device, port_num, port_attr);
2092 }
2093 EXPORT_SYMBOL(ib_query_port);
2094 
2095 static void add_ndev_hash(struct ib_port_data *pdata)
2096 {
2097 	unsigned long flags;
2098 
2099 	might_sleep();
2100 
2101 	spin_lock_irqsave(&ndev_hash_lock, flags);
2102 	if (hash_hashed(&pdata->ndev_hash_link)) {
2103 		hash_del_rcu(&pdata->ndev_hash_link);
2104 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2105 		/*
2106 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2107 		 * grace period
2108 		 */
2109 		synchronize_rcu();
2110 		spin_lock_irqsave(&ndev_hash_lock, flags);
2111 	}
2112 	if (pdata->netdev)
2113 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2114 			     (uintptr_t)pdata->netdev);
2115 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2116 }
2117 
2118 /**
2119  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2120  * @ib_dev: Device to modify
2121  * @ndev: net_device to affiliate, may be NULL
2122  * @port: IB port the net_device is connected to
2123  *
2124  * Drivers should use this to link the ib_device to a netdev so the netdev
2125  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2126  * affiliated with any port.
2127  *
2128  * The caller must ensure that the given ndev is not unregistered or
2129  * unregistering, and that either the ib_device is unregistered or
2130  * ib_device_set_netdev() is called with NULL when the ndev sends a
2131  * NETDEV_UNREGISTER event.
2132  */
2133 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2134 			 u32 port)
2135 {
2136 	struct net_device *old_ndev;
2137 	struct ib_port_data *pdata;
2138 	unsigned long flags;
2139 	int ret;
2140 
2141 	/*
2142 	 * Drivers wish to call this before ib_register_driver, so we have to
2143 	 * setup the port data early.
2144 	 */
2145 	ret = alloc_port_data(ib_dev);
2146 	if (ret)
2147 		return ret;
2148 
2149 	if (!rdma_is_port_valid(ib_dev, port))
2150 		return -EINVAL;
2151 
2152 	pdata = &ib_dev->port_data[port];
2153 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2154 	old_ndev = rcu_dereference_protected(
2155 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2156 	if (old_ndev == ndev) {
2157 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2158 		return 0;
2159 	}
2160 
2161 	if (ndev)
2162 		dev_hold(ndev);
2163 	rcu_assign_pointer(pdata->netdev, ndev);
2164 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2165 
2166 	add_ndev_hash(pdata);
2167 	if (old_ndev)
2168 		dev_put(old_ndev);
2169 
2170 	return 0;
2171 }
2172 EXPORT_SYMBOL(ib_device_set_netdev);
2173 
2174 static void free_netdevs(struct ib_device *ib_dev)
2175 {
2176 	unsigned long flags;
2177 	u32 port;
2178 
2179 	if (!ib_dev->port_data)
2180 		return;
2181 
2182 	rdma_for_each_port (ib_dev, port) {
2183 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2184 		struct net_device *ndev;
2185 
2186 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2187 		ndev = rcu_dereference_protected(
2188 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2189 		if (ndev) {
2190 			spin_lock(&ndev_hash_lock);
2191 			hash_del_rcu(&pdata->ndev_hash_link);
2192 			spin_unlock(&ndev_hash_lock);
2193 
2194 			/*
2195 			 * If this is the last dev_put there is still a
2196 			 * synchronize_rcu before the netdev is kfreed, so we
2197 			 * can continue to rely on unlocked pointer
2198 			 * comparisons after the put
2199 			 */
2200 			rcu_assign_pointer(pdata->netdev, NULL);
2201 			dev_put(ndev);
2202 		}
2203 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2204 	}
2205 }
2206 
2207 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2208 					u32 port)
2209 {
2210 	struct ib_port_data *pdata;
2211 	struct net_device *res;
2212 
2213 	if (!rdma_is_port_valid(ib_dev, port))
2214 		return NULL;
2215 
2216 	pdata = &ib_dev->port_data[port];
2217 
2218 	/*
2219 	 * New drivers should use ib_device_set_netdev() not the legacy
2220 	 * get_netdev().
2221 	 */
2222 	if (ib_dev->ops.get_netdev)
2223 		res = ib_dev->ops.get_netdev(ib_dev, port);
2224 	else {
2225 		spin_lock(&pdata->netdev_lock);
2226 		res = rcu_dereference_protected(
2227 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2228 		if (res)
2229 			dev_hold(res);
2230 		spin_unlock(&pdata->netdev_lock);
2231 	}
2232 
2233 	/*
2234 	 * If we are starting to unregister expedite things by preventing
2235 	 * propagation of an unregistering netdev.
2236 	 */
2237 	if (res && res->reg_state != NETREG_REGISTERED) {
2238 		dev_put(res);
2239 		return NULL;
2240 	}
2241 
2242 	return res;
2243 }
2244 
2245 /**
2246  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2247  * @ndev: netdev to locate
2248  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2249  *
2250  * Find and hold an ib_device that is associated with a netdev via
2251  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2252  * returned pointer.
2253  */
2254 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2255 					  enum rdma_driver_id driver_id)
2256 {
2257 	struct ib_device *res = NULL;
2258 	struct ib_port_data *cur;
2259 
2260 	rcu_read_lock();
2261 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2262 				    (uintptr_t)ndev) {
2263 		if (rcu_access_pointer(cur->netdev) == ndev &&
2264 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2265 		     cur->ib_dev->ops.driver_id == driver_id) &&
2266 		    ib_device_try_get(cur->ib_dev)) {
2267 			res = cur->ib_dev;
2268 			break;
2269 		}
2270 	}
2271 	rcu_read_unlock();
2272 
2273 	return res;
2274 }
2275 EXPORT_SYMBOL(ib_device_get_by_netdev);
2276 
2277 /**
2278  * ib_enum_roce_netdev - enumerate all RoCE ports
2279  * @ib_dev : IB device we want to query
2280  * @filter: Should we call the callback?
2281  * @filter_cookie: Cookie passed to filter
2282  * @cb: Callback to call for each found RoCE ports
2283  * @cookie: Cookie passed back to the callback
2284  *
2285  * Enumerates all of the physical RoCE ports of ib_dev
2286  * which are related to netdevice and calls callback() on each
2287  * device for which filter() function returns non zero.
2288  */
2289 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2290 			 roce_netdev_filter filter,
2291 			 void *filter_cookie,
2292 			 roce_netdev_callback cb,
2293 			 void *cookie)
2294 {
2295 	u32 port;
2296 
2297 	rdma_for_each_port (ib_dev, port)
2298 		if (rdma_protocol_roce(ib_dev, port)) {
2299 			struct net_device *idev =
2300 				ib_device_get_netdev(ib_dev, port);
2301 
2302 			if (filter(ib_dev, port, idev, filter_cookie))
2303 				cb(ib_dev, port, idev, cookie);
2304 
2305 			if (idev)
2306 				dev_put(idev);
2307 		}
2308 }
2309 
2310 /**
2311  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2312  * @filter: Should we call the callback?
2313  * @filter_cookie: Cookie passed to filter
2314  * @cb: Callback to call for each found RoCE ports
2315  * @cookie: Cookie passed back to the callback
2316  *
2317  * Enumerates all RoCE devices' physical ports which are related
2318  * to netdevices and calls callback() on each device for which
2319  * filter() function returns non zero.
2320  */
2321 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2322 			      void *filter_cookie,
2323 			      roce_netdev_callback cb,
2324 			      void *cookie)
2325 {
2326 	struct ib_device *dev;
2327 	unsigned long index;
2328 
2329 	down_read(&devices_rwsem);
2330 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2331 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2332 	up_read(&devices_rwsem);
2333 }
2334 
2335 /*
2336  * ib_enum_all_devs - enumerate all ib_devices
2337  * @cb: Callback to call for each found ib_device
2338  *
2339  * Enumerates all ib_devices and calls callback() on each device.
2340  */
2341 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2342 		     struct netlink_callback *cb)
2343 {
2344 	unsigned long index;
2345 	struct ib_device *dev;
2346 	unsigned int idx = 0;
2347 	int ret = 0;
2348 
2349 	down_read(&devices_rwsem);
2350 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2351 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2352 			continue;
2353 
2354 		ret = nldev_cb(dev, skb, cb, idx);
2355 		if (ret)
2356 			break;
2357 		idx++;
2358 	}
2359 	up_read(&devices_rwsem);
2360 	return ret;
2361 }
2362 
2363 /**
2364  * ib_query_pkey - Get P_Key table entry
2365  * @device:Device to query
2366  * @port_num:Port number to query
2367  * @index:P_Key table index to query
2368  * @pkey:Returned P_Key
2369  *
2370  * ib_query_pkey() fetches the specified P_Key table entry.
2371  */
2372 int ib_query_pkey(struct ib_device *device,
2373 		  u32 port_num, u16 index, u16 *pkey)
2374 {
2375 	if (!rdma_is_port_valid(device, port_num))
2376 		return -EINVAL;
2377 
2378 	if (!device->ops.query_pkey)
2379 		return -EOPNOTSUPP;
2380 
2381 	return device->ops.query_pkey(device, port_num, index, pkey);
2382 }
2383 EXPORT_SYMBOL(ib_query_pkey);
2384 
2385 /**
2386  * ib_modify_device - Change IB device attributes
2387  * @device:Device to modify
2388  * @device_modify_mask:Mask of attributes to change
2389  * @device_modify:New attribute values
2390  *
2391  * ib_modify_device() changes a device's attributes as specified by
2392  * the @device_modify_mask and @device_modify structure.
2393  */
2394 int ib_modify_device(struct ib_device *device,
2395 		     int device_modify_mask,
2396 		     struct ib_device_modify *device_modify)
2397 {
2398 	if (!device->ops.modify_device)
2399 		return -EOPNOTSUPP;
2400 
2401 	return device->ops.modify_device(device, device_modify_mask,
2402 					 device_modify);
2403 }
2404 EXPORT_SYMBOL(ib_modify_device);
2405 
2406 /**
2407  * ib_modify_port - Modifies the attributes for the specified port.
2408  * @device: The device to modify.
2409  * @port_num: The number of the port to modify.
2410  * @port_modify_mask: Mask used to specify which attributes of the port
2411  *   to change.
2412  * @port_modify: New attribute values for the port.
2413  *
2414  * ib_modify_port() changes a port's attributes as specified by the
2415  * @port_modify_mask and @port_modify structure.
2416  */
2417 int ib_modify_port(struct ib_device *device,
2418 		   u32 port_num, int port_modify_mask,
2419 		   struct ib_port_modify *port_modify)
2420 {
2421 	int rc;
2422 
2423 	if (!rdma_is_port_valid(device, port_num))
2424 		return -EINVAL;
2425 
2426 	if (device->ops.modify_port)
2427 		rc = device->ops.modify_port(device, port_num,
2428 					     port_modify_mask,
2429 					     port_modify);
2430 	else if (rdma_protocol_roce(device, port_num) &&
2431 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2432 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2433 		rc = 0;
2434 	else
2435 		rc = -EOPNOTSUPP;
2436 	return rc;
2437 }
2438 EXPORT_SYMBOL(ib_modify_port);
2439 
2440 /**
2441  * ib_find_gid - Returns the port number and GID table index where
2442  *   a specified GID value occurs. Its searches only for IB link layer.
2443  * @device: The device to query.
2444  * @gid: The GID value to search for.
2445  * @port_num: The port number of the device where the GID value was found.
2446  * @index: The index into the GID table where the GID was found.  This
2447  *   parameter may be NULL.
2448  */
2449 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2450 		u32 *port_num, u16 *index)
2451 {
2452 	union ib_gid tmp_gid;
2453 	u32 port;
2454 	int ret, i;
2455 
2456 	rdma_for_each_port (device, port) {
2457 		if (!rdma_protocol_ib(device, port))
2458 			continue;
2459 
2460 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2461 		     ++i) {
2462 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2463 			if (ret)
2464 				return ret;
2465 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2466 				*port_num = port;
2467 				if (index)
2468 					*index = i;
2469 				return 0;
2470 			}
2471 		}
2472 	}
2473 
2474 	return -ENOENT;
2475 }
2476 EXPORT_SYMBOL(ib_find_gid);
2477 
2478 /**
2479  * ib_find_pkey - Returns the PKey table index where a specified
2480  *   PKey value occurs.
2481  * @device: The device to query.
2482  * @port_num: The port number of the device to search for the PKey.
2483  * @pkey: The PKey value to search for.
2484  * @index: The index into the PKey table where the PKey was found.
2485  */
2486 int ib_find_pkey(struct ib_device *device,
2487 		 u32 port_num, u16 pkey, u16 *index)
2488 {
2489 	int ret, i;
2490 	u16 tmp_pkey;
2491 	int partial_ix = -1;
2492 
2493 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2494 	     ++i) {
2495 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2496 		if (ret)
2497 			return ret;
2498 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2499 			/* if there is full-member pkey take it.*/
2500 			if (tmp_pkey & 0x8000) {
2501 				*index = i;
2502 				return 0;
2503 			}
2504 			if (partial_ix < 0)
2505 				partial_ix = i;
2506 		}
2507 	}
2508 
2509 	/*no full-member, if exists take the limited*/
2510 	if (partial_ix >= 0) {
2511 		*index = partial_ix;
2512 		return 0;
2513 	}
2514 	return -ENOENT;
2515 }
2516 EXPORT_SYMBOL(ib_find_pkey);
2517 
2518 /**
2519  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2520  * for a received CM request
2521  * @dev:	An RDMA device on which the request has been received.
2522  * @port:	Port number on the RDMA device.
2523  * @pkey:	The Pkey the request came on.
2524  * @gid:	A GID that the net_dev uses to communicate.
2525  * @addr:	Contains the IP address that the request specified as its
2526  *		destination.
2527  *
2528  */
2529 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2530 					    u32 port,
2531 					    u16 pkey,
2532 					    const union ib_gid *gid,
2533 					    const struct sockaddr *addr)
2534 {
2535 	struct net_device *net_dev = NULL;
2536 	unsigned long index;
2537 	void *client_data;
2538 
2539 	if (!rdma_protocol_ib(dev, port))
2540 		return NULL;
2541 
2542 	/*
2543 	 * Holding the read side guarantees that the client will not become
2544 	 * unregistered while we are calling get_net_dev_by_params()
2545 	 */
2546 	down_read(&dev->client_data_rwsem);
2547 	xan_for_each_marked (&dev->client_data, index, client_data,
2548 			     CLIENT_DATA_REGISTERED) {
2549 		struct ib_client *client = xa_load(&clients, index);
2550 
2551 		if (!client || !client->get_net_dev_by_params)
2552 			continue;
2553 
2554 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2555 							addr, client_data);
2556 		if (net_dev)
2557 			break;
2558 	}
2559 	up_read(&dev->client_data_rwsem);
2560 
2561 	return net_dev;
2562 }
2563 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2564 
2565 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2566 {
2567 	struct ib_device_ops *dev_ops = &dev->ops;
2568 #define SET_DEVICE_OP(ptr, name)                                               \
2569 	do {                                                                   \
2570 		if (ops->name)                                                 \
2571 			if (!((ptr)->name))				       \
2572 				(ptr)->name = ops->name;                       \
2573 	} while (0)
2574 
2575 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2576 
2577 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2578 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2579 			dev_ops->driver_id != ops->driver_id);
2580 		dev_ops->driver_id = ops->driver_id;
2581 	}
2582 	if (ops->owner) {
2583 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2584 		dev_ops->owner = ops->owner;
2585 	}
2586 	if (ops->uverbs_abi_ver)
2587 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2588 
2589 	dev_ops->uverbs_no_driver_id_binding |=
2590 		ops->uverbs_no_driver_id_binding;
2591 
2592 	SET_DEVICE_OP(dev_ops, add_gid);
2593 	SET_DEVICE_OP(dev_ops, advise_mr);
2594 	SET_DEVICE_OP(dev_ops, alloc_dm);
2595 	SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2596 	SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2597 	SET_DEVICE_OP(dev_ops, alloc_mr);
2598 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2599 	SET_DEVICE_OP(dev_ops, alloc_mw);
2600 	SET_DEVICE_OP(dev_ops, alloc_pd);
2601 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2602 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2603 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2604 	SET_DEVICE_OP(dev_ops, attach_mcast);
2605 	SET_DEVICE_OP(dev_ops, check_mr_status);
2606 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2607 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2608 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2609 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2610 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2611 	SET_DEVICE_OP(dev_ops, create_ah);
2612 	SET_DEVICE_OP(dev_ops, create_counters);
2613 	SET_DEVICE_OP(dev_ops, create_cq);
2614 	SET_DEVICE_OP(dev_ops, create_flow);
2615 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2616 	SET_DEVICE_OP(dev_ops, create_qp);
2617 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2618 	SET_DEVICE_OP(dev_ops, create_srq);
2619 	SET_DEVICE_OP(dev_ops, create_user_ah);
2620 	SET_DEVICE_OP(dev_ops, create_wq);
2621 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2622 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2623 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2624 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2625 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2626 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2627 	SET_DEVICE_OP(dev_ops, del_gid);
2628 	SET_DEVICE_OP(dev_ops, dereg_mr);
2629 	SET_DEVICE_OP(dev_ops, destroy_ah);
2630 	SET_DEVICE_OP(dev_ops, destroy_counters);
2631 	SET_DEVICE_OP(dev_ops, destroy_cq);
2632 	SET_DEVICE_OP(dev_ops, destroy_flow);
2633 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2634 	SET_DEVICE_OP(dev_ops, destroy_qp);
2635 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2636 	SET_DEVICE_OP(dev_ops, destroy_srq);
2637 	SET_DEVICE_OP(dev_ops, destroy_wq);
2638 	SET_DEVICE_OP(dev_ops, device_group);
2639 	SET_DEVICE_OP(dev_ops, detach_mcast);
2640 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2641 	SET_DEVICE_OP(dev_ops, drain_rq);
2642 	SET_DEVICE_OP(dev_ops, drain_sq);
2643 	SET_DEVICE_OP(dev_ops, enable_driver);
2644 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2645 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2646 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2647 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2648 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2649 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2650 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2651 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2652 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2653 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2654 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2655 	SET_DEVICE_OP(dev_ops, get_link_layer);
2656 	SET_DEVICE_OP(dev_ops, get_netdev);
2657 	SET_DEVICE_OP(dev_ops, get_numa_node);
2658 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2659 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2660 	SET_DEVICE_OP(dev_ops, get_vf_config);
2661 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2662 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2663 	SET_DEVICE_OP(dev_ops, iw_accept);
2664 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2665 	SET_DEVICE_OP(dev_ops, iw_connect);
2666 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2667 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2668 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2669 	SET_DEVICE_OP(dev_ops, iw_reject);
2670 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2671 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2672 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2673 	SET_DEVICE_OP(dev_ops, mmap);
2674 	SET_DEVICE_OP(dev_ops, mmap_free);
2675 	SET_DEVICE_OP(dev_ops, modify_ah);
2676 	SET_DEVICE_OP(dev_ops, modify_cq);
2677 	SET_DEVICE_OP(dev_ops, modify_device);
2678 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2679 	SET_DEVICE_OP(dev_ops, modify_hw_stat);
2680 	SET_DEVICE_OP(dev_ops, modify_port);
2681 	SET_DEVICE_OP(dev_ops, modify_qp);
2682 	SET_DEVICE_OP(dev_ops, modify_srq);
2683 	SET_DEVICE_OP(dev_ops, modify_wq);
2684 	SET_DEVICE_OP(dev_ops, peek_cq);
2685 	SET_DEVICE_OP(dev_ops, poll_cq);
2686 	SET_DEVICE_OP(dev_ops, port_groups);
2687 	SET_DEVICE_OP(dev_ops, post_recv);
2688 	SET_DEVICE_OP(dev_ops, post_send);
2689 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2690 	SET_DEVICE_OP(dev_ops, process_mad);
2691 	SET_DEVICE_OP(dev_ops, query_ah);
2692 	SET_DEVICE_OP(dev_ops, query_device);
2693 	SET_DEVICE_OP(dev_ops, query_gid);
2694 	SET_DEVICE_OP(dev_ops, query_pkey);
2695 	SET_DEVICE_OP(dev_ops, query_port);
2696 	SET_DEVICE_OP(dev_ops, query_qp);
2697 	SET_DEVICE_OP(dev_ops, query_srq);
2698 	SET_DEVICE_OP(dev_ops, query_ucontext);
2699 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2700 	SET_DEVICE_OP(dev_ops, read_counters);
2701 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2702 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2703 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2704 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2705 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2706 	SET_DEVICE_OP(dev_ops, resize_cq);
2707 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2708 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2709 
2710 	SET_OBJ_SIZE(dev_ops, ib_ah);
2711 	SET_OBJ_SIZE(dev_ops, ib_counters);
2712 	SET_OBJ_SIZE(dev_ops, ib_cq);
2713 	SET_OBJ_SIZE(dev_ops, ib_mw);
2714 	SET_OBJ_SIZE(dev_ops, ib_pd);
2715 	SET_OBJ_SIZE(dev_ops, ib_qp);
2716 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2717 	SET_OBJ_SIZE(dev_ops, ib_srq);
2718 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2719 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2720 }
2721 EXPORT_SYMBOL(ib_set_device_ops);
2722 
2723 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2724 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2725 {
2726 	struct scatterlist *s;
2727 	int i;
2728 
2729 	for_each_sg(sg, s, nents, i) {
2730 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2731 		sg_dma_len(s) = s->length;
2732 	}
2733 	return nents;
2734 }
2735 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2736 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2737 
2738 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2739 	[RDMA_NL_LS_OP_RESOLVE] = {
2740 		.doit = ib_nl_handle_resolve_resp,
2741 		.flags = RDMA_NL_ADMIN_PERM,
2742 	},
2743 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2744 		.doit = ib_nl_handle_set_timeout,
2745 		.flags = RDMA_NL_ADMIN_PERM,
2746 	},
2747 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2748 		.doit = ib_nl_handle_ip_res_resp,
2749 		.flags = RDMA_NL_ADMIN_PERM,
2750 	},
2751 };
2752 
2753 static int __init ib_core_init(void)
2754 {
2755 	int ret;
2756 
2757 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2758 	if (!ib_wq)
2759 		return -ENOMEM;
2760 
2761 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2762 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2763 	if (!ib_comp_wq) {
2764 		ret = -ENOMEM;
2765 		goto err;
2766 	}
2767 
2768 	ib_comp_unbound_wq =
2769 		alloc_workqueue("ib-comp-unb-wq",
2770 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2771 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2772 	if (!ib_comp_unbound_wq) {
2773 		ret = -ENOMEM;
2774 		goto err_comp;
2775 	}
2776 
2777 	ret = class_register(&ib_class);
2778 	if (ret) {
2779 		pr_warn("Couldn't create InfiniBand device class\n");
2780 		goto err_comp_unbound;
2781 	}
2782 
2783 	rdma_nl_init();
2784 
2785 	ret = addr_init();
2786 	if (ret) {
2787 		pr_warn("Couldn't init IB address resolution\n");
2788 		goto err_ibnl;
2789 	}
2790 
2791 	ret = ib_mad_init();
2792 	if (ret) {
2793 		pr_warn("Couldn't init IB MAD\n");
2794 		goto err_addr;
2795 	}
2796 
2797 	ret = ib_sa_init();
2798 	if (ret) {
2799 		pr_warn("Couldn't init SA\n");
2800 		goto err_mad;
2801 	}
2802 
2803 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2804 	if (ret) {
2805 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2806 		goto err_sa;
2807 	}
2808 
2809 	ret = register_pernet_device(&rdma_dev_net_ops);
2810 	if (ret) {
2811 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2812 		goto err_compat;
2813 	}
2814 
2815 	nldev_init();
2816 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2817 	roce_gid_mgmt_init();
2818 
2819 	return 0;
2820 
2821 err_compat:
2822 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2823 err_sa:
2824 	ib_sa_cleanup();
2825 err_mad:
2826 	ib_mad_cleanup();
2827 err_addr:
2828 	addr_cleanup();
2829 err_ibnl:
2830 	class_unregister(&ib_class);
2831 err_comp_unbound:
2832 	destroy_workqueue(ib_comp_unbound_wq);
2833 err_comp:
2834 	destroy_workqueue(ib_comp_wq);
2835 err:
2836 	destroy_workqueue(ib_wq);
2837 	return ret;
2838 }
2839 
2840 static void __exit ib_core_cleanup(void)
2841 {
2842 	roce_gid_mgmt_cleanup();
2843 	nldev_exit();
2844 	rdma_nl_unregister(RDMA_NL_LS);
2845 	unregister_pernet_device(&rdma_dev_net_ops);
2846 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2847 	ib_sa_cleanup();
2848 	ib_mad_cleanup();
2849 	addr_cleanup();
2850 	rdma_nl_exit();
2851 	class_unregister(&ib_class);
2852 	destroy_workqueue(ib_comp_unbound_wq);
2853 	destroy_workqueue(ib_comp_wq);
2854 	/* Make sure that any pending umem accounting work is done. */
2855 	destroy_workqueue(ib_wq);
2856 	flush_workqueue(system_unbound_wq);
2857 	WARN_ON(!xa_empty(&clients));
2858 	WARN_ON(!xa_empty(&devices));
2859 }
2860 
2861 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2862 
2863 /* ib core relies on netdev stack to first register net_ns_type_operations
2864  * ns kobject type before ib_core initialization.
2865  */
2866 fs_initcall(ib_core_init);
2867 module_exit(ib_core_cleanup);
2868