xref: /openbmc/linux/drivers/infiniband/core/device.c (revision c71bb9f8)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <linux/security.h>
42 #include <linux/notifier.h>
43 #include <linux/hashtable.h>
44 #include <rdma/rdma_netlink.h>
45 #include <rdma/ib_addr.h>
46 #include <rdma/ib_cache.h>
47 
48 #include "core_priv.h"
49 #include "restrack.h"
50 
51 MODULE_AUTHOR("Roland Dreier");
52 MODULE_DESCRIPTION("core kernel InfiniBand API");
53 MODULE_LICENSE("Dual BSD/GPL");
54 
55 struct workqueue_struct *ib_comp_wq;
56 struct workqueue_struct *ib_comp_unbound_wq;
57 struct workqueue_struct *ib_wq;
58 EXPORT_SYMBOL_GPL(ib_wq);
59 
60 /*
61  * Each of the three rwsem locks (devices, clients, client_data) protects the
62  * xarray of the same name. Specifically it allows the caller to assert that
63  * the MARK will/will not be changing under the lock, and for devices and
64  * clients, that the value in the xarray is still a valid pointer. Change of
65  * the MARK is linked to the object state, so holding the lock and testing the
66  * MARK also asserts that the contained object is in a certain state.
67  *
68  * This is used to build a two stage register/unregister flow where objects
69  * can continue to be in the xarray even though they are still in progress to
70  * register/unregister.
71  *
72  * The xarray itself provides additional locking, and restartable iteration,
73  * which is also relied on.
74  *
75  * Locks should not be nested, with the exception of client_data, which is
76  * allowed to nest under the read side of the other two locks.
77  *
78  * The devices_rwsem also protects the device name list, any change or
79  * assignment of device name must also hold the write side to guarantee unique
80  * names.
81  */
82 
83 /*
84  * devices contains devices that have had their names assigned. The
85  * devices may not be registered. Users that care about the registration
86  * status need to call ib_device_try_get() on the device to ensure it is
87  * registered, and keep it registered, for the required duration.
88  *
89  */
90 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
91 static DECLARE_RWSEM(devices_rwsem);
92 #define DEVICE_REGISTERED XA_MARK_1
93 
94 static LIST_HEAD(client_list);
95 #define CLIENT_REGISTERED XA_MARK_1
96 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
97 static DECLARE_RWSEM(clients_rwsem);
98 
99 /*
100  * If client_data is registered then the corresponding client must also still
101  * be registered.
102  */
103 #define CLIENT_DATA_REGISTERED XA_MARK_1
104 /*
105  * xarray has this behavior where it won't iterate over NULL values stored in
106  * allocated arrays.  So we need our own iterator to see all values stored in
107  * the array. This does the same thing as xa_for_each except that it also
108  * returns NULL valued entries if the array is allocating. Simplified to only
109  * work on simple xarrays.
110  */
111 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
112 			     xa_mark_t filter)
113 {
114 	XA_STATE(xas, xa, *indexp);
115 	void *entry;
116 
117 	rcu_read_lock();
118 	do {
119 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
120 		if (xa_is_zero(entry))
121 			break;
122 	} while (xas_retry(&xas, entry));
123 	rcu_read_unlock();
124 
125 	if (entry) {
126 		*indexp = xas.xa_index;
127 		if (xa_is_zero(entry))
128 			return NULL;
129 		return entry;
130 	}
131 	return XA_ERROR(-ENOENT);
132 }
133 #define xan_for_each_marked(xa, index, entry, filter)                          \
134 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
135 	     !xa_is_err(entry);                                                \
136 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
137 
138 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
139 static DEFINE_SPINLOCK(ndev_hash_lock);
140 static DECLARE_HASHTABLE(ndev_hash, 5);
141 
142 static void free_netdevs(struct ib_device *ib_dev);
143 static void ib_unregister_work(struct work_struct *work);
144 static void __ib_unregister_device(struct ib_device *device);
145 static int ib_security_change(struct notifier_block *nb, unsigned long event,
146 			      void *lsm_data);
147 static void ib_policy_change_task(struct work_struct *work);
148 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
149 
150 static struct notifier_block ibdev_lsm_nb = {
151 	.notifier_call = ib_security_change,
152 };
153 
154 /* Pointer to the RCU head at the start of the ib_port_data array */
155 struct ib_port_data_rcu {
156 	struct rcu_head rcu_head;
157 	struct ib_port_data pdata[];
158 };
159 
160 static int ib_device_check_mandatory(struct ib_device *device)
161 {
162 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
163 	static const struct {
164 		size_t offset;
165 		char  *name;
166 	} mandatory_table[] = {
167 		IB_MANDATORY_FUNC(query_device),
168 		IB_MANDATORY_FUNC(query_port),
169 		IB_MANDATORY_FUNC(query_pkey),
170 		IB_MANDATORY_FUNC(alloc_pd),
171 		IB_MANDATORY_FUNC(dealloc_pd),
172 		IB_MANDATORY_FUNC(create_qp),
173 		IB_MANDATORY_FUNC(modify_qp),
174 		IB_MANDATORY_FUNC(destroy_qp),
175 		IB_MANDATORY_FUNC(post_send),
176 		IB_MANDATORY_FUNC(post_recv),
177 		IB_MANDATORY_FUNC(create_cq),
178 		IB_MANDATORY_FUNC(destroy_cq),
179 		IB_MANDATORY_FUNC(poll_cq),
180 		IB_MANDATORY_FUNC(req_notify_cq),
181 		IB_MANDATORY_FUNC(get_dma_mr),
182 		IB_MANDATORY_FUNC(dereg_mr),
183 		IB_MANDATORY_FUNC(get_port_immutable)
184 	};
185 	int i;
186 
187 	device->kverbs_provider = true;
188 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
189 		if (!*(void **) ((void *) &device->ops +
190 				 mandatory_table[i].offset)) {
191 			device->kverbs_provider = false;
192 			break;
193 		}
194 	}
195 
196 	return 0;
197 }
198 
199 /*
200  * Caller must perform ib_device_put() to return the device reference count
201  * when ib_device_get_by_index() returns valid device pointer.
202  */
203 struct ib_device *ib_device_get_by_index(u32 index)
204 {
205 	struct ib_device *device;
206 
207 	down_read(&devices_rwsem);
208 	device = xa_load(&devices, index);
209 	if (device) {
210 		if (!ib_device_try_get(device))
211 			device = NULL;
212 	}
213 	up_read(&devices_rwsem);
214 	return device;
215 }
216 
217 /**
218  * ib_device_put - Release IB device reference
219  * @device: device whose reference to be released
220  *
221  * ib_device_put() releases reference to the IB device to allow it to be
222  * unregistered and eventually free.
223  */
224 void ib_device_put(struct ib_device *device)
225 {
226 	if (refcount_dec_and_test(&device->refcount))
227 		complete(&device->unreg_completion);
228 }
229 EXPORT_SYMBOL(ib_device_put);
230 
231 static struct ib_device *__ib_device_get_by_name(const char *name)
232 {
233 	struct ib_device *device;
234 	unsigned long index;
235 
236 	xa_for_each (&devices, index, device)
237 		if (!strcmp(name, dev_name(&device->dev)))
238 			return device;
239 
240 	return NULL;
241 }
242 
243 /**
244  * ib_device_get_by_name - Find an IB device by name
245  * @name: The name to look for
246  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
247  *
248  * Find and hold an ib_device by its name. The caller must call
249  * ib_device_put() on the returned pointer.
250  */
251 struct ib_device *ib_device_get_by_name(const char *name,
252 					enum rdma_driver_id driver_id)
253 {
254 	struct ib_device *device;
255 
256 	down_read(&devices_rwsem);
257 	device = __ib_device_get_by_name(name);
258 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
259 	    device->driver_id != driver_id)
260 		device = NULL;
261 
262 	if (device) {
263 		if (!ib_device_try_get(device))
264 			device = NULL;
265 	}
266 	up_read(&devices_rwsem);
267 	return device;
268 }
269 EXPORT_SYMBOL(ib_device_get_by_name);
270 
271 int ib_device_rename(struct ib_device *ibdev, const char *name)
272 {
273 	int ret;
274 
275 	down_write(&devices_rwsem);
276 	if (!strcmp(name, dev_name(&ibdev->dev))) {
277 		ret = 0;
278 		goto out;
279 	}
280 
281 	if (__ib_device_get_by_name(name)) {
282 		ret = -EEXIST;
283 		goto out;
284 	}
285 
286 	ret = device_rename(&ibdev->dev, name);
287 	if (ret)
288 		goto out;
289 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
290 out:
291 	up_write(&devices_rwsem);
292 	return ret;
293 }
294 
295 static int alloc_name(struct ib_device *ibdev, const char *name)
296 {
297 	struct ib_device *device;
298 	unsigned long index;
299 	struct ida inuse;
300 	int rc;
301 	int i;
302 
303 	lockdep_assert_held_exclusive(&devices_rwsem);
304 	ida_init(&inuse);
305 	xa_for_each (&devices, index, device) {
306 		char buf[IB_DEVICE_NAME_MAX];
307 
308 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
309 			continue;
310 		if (i < 0 || i >= INT_MAX)
311 			continue;
312 		snprintf(buf, sizeof buf, name, i);
313 		if (strcmp(buf, dev_name(&device->dev)) != 0)
314 			continue;
315 
316 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
317 		if (rc < 0)
318 			goto out;
319 	}
320 
321 	rc = ida_alloc(&inuse, GFP_KERNEL);
322 	if (rc < 0)
323 		goto out;
324 
325 	rc = dev_set_name(&ibdev->dev, name, rc);
326 out:
327 	ida_destroy(&inuse);
328 	return rc;
329 }
330 
331 static void ib_device_release(struct device *device)
332 {
333 	struct ib_device *dev = container_of(device, struct ib_device, dev);
334 
335 	free_netdevs(dev);
336 	WARN_ON(refcount_read(&dev->refcount));
337 	ib_cache_release_one(dev);
338 	ib_security_release_port_pkey_list(dev);
339 	xa_destroy(&dev->client_data);
340 	if (dev->port_data)
341 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
342 				       pdata[0]),
343 			  rcu_head);
344 	kfree_rcu(dev, rcu_head);
345 }
346 
347 static int ib_device_uevent(struct device *device,
348 			    struct kobj_uevent_env *env)
349 {
350 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
351 		return -ENOMEM;
352 
353 	/*
354 	 * It would be nice to pass the node GUID with the event...
355 	 */
356 
357 	return 0;
358 }
359 
360 static struct class ib_class = {
361 	.name    = "infiniband",
362 	.dev_release = ib_device_release,
363 	.dev_uevent = ib_device_uevent,
364 };
365 
366 /**
367  * _ib_alloc_device - allocate an IB device struct
368  * @size:size of structure to allocate
369  *
370  * Low-level drivers should use ib_alloc_device() to allocate &struct
371  * ib_device.  @size is the size of the structure to be allocated,
372  * including any private data used by the low-level driver.
373  * ib_dealloc_device() must be used to free structures allocated with
374  * ib_alloc_device().
375  */
376 struct ib_device *_ib_alloc_device(size_t size)
377 {
378 	struct ib_device *device;
379 
380 	if (WARN_ON(size < sizeof(struct ib_device)))
381 		return NULL;
382 
383 	device = kzalloc(size, GFP_KERNEL);
384 	if (!device)
385 		return NULL;
386 
387 	if (rdma_restrack_init(device)) {
388 		kfree(device);
389 		return NULL;
390 	}
391 
392 	device->dev.class = &ib_class;
393 	device->groups[0] = &ib_dev_attr_group;
394 	device->dev.groups = device->groups;
395 	device_initialize(&device->dev);
396 
397 	INIT_LIST_HEAD(&device->event_handler_list);
398 	spin_lock_init(&device->event_handler_lock);
399 	mutex_init(&device->unregistration_lock);
400 	/*
401 	 * client_data needs to be alloc because we don't want our mark to be
402 	 * destroyed if the user stores NULL in the client data.
403 	 */
404 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
405 	init_rwsem(&device->client_data_rwsem);
406 	INIT_LIST_HEAD(&device->port_list);
407 	init_completion(&device->unreg_completion);
408 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
409 
410 	return device;
411 }
412 EXPORT_SYMBOL(_ib_alloc_device);
413 
414 /**
415  * ib_dealloc_device - free an IB device struct
416  * @device:structure to free
417  *
418  * Free a structure allocated with ib_alloc_device().
419  */
420 void ib_dealloc_device(struct ib_device *device)
421 {
422 	if (device->ops.dealloc_driver)
423 		device->ops.dealloc_driver(device);
424 
425 	/*
426 	 * ib_unregister_driver() requires all devices to remain in the xarray
427 	 * while their ops are callable. The last op we call is dealloc_driver
428 	 * above.  This is needed to create a fence on op callbacks prior to
429 	 * allowing the driver module to unload.
430 	 */
431 	down_write(&devices_rwsem);
432 	if (xa_load(&devices, device->index) == device)
433 		xa_erase(&devices, device->index);
434 	up_write(&devices_rwsem);
435 
436 	/* Expedite releasing netdev references */
437 	free_netdevs(device);
438 
439 	WARN_ON(!xa_empty(&device->client_data));
440 	WARN_ON(refcount_read(&device->refcount));
441 	rdma_restrack_clean(device);
442 	/* Balances with device_initialize */
443 	put_device(&device->dev);
444 }
445 EXPORT_SYMBOL(ib_dealloc_device);
446 
447 /*
448  * add_client_context() and remove_client_context() must be safe against
449  * parallel calls on the same device - registration/unregistration of both the
450  * device and client can be occurring in parallel.
451  *
452  * The routines need to be a fence, any caller must not return until the add
453  * or remove is fully completed.
454  */
455 static int add_client_context(struct ib_device *device,
456 			      struct ib_client *client)
457 {
458 	int ret = 0;
459 
460 	if (!device->kverbs_provider && !client->no_kverbs_req)
461 		return 0;
462 
463 	down_write(&device->client_data_rwsem);
464 	/*
465 	 * Another caller to add_client_context got here first and has already
466 	 * completely initialized context.
467 	 */
468 	if (xa_get_mark(&device->client_data, client->client_id,
469 		    CLIENT_DATA_REGISTERED))
470 		goto out;
471 
472 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
473 			      GFP_KERNEL));
474 	if (ret)
475 		goto out;
476 	downgrade_write(&device->client_data_rwsem);
477 	if (client->add)
478 		client->add(device);
479 
480 	/* Readers shall not see a client until add has been completed */
481 	xa_set_mark(&device->client_data, client->client_id,
482 		    CLIENT_DATA_REGISTERED);
483 	up_read(&device->client_data_rwsem);
484 	return 0;
485 
486 out:
487 	up_write(&device->client_data_rwsem);
488 	return ret;
489 }
490 
491 static void remove_client_context(struct ib_device *device,
492 				  unsigned int client_id)
493 {
494 	struct ib_client *client;
495 	void *client_data;
496 
497 	down_write(&device->client_data_rwsem);
498 	if (!xa_get_mark(&device->client_data, client_id,
499 			 CLIENT_DATA_REGISTERED)) {
500 		up_write(&device->client_data_rwsem);
501 		return;
502 	}
503 	client_data = xa_load(&device->client_data, client_id);
504 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
505 	client = xa_load(&clients, client_id);
506 	downgrade_write(&device->client_data_rwsem);
507 
508 	/*
509 	 * Notice we cannot be holding any exclusive locks when calling the
510 	 * remove callback as the remove callback can recurse back into any
511 	 * public functions in this module and thus try for any locks those
512 	 * functions take.
513 	 *
514 	 * For this reason clients and drivers should not call the
515 	 * unregistration functions will holdling any locks.
516 	 *
517 	 * It tempting to drop the client_data_rwsem too, but this is required
518 	 * to ensure that unregister_client does not return until all clients
519 	 * are completely unregistered, which is required to avoid module
520 	 * unloading races.
521 	 */
522 	if (client->remove)
523 		client->remove(device, client_data);
524 
525 	xa_erase(&device->client_data, client_id);
526 	up_read(&device->client_data_rwsem);
527 }
528 
529 static int alloc_port_data(struct ib_device *device)
530 {
531 	struct ib_port_data_rcu *pdata_rcu;
532 	unsigned int port;
533 
534 	if (device->port_data)
535 		return 0;
536 
537 	/* This can only be called once the physical port range is defined */
538 	if (WARN_ON(!device->phys_port_cnt))
539 		return -EINVAL;
540 
541 	/*
542 	 * device->port_data is indexed directly by the port number to make
543 	 * access to this data as efficient as possible.
544 	 *
545 	 * Therefore port_data is declared as a 1 based array with potential
546 	 * empty slots at the beginning.
547 	 */
548 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
549 					rdma_end_port(device) + 1),
550 			    GFP_KERNEL);
551 	if (!pdata_rcu)
552 		return -ENOMEM;
553 	/*
554 	 * The rcu_head is put in front of the port data array and the stored
555 	 * pointer is adjusted since we never need to see that member until
556 	 * kfree_rcu.
557 	 */
558 	device->port_data = pdata_rcu->pdata;
559 
560 	rdma_for_each_port (device, port) {
561 		struct ib_port_data *pdata = &device->port_data[port];
562 
563 		pdata->ib_dev = device;
564 		spin_lock_init(&pdata->pkey_list_lock);
565 		INIT_LIST_HEAD(&pdata->pkey_list);
566 		spin_lock_init(&pdata->netdev_lock);
567 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
568 	}
569 	return 0;
570 }
571 
572 static int verify_immutable(const struct ib_device *dev, u8 port)
573 {
574 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
575 			    rdma_max_mad_size(dev, port) != 0);
576 }
577 
578 static int setup_port_data(struct ib_device *device)
579 {
580 	unsigned int port;
581 	int ret;
582 
583 	ret = alloc_port_data(device);
584 	if (ret)
585 		return ret;
586 
587 	rdma_for_each_port (device, port) {
588 		struct ib_port_data *pdata = &device->port_data[port];
589 
590 		ret = device->ops.get_port_immutable(device, port,
591 						     &pdata->immutable);
592 		if (ret)
593 			return ret;
594 
595 		if (verify_immutable(device, port))
596 			return -EINVAL;
597 	}
598 	return 0;
599 }
600 
601 void ib_get_device_fw_str(struct ib_device *dev, char *str)
602 {
603 	if (dev->ops.get_dev_fw_str)
604 		dev->ops.get_dev_fw_str(dev, str);
605 	else
606 		str[0] = '\0';
607 }
608 EXPORT_SYMBOL(ib_get_device_fw_str);
609 
610 static void ib_policy_change_task(struct work_struct *work)
611 {
612 	struct ib_device *dev;
613 	unsigned long index;
614 
615 	down_read(&devices_rwsem);
616 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
617 		unsigned int i;
618 
619 		rdma_for_each_port (dev, i) {
620 			u64 sp;
621 			int ret = ib_get_cached_subnet_prefix(dev,
622 							      i,
623 							      &sp);
624 
625 			WARN_ONCE(ret,
626 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
627 				  ret);
628 			if (!ret)
629 				ib_security_cache_change(dev, i, sp);
630 		}
631 	}
632 	up_read(&devices_rwsem);
633 }
634 
635 static int ib_security_change(struct notifier_block *nb, unsigned long event,
636 			      void *lsm_data)
637 {
638 	if (event != LSM_POLICY_CHANGE)
639 		return NOTIFY_DONE;
640 
641 	schedule_work(&ib_policy_change_work);
642 	ib_mad_agent_security_change();
643 
644 	return NOTIFY_OK;
645 }
646 
647 /*
648  * Assign the unique string device name and the unique device index. This is
649  * undone by ib_dealloc_device.
650  */
651 static int assign_name(struct ib_device *device, const char *name)
652 {
653 	static u32 last_id;
654 	int ret;
655 
656 	down_write(&devices_rwsem);
657 	/* Assign a unique name to the device */
658 	if (strchr(name, '%'))
659 		ret = alloc_name(device, name);
660 	else
661 		ret = dev_set_name(&device->dev, name);
662 	if (ret)
663 		goto out;
664 
665 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
666 		ret = -ENFILE;
667 		goto out;
668 	}
669 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
670 
671 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
672 			&last_id, GFP_KERNEL);
673 	if (ret > 0)
674 		ret = 0;
675 
676 out:
677 	up_write(&devices_rwsem);
678 	return ret;
679 }
680 
681 static void setup_dma_device(struct ib_device *device)
682 {
683 	struct device *parent = device->dev.parent;
684 
685 	WARN_ON_ONCE(device->dma_device);
686 	if (device->dev.dma_ops) {
687 		/*
688 		 * The caller provided custom DMA operations. Copy the
689 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
690 		 * into device->dev.
691 		 */
692 		device->dma_device = &device->dev;
693 		if (!device->dev.dma_mask) {
694 			if (parent)
695 				device->dev.dma_mask = parent->dma_mask;
696 			else
697 				WARN_ON_ONCE(true);
698 		}
699 		if (!device->dev.coherent_dma_mask) {
700 			if (parent)
701 				device->dev.coherent_dma_mask =
702 					parent->coherent_dma_mask;
703 			else
704 				WARN_ON_ONCE(true);
705 		}
706 	} else {
707 		/*
708 		 * The caller did not provide custom DMA operations. Use the
709 		 * DMA mapping operations of the parent device.
710 		 */
711 		WARN_ON_ONCE(!parent);
712 		device->dma_device = parent;
713 	}
714 }
715 
716 /*
717  * setup_device() allocates memory and sets up data that requires calling the
718  * device ops, this is the only reason these actions are not done during
719  * ib_alloc_device. It is undone by ib_dealloc_device().
720  */
721 static int setup_device(struct ib_device *device)
722 {
723 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
724 	int ret;
725 
726 	setup_dma_device(device);
727 
728 	ret = ib_device_check_mandatory(device);
729 	if (ret)
730 		return ret;
731 
732 	ret = setup_port_data(device);
733 	if (ret) {
734 		dev_warn(&device->dev, "Couldn't create per-port data\n");
735 		return ret;
736 	}
737 
738 	memset(&device->attrs, 0, sizeof(device->attrs));
739 	ret = device->ops.query_device(device, &device->attrs, &uhw);
740 	if (ret) {
741 		dev_warn(&device->dev,
742 			 "Couldn't query the device attributes\n");
743 		return ret;
744 	}
745 
746 	return 0;
747 }
748 
749 static void disable_device(struct ib_device *device)
750 {
751 	struct ib_client *client;
752 
753 	WARN_ON(!refcount_read(&device->refcount));
754 
755 	down_write(&devices_rwsem);
756 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
757 	up_write(&devices_rwsem);
758 
759 	down_read(&clients_rwsem);
760 	list_for_each_entry_reverse(client, &client_list, list)
761 		remove_client_context(device, client->client_id);
762 	up_read(&clients_rwsem);
763 
764 	/* Pairs with refcount_set in enable_device */
765 	ib_device_put(device);
766 	wait_for_completion(&device->unreg_completion);
767 
768 	/* Expedite removing unregistered pointers from the hash table */
769 	free_netdevs(device);
770 }
771 
772 /*
773  * An enabled device is visible to all clients and to all the public facing
774  * APIs that return a device pointer. This always returns with a new get, even
775  * if it fails.
776  */
777 static int enable_device_and_get(struct ib_device *device)
778 {
779 	struct ib_client *client;
780 	unsigned long index;
781 	int ret = 0;
782 
783 	/*
784 	 * One ref belongs to the xa and the other belongs to this
785 	 * thread. This is needed to guard against parallel unregistration.
786 	 */
787 	refcount_set(&device->refcount, 2);
788 	down_write(&devices_rwsem);
789 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
790 
791 	/*
792 	 * By using downgrade_write() we ensure that no other thread can clear
793 	 * DEVICE_REGISTERED while we are completing the client setup.
794 	 */
795 	downgrade_write(&devices_rwsem);
796 
797 	if (device->ops.enable_driver) {
798 		ret = device->ops.enable_driver(device);
799 		if (ret)
800 			goto out;
801 	}
802 
803 	down_read(&clients_rwsem);
804 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
805 		ret = add_client_context(device, client);
806 		if (ret)
807 			break;
808 	}
809 	up_read(&clients_rwsem);
810 
811 out:
812 	up_read(&devices_rwsem);
813 	return ret;
814 }
815 
816 /**
817  * ib_register_device - Register an IB device with IB core
818  * @device:Device to register
819  *
820  * Low-level drivers use ib_register_device() to register their
821  * devices with the IB core.  All registered clients will receive a
822  * callback for each device that is added. @device must be allocated
823  * with ib_alloc_device().
824  *
825  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
826  * asynchronously then the device pointer may become freed as soon as this
827  * function returns.
828  */
829 int ib_register_device(struct ib_device *device, const char *name)
830 {
831 	int ret;
832 
833 	ret = assign_name(device, name);
834 	if (ret)
835 		return ret;
836 
837 	ret = setup_device(device);
838 	if (ret)
839 		return ret;
840 
841 	ret = ib_cache_setup_one(device);
842 	if (ret) {
843 		dev_warn(&device->dev,
844 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
845 		return ret;
846 	}
847 
848 	ib_device_register_rdmacg(device);
849 
850 	ret = device_add(&device->dev);
851 	if (ret)
852 		goto cg_cleanup;
853 
854 	ret = ib_device_register_sysfs(device);
855 	if (ret) {
856 		dev_warn(&device->dev,
857 			 "Couldn't register device with driver model\n");
858 		goto dev_cleanup;
859 	}
860 
861 	ret = enable_device_and_get(device);
862 	if (ret) {
863 		void (*dealloc_fn)(struct ib_device *);
864 
865 		/*
866 		 * If we hit this error flow then we don't want to
867 		 * automatically dealloc the device since the caller is
868 		 * expected to call ib_dealloc_device() after
869 		 * ib_register_device() fails. This is tricky due to the
870 		 * possibility for a parallel unregistration along with this
871 		 * error flow. Since we have a refcount here we know any
872 		 * parallel flow is stopped in disable_device and will see the
873 		 * NULL pointers, causing the responsibility to
874 		 * ib_dealloc_device() to revert back to this thread.
875 		 */
876 		dealloc_fn = device->ops.dealloc_driver;
877 		device->ops.dealloc_driver = NULL;
878 		ib_device_put(device);
879 		__ib_unregister_device(device);
880 		device->ops.dealloc_driver = dealloc_fn;
881 		return ret;
882 	}
883 	ib_device_put(device);
884 
885 	return 0;
886 
887 dev_cleanup:
888 	device_del(&device->dev);
889 cg_cleanup:
890 	ib_device_unregister_rdmacg(device);
891 	ib_cache_cleanup_one(device);
892 	return ret;
893 }
894 EXPORT_SYMBOL(ib_register_device);
895 
896 /* Callers must hold a get on the device. */
897 static void __ib_unregister_device(struct ib_device *ib_dev)
898 {
899 	/*
900 	 * We have a registration lock so that all the calls to unregister are
901 	 * fully fenced, once any unregister returns the device is truely
902 	 * unregistered even if multiple callers are unregistering it at the
903 	 * same time. This also interacts with the registration flow and
904 	 * provides sane semantics if register and unregister are racing.
905 	 */
906 	mutex_lock(&ib_dev->unregistration_lock);
907 	if (!refcount_read(&ib_dev->refcount))
908 		goto out;
909 
910 	disable_device(ib_dev);
911 	ib_device_unregister_sysfs(ib_dev);
912 	device_del(&ib_dev->dev);
913 	ib_device_unregister_rdmacg(ib_dev);
914 	ib_cache_cleanup_one(ib_dev);
915 
916 	/*
917 	 * Drivers using the new flow may not call ib_dealloc_device except
918 	 * in error unwind prior to registration success.
919 	 */
920 	if (ib_dev->ops.dealloc_driver) {
921 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
922 		ib_dealloc_device(ib_dev);
923 	}
924 out:
925 	mutex_unlock(&ib_dev->unregistration_lock);
926 }
927 
928 /**
929  * ib_unregister_device - Unregister an IB device
930  * @device: The device to unregister
931  *
932  * Unregister an IB device.  All clients will receive a remove callback.
933  *
934  * Callers should call this routine only once, and protect against races with
935  * registration. Typically it should only be called as part of a remove
936  * callback in an implementation of driver core's struct device_driver and
937  * related.
938  *
939  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
940  * this function.
941  */
942 void ib_unregister_device(struct ib_device *ib_dev)
943 {
944 	get_device(&ib_dev->dev);
945 	__ib_unregister_device(ib_dev);
946 	put_device(&ib_dev->dev);
947 }
948 EXPORT_SYMBOL(ib_unregister_device);
949 
950 /**
951  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
952  * device: The device to unregister
953  *
954  * This is the same as ib_unregister_device(), except it includes an internal
955  * ib_device_put() that should match a 'get' obtained by the caller.
956  *
957  * It is safe to call this routine concurrently from multiple threads while
958  * holding the 'get'. When the function returns the device is fully
959  * unregistered.
960  *
961  * Drivers using this flow MUST use the driver_unregister callback to clean up
962  * their resources associated with the device and dealloc it.
963  */
964 void ib_unregister_device_and_put(struct ib_device *ib_dev)
965 {
966 	WARN_ON(!ib_dev->ops.dealloc_driver);
967 	get_device(&ib_dev->dev);
968 	ib_device_put(ib_dev);
969 	__ib_unregister_device(ib_dev);
970 	put_device(&ib_dev->dev);
971 }
972 EXPORT_SYMBOL(ib_unregister_device_and_put);
973 
974 /**
975  * ib_unregister_driver - Unregister all IB devices for a driver
976  * @driver_id: The driver to unregister
977  *
978  * This implements a fence for device unregistration. It only returns once all
979  * devices associated with the driver_id have fully completed their
980  * unregistration and returned from ib_unregister_device*().
981  *
982  * If device's are not yet unregistered it goes ahead and starts unregistering
983  * them.
984  *
985  * This does not block creation of new devices with the given driver_id, that
986  * is the responsibility of the caller.
987  */
988 void ib_unregister_driver(enum rdma_driver_id driver_id)
989 {
990 	struct ib_device *ib_dev;
991 	unsigned long index;
992 
993 	down_read(&devices_rwsem);
994 	xa_for_each (&devices, index, ib_dev) {
995 		if (ib_dev->driver_id != driver_id)
996 			continue;
997 
998 		get_device(&ib_dev->dev);
999 		up_read(&devices_rwsem);
1000 
1001 		WARN_ON(!ib_dev->ops.dealloc_driver);
1002 		__ib_unregister_device(ib_dev);
1003 
1004 		put_device(&ib_dev->dev);
1005 		down_read(&devices_rwsem);
1006 	}
1007 	up_read(&devices_rwsem);
1008 }
1009 EXPORT_SYMBOL(ib_unregister_driver);
1010 
1011 static void ib_unregister_work(struct work_struct *work)
1012 {
1013 	struct ib_device *ib_dev =
1014 		container_of(work, struct ib_device, unregistration_work);
1015 
1016 	__ib_unregister_device(ib_dev);
1017 	put_device(&ib_dev->dev);
1018 }
1019 
1020 /**
1021  * ib_unregister_device_queued - Unregister a device using a work queue
1022  * device: The device to unregister
1023  *
1024  * This schedules an asynchronous unregistration using a WQ for the device. A
1025  * driver should use this to avoid holding locks while doing unregistration,
1026  * such as holding the RTNL lock.
1027  *
1028  * Drivers using this API must use ib_unregister_driver before module unload
1029  * to ensure that all scheduled unregistrations have completed.
1030  */
1031 void ib_unregister_device_queued(struct ib_device *ib_dev)
1032 {
1033 	WARN_ON(!refcount_read(&ib_dev->refcount));
1034 	WARN_ON(!ib_dev->ops.dealloc_driver);
1035 	get_device(&ib_dev->dev);
1036 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1037 		put_device(&ib_dev->dev);
1038 }
1039 EXPORT_SYMBOL(ib_unregister_device_queued);
1040 
1041 static int assign_client_id(struct ib_client *client)
1042 {
1043 	int ret;
1044 
1045 	down_write(&clients_rwsem);
1046 	/*
1047 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1048 	 * achieve this we assign client_ids so they are sorted in
1049 	 * registration order, and retain a linked list we can reverse iterate
1050 	 * to get the LIFO order. The extra linked list can go away if xarray
1051 	 * learns to reverse iterate.
1052 	 */
1053 	if (list_empty(&client_list)) {
1054 		client->client_id = 0;
1055 	} else {
1056 		struct ib_client *last;
1057 
1058 		last = list_last_entry(&client_list, struct ib_client, list);
1059 		client->client_id = last->client_id + 1;
1060 	}
1061 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1062 	if (ret)
1063 		goto out;
1064 
1065 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1066 	list_add_tail(&client->list, &client_list);
1067 
1068 out:
1069 	up_write(&clients_rwsem);
1070 	return ret;
1071 }
1072 
1073 /**
1074  * ib_register_client - Register an IB client
1075  * @client:Client to register
1076  *
1077  * Upper level users of the IB drivers can use ib_register_client() to
1078  * register callbacks for IB device addition and removal.  When an IB
1079  * device is added, each registered client's add method will be called
1080  * (in the order the clients were registered), and when a device is
1081  * removed, each client's remove method will be called (in the reverse
1082  * order that clients were registered).  In addition, when
1083  * ib_register_client() is called, the client will receive an add
1084  * callback for all devices already registered.
1085  */
1086 int ib_register_client(struct ib_client *client)
1087 {
1088 	struct ib_device *device;
1089 	unsigned long index;
1090 	int ret;
1091 
1092 	ret = assign_client_id(client);
1093 	if (ret)
1094 		return ret;
1095 
1096 	down_read(&devices_rwsem);
1097 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1098 		ret = add_client_context(device, client);
1099 		if (ret) {
1100 			up_read(&devices_rwsem);
1101 			ib_unregister_client(client);
1102 			return ret;
1103 		}
1104 	}
1105 	up_read(&devices_rwsem);
1106 	return 0;
1107 }
1108 EXPORT_SYMBOL(ib_register_client);
1109 
1110 /**
1111  * ib_unregister_client - Unregister an IB client
1112  * @client:Client to unregister
1113  *
1114  * Upper level users use ib_unregister_client() to remove their client
1115  * registration.  When ib_unregister_client() is called, the client
1116  * will receive a remove callback for each IB device still registered.
1117  *
1118  * This is a full fence, once it returns no client callbacks will be called,
1119  * or are running in another thread.
1120  */
1121 void ib_unregister_client(struct ib_client *client)
1122 {
1123 	struct ib_device *device;
1124 	unsigned long index;
1125 
1126 	down_write(&clients_rwsem);
1127 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1128 	up_write(&clients_rwsem);
1129 	/*
1130 	 * Every device still known must be serialized to make sure we are
1131 	 * done with the client callbacks before we return.
1132 	 */
1133 	down_read(&devices_rwsem);
1134 	xa_for_each (&devices, index, device)
1135 		remove_client_context(device, client->client_id);
1136 	up_read(&devices_rwsem);
1137 
1138 	down_write(&clients_rwsem);
1139 	list_del(&client->list);
1140 	xa_erase(&clients, client->client_id);
1141 	up_write(&clients_rwsem);
1142 }
1143 EXPORT_SYMBOL(ib_unregister_client);
1144 
1145 /**
1146  * ib_set_client_data - Set IB client context
1147  * @device:Device to set context for
1148  * @client:Client to set context for
1149  * @data:Context to set
1150  *
1151  * ib_set_client_data() sets client context data that can be retrieved with
1152  * ib_get_client_data(). This can only be called while the client is
1153  * registered to the device, once the ib_client remove() callback returns this
1154  * cannot be called.
1155  */
1156 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1157 			void *data)
1158 {
1159 	void *rc;
1160 
1161 	if (WARN_ON(IS_ERR(data)))
1162 		data = NULL;
1163 
1164 	rc = xa_store(&device->client_data, client->client_id, data,
1165 		      GFP_KERNEL);
1166 	WARN_ON(xa_is_err(rc));
1167 }
1168 EXPORT_SYMBOL(ib_set_client_data);
1169 
1170 /**
1171  * ib_register_event_handler - Register an IB event handler
1172  * @event_handler:Handler to register
1173  *
1174  * ib_register_event_handler() registers an event handler that will be
1175  * called back when asynchronous IB events occur (as defined in
1176  * chapter 11 of the InfiniBand Architecture Specification).  This
1177  * callback may occur in interrupt context.
1178  */
1179 void ib_register_event_handler(struct ib_event_handler *event_handler)
1180 {
1181 	unsigned long flags;
1182 
1183 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1184 	list_add_tail(&event_handler->list,
1185 		      &event_handler->device->event_handler_list);
1186 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1187 }
1188 EXPORT_SYMBOL(ib_register_event_handler);
1189 
1190 /**
1191  * ib_unregister_event_handler - Unregister an event handler
1192  * @event_handler:Handler to unregister
1193  *
1194  * Unregister an event handler registered with
1195  * ib_register_event_handler().
1196  */
1197 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1198 {
1199 	unsigned long flags;
1200 
1201 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1202 	list_del(&event_handler->list);
1203 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1204 }
1205 EXPORT_SYMBOL(ib_unregister_event_handler);
1206 
1207 /**
1208  * ib_dispatch_event - Dispatch an asynchronous event
1209  * @event:Event to dispatch
1210  *
1211  * Low-level drivers must call ib_dispatch_event() to dispatch the
1212  * event to all registered event handlers when an asynchronous event
1213  * occurs.
1214  */
1215 void ib_dispatch_event(struct ib_event *event)
1216 {
1217 	unsigned long flags;
1218 	struct ib_event_handler *handler;
1219 
1220 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1221 
1222 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1223 		handler->handler(handler, event);
1224 
1225 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1226 }
1227 EXPORT_SYMBOL(ib_dispatch_event);
1228 
1229 /**
1230  * ib_query_port - Query IB port attributes
1231  * @device:Device to query
1232  * @port_num:Port number to query
1233  * @port_attr:Port attributes
1234  *
1235  * ib_query_port() returns the attributes of a port through the
1236  * @port_attr pointer.
1237  */
1238 int ib_query_port(struct ib_device *device,
1239 		  u8 port_num,
1240 		  struct ib_port_attr *port_attr)
1241 {
1242 	union ib_gid gid;
1243 	int err;
1244 
1245 	if (!rdma_is_port_valid(device, port_num))
1246 		return -EINVAL;
1247 
1248 	memset(port_attr, 0, sizeof(*port_attr));
1249 	err = device->ops.query_port(device, port_num, port_attr);
1250 	if (err || port_attr->subnet_prefix)
1251 		return err;
1252 
1253 	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
1254 		return 0;
1255 
1256 	err = device->ops.query_gid(device, port_num, 0, &gid);
1257 	if (err)
1258 		return err;
1259 
1260 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL(ib_query_port);
1264 
1265 static void add_ndev_hash(struct ib_port_data *pdata)
1266 {
1267 	unsigned long flags;
1268 
1269 	might_sleep();
1270 
1271 	spin_lock_irqsave(&ndev_hash_lock, flags);
1272 	if (hash_hashed(&pdata->ndev_hash_link)) {
1273 		hash_del_rcu(&pdata->ndev_hash_link);
1274 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
1275 		/*
1276 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
1277 		 * grace period
1278 		 */
1279 		synchronize_rcu();
1280 		spin_lock_irqsave(&ndev_hash_lock, flags);
1281 	}
1282 	if (pdata->netdev)
1283 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
1284 			     (uintptr_t)pdata->netdev);
1285 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
1286 }
1287 
1288 /**
1289  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
1290  * @ib_dev: Device to modify
1291  * @ndev: net_device to affiliate, may be NULL
1292  * @port: IB port the net_device is connected to
1293  *
1294  * Drivers should use this to link the ib_device to a netdev so the netdev
1295  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
1296  * affiliated with any port.
1297  *
1298  * The caller must ensure that the given ndev is not unregistered or
1299  * unregistering, and that either the ib_device is unregistered or
1300  * ib_device_set_netdev() is called with NULL when the ndev sends a
1301  * NETDEV_UNREGISTER event.
1302  */
1303 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
1304 			 unsigned int port)
1305 {
1306 	struct net_device *old_ndev;
1307 	struct ib_port_data *pdata;
1308 	unsigned long flags;
1309 	int ret;
1310 
1311 	/*
1312 	 * Drivers wish to call this before ib_register_driver, so we have to
1313 	 * setup the port data early.
1314 	 */
1315 	ret = alloc_port_data(ib_dev);
1316 	if (ret)
1317 		return ret;
1318 
1319 	if (!rdma_is_port_valid(ib_dev, port))
1320 		return -EINVAL;
1321 
1322 	pdata = &ib_dev->port_data[port];
1323 	spin_lock_irqsave(&pdata->netdev_lock, flags);
1324 	old_ndev = rcu_dereference_protected(
1325 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
1326 	if (old_ndev == ndev) {
1327 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
1328 		return 0;
1329 	}
1330 
1331 	if (ndev)
1332 		dev_hold(ndev);
1333 	rcu_assign_pointer(pdata->netdev, ndev);
1334 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
1335 
1336 	add_ndev_hash(pdata);
1337 	if (old_ndev)
1338 		dev_put(old_ndev);
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(ib_device_set_netdev);
1343 
1344 static void free_netdevs(struct ib_device *ib_dev)
1345 {
1346 	unsigned long flags;
1347 	unsigned int port;
1348 
1349 	rdma_for_each_port (ib_dev, port) {
1350 		struct ib_port_data *pdata = &ib_dev->port_data[port];
1351 		struct net_device *ndev;
1352 
1353 		spin_lock_irqsave(&pdata->netdev_lock, flags);
1354 		ndev = rcu_dereference_protected(
1355 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
1356 		if (ndev) {
1357 			spin_lock(&ndev_hash_lock);
1358 			hash_del_rcu(&pdata->ndev_hash_link);
1359 			spin_unlock(&ndev_hash_lock);
1360 
1361 			/*
1362 			 * If this is the last dev_put there is still a
1363 			 * synchronize_rcu before the netdev is kfreed, so we
1364 			 * can continue to rely on unlocked pointer
1365 			 * comparisons after the put
1366 			 */
1367 			rcu_assign_pointer(pdata->netdev, NULL);
1368 			dev_put(ndev);
1369 		}
1370 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
1371 	}
1372 }
1373 
1374 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
1375 					unsigned int port)
1376 {
1377 	struct ib_port_data *pdata;
1378 	struct net_device *res;
1379 
1380 	if (!rdma_is_port_valid(ib_dev, port))
1381 		return NULL;
1382 
1383 	pdata = &ib_dev->port_data[port];
1384 
1385 	/*
1386 	 * New drivers should use ib_device_set_netdev() not the legacy
1387 	 * get_netdev().
1388 	 */
1389 	if (ib_dev->ops.get_netdev)
1390 		res = ib_dev->ops.get_netdev(ib_dev, port);
1391 	else {
1392 		spin_lock(&pdata->netdev_lock);
1393 		res = rcu_dereference_protected(
1394 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
1395 		if (res)
1396 			dev_hold(res);
1397 		spin_unlock(&pdata->netdev_lock);
1398 	}
1399 
1400 	/*
1401 	 * If we are starting to unregister expedite things by preventing
1402 	 * propagation of an unregistering netdev.
1403 	 */
1404 	if (res && res->reg_state != NETREG_REGISTERED) {
1405 		dev_put(res);
1406 		return NULL;
1407 	}
1408 
1409 	return res;
1410 }
1411 
1412 /**
1413  * ib_device_get_by_netdev - Find an IB device associated with a netdev
1414  * @ndev: netdev to locate
1415  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
1416  *
1417  * Find and hold an ib_device that is associated with a netdev via
1418  * ib_device_set_netdev(). The caller must call ib_device_put() on the
1419  * returned pointer.
1420  */
1421 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
1422 					  enum rdma_driver_id driver_id)
1423 {
1424 	struct ib_device *res = NULL;
1425 	struct ib_port_data *cur;
1426 
1427 	rcu_read_lock();
1428 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
1429 				    (uintptr_t)ndev) {
1430 		if (rcu_access_pointer(cur->netdev) == ndev &&
1431 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
1432 		     cur->ib_dev->driver_id == driver_id) &&
1433 		    ib_device_try_get(cur->ib_dev)) {
1434 			res = cur->ib_dev;
1435 			break;
1436 		}
1437 	}
1438 	rcu_read_unlock();
1439 
1440 	return res;
1441 }
1442 EXPORT_SYMBOL(ib_device_get_by_netdev);
1443 
1444 /**
1445  * ib_enum_roce_netdev - enumerate all RoCE ports
1446  * @ib_dev : IB device we want to query
1447  * @filter: Should we call the callback?
1448  * @filter_cookie: Cookie passed to filter
1449  * @cb: Callback to call for each found RoCE ports
1450  * @cookie: Cookie passed back to the callback
1451  *
1452  * Enumerates all of the physical RoCE ports of ib_dev
1453  * which are related to netdevice and calls callback() on each
1454  * device for which filter() function returns non zero.
1455  */
1456 void ib_enum_roce_netdev(struct ib_device *ib_dev,
1457 			 roce_netdev_filter filter,
1458 			 void *filter_cookie,
1459 			 roce_netdev_callback cb,
1460 			 void *cookie)
1461 {
1462 	unsigned int port;
1463 
1464 	rdma_for_each_port (ib_dev, port)
1465 		if (rdma_protocol_roce(ib_dev, port)) {
1466 			struct net_device *idev =
1467 				ib_device_get_netdev(ib_dev, port);
1468 
1469 			if (filter(ib_dev, port, idev, filter_cookie))
1470 				cb(ib_dev, port, idev, cookie);
1471 
1472 			if (idev)
1473 				dev_put(idev);
1474 		}
1475 }
1476 
1477 /**
1478  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
1479  * @filter: Should we call the callback?
1480  * @filter_cookie: Cookie passed to filter
1481  * @cb: Callback to call for each found RoCE ports
1482  * @cookie: Cookie passed back to the callback
1483  *
1484  * Enumerates all RoCE devices' physical ports which are related
1485  * to netdevices and calls callback() on each device for which
1486  * filter() function returns non zero.
1487  */
1488 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
1489 			      void *filter_cookie,
1490 			      roce_netdev_callback cb,
1491 			      void *cookie)
1492 {
1493 	struct ib_device *dev;
1494 	unsigned long index;
1495 
1496 	down_read(&devices_rwsem);
1497 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
1498 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
1499 	up_read(&devices_rwsem);
1500 }
1501 
1502 /**
1503  * ib_enum_all_devs - enumerate all ib_devices
1504  * @cb: Callback to call for each found ib_device
1505  *
1506  * Enumerates all ib_devices and calls callback() on each device.
1507  */
1508 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
1509 		     struct netlink_callback *cb)
1510 {
1511 	unsigned long index;
1512 	struct ib_device *dev;
1513 	unsigned int idx = 0;
1514 	int ret = 0;
1515 
1516 	down_read(&devices_rwsem);
1517 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1518 		ret = nldev_cb(dev, skb, cb, idx);
1519 		if (ret)
1520 			break;
1521 		idx++;
1522 	}
1523 	up_read(&devices_rwsem);
1524 	return ret;
1525 }
1526 
1527 /**
1528  * ib_query_pkey - Get P_Key table entry
1529  * @device:Device to query
1530  * @port_num:Port number to query
1531  * @index:P_Key table index to query
1532  * @pkey:Returned P_Key
1533  *
1534  * ib_query_pkey() fetches the specified P_Key table entry.
1535  */
1536 int ib_query_pkey(struct ib_device *device,
1537 		  u8 port_num, u16 index, u16 *pkey)
1538 {
1539 	if (!rdma_is_port_valid(device, port_num))
1540 		return -EINVAL;
1541 
1542 	return device->ops.query_pkey(device, port_num, index, pkey);
1543 }
1544 EXPORT_SYMBOL(ib_query_pkey);
1545 
1546 /**
1547  * ib_modify_device - Change IB device attributes
1548  * @device:Device to modify
1549  * @device_modify_mask:Mask of attributes to change
1550  * @device_modify:New attribute values
1551  *
1552  * ib_modify_device() changes a device's attributes as specified by
1553  * the @device_modify_mask and @device_modify structure.
1554  */
1555 int ib_modify_device(struct ib_device *device,
1556 		     int device_modify_mask,
1557 		     struct ib_device_modify *device_modify)
1558 {
1559 	if (!device->ops.modify_device)
1560 		return -ENOSYS;
1561 
1562 	return device->ops.modify_device(device, device_modify_mask,
1563 					 device_modify);
1564 }
1565 EXPORT_SYMBOL(ib_modify_device);
1566 
1567 /**
1568  * ib_modify_port - Modifies the attributes for the specified port.
1569  * @device: The device to modify.
1570  * @port_num: The number of the port to modify.
1571  * @port_modify_mask: Mask used to specify which attributes of the port
1572  *   to change.
1573  * @port_modify: New attribute values for the port.
1574  *
1575  * ib_modify_port() changes a port's attributes as specified by the
1576  * @port_modify_mask and @port_modify structure.
1577  */
1578 int ib_modify_port(struct ib_device *device,
1579 		   u8 port_num, int port_modify_mask,
1580 		   struct ib_port_modify *port_modify)
1581 {
1582 	int rc;
1583 
1584 	if (!rdma_is_port_valid(device, port_num))
1585 		return -EINVAL;
1586 
1587 	if (device->ops.modify_port)
1588 		rc = device->ops.modify_port(device, port_num,
1589 					     port_modify_mask,
1590 					     port_modify);
1591 	else
1592 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
1593 	return rc;
1594 }
1595 EXPORT_SYMBOL(ib_modify_port);
1596 
1597 /**
1598  * ib_find_gid - Returns the port number and GID table index where
1599  *   a specified GID value occurs. Its searches only for IB link layer.
1600  * @device: The device to query.
1601  * @gid: The GID value to search for.
1602  * @port_num: The port number of the device where the GID value was found.
1603  * @index: The index into the GID table where the GID was found.  This
1604  *   parameter may be NULL.
1605  */
1606 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1607 		u8 *port_num, u16 *index)
1608 {
1609 	union ib_gid tmp_gid;
1610 	unsigned int port;
1611 	int ret, i;
1612 
1613 	rdma_for_each_port (device, port) {
1614 		if (!rdma_protocol_ib(device, port))
1615 			continue;
1616 
1617 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
1618 		     ++i) {
1619 			ret = rdma_query_gid(device, port, i, &tmp_gid);
1620 			if (ret)
1621 				return ret;
1622 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
1623 				*port_num = port;
1624 				if (index)
1625 					*index = i;
1626 				return 0;
1627 			}
1628 		}
1629 	}
1630 
1631 	return -ENOENT;
1632 }
1633 EXPORT_SYMBOL(ib_find_gid);
1634 
1635 /**
1636  * ib_find_pkey - Returns the PKey table index where a specified
1637  *   PKey value occurs.
1638  * @device: The device to query.
1639  * @port_num: The port number of the device to search for the PKey.
1640  * @pkey: The PKey value to search for.
1641  * @index: The index into the PKey table where the PKey was found.
1642  */
1643 int ib_find_pkey(struct ib_device *device,
1644 		 u8 port_num, u16 pkey, u16 *index)
1645 {
1646 	int ret, i;
1647 	u16 tmp_pkey;
1648 	int partial_ix = -1;
1649 
1650 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
1651 	     ++i) {
1652 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
1653 		if (ret)
1654 			return ret;
1655 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
1656 			/* if there is full-member pkey take it.*/
1657 			if (tmp_pkey & 0x8000) {
1658 				*index = i;
1659 				return 0;
1660 			}
1661 			if (partial_ix < 0)
1662 				partial_ix = i;
1663 		}
1664 	}
1665 
1666 	/*no full-member, if exists take the limited*/
1667 	if (partial_ix >= 0) {
1668 		*index = partial_ix;
1669 		return 0;
1670 	}
1671 	return -ENOENT;
1672 }
1673 EXPORT_SYMBOL(ib_find_pkey);
1674 
1675 /**
1676  * ib_get_net_dev_by_params() - Return the appropriate net_dev
1677  * for a received CM request
1678  * @dev:	An RDMA device on which the request has been received.
1679  * @port:	Port number on the RDMA device.
1680  * @pkey:	The Pkey the request came on.
1681  * @gid:	A GID that the net_dev uses to communicate.
1682  * @addr:	Contains the IP address that the request specified as its
1683  *		destination.
1684  *
1685  */
1686 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
1687 					    u8 port,
1688 					    u16 pkey,
1689 					    const union ib_gid *gid,
1690 					    const struct sockaddr *addr)
1691 {
1692 	struct net_device *net_dev = NULL;
1693 	unsigned long index;
1694 	void *client_data;
1695 
1696 	if (!rdma_protocol_ib(dev, port))
1697 		return NULL;
1698 
1699 	/*
1700 	 * Holding the read side guarantees that the client will not become
1701 	 * unregistered while we are calling get_net_dev_by_params()
1702 	 */
1703 	down_read(&dev->client_data_rwsem);
1704 	xan_for_each_marked (&dev->client_data, index, client_data,
1705 			     CLIENT_DATA_REGISTERED) {
1706 		struct ib_client *client = xa_load(&clients, index);
1707 
1708 		if (!client || !client->get_net_dev_by_params)
1709 			continue;
1710 
1711 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
1712 							addr, client_data);
1713 		if (net_dev)
1714 			break;
1715 	}
1716 	up_read(&dev->client_data_rwsem);
1717 
1718 	return net_dev;
1719 }
1720 EXPORT_SYMBOL(ib_get_net_dev_by_params);
1721 
1722 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
1723 {
1724 	struct ib_device_ops *dev_ops = &dev->ops;
1725 #define SET_DEVICE_OP(ptr, name)                                               \
1726 	do {                                                                   \
1727 		if (ops->name)                                                 \
1728 			if (!((ptr)->name))				       \
1729 				(ptr)->name = ops->name;                       \
1730 	} while (0)
1731 
1732 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
1733 
1734 	SET_DEVICE_OP(dev_ops, add_gid);
1735 	SET_DEVICE_OP(dev_ops, advise_mr);
1736 	SET_DEVICE_OP(dev_ops, alloc_dm);
1737 	SET_DEVICE_OP(dev_ops, alloc_fmr);
1738 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
1739 	SET_DEVICE_OP(dev_ops, alloc_mr);
1740 	SET_DEVICE_OP(dev_ops, alloc_mw);
1741 	SET_DEVICE_OP(dev_ops, alloc_pd);
1742 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
1743 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
1744 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
1745 	SET_DEVICE_OP(dev_ops, attach_mcast);
1746 	SET_DEVICE_OP(dev_ops, check_mr_status);
1747 	SET_DEVICE_OP(dev_ops, create_ah);
1748 	SET_DEVICE_OP(dev_ops, create_counters);
1749 	SET_DEVICE_OP(dev_ops, create_cq);
1750 	SET_DEVICE_OP(dev_ops, create_flow);
1751 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
1752 	SET_DEVICE_OP(dev_ops, create_qp);
1753 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
1754 	SET_DEVICE_OP(dev_ops, create_srq);
1755 	SET_DEVICE_OP(dev_ops, create_wq);
1756 	SET_DEVICE_OP(dev_ops, dealloc_dm);
1757 	SET_DEVICE_OP(dev_ops, dealloc_driver);
1758 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
1759 	SET_DEVICE_OP(dev_ops, dealloc_mw);
1760 	SET_DEVICE_OP(dev_ops, dealloc_pd);
1761 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
1762 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
1763 	SET_DEVICE_OP(dev_ops, del_gid);
1764 	SET_DEVICE_OP(dev_ops, dereg_mr);
1765 	SET_DEVICE_OP(dev_ops, destroy_ah);
1766 	SET_DEVICE_OP(dev_ops, destroy_counters);
1767 	SET_DEVICE_OP(dev_ops, destroy_cq);
1768 	SET_DEVICE_OP(dev_ops, destroy_flow);
1769 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
1770 	SET_DEVICE_OP(dev_ops, destroy_qp);
1771 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
1772 	SET_DEVICE_OP(dev_ops, destroy_srq);
1773 	SET_DEVICE_OP(dev_ops, destroy_wq);
1774 	SET_DEVICE_OP(dev_ops, detach_mcast);
1775 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
1776 	SET_DEVICE_OP(dev_ops, drain_rq);
1777 	SET_DEVICE_OP(dev_ops, drain_sq);
1778 	SET_DEVICE_OP(dev_ops, enable_driver);
1779 	SET_DEVICE_OP(dev_ops, fill_res_entry);
1780 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
1781 	SET_DEVICE_OP(dev_ops, get_dma_mr);
1782 	SET_DEVICE_OP(dev_ops, get_hw_stats);
1783 	SET_DEVICE_OP(dev_ops, get_link_layer);
1784 	SET_DEVICE_OP(dev_ops, get_netdev);
1785 	SET_DEVICE_OP(dev_ops, get_port_immutable);
1786 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
1787 	SET_DEVICE_OP(dev_ops, get_vf_config);
1788 	SET_DEVICE_OP(dev_ops, get_vf_stats);
1789 	SET_DEVICE_OP(dev_ops, init_port);
1790 	SET_DEVICE_OP(dev_ops, map_mr_sg);
1791 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
1792 	SET_DEVICE_OP(dev_ops, mmap);
1793 	SET_DEVICE_OP(dev_ops, modify_ah);
1794 	SET_DEVICE_OP(dev_ops, modify_cq);
1795 	SET_DEVICE_OP(dev_ops, modify_device);
1796 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
1797 	SET_DEVICE_OP(dev_ops, modify_port);
1798 	SET_DEVICE_OP(dev_ops, modify_qp);
1799 	SET_DEVICE_OP(dev_ops, modify_srq);
1800 	SET_DEVICE_OP(dev_ops, modify_wq);
1801 	SET_DEVICE_OP(dev_ops, peek_cq);
1802 	SET_DEVICE_OP(dev_ops, poll_cq);
1803 	SET_DEVICE_OP(dev_ops, post_recv);
1804 	SET_DEVICE_OP(dev_ops, post_send);
1805 	SET_DEVICE_OP(dev_ops, post_srq_recv);
1806 	SET_DEVICE_OP(dev_ops, process_mad);
1807 	SET_DEVICE_OP(dev_ops, query_ah);
1808 	SET_DEVICE_OP(dev_ops, query_device);
1809 	SET_DEVICE_OP(dev_ops, query_gid);
1810 	SET_DEVICE_OP(dev_ops, query_pkey);
1811 	SET_DEVICE_OP(dev_ops, query_port);
1812 	SET_DEVICE_OP(dev_ops, query_qp);
1813 	SET_DEVICE_OP(dev_ops, query_srq);
1814 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
1815 	SET_DEVICE_OP(dev_ops, read_counters);
1816 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
1817 	SET_DEVICE_OP(dev_ops, reg_user_mr);
1818 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
1819 	SET_DEVICE_OP(dev_ops, req_notify_cq);
1820 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
1821 	SET_DEVICE_OP(dev_ops, resize_cq);
1822 	SET_DEVICE_OP(dev_ops, set_vf_guid);
1823 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
1824 	SET_DEVICE_OP(dev_ops, unmap_fmr);
1825 
1826 	SET_OBJ_SIZE(dev_ops, ib_pd);
1827 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
1828 }
1829 EXPORT_SYMBOL(ib_set_device_ops);
1830 
1831 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
1832 	[RDMA_NL_LS_OP_RESOLVE] = {
1833 		.doit = ib_nl_handle_resolve_resp,
1834 		.flags = RDMA_NL_ADMIN_PERM,
1835 	},
1836 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
1837 		.doit = ib_nl_handle_set_timeout,
1838 		.flags = RDMA_NL_ADMIN_PERM,
1839 	},
1840 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
1841 		.doit = ib_nl_handle_ip_res_resp,
1842 		.flags = RDMA_NL_ADMIN_PERM,
1843 	},
1844 };
1845 
1846 static int __init ib_core_init(void)
1847 {
1848 	int ret;
1849 
1850 	ib_wq = alloc_workqueue("infiniband", 0, 0);
1851 	if (!ib_wq)
1852 		return -ENOMEM;
1853 
1854 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
1855 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
1856 	if (!ib_comp_wq) {
1857 		ret = -ENOMEM;
1858 		goto err;
1859 	}
1860 
1861 	ib_comp_unbound_wq =
1862 		alloc_workqueue("ib-comp-unb-wq",
1863 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
1864 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
1865 	if (!ib_comp_unbound_wq) {
1866 		ret = -ENOMEM;
1867 		goto err_comp;
1868 	}
1869 
1870 	ret = class_register(&ib_class);
1871 	if (ret) {
1872 		pr_warn("Couldn't create InfiniBand device class\n");
1873 		goto err_comp_unbound;
1874 	}
1875 
1876 	ret = rdma_nl_init();
1877 	if (ret) {
1878 		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
1879 		goto err_sysfs;
1880 	}
1881 
1882 	ret = addr_init();
1883 	if (ret) {
1884 		pr_warn("Could't init IB address resolution\n");
1885 		goto err_ibnl;
1886 	}
1887 
1888 	ret = ib_mad_init();
1889 	if (ret) {
1890 		pr_warn("Couldn't init IB MAD\n");
1891 		goto err_addr;
1892 	}
1893 
1894 	ret = ib_sa_init();
1895 	if (ret) {
1896 		pr_warn("Couldn't init SA\n");
1897 		goto err_mad;
1898 	}
1899 
1900 	ret = register_lsm_notifier(&ibdev_lsm_nb);
1901 	if (ret) {
1902 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
1903 		goto err_sa;
1904 	}
1905 
1906 	nldev_init();
1907 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
1908 	roce_gid_mgmt_init();
1909 
1910 	return 0;
1911 
1912 err_sa:
1913 	ib_sa_cleanup();
1914 err_mad:
1915 	ib_mad_cleanup();
1916 err_addr:
1917 	addr_cleanup();
1918 err_ibnl:
1919 	rdma_nl_exit();
1920 err_sysfs:
1921 	class_unregister(&ib_class);
1922 err_comp_unbound:
1923 	destroy_workqueue(ib_comp_unbound_wq);
1924 err_comp:
1925 	destroy_workqueue(ib_comp_wq);
1926 err:
1927 	destroy_workqueue(ib_wq);
1928 	return ret;
1929 }
1930 
1931 static void __exit ib_core_cleanup(void)
1932 {
1933 	roce_gid_mgmt_cleanup();
1934 	nldev_exit();
1935 	rdma_nl_unregister(RDMA_NL_LS);
1936 	unregister_lsm_notifier(&ibdev_lsm_nb);
1937 	ib_sa_cleanup();
1938 	ib_mad_cleanup();
1939 	addr_cleanup();
1940 	rdma_nl_exit();
1941 	class_unregister(&ib_class);
1942 	destroy_workqueue(ib_comp_unbound_wq);
1943 	destroy_workqueue(ib_comp_wq);
1944 	/* Make sure that any pending umem accounting work is done. */
1945 	destroy_workqueue(ib_wq);
1946 	flush_workqueue(system_unbound_wq);
1947 	WARN_ON(!xa_empty(&clients));
1948 	WARN_ON(!xa_empty(&devices));
1949 }
1950 
1951 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
1952 
1953 subsys_initcall(ib_core_init);
1954 module_exit(ib_core_cleanup);
1955