1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/mutex.h> 41 #include <linux/netdevice.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <rdma/rdma_netlink.h> 45 #include <rdma/ib_addr.h> 46 #include <rdma/ib_cache.h> 47 48 #include "core_priv.h" 49 50 MODULE_AUTHOR("Roland Dreier"); 51 MODULE_DESCRIPTION("core kernel InfiniBand API"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 54 struct ib_client_data { 55 struct list_head list; 56 struct ib_client *client; 57 void * data; 58 /* The device or client is going down. Do not call client or device 59 * callbacks other than remove(). */ 60 bool going_down; 61 }; 62 63 struct workqueue_struct *ib_comp_wq; 64 struct workqueue_struct *ib_comp_unbound_wq; 65 struct workqueue_struct *ib_wq; 66 EXPORT_SYMBOL_GPL(ib_wq); 67 68 /* The device_list and client_list contain devices and clients after their 69 * registration has completed, and the devices and clients are removed 70 * during unregistration. */ 71 static LIST_HEAD(device_list); 72 static LIST_HEAD(client_list); 73 74 /* 75 * device_mutex and lists_rwsem protect access to both device_list and 76 * client_list. device_mutex protects writer access by device and client 77 * registration / de-registration. lists_rwsem protects reader access to 78 * these lists. Iterators of these lists must lock it for read, while updates 79 * to the lists must be done with a write lock. A special case is when the 80 * device_mutex is locked. In this case locking the lists for read access is 81 * not necessary as the device_mutex implies it. 82 * 83 * lists_rwsem also protects access to the client data list. 84 */ 85 static DEFINE_MUTEX(device_mutex); 86 static DECLARE_RWSEM(lists_rwsem); 87 88 static int ib_security_change(struct notifier_block *nb, unsigned long event, 89 void *lsm_data); 90 static void ib_policy_change_task(struct work_struct *work); 91 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 92 93 static struct notifier_block ibdev_lsm_nb = { 94 .notifier_call = ib_security_change, 95 }; 96 97 static int ib_device_check_mandatory(struct ib_device *device) 98 { 99 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 100 static const struct { 101 size_t offset; 102 char *name; 103 } mandatory_table[] = { 104 IB_MANDATORY_FUNC(query_device), 105 IB_MANDATORY_FUNC(query_port), 106 IB_MANDATORY_FUNC(query_pkey), 107 IB_MANDATORY_FUNC(alloc_pd), 108 IB_MANDATORY_FUNC(dealloc_pd), 109 IB_MANDATORY_FUNC(create_qp), 110 IB_MANDATORY_FUNC(modify_qp), 111 IB_MANDATORY_FUNC(destroy_qp), 112 IB_MANDATORY_FUNC(post_send), 113 IB_MANDATORY_FUNC(post_recv), 114 IB_MANDATORY_FUNC(create_cq), 115 IB_MANDATORY_FUNC(destroy_cq), 116 IB_MANDATORY_FUNC(poll_cq), 117 IB_MANDATORY_FUNC(req_notify_cq), 118 IB_MANDATORY_FUNC(get_dma_mr), 119 IB_MANDATORY_FUNC(dereg_mr), 120 IB_MANDATORY_FUNC(get_port_immutable) 121 }; 122 int i; 123 124 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 125 if (!*(void **) ((void *) &device->ops + 126 mandatory_table[i].offset)) { 127 dev_warn(&device->dev, 128 "Device is missing mandatory function %s\n", 129 mandatory_table[i].name); 130 return -EINVAL; 131 } 132 } 133 134 return 0; 135 } 136 137 static struct ib_device *__ib_device_get_by_index(u32 index) 138 { 139 struct ib_device *device; 140 141 list_for_each_entry(device, &device_list, core_list) 142 if (device->index == index) 143 return device; 144 145 return NULL; 146 } 147 148 /* 149 * Caller must perform ib_device_put() to return the device reference count 150 * when ib_device_get_by_index() returns valid device pointer. 151 */ 152 struct ib_device *ib_device_get_by_index(u32 index) 153 { 154 struct ib_device *device; 155 156 down_read(&lists_rwsem); 157 device = __ib_device_get_by_index(index); 158 if (device) { 159 if (!ib_device_try_get(device)) 160 device = NULL; 161 } 162 up_read(&lists_rwsem); 163 return device; 164 } 165 166 /** 167 * ib_device_put - Release IB device reference 168 * @device: device whose reference to be released 169 * 170 * ib_device_put() releases reference to the IB device to allow it to be 171 * unregistered and eventually free. 172 */ 173 void ib_device_put(struct ib_device *device) 174 { 175 if (refcount_dec_and_test(&device->refcount)) 176 complete(&device->unreg_completion); 177 } 178 EXPORT_SYMBOL(ib_device_put); 179 180 static struct ib_device *__ib_device_get_by_name(const char *name) 181 { 182 struct ib_device *device; 183 184 list_for_each_entry(device, &device_list, core_list) 185 if (!strcmp(name, dev_name(&device->dev))) 186 return device; 187 188 return NULL; 189 } 190 191 int ib_device_rename(struct ib_device *ibdev, const char *name) 192 { 193 struct ib_device *device; 194 int ret = 0; 195 196 if (!strcmp(name, dev_name(&ibdev->dev))) 197 return ret; 198 199 mutex_lock(&device_mutex); 200 list_for_each_entry(device, &device_list, core_list) { 201 if (!strcmp(name, dev_name(&device->dev))) { 202 ret = -EEXIST; 203 goto out; 204 } 205 } 206 207 ret = device_rename(&ibdev->dev, name); 208 if (ret) 209 goto out; 210 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 211 out: 212 mutex_unlock(&device_mutex); 213 return ret; 214 } 215 216 static int alloc_name(struct ib_device *ibdev, const char *name) 217 { 218 unsigned long *inuse; 219 struct ib_device *device; 220 int i; 221 222 inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL); 223 if (!inuse) 224 return -ENOMEM; 225 226 list_for_each_entry(device, &device_list, core_list) { 227 char buf[IB_DEVICE_NAME_MAX]; 228 229 if (sscanf(dev_name(&device->dev), name, &i) != 1) 230 continue; 231 if (i < 0 || i >= PAGE_SIZE * 8) 232 continue; 233 snprintf(buf, sizeof buf, name, i); 234 if (!strcmp(buf, dev_name(&device->dev))) 235 set_bit(i, inuse); 236 } 237 238 i = find_first_zero_bit(inuse, PAGE_SIZE * 8); 239 free_page((unsigned long) inuse); 240 241 return dev_set_name(&ibdev->dev, name, i); 242 } 243 244 static void ib_device_release(struct device *device) 245 { 246 struct ib_device *dev = container_of(device, struct ib_device, dev); 247 248 WARN_ON(dev->reg_state == IB_DEV_REGISTERED); 249 if (dev->reg_state == IB_DEV_UNREGISTERED) { 250 /* 251 * In IB_DEV_UNINITIALIZED state, cache or port table 252 * is not even created. Free cache and port table only when 253 * device reaches UNREGISTERED state. 254 */ 255 ib_cache_release_one(dev); 256 kfree(dev->port_immutable); 257 } 258 kfree(dev); 259 } 260 261 static int ib_device_uevent(struct device *device, 262 struct kobj_uevent_env *env) 263 { 264 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 265 return -ENOMEM; 266 267 /* 268 * It would be nice to pass the node GUID with the event... 269 */ 270 271 return 0; 272 } 273 274 static struct class ib_class = { 275 .name = "infiniband", 276 .dev_release = ib_device_release, 277 .dev_uevent = ib_device_uevent, 278 }; 279 280 /** 281 * ib_alloc_device - allocate an IB device struct 282 * @size:size of structure to allocate 283 * 284 * Low-level drivers should use ib_alloc_device() to allocate &struct 285 * ib_device. @size is the size of the structure to be allocated, 286 * including any private data used by the low-level driver. 287 * ib_dealloc_device() must be used to free structures allocated with 288 * ib_alloc_device(). 289 */ 290 struct ib_device *ib_alloc_device(size_t size) 291 { 292 struct ib_device *device; 293 294 if (WARN_ON(size < sizeof(struct ib_device))) 295 return NULL; 296 297 device = kzalloc(size, GFP_KERNEL); 298 if (!device) 299 return NULL; 300 301 rdma_restrack_init(&device->res); 302 303 device->dev.class = &ib_class; 304 device_initialize(&device->dev); 305 306 dev_set_drvdata(&device->dev, device); 307 308 INIT_LIST_HEAD(&device->event_handler_list); 309 spin_lock_init(&device->event_handler_lock); 310 rwlock_init(&device->client_data_lock); 311 INIT_LIST_HEAD(&device->client_data_list); 312 INIT_LIST_HEAD(&device->port_list); 313 init_completion(&device->unreg_completion); 314 315 return device; 316 } 317 EXPORT_SYMBOL(ib_alloc_device); 318 319 /** 320 * ib_dealloc_device - free an IB device struct 321 * @device:structure to free 322 * 323 * Free a structure allocated with ib_alloc_device(). 324 */ 325 void ib_dealloc_device(struct ib_device *device) 326 { 327 WARN_ON(!list_empty(&device->client_data_list)); 328 WARN_ON(device->reg_state != IB_DEV_UNREGISTERED && 329 device->reg_state != IB_DEV_UNINITIALIZED); 330 rdma_restrack_clean(&device->res); 331 put_device(&device->dev); 332 } 333 EXPORT_SYMBOL(ib_dealloc_device); 334 335 static int add_client_context(struct ib_device *device, struct ib_client *client) 336 { 337 struct ib_client_data *context; 338 339 context = kmalloc(sizeof(*context), GFP_KERNEL); 340 if (!context) 341 return -ENOMEM; 342 343 context->client = client; 344 context->data = NULL; 345 context->going_down = false; 346 347 down_write(&lists_rwsem); 348 write_lock_irq(&device->client_data_lock); 349 list_add(&context->list, &device->client_data_list); 350 write_unlock_irq(&device->client_data_lock); 351 up_write(&lists_rwsem); 352 353 return 0; 354 } 355 356 static int verify_immutable(const struct ib_device *dev, u8 port) 357 { 358 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 359 rdma_max_mad_size(dev, port) != 0); 360 } 361 362 static int read_port_immutable(struct ib_device *device) 363 { 364 int ret; 365 u8 start_port = rdma_start_port(device); 366 u8 end_port = rdma_end_port(device); 367 u8 port; 368 369 /** 370 * device->port_immutable is indexed directly by the port number to make 371 * access to this data as efficient as possible. 372 * 373 * Therefore port_immutable is declared as a 1 based array with 374 * potential empty slots at the beginning. 375 */ 376 device->port_immutable = kcalloc(end_port + 1, 377 sizeof(*device->port_immutable), 378 GFP_KERNEL); 379 if (!device->port_immutable) 380 return -ENOMEM; 381 382 for (port = start_port; port <= end_port; ++port) { 383 ret = device->ops.get_port_immutable( 384 device, port, &device->port_immutable[port]); 385 if (ret) 386 return ret; 387 388 if (verify_immutable(device, port)) 389 return -EINVAL; 390 } 391 return 0; 392 } 393 394 void ib_get_device_fw_str(struct ib_device *dev, char *str) 395 { 396 if (dev->ops.get_dev_fw_str) 397 dev->ops.get_dev_fw_str(dev, str); 398 else 399 str[0] = '\0'; 400 } 401 EXPORT_SYMBOL(ib_get_device_fw_str); 402 403 static int setup_port_pkey_list(struct ib_device *device) 404 { 405 int i; 406 407 /** 408 * device->port_pkey_list is indexed directly by the port number, 409 * Therefore it is declared as a 1 based array with potential empty 410 * slots at the beginning. 411 */ 412 device->port_pkey_list = kcalloc(rdma_end_port(device) + 1, 413 sizeof(*device->port_pkey_list), 414 GFP_KERNEL); 415 416 if (!device->port_pkey_list) 417 return -ENOMEM; 418 419 for (i = 0; i < (rdma_end_port(device) + 1); i++) { 420 spin_lock_init(&device->port_pkey_list[i].list_lock); 421 INIT_LIST_HEAD(&device->port_pkey_list[i].pkey_list); 422 } 423 424 return 0; 425 } 426 427 static void ib_policy_change_task(struct work_struct *work) 428 { 429 struct ib_device *dev; 430 431 down_read(&lists_rwsem); 432 list_for_each_entry(dev, &device_list, core_list) { 433 int i; 434 435 for (i = rdma_start_port(dev); i <= rdma_end_port(dev); i++) { 436 u64 sp; 437 int ret = ib_get_cached_subnet_prefix(dev, 438 i, 439 &sp); 440 441 WARN_ONCE(ret, 442 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 443 ret); 444 if (!ret) 445 ib_security_cache_change(dev, i, sp); 446 } 447 } 448 up_read(&lists_rwsem); 449 } 450 451 static int ib_security_change(struct notifier_block *nb, unsigned long event, 452 void *lsm_data) 453 { 454 if (event != LSM_POLICY_CHANGE) 455 return NOTIFY_DONE; 456 457 schedule_work(&ib_policy_change_work); 458 459 return NOTIFY_OK; 460 } 461 462 /** 463 * __dev_new_index - allocate an device index 464 * 465 * Returns a suitable unique value for a new device interface 466 * number. It assumes that there are less than 2^32-1 ib devices 467 * will be present in the system. 468 */ 469 static u32 __dev_new_index(void) 470 { 471 /* 472 * The device index to allow stable naming. 473 * Similar to struct net -> ifindex. 474 */ 475 static u32 index; 476 477 for (;;) { 478 if (!(++index)) 479 index = 1; 480 481 if (!__ib_device_get_by_index(index)) 482 return index; 483 } 484 } 485 486 static void setup_dma_device(struct ib_device *device) 487 { 488 struct device *parent = device->dev.parent; 489 490 WARN_ON_ONCE(device->dma_device); 491 if (device->dev.dma_ops) { 492 /* 493 * The caller provided custom DMA operations. Copy the 494 * DMA-related fields that are used by e.g. dma_alloc_coherent() 495 * into device->dev. 496 */ 497 device->dma_device = &device->dev; 498 if (!device->dev.dma_mask) { 499 if (parent) 500 device->dev.dma_mask = parent->dma_mask; 501 else 502 WARN_ON_ONCE(true); 503 } 504 if (!device->dev.coherent_dma_mask) { 505 if (parent) 506 device->dev.coherent_dma_mask = 507 parent->coherent_dma_mask; 508 else 509 WARN_ON_ONCE(true); 510 } 511 } else { 512 /* 513 * The caller did not provide custom DMA operations. Use the 514 * DMA mapping operations of the parent device. 515 */ 516 WARN_ON_ONCE(!parent); 517 device->dma_device = parent; 518 } 519 } 520 521 static void cleanup_device(struct ib_device *device) 522 { 523 ib_cache_cleanup_one(device); 524 ib_cache_release_one(device); 525 kfree(device->port_pkey_list); 526 kfree(device->port_immutable); 527 } 528 529 static int setup_device(struct ib_device *device) 530 { 531 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 532 int ret; 533 534 ret = ib_device_check_mandatory(device); 535 if (ret) 536 return ret; 537 538 ret = read_port_immutable(device); 539 if (ret) { 540 dev_warn(&device->dev, 541 "Couldn't create per port immutable data\n"); 542 return ret; 543 } 544 545 memset(&device->attrs, 0, sizeof(device->attrs)); 546 ret = device->ops.query_device(device, &device->attrs, &uhw); 547 if (ret) { 548 dev_warn(&device->dev, 549 "Couldn't query the device attributes\n"); 550 goto port_cleanup; 551 } 552 553 ret = setup_port_pkey_list(device); 554 if (ret) { 555 dev_warn(&device->dev, "Couldn't create per port_pkey_list\n"); 556 goto port_cleanup; 557 } 558 559 ret = ib_cache_setup_one(device); 560 if (ret) { 561 dev_warn(&device->dev, 562 "Couldn't set up InfiniBand P_Key/GID cache\n"); 563 goto pkey_cleanup; 564 } 565 return 0; 566 567 pkey_cleanup: 568 kfree(device->port_pkey_list); 569 port_cleanup: 570 kfree(device->port_immutable); 571 return ret; 572 } 573 574 /** 575 * ib_register_device - Register an IB device with IB core 576 * @device:Device to register 577 * 578 * Low-level drivers use ib_register_device() to register their 579 * devices with the IB core. All registered clients will receive a 580 * callback for each device that is added. @device must be allocated 581 * with ib_alloc_device(). 582 */ 583 int ib_register_device(struct ib_device *device, const char *name, 584 int (*port_callback)(struct ib_device *, u8, 585 struct kobject *)) 586 { 587 int ret; 588 struct ib_client *client; 589 590 setup_dma_device(device); 591 592 mutex_lock(&device_mutex); 593 594 if (strchr(name, '%')) { 595 ret = alloc_name(device, name); 596 if (ret) 597 goto out; 598 } else { 599 ret = dev_set_name(&device->dev, name); 600 if (ret) 601 goto out; 602 } 603 if (__ib_device_get_by_name(dev_name(&device->dev))) { 604 ret = -ENFILE; 605 goto out; 606 } 607 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 608 609 ret = setup_device(device); 610 if (ret) 611 goto out; 612 613 device->index = __dev_new_index(); 614 615 ret = ib_device_register_rdmacg(device); 616 if (ret) { 617 dev_warn(&device->dev, 618 "Couldn't register device with rdma cgroup\n"); 619 goto dev_cleanup; 620 } 621 622 ret = ib_device_register_sysfs(device, port_callback); 623 if (ret) { 624 dev_warn(&device->dev, 625 "Couldn't register device with driver model\n"); 626 goto cg_cleanup; 627 } 628 629 refcount_set(&device->refcount, 1); 630 device->reg_state = IB_DEV_REGISTERED; 631 632 list_for_each_entry(client, &client_list, list) 633 if (!add_client_context(device, client) && client->add) 634 client->add(device); 635 636 down_write(&lists_rwsem); 637 list_add_tail(&device->core_list, &device_list); 638 up_write(&lists_rwsem); 639 mutex_unlock(&device_mutex); 640 return 0; 641 642 cg_cleanup: 643 ib_device_unregister_rdmacg(device); 644 dev_cleanup: 645 cleanup_device(device); 646 out: 647 mutex_unlock(&device_mutex); 648 return ret; 649 } 650 EXPORT_SYMBOL(ib_register_device); 651 652 /** 653 * ib_unregister_device - Unregister an IB device 654 * @device:Device to unregister 655 * 656 * Unregister an IB device. All clients will receive a remove callback. 657 */ 658 void ib_unregister_device(struct ib_device *device) 659 { 660 struct ib_client_data *context, *tmp; 661 unsigned long flags; 662 663 /* 664 * Wait for all netlink command callers to finish working on the 665 * device. 666 */ 667 ib_device_put(device); 668 wait_for_completion(&device->unreg_completion); 669 670 mutex_lock(&device_mutex); 671 672 down_write(&lists_rwsem); 673 list_del(&device->core_list); 674 write_lock_irq(&device->client_data_lock); 675 list_for_each_entry(context, &device->client_data_list, list) 676 context->going_down = true; 677 write_unlock_irq(&device->client_data_lock); 678 downgrade_write(&lists_rwsem); 679 680 list_for_each_entry(context, &device->client_data_list, list) { 681 if (context->client->remove) 682 context->client->remove(device, context->data); 683 } 684 up_read(&lists_rwsem); 685 686 ib_device_unregister_sysfs(device); 687 ib_device_unregister_rdmacg(device); 688 689 mutex_unlock(&device_mutex); 690 691 ib_cache_cleanup_one(device); 692 693 ib_security_destroy_port_pkey_list(device); 694 kfree(device->port_pkey_list); 695 696 down_write(&lists_rwsem); 697 write_lock_irqsave(&device->client_data_lock, flags); 698 list_for_each_entry_safe(context, tmp, &device->client_data_list, 699 list) { 700 list_del(&context->list); 701 kfree(context); 702 } 703 write_unlock_irqrestore(&device->client_data_lock, flags); 704 up_write(&lists_rwsem); 705 706 device->reg_state = IB_DEV_UNREGISTERED; 707 } 708 EXPORT_SYMBOL(ib_unregister_device); 709 710 /** 711 * ib_register_client - Register an IB client 712 * @client:Client to register 713 * 714 * Upper level users of the IB drivers can use ib_register_client() to 715 * register callbacks for IB device addition and removal. When an IB 716 * device is added, each registered client's add method will be called 717 * (in the order the clients were registered), and when a device is 718 * removed, each client's remove method will be called (in the reverse 719 * order that clients were registered). In addition, when 720 * ib_register_client() is called, the client will receive an add 721 * callback for all devices already registered. 722 */ 723 int ib_register_client(struct ib_client *client) 724 { 725 struct ib_device *device; 726 727 mutex_lock(&device_mutex); 728 729 list_for_each_entry(device, &device_list, core_list) 730 if (!add_client_context(device, client) && client->add) 731 client->add(device); 732 733 down_write(&lists_rwsem); 734 list_add_tail(&client->list, &client_list); 735 up_write(&lists_rwsem); 736 737 mutex_unlock(&device_mutex); 738 739 return 0; 740 } 741 EXPORT_SYMBOL(ib_register_client); 742 743 /** 744 * ib_unregister_client - Unregister an IB client 745 * @client:Client to unregister 746 * 747 * Upper level users use ib_unregister_client() to remove their client 748 * registration. When ib_unregister_client() is called, the client 749 * will receive a remove callback for each IB device still registered. 750 */ 751 void ib_unregister_client(struct ib_client *client) 752 { 753 struct ib_client_data *context; 754 struct ib_device *device; 755 756 mutex_lock(&device_mutex); 757 758 down_write(&lists_rwsem); 759 list_del(&client->list); 760 up_write(&lists_rwsem); 761 762 list_for_each_entry(device, &device_list, core_list) { 763 struct ib_client_data *found_context = NULL; 764 765 down_write(&lists_rwsem); 766 write_lock_irq(&device->client_data_lock); 767 list_for_each_entry(context, &device->client_data_list, list) 768 if (context->client == client) { 769 context->going_down = true; 770 found_context = context; 771 break; 772 } 773 write_unlock_irq(&device->client_data_lock); 774 up_write(&lists_rwsem); 775 776 if (client->remove) 777 client->remove(device, found_context ? 778 found_context->data : NULL); 779 780 if (!found_context) { 781 dev_warn(&device->dev, 782 "No client context found for %s\n", 783 client->name); 784 continue; 785 } 786 787 down_write(&lists_rwsem); 788 write_lock_irq(&device->client_data_lock); 789 list_del(&found_context->list); 790 write_unlock_irq(&device->client_data_lock); 791 up_write(&lists_rwsem); 792 kfree(found_context); 793 } 794 795 mutex_unlock(&device_mutex); 796 } 797 EXPORT_SYMBOL(ib_unregister_client); 798 799 /** 800 * ib_get_client_data - Get IB client context 801 * @device:Device to get context for 802 * @client:Client to get context for 803 * 804 * ib_get_client_data() returns client context set with 805 * ib_set_client_data(). 806 */ 807 void *ib_get_client_data(struct ib_device *device, struct ib_client *client) 808 { 809 struct ib_client_data *context; 810 void *ret = NULL; 811 unsigned long flags; 812 813 read_lock_irqsave(&device->client_data_lock, flags); 814 list_for_each_entry(context, &device->client_data_list, list) 815 if (context->client == client) { 816 ret = context->data; 817 break; 818 } 819 read_unlock_irqrestore(&device->client_data_lock, flags); 820 821 return ret; 822 } 823 EXPORT_SYMBOL(ib_get_client_data); 824 825 /** 826 * ib_set_client_data - Set IB client context 827 * @device:Device to set context for 828 * @client:Client to set context for 829 * @data:Context to set 830 * 831 * ib_set_client_data() sets client context that can be retrieved with 832 * ib_get_client_data(). 833 */ 834 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 835 void *data) 836 { 837 struct ib_client_data *context; 838 unsigned long flags; 839 840 write_lock_irqsave(&device->client_data_lock, flags); 841 list_for_each_entry(context, &device->client_data_list, list) 842 if (context->client == client) { 843 context->data = data; 844 goto out; 845 } 846 847 dev_warn(&device->dev, "No client context found for %s\n", 848 client->name); 849 850 out: 851 write_unlock_irqrestore(&device->client_data_lock, flags); 852 } 853 EXPORT_SYMBOL(ib_set_client_data); 854 855 /** 856 * ib_register_event_handler - Register an IB event handler 857 * @event_handler:Handler to register 858 * 859 * ib_register_event_handler() registers an event handler that will be 860 * called back when asynchronous IB events occur (as defined in 861 * chapter 11 of the InfiniBand Architecture Specification). This 862 * callback may occur in interrupt context. 863 */ 864 void ib_register_event_handler(struct ib_event_handler *event_handler) 865 { 866 unsigned long flags; 867 868 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); 869 list_add_tail(&event_handler->list, 870 &event_handler->device->event_handler_list); 871 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); 872 } 873 EXPORT_SYMBOL(ib_register_event_handler); 874 875 /** 876 * ib_unregister_event_handler - Unregister an event handler 877 * @event_handler:Handler to unregister 878 * 879 * Unregister an event handler registered with 880 * ib_register_event_handler(). 881 */ 882 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 883 { 884 unsigned long flags; 885 886 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); 887 list_del(&event_handler->list); 888 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); 889 } 890 EXPORT_SYMBOL(ib_unregister_event_handler); 891 892 /** 893 * ib_dispatch_event - Dispatch an asynchronous event 894 * @event:Event to dispatch 895 * 896 * Low-level drivers must call ib_dispatch_event() to dispatch the 897 * event to all registered event handlers when an asynchronous event 898 * occurs. 899 */ 900 void ib_dispatch_event(struct ib_event *event) 901 { 902 unsigned long flags; 903 struct ib_event_handler *handler; 904 905 spin_lock_irqsave(&event->device->event_handler_lock, flags); 906 907 list_for_each_entry(handler, &event->device->event_handler_list, list) 908 handler->handler(handler, event); 909 910 spin_unlock_irqrestore(&event->device->event_handler_lock, flags); 911 } 912 EXPORT_SYMBOL(ib_dispatch_event); 913 914 /** 915 * ib_query_port - Query IB port attributes 916 * @device:Device to query 917 * @port_num:Port number to query 918 * @port_attr:Port attributes 919 * 920 * ib_query_port() returns the attributes of a port through the 921 * @port_attr pointer. 922 */ 923 int ib_query_port(struct ib_device *device, 924 u8 port_num, 925 struct ib_port_attr *port_attr) 926 { 927 union ib_gid gid; 928 int err; 929 930 if (!rdma_is_port_valid(device, port_num)) 931 return -EINVAL; 932 933 memset(port_attr, 0, sizeof(*port_attr)); 934 err = device->ops.query_port(device, port_num, port_attr); 935 if (err || port_attr->subnet_prefix) 936 return err; 937 938 if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND) 939 return 0; 940 941 err = device->ops.query_gid(device, port_num, 0, &gid); 942 if (err) 943 return err; 944 945 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 946 return 0; 947 } 948 EXPORT_SYMBOL(ib_query_port); 949 950 /** 951 * ib_enum_roce_netdev - enumerate all RoCE ports 952 * @ib_dev : IB device we want to query 953 * @filter: Should we call the callback? 954 * @filter_cookie: Cookie passed to filter 955 * @cb: Callback to call for each found RoCE ports 956 * @cookie: Cookie passed back to the callback 957 * 958 * Enumerates all of the physical RoCE ports of ib_dev 959 * which are related to netdevice and calls callback() on each 960 * device for which filter() function returns non zero. 961 */ 962 void ib_enum_roce_netdev(struct ib_device *ib_dev, 963 roce_netdev_filter filter, 964 void *filter_cookie, 965 roce_netdev_callback cb, 966 void *cookie) 967 { 968 u8 port; 969 970 for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev); 971 port++) 972 if (rdma_protocol_roce(ib_dev, port)) { 973 struct net_device *idev = NULL; 974 975 if (ib_dev->ops.get_netdev) 976 idev = ib_dev->ops.get_netdev(ib_dev, port); 977 978 if (idev && 979 idev->reg_state >= NETREG_UNREGISTERED) { 980 dev_put(idev); 981 idev = NULL; 982 } 983 984 if (filter(ib_dev, port, idev, filter_cookie)) 985 cb(ib_dev, port, idev, cookie); 986 987 if (idev) 988 dev_put(idev); 989 } 990 } 991 992 /** 993 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 994 * @filter: Should we call the callback? 995 * @filter_cookie: Cookie passed to filter 996 * @cb: Callback to call for each found RoCE ports 997 * @cookie: Cookie passed back to the callback 998 * 999 * Enumerates all RoCE devices' physical ports which are related 1000 * to netdevices and calls callback() on each device for which 1001 * filter() function returns non zero. 1002 */ 1003 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 1004 void *filter_cookie, 1005 roce_netdev_callback cb, 1006 void *cookie) 1007 { 1008 struct ib_device *dev; 1009 1010 down_read(&lists_rwsem); 1011 list_for_each_entry(dev, &device_list, core_list) 1012 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 1013 up_read(&lists_rwsem); 1014 } 1015 1016 /** 1017 * ib_enum_all_devs - enumerate all ib_devices 1018 * @cb: Callback to call for each found ib_device 1019 * 1020 * Enumerates all ib_devices and calls callback() on each device. 1021 */ 1022 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 1023 struct netlink_callback *cb) 1024 { 1025 struct ib_device *dev; 1026 unsigned int idx = 0; 1027 int ret = 0; 1028 1029 down_read(&lists_rwsem); 1030 list_for_each_entry(dev, &device_list, core_list) { 1031 ret = nldev_cb(dev, skb, cb, idx); 1032 if (ret) 1033 break; 1034 idx++; 1035 } 1036 1037 up_read(&lists_rwsem); 1038 return ret; 1039 } 1040 1041 /** 1042 * ib_query_pkey - Get P_Key table entry 1043 * @device:Device to query 1044 * @port_num:Port number to query 1045 * @index:P_Key table index to query 1046 * @pkey:Returned P_Key 1047 * 1048 * ib_query_pkey() fetches the specified P_Key table entry. 1049 */ 1050 int ib_query_pkey(struct ib_device *device, 1051 u8 port_num, u16 index, u16 *pkey) 1052 { 1053 if (!rdma_is_port_valid(device, port_num)) 1054 return -EINVAL; 1055 1056 return device->ops.query_pkey(device, port_num, index, pkey); 1057 } 1058 EXPORT_SYMBOL(ib_query_pkey); 1059 1060 /** 1061 * ib_modify_device - Change IB device attributes 1062 * @device:Device to modify 1063 * @device_modify_mask:Mask of attributes to change 1064 * @device_modify:New attribute values 1065 * 1066 * ib_modify_device() changes a device's attributes as specified by 1067 * the @device_modify_mask and @device_modify structure. 1068 */ 1069 int ib_modify_device(struct ib_device *device, 1070 int device_modify_mask, 1071 struct ib_device_modify *device_modify) 1072 { 1073 if (!device->ops.modify_device) 1074 return -ENOSYS; 1075 1076 return device->ops.modify_device(device, device_modify_mask, 1077 device_modify); 1078 } 1079 EXPORT_SYMBOL(ib_modify_device); 1080 1081 /** 1082 * ib_modify_port - Modifies the attributes for the specified port. 1083 * @device: The device to modify. 1084 * @port_num: The number of the port to modify. 1085 * @port_modify_mask: Mask used to specify which attributes of the port 1086 * to change. 1087 * @port_modify: New attribute values for the port. 1088 * 1089 * ib_modify_port() changes a port's attributes as specified by the 1090 * @port_modify_mask and @port_modify structure. 1091 */ 1092 int ib_modify_port(struct ib_device *device, 1093 u8 port_num, int port_modify_mask, 1094 struct ib_port_modify *port_modify) 1095 { 1096 int rc; 1097 1098 if (!rdma_is_port_valid(device, port_num)) 1099 return -EINVAL; 1100 1101 if (device->ops.modify_port) 1102 rc = device->ops.modify_port(device, port_num, 1103 port_modify_mask, 1104 port_modify); 1105 else 1106 rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS; 1107 return rc; 1108 } 1109 EXPORT_SYMBOL(ib_modify_port); 1110 1111 /** 1112 * ib_find_gid - Returns the port number and GID table index where 1113 * a specified GID value occurs. Its searches only for IB link layer. 1114 * @device: The device to query. 1115 * @gid: The GID value to search for. 1116 * @port_num: The port number of the device where the GID value was found. 1117 * @index: The index into the GID table where the GID was found. This 1118 * parameter may be NULL. 1119 */ 1120 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1121 u8 *port_num, u16 *index) 1122 { 1123 union ib_gid tmp_gid; 1124 int ret, port, i; 1125 1126 for (port = rdma_start_port(device); port <= rdma_end_port(device); ++port) { 1127 if (!rdma_protocol_ib(device, port)) 1128 continue; 1129 1130 for (i = 0; i < device->port_immutable[port].gid_tbl_len; ++i) { 1131 ret = rdma_query_gid(device, port, i, &tmp_gid); 1132 if (ret) 1133 return ret; 1134 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 1135 *port_num = port; 1136 if (index) 1137 *index = i; 1138 return 0; 1139 } 1140 } 1141 } 1142 1143 return -ENOENT; 1144 } 1145 EXPORT_SYMBOL(ib_find_gid); 1146 1147 /** 1148 * ib_find_pkey - Returns the PKey table index where a specified 1149 * PKey value occurs. 1150 * @device: The device to query. 1151 * @port_num: The port number of the device to search for the PKey. 1152 * @pkey: The PKey value to search for. 1153 * @index: The index into the PKey table where the PKey was found. 1154 */ 1155 int ib_find_pkey(struct ib_device *device, 1156 u8 port_num, u16 pkey, u16 *index) 1157 { 1158 int ret, i; 1159 u16 tmp_pkey; 1160 int partial_ix = -1; 1161 1162 for (i = 0; i < device->port_immutable[port_num].pkey_tbl_len; ++i) { 1163 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 1164 if (ret) 1165 return ret; 1166 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 1167 /* if there is full-member pkey take it.*/ 1168 if (tmp_pkey & 0x8000) { 1169 *index = i; 1170 return 0; 1171 } 1172 if (partial_ix < 0) 1173 partial_ix = i; 1174 } 1175 } 1176 1177 /*no full-member, if exists take the limited*/ 1178 if (partial_ix >= 0) { 1179 *index = partial_ix; 1180 return 0; 1181 } 1182 return -ENOENT; 1183 } 1184 EXPORT_SYMBOL(ib_find_pkey); 1185 1186 /** 1187 * ib_get_net_dev_by_params() - Return the appropriate net_dev 1188 * for a received CM request 1189 * @dev: An RDMA device on which the request has been received. 1190 * @port: Port number on the RDMA device. 1191 * @pkey: The Pkey the request came on. 1192 * @gid: A GID that the net_dev uses to communicate. 1193 * @addr: Contains the IP address that the request specified as its 1194 * destination. 1195 */ 1196 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 1197 u8 port, 1198 u16 pkey, 1199 const union ib_gid *gid, 1200 const struct sockaddr *addr) 1201 { 1202 struct net_device *net_dev = NULL; 1203 struct ib_client_data *context; 1204 1205 if (!rdma_protocol_ib(dev, port)) 1206 return NULL; 1207 1208 down_read(&lists_rwsem); 1209 1210 list_for_each_entry(context, &dev->client_data_list, list) { 1211 struct ib_client *client = context->client; 1212 1213 if (context->going_down) 1214 continue; 1215 1216 if (client->get_net_dev_by_params) { 1217 net_dev = client->get_net_dev_by_params(dev, port, pkey, 1218 gid, addr, 1219 context->data); 1220 if (net_dev) 1221 break; 1222 } 1223 } 1224 1225 up_read(&lists_rwsem); 1226 1227 return net_dev; 1228 } 1229 EXPORT_SYMBOL(ib_get_net_dev_by_params); 1230 1231 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 1232 { 1233 struct ib_device_ops *dev_ops = &dev->ops; 1234 #define SET_DEVICE_OP(ptr, name) \ 1235 do { \ 1236 if (ops->name) \ 1237 if (!((ptr)->name)) \ 1238 (ptr)->name = ops->name; \ 1239 } while (0) 1240 1241 SET_DEVICE_OP(dev_ops, add_gid); 1242 SET_DEVICE_OP(dev_ops, advise_mr); 1243 SET_DEVICE_OP(dev_ops, alloc_dm); 1244 SET_DEVICE_OP(dev_ops, alloc_fmr); 1245 SET_DEVICE_OP(dev_ops, alloc_hw_stats); 1246 SET_DEVICE_OP(dev_ops, alloc_mr); 1247 SET_DEVICE_OP(dev_ops, alloc_mw); 1248 SET_DEVICE_OP(dev_ops, alloc_pd); 1249 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 1250 SET_DEVICE_OP(dev_ops, alloc_ucontext); 1251 SET_DEVICE_OP(dev_ops, alloc_xrcd); 1252 SET_DEVICE_OP(dev_ops, attach_mcast); 1253 SET_DEVICE_OP(dev_ops, check_mr_status); 1254 SET_DEVICE_OP(dev_ops, create_ah); 1255 SET_DEVICE_OP(dev_ops, create_counters); 1256 SET_DEVICE_OP(dev_ops, create_cq); 1257 SET_DEVICE_OP(dev_ops, create_flow); 1258 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 1259 SET_DEVICE_OP(dev_ops, create_qp); 1260 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 1261 SET_DEVICE_OP(dev_ops, create_srq); 1262 SET_DEVICE_OP(dev_ops, create_wq); 1263 SET_DEVICE_OP(dev_ops, dealloc_dm); 1264 SET_DEVICE_OP(dev_ops, dealloc_fmr); 1265 SET_DEVICE_OP(dev_ops, dealloc_mw); 1266 SET_DEVICE_OP(dev_ops, dealloc_pd); 1267 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 1268 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 1269 SET_DEVICE_OP(dev_ops, del_gid); 1270 SET_DEVICE_OP(dev_ops, dereg_mr); 1271 SET_DEVICE_OP(dev_ops, destroy_ah); 1272 SET_DEVICE_OP(dev_ops, destroy_counters); 1273 SET_DEVICE_OP(dev_ops, destroy_cq); 1274 SET_DEVICE_OP(dev_ops, destroy_flow); 1275 SET_DEVICE_OP(dev_ops, destroy_flow_action); 1276 SET_DEVICE_OP(dev_ops, destroy_qp); 1277 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 1278 SET_DEVICE_OP(dev_ops, destroy_srq); 1279 SET_DEVICE_OP(dev_ops, destroy_wq); 1280 SET_DEVICE_OP(dev_ops, detach_mcast); 1281 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 1282 SET_DEVICE_OP(dev_ops, drain_rq); 1283 SET_DEVICE_OP(dev_ops, drain_sq); 1284 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 1285 SET_DEVICE_OP(dev_ops, get_dma_mr); 1286 SET_DEVICE_OP(dev_ops, get_hw_stats); 1287 SET_DEVICE_OP(dev_ops, get_link_layer); 1288 SET_DEVICE_OP(dev_ops, get_netdev); 1289 SET_DEVICE_OP(dev_ops, get_port_immutable); 1290 SET_DEVICE_OP(dev_ops, get_vector_affinity); 1291 SET_DEVICE_OP(dev_ops, get_vf_config); 1292 SET_DEVICE_OP(dev_ops, get_vf_stats); 1293 SET_DEVICE_OP(dev_ops, map_mr_sg); 1294 SET_DEVICE_OP(dev_ops, map_phys_fmr); 1295 SET_DEVICE_OP(dev_ops, mmap); 1296 SET_DEVICE_OP(dev_ops, modify_ah); 1297 SET_DEVICE_OP(dev_ops, modify_cq); 1298 SET_DEVICE_OP(dev_ops, modify_device); 1299 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 1300 SET_DEVICE_OP(dev_ops, modify_port); 1301 SET_DEVICE_OP(dev_ops, modify_qp); 1302 SET_DEVICE_OP(dev_ops, modify_srq); 1303 SET_DEVICE_OP(dev_ops, modify_wq); 1304 SET_DEVICE_OP(dev_ops, peek_cq); 1305 SET_DEVICE_OP(dev_ops, poll_cq); 1306 SET_DEVICE_OP(dev_ops, post_recv); 1307 SET_DEVICE_OP(dev_ops, post_send); 1308 SET_DEVICE_OP(dev_ops, post_srq_recv); 1309 SET_DEVICE_OP(dev_ops, process_mad); 1310 SET_DEVICE_OP(dev_ops, query_ah); 1311 SET_DEVICE_OP(dev_ops, query_device); 1312 SET_DEVICE_OP(dev_ops, query_gid); 1313 SET_DEVICE_OP(dev_ops, query_pkey); 1314 SET_DEVICE_OP(dev_ops, query_port); 1315 SET_DEVICE_OP(dev_ops, query_qp); 1316 SET_DEVICE_OP(dev_ops, query_srq); 1317 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 1318 SET_DEVICE_OP(dev_ops, read_counters); 1319 SET_DEVICE_OP(dev_ops, reg_dm_mr); 1320 SET_DEVICE_OP(dev_ops, reg_user_mr); 1321 SET_DEVICE_OP(dev_ops, req_ncomp_notif); 1322 SET_DEVICE_OP(dev_ops, req_notify_cq); 1323 SET_DEVICE_OP(dev_ops, rereg_user_mr); 1324 SET_DEVICE_OP(dev_ops, resize_cq); 1325 SET_DEVICE_OP(dev_ops, set_vf_guid); 1326 SET_DEVICE_OP(dev_ops, set_vf_link_state); 1327 SET_DEVICE_OP(dev_ops, unmap_fmr); 1328 } 1329 EXPORT_SYMBOL(ib_set_device_ops); 1330 1331 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 1332 [RDMA_NL_LS_OP_RESOLVE] = { 1333 .doit = ib_nl_handle_resolve_resp, 1334 .flags = RDMA_NL_ADMIN_PERM, 1335 }, 1336 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 1337 .doit = ib_nl_handle_set_timeout, 1338 .flags = RDMA_NL_ADMIN_PERM, 1339 }, 1340 [RDMA_NL_LS_OP_IP_RESOLVE] = { 1341 .doit = ib_nl_handle_ip_res_resp, 1342 .flags = RDMA_NL_ADMIN_PERM, 1343 }, 1344 }; 1345 1346 static int __init ib_core_init(void) 1347 { 1348 int ret; 1349 1350 ib_wq = alloc_workqueue("infiniband", 0, 0); 1351 if (!ib_wq) 1352 return -ENOMEM; 1353 1354 ib_comp_wq = alloc_workqueue("ib-comp-wq", 1355 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 1356 if (!ib_comp_wq) { 1357 ret = -ENOMEM; 1358 goto err; 1359 } 1360 1361 ib_comp_unbound_wq = 1362 alloc_workqueue("ib-comp-unb-wq", 1363 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 1364 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 1365 if (!ib_comp_unbound_wq) { 1366 ret = -ENOMEM; 1367 goto err_comp; 1368 } 1369 1370 ret = class_register(&ib_class); 1371 if (ret) { 1372 pr_warn("Couldn't create InfiniBand device class\n"); 1373 goto err_comp_unbound; 1374 } 1375 1376 ret = rdma_nl_init(); 1377 if (ret) { 1378 pr_warn("Couldn't init IB netlink interface: err %d\n", ret); 1379 goto err_sysfs; 1380 } 1381 1382 ret = addr_init(); 1383 if (ret) { 1384 pr_warn("Could't init IB address resolution\n"); 1385 goto err_ibnl; 1386 } 1387 1388 ret = ib_mad_init(); 1389 if (ret) { 1390 pr_warn("Couldn't init IB MAD\n"); 1391 goto err_addr; 1392 } 1393 1394 ret = ib_sa_init(); 1395 if (ret) { 1396 pr_warn("Couldn't init SA\n"); 1397 goto err_mad; 1398 } 1399 1400 ret = register_lsm_notifier(&ibdev_lsm_nb); 1401 if (ret) { 1402 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 1403 goto err_sa; 1404 } 1405 1406 nldev_init(); 1407 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 1408 roce_gid_mgmt_init(); 1409 1410 return 0; 1411 1412 err_sa: 1413 ib_sa_cleanup(); 1414 err_mad: 1415 ib_mad_cleanup(); 1416 err_addr: 1417 addr_cleanup(); 1418 err_ibnl: 1419 rdma_nl_exit(); 1420 err_sysfs: 1421 class_unregister(&ib_class); 1422 err_comp_unbound: 1423 destroy_workqueue(ib_comp_unbound_wq); 1424 err_comp: 1425 destroy_workqueue(ib_comp_wq); 1426 err: 1427 destroy_workqueue(ib_wq); 1428 return ret; 1429 } 1430 1431 static void __exit ib_core_cleanup(void) 1432 { 1433 roce_gid_mgmt_cleanup(); 1434 nldev_exit(); 1435 rdma_nl_unregister(RDMA_NL_LS); 1436 unregister_lsm_notifier(&ibdev_lsm_nb); 1437 ib_sa_cleanup(); 1438 ib_mad_cleanup(); 1439 addr_cleanup(); 1440 rdma_nl_exit(); 1441 class_unregister(&ib_class); 1442 destroy_workqueue(ib_comp_unbound_wq); 1443 destroy_workqueue(ib_comp_wq); 1444 /* Make sure that any pending umem accounting work is done. */ 1445 destroy_workqueue(ib_wq); 1446 } 1447 1448 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 1449 1450 subsys_initcall(ib_core_init); 1451 module_exit(ib_core_cleanup); 1452