xref: /openbmc/linux/drivers/infiniband/core/device.c (revision b830f94f)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <net/netns/generic.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/hashtable.h>
46 #include <rdma/rdma_netlink.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/rdma_counter.h>
50 
51 #include "core_priv.h"
52 #include "restrack.h"
53 
54 MODULE_AUTHOR("Roland Dreier");
55 MODULE_DESCRIPTION("core kernel InfiniBand API");
56 MODULE_LICENSE("Dual BSD/GPL");
57 
58 struct workqueue_struct *ib_comp_wq;
59 struct workqueue_struct *ib_comp_unbound_wq;
60 struct workqueue_struct *ib_wq;
61 EXPORT_SYMBOL_GPL(ib_wq);
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static LIST_HEAD(client_list);
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 /*
103  * If client_data is registered then the corresponding client must also still
104  * be registered.
105  */
106 #define CLIENT_DATA_REGISTERED XA_MARK_1
107 
108 /**
109  * struct rdma_dev_net - rdma net namespace metadata for a net
110  * @net:	Pointer to owner net namespace
111  * @id:		xarray id to identify the net namespace.
112  */
113 struct rdma_dev_net {
114 	possible_net_t net;
115 	u32 id;
116 };
117 
118 static unsigned int rdma_dev_net_id;
119 
120 /*
121  * A list of net namespaces is maintained in an xarray. This is necessary
122  * because we can't get the locking right using the existing net ns list. We
123  * would require a init_net callback after the list is updated.
124  */
125 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
126 /*
127  * rwsem to protect accessing the rdma_nets xarray entries.
128  */
129 static DECLARE_RWSEM(rdma_nets_rwsem);
130 
131 bool ib_devices_shared_netns = true;
132 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
133 MODULE_PARM_DESC(netns_mode,
134 		 "Share device among net namespaces; default=1 (shared)");
135 /**
136  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
137  *			     from a specified net namespace or not.
138  * @device:	Pointer to rdma device which needs to be checked
139  * @net:	Pointer to net namesapce for which access to be checked
140  *
141  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
142  *			     from a specified net namespace or not. When
143  *			     rdma device is in shared mode, it ignores the
144  *			     net namespace. When rdma device is exclusive
145  *			     to a net namespace, rdma device net namespace is
146  *			     checked against the specified one.
147  */
148 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
149 {
150 	return (ib_devices_shared_netns ||
151 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
152 }
153 EXPORT_SYMBOL(rdma_dev_access_netns);
154 
155 /*
156  * xarray has this behavior where it won't iterate over NULL values stored in
157  * allocated arrays.  So we need our own iterator to see all values stored in
158  * the array. This does the same thing as xa_for_each except that it also
159  * returns NULL valued entries if the array is allocating. Simplified to only
160  * work on simple xarrays.
161  */
162 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
163 			     xa_mark_t filter)
164 {
165 	XA_STATE(xas, xa, *indexp);
166 	void *entry;
167 
168 	rcu_read_lock();
169 	do {
170 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
171 		if (xa_is_zero(entry))
172 			break;
173 	} while (xas_retry(&xas, entry));
174 	rcu_read_unlock();
175 
176 	if (entry) {
177 		*indexp = xas.xa_index;
178 		if (xa_is_zero(entry))
179 			return NULL;
180 		return entry;
181 	}
182 	return XA_ERROR(-ENOENT);
183 }
184 #define xan_for_each_marked(xa, index, entry, filter)                          \
185 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
186 	     !xa_is_err(entry);                                                \
187 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
188 
189 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
190 static DEFINE_SPINLOCK(ndev_hash_lock);
191 static DECLARE_HASHTABLE(ndev_hash, 5);
192 
193 static void free_netdevs(struct ib_device *ib_dev);
194 static void ib_unregister_work(struct work_struct *work);
195 static void __ib_unregister_device(struct ib_device *device);
196 static int ib_security_change(struct notifier_block *nb, unsigned long event,
197 			      void *lsm_data);
198 static void ib_policy_change_task(struct work_struct *work);
199 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
200 
201 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
202 			   struct va_format *vaf)
203 {
204 	if (ibdev && ibdev->dev.parent)
205 		dev_printk_emit(level[1] - '0',
206 				ibdev->dev.parent,
207 				"%s %s %s: %pV",
208 				dev_driver_string(ibdev->dev.parent),
209 				dev_name(ibdev->dev.parent),
210 				dev_name(&ibdev->dev),
211 				vaf);
212 	else if (ibdev)
213 		printk("%s%s: %pV",
214 		       level, dev_name(&ibdev->dev), vaf);
215 	else
216 		printk("%s(NULL ib_device): %pV", level, vaf);
217 }
218 
219 void ibdev_printk(const char *level, const struct ib_device *ibdev,
220 		  const char *format, ...)
221 {
222 	struct va_format vaf;
223 	va_list args;
224 
225 	va_start(args, format);
226 
227 	vaf.fmt = format;
228 	vaf.va = &args;
229 
230 	__ibdev_printk(level, ibdev, &vaf);
231 
232 	va_end(args);
233 }
234 EXPORT_SYMBOL(ibdev_printk);
235 
236 #define define_ibdev_printk_level(func, level)                  \
237 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
238 {                                                               \
239 	struct va_format vaf;                                   \
240 	va_list args;                                           \
241 								\
242 	va_start(args, fmt);                                    \
243 								\
244 	vaf.fmt = fmt;                                          \
245 	vaf.va = &args;                                         \
246 								\
247 	__ibdev_printk(level, ibdev, &vaf);                     \
248 								\
249 	va_end(args);                                           \
250 }                                                               \
251 EXPORT_SYMBOL(func);
252 
253 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
254 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
255 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
256 define_ibdev_printk_level(ibdev_err, KERN_ERR);
257 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
258 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
259 define_ibdev_printk_level(ibdev_info, KERN_INFO);
260 
261 static struct notifier_block ibdev_lsm_nb = {
262 	.notifier_call = ib_security_change,
263 };
264 
265 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
266 				 struct net *net);
267 
268 /* Pointer to the RCU head at the start of the ib_port_data array */
269 struct ib_port_data_rcu {
270 	struct rcu_head rcu_head;
271 	struct ib_port_data pdata[];
272 };
273 
274 static void ib_device_check_mandatory(struct ib_device *device)
275 {
276 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
277 	static const struct {
278 		size_t offset;
279 		char  *name;
280 	} mandatory_table[] = {
281 		IB_MANDATORY_FUNC(query_device),
282 		IB_MANDATORY_FUNC(query_port),
283 		IB_MANDATORY_FUNC(query_pkey),
284 		IB_MANDATORY_FUNC(alloc_pd),
285 		IB_MANDATORY_FUNC(dealloc_pd),
286 		IB_MANDATORY_FUNC(create_qp),
287 		IB_MANDATORY_FUNC(modify_qp),
288 		IB_MANDATORY_FUNC(destroy_qp),
289 		IB_MANDATORY_FUNC(post_send),
290 		IB_MANDATORY_FUNC(post_recv),
291 		IB_MANDATORY_FUNC(create_cq),
292 		IB_MANDATORY_FUNC(destroy_cq),
293 		IB_MANDATORY_FUNC(poll_cq),
294 		IB_MANDATORY_FUNC(req_notify_cq),
295 		IB_MANDATORY_FUNC(get_dma_mr),
296 		IB_MANDATORY_FUNC(dereg_mr),
297 		IB_MANDATORY_FUNC(get_port_immutable)
298 	};
299 	int i;
300 
301 	device->kverbs_provider = true;
302 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
303 		if (!*(void **) ((void *) &device->ops +
304 				 mandatory_table[i].offset)) {
305 			device->kverbs_provider = false;
306 			break;
307 		}
308 	}
309 }
310 
311 /*
312  * Caller must perform ib_device_put() to return the device reference count
313  * when ib_device_get_by_index() returns valid device pointer.
314  */
315 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
316 {
317 	struct ib_device *device;
318 
319 	down_read(&devices_rwsem);
320 	device = xa_load(&devices, index);
321 	if (device) {
322 		if (!rdma_dev_access_netns(device, net)) {
323 			device = NULL;
324 			goto out;
325 		}
326 
327 		if (!ib_device_try_get(device))
328 			device = NULL;
329 	}
330 out:
331 	up_read(&devices_rwsem);
332 	return device;
333 }
334 
335 /**
336  * ib_device_put - Release IB device reference
337  * @device: device whose reference to be released
338  *
339  * ib_device_put() releases reference to the IB device to allow it to be
340  * unregistered and eventually free.
341  */
342 void ib_device_put(struct ib_device *device)
343 {
344 	if (refcount_dec_and_test(&device->refcount))
345 		complete(&device->unreg_completion);
346 }
347 EXPORT_SYMBOL(ib_device_put);
348 
349 static struct ib_device *__ib_device_get_by_name(const char *name)
350 {
351 	struct ib_device *device;
352 	unsigned long index;
353 
354 	xa_for_each (&devices, index, device)
355 		if (!strcmp(name, dev_name(&device->dev)))
356 			return device;
357 
358 	return NULL;
359 }
360 
361 /**
362  * ib_device_get_by_name - Find an IB device by name
363  * @name: The name to look for
364  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
365  *
366  * Find and hold an ib_device by its name. The caller must call
367  * ib_device_put() on the returned pointer.
368  */
369 struct ib_device *ib_device_get_by_name(const char *name,
370 					enum rdma_driver_id driver_id)
371 {
372 	struct ib_device *device;
373 
374 	down_read(&devices_rwsem);
375 	device = __ib_device_get_by_name(name);
376 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
377 	    device->ops.driver_id != driver_id)
378 		device = NULL;
379 
380 	if (device) {
381 		if (!ib_device_try_get(device))
382 			device = NULL;
383 	}
384 	up_read(&devices_rwsem);
385 	return device;
386 }
387 EXPORT_SYMBOL(ib_device_get_by_name);
388 
389 static int rename_compat_devs(struct ib_device *device)
390 {
391 	struct ib_core_device *cdev;
392 	unsigned long index;
393 	int ret = 0;
394 
395 	mutex_lock(&device->compat_devs_mutex);
396 	xa_for_each (&device->compat_devs, index, cdev) {
397 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
398 		if (ret) {
399 			dev_warn(&cdev->dev,
400 				 "Fail to rename compatdev to new name %s\n",
401 				 dev_name(&device->dev));
402 			break;
403 		}
404 	}
405 	mutex_unlock(&device->compat_devs_mutex);
406 	return ret;
407 }
408 
409 int ib_device_rename(struct ib_device *ibdev, const char *name)
410 {
411 	unsigned long index;
412 	void *client_data;
413 	int ret;
414 
415 	down_write(&devices_rwsem);
416 	if (!strcmp(name, dev_name(&ibdev->dev))) {
417 		up_write(&devices_rwsem);
418 		return 0;
419 	}
420 
421 	if (__ib_device_get_by_name(name)) {
422 		up_write(&devices_rwsem);
423 		return -EEXIST;
424 	}
425 
426 	ret = device_rename(&ibdev->dev, name);
427 	if (ret) {
428 		up_write(&devices_rwsem);
429 		return ret;
430 	}
431 
432 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
433 	ret = rename_compat_devs(ibdev);
434 
435 	downgrade_write(&devices_rwsem);
436 	down_read(&ibdev->client_data_rwsem);
437 	xan_for_each_marked(&ibdev->client_data, index, client_data,
438 			    CLIENT_DATA_REGISTERED) {
439 		struct ib_client *client = xa_load(&clients, index);
440 
441 		if (!client || !client->rename)
442 			continue;
443 
444 		client->rename(ibdev, client_data);
445 	}
446 	up_read(&ibdev->client_data_rwsem);
447 	up_read(&devices_rwsem);
448 	return 0;
449 }
450 
451 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
452 {
453 	if (use_dim > 1)
454 		return -EINVAL;
455 	ibdev->use_cq_dim = use_dim;
456 
457 	return 0;
458 }
459 
460 static int alloc_name(struct ib_device *ibdev, const char *name)
461 {
462 	struct ib_device *device;
463 	unsigned long index;
464 	struct ida inuse;
465 	int rc;
466 	int i;
467 
468 	lockdep_assert_held_write(&devices_rwsem);
469 	ida_init(&inuse);
470 	xa_for_each (&devices, index, device) {
471 		char buf[IB_DEVICE_NAME_MAX];
472 
473 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
474 			continue;
475 		if (i < 0 || i >= INT_MAX)
476 			continue;
477 		snprintf(buf, sizeof buf, name, i);
478 		if (strcmp(buf, dev_name(&device->dev)) != 0)
479 			continue;
480 
481 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
482 		if (rc < 0)
483 			goto out;
484 	}
485 
486 	rc = ida_alloc(&inuse, GFP_KERNEL);
487 	if (rc < 0)
488 		goto out;
489 
490 	rc = dev_set_name(&ibdev->dev, name, rc);
491 out:
492 	ida_destroy(&inuse);
493 	return rc;
494 }
495 
496 static void ib_device_release(struct device *device)
497 {
498 	struct ib_device *dev = container_of(device, struct ib_device, dev);
499 
500 	free_netdevs(dev);
501 	WARN_ON(refcount_read(&dev->refcount));
502 	if (dev->port_data) {
503 		ib_cache_release_one(dev);
504 		ib_security_release_port_pkey_list(dev);
505 		rdma_counter_release(dev);
506 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
507 				       pdata[0]),
508 			  rcu_head);
509 	}
510 
511 	xa_destroy(&dev->compat_devs);
512 	xa_destroy(&dev->client_data);
513 	kfree_rcu(dev, rcu_head);
514 }
515 
516 static int ib_device_uevent(struct device *device,
517 			    struct kobj_uevent_env *env)
518 {
519 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
520 		return -ENOMEM;
521 
522 	/*
523 	 * It would be nice to pass the node GUID with the event...
524 	 */
525 
526 	return 0;
527 }
528 
529 static const void *net_namespace(struct device *d)
530 {
531 	struct ib_core_device *coredev =
532 			container_of(d, struct ib_core_device, dev);
533 
534 	return read_pnet(&coredev->rdma_net);
535 }
536 
537 static struct class ib_class = {
538 	.name    = "infiniband",
539 	.dev_release = ib_device_release,
540 	.dev_uevent = ib_device_uevent,
541 	.ns_type = &net_ns_type_operations,
542 	.namespace = net_namespace,
543 };
544 
545 static void rdma_init_coredev(struct ib_core_device *coredev,
546 			      struct ib_device *dev, struct net *net)
547 {
548 	/* This BUILD_BUG_ON is intended to catch layout change
549 	 * of union of ib_core_device and device.
550 	 * dev must be the first element as ib_core and providers
551 	 * driver uses it. Adding anything in ib_core_device before
552 	 * device will break this assumption.
553 	 */
554 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
555 		     offsetof(struct ib_device, dev));
556 
557 	coredev->dev.class = &ib_class;
558 	coredev->dev.groups = dev->groups;
559 	device_initialize(&coredev->dev);
560 	coredev->owner = dev;
561 	INIT_LIST_HEAD(&coredev->port_list);
562 	write_pnet(&coredev->rdma_net, net);
563 }
564 
565 /**
566  * _ib_alloc_device - allocate an IB device struct
567  * @size:size of structure to allocate
568  *
569  * Low-level drivers should use ib_alloc_device() to allocate &struct
570  * ib_device.  @size is the size of the structure to be allocated,
571  * including any private data used by the low-level driver.
572  * ib_dealloc_device() must be used to free structures allocated with
573  * ib_alloc_device().
574  */
575 struct ib_device *_ib_alloc_device(size_t size)
576 {
577 	struct ib_device *device;
578 
579 	if (WARN_ON(size < sizeof(struct ib_device)))
580 		return NULL;
581 
582 	device = kzalloc(size, GFP_KERNEL);
583 	if (!device)
584 		return NULL;
585 
586 	if (rdma_restrack_init(device)) {
587 		kfree(device);
588 		return NULL;
589 	}
590 
591 	device->groups[0] = &ib_dev_attr_group;
592 	rdma_init_coredev(&device->coredev, device, &init_net);
593 
594 	INIT_LIST_HEAD(&device->event_handler_list);
595 	spin_lock_init(&device->event_handler_lock);
596 	mutex_init(&device->unregistration_lock);
597 	/*
598 	 * client_data needs to be alloc because we don't want our mark to be
599 	 * destroyed if the user stores NULL in the client data.
600 	 */
601 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
602 	init_rwsem(&device->client_data_rwsem);
603 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
604 	mutex_init(&device->compat_devs_mutex);
605 	init_completion(&device->unreg_completion);
606 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
607 
608 	return device;
609 }
610 EXPORT_SYMBOL(_ib_alloc_device);
611 
612 /**
613  * ib_dealloc_device - free an IB device struct
614  * @device:structure to free
615  *
616  * Free a structure allocated with ib_alloc_device().
617  */
618 void ib_dealloc_device(struct ib_device *device)
619 {
620 	if (device->ops.dealloc_driver)
621 		device->ops.dealloc_driver(device);
622 
623 	/*
624 	 * ib_unregister_driver() requires all devices to remain in the xarray
625 	 * while their ops are callable. The last op we call is dealloc_driver
626 	 * above.  This is needed to create a fence on op callbacks prior to
627 	 * allowing the driver module to unload.
628 	 */
629 	down_write(&devices_rwsem);
630 	if (xa_load(&devices, device->index) == device)
631 		xa_erase(&devices, device->index);
632 	up_write(&devices_rwsem);
633 
634 	/* Expedite releasing netdev references */
635 	free_netdevs(device);
636 
637 	WARN_ON(!xa_empty(&device->compat_devs));
638 	WARN_ON(!xa_empty(&device->client_data));
639 	WARN_ON(refcount_read(&device->refcount));
640 	rdma_restrack_clean(device);
641 	/* Balances with device_initialize */
642 	put_device(&device->dev);
643 }
644 EXPORT_SYMBOL(ib_dealloc_device);
645 
646 /*
647  * add_client_context() and remove_client_context() must be safe against
648  * parallel calls on the same device - registration/unregistration of both the
649  * device and client can be occurring in parallel.
650  *
651  * The routines need to be a fence, any caller must not return until the add
652  * or remove is fully completed.
653  */
654 static int add_client_context(struct ib_device *device,
655 			      struct ib_client *client)
656 {
657 	int ret = 0;
658 
659 	if (!device->kverbs_provider && !client->no_kverbs_req)
660 		return 0;
661 
662 	down_write(&device->client_data_rwsem);
663 	/*
664 	 * Another caller to add_client_context got here first and has already
665 	 * completely initialized context.
666 	 */
667 	if (xa_get_mark(&device->client_data, client->client_id,
668 		    CLIENT_DATA_REGISTERED))
669 		goto out;
670 
671 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
672 			      GFP_KERNEL));
673 	if (ret)
674 		goto out;
675 	downgrade_write(&device->client_data_rwsem);
676 	if (client->add)
677 		client->add(device);
678 
679 	/* Readers shall not see a client until add has been completed */
680 	xa_set_mark(&device->client_data, client->client_id,
681 		    CLIENT_DATA_REGISTERED);
682 	up_read(&device->client_data_rwsem);
683 	return 0;
684 
685 out:
686 	up_write(&device->client_data_rwsem);
687 	return ret;
688 }
689 
690 static void remove_client_context(struct ib_device *device,
691 				  unsigned int client_id)
692 {
693 	struct ib_client *client;
694 	void *client_data;
695 
696 	down_write(&device->client_data_rwsem);
697 	if (!xa_get_mark(&device->client_data, client_id,
698 			 CLIENT_DATA_REGISTERED)) {
699 		up_write(&device->client_data_rwsem);
700 		return;
701 	}
702 	client_data = xa_load(&device->client_data, client_id);
703 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
704 	client = xa_load(&clients, client_id);
705 	downgrade_write(&device->client_data_rwsem);
706 
707 	/*
708 	 * Notice we cannot be holding any exclusive locks when calling the
709 	 * remove callback as the remove callback can recurse back into any
710 	 * public functions in this module and thus try for any locks those
711 	 * functions take.
712 	 *
713 	 * For this reason clients and drivers should not call the
714 	 * unregistration functions will holdling any locks.
715 	 *
716 	 * It tempting to drop the client_data_rwsem too, but this is required
717 	 * to ensure that unregister_client does not return until all clients
718 	 * are completely unregistered, which is required to avoid module
719 	 * unloading races.
720 	 */
721 	if (client->remove)
722 		client->remove(device, client_data);
723 
724 	xa_erase(&device->client_data, client_id);
725 	up_read(&device->client_data_rwsem);
726 }
727 
728 static int alloc_port_data(struct ib_device *device)
729 {
730 	struct ib_port_data_rcu *pdata_rcu;
731 	unsigned int port;
732 
733 	if (device->port_data)
734 		return 0;
735 
736 	/* This can only be called once the physical port range is defined */
737 	if (WARN_ON(!device->phys_port_cnt))
738 		return -EINVAL;
739 
740 	/*
741 	 * device->port_data is indexed directly by the port number to make
742 	 * access to this data as efficient as possible.
743 	 *
744 	 * Therefore port_data is declared as a 1 based array with potential
745 	 * empty slots at the beginning.
746 	 */
747 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
748 					rdma_end_port(device) + 1),
749 			    GFP_KERNEL);
750 	if (!pdata_rcu)
751 		return -ENOMEM;
752 	/*
753 	 * The rcu_head is put in front of the port data array and the stored
754 	 * pointer is adjusted since we never need to see that member until
755 	 * kfree_rcu.
756 	 */
757 	device->port_data = pdata_rcu->pdata;
758 
759 	rdma_for_each_port (device, port) {
760 		struct ib_port_data *pdata = &device->port_data[port];
761 
762 		pdata->ib_dev = device;
763 		spin_lock_init(&pdata->pkey_list_lock);
764 		INIT_LIST_HEAD(&pdata->pkey_list);
765 		spin_lock_init(&pdata->netdev_lock);
766 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
767 	}
768 	return 0;
769 }
770 
771 static int verify_immutable(const struct ib_device *dev, u8 port)
772 {
773 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
774 			    rdma_max_mad_size(dev, port) != 0);
775 }
776 
777 static int setup_port_data(struct ib_device *device)
778 {
779 	unsigned int port;
780 	int ret;
781 
782 	ret = alloc_port_data(device);
783 	if (ret)
784 		return ret;
785 
786 	rdma_for_each_port (device, port) {
787 		struct ib_port_data *pdata = &device->port_data[port];
788 
789 		ret = device->ops.get_port_immutable(device, port,
790 						     &pdata->immutable);
791 		if (ret)
792 			return ret;
793 
794 		if (verify_immutable(device, port))
795 			return -EINVAL;
796 	}
797 	return 0;
798 }
799 
800 void ib_get_device_fw_str(struct ib_device *dev, char *str)
801 {
802 	if (dev->ops.get_dev_fw_str)
803 		dev->ops.get_dev_fw_str(dev, str);
804 	else
805 		str[0] = '\0';
806 }
807 EXPORT_SYMBOL(ib_get_device_fw_str);
808 
809 static void ib_policy_change_task(struct work_struct *work)
810 {
811 	struct ib_device *dev;
812 	unsigned long index;
813 
814 	down_read(&devices_rwsem);
815 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
816 		unsigned int i;
817 
818 		rdma_for_each_port (dev, i) {
819 			u64 sp;
820 			int ret = ib_get_cached_subnet_prefix(dev,
821 							      i,
822 							      &sp);
823 
824 			WARN_ONCE(ret,
825 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
826 				  ret);
827 			if (!ret)
828 				ib_security_cache_change(dev, i, sp);
829 		}
830 	}
831 	up_read(&devices_rwsem);
832 }
833 
834 static int ib_security_change(struct notifier_block *nb, unsigned long event,
835 			      void *lsm_data)
836 {
837 	if (event != LSM_POLICY_CHANGE)
838 		return NOTIFY_DONE;
839 
840 	schedule_work(&ib_policy_change_work);
841 	ib_mad_agent_security_change();
842 
843 	return NOTIFY_OK;
844 }
845 
846 static void compatdev_release(struct device *dev)
847 {
848 	struct ib_core_device *cdev =
849 		container_of(dev, struct ib_core_device, dev);
850 
851 	kfree(cdev);
852 }
853 
854 static int add_one_compat_dev(struct ib_device *device,
855 			      struct rdma_dev_net *rnet)
856 {
857 	struct ib_core_device *cdev;
858 	int ret;
859 
860 	lockdep_assert_held(&rdma_nets_rwsem);
861 	if (!ib_devices_shared_netns)
862 		return 0;
863 
864 	/*
865 	 * Create and add compat device in all namespaces other than where it
866 	 * is currently bound to.
867 	 */
868 	if (net_eq(read_pnet(&rnet->net),
869 		   read_pnet(&device->coredev.rdma_net)))
870 		return 0;
871 
872 	/*
873 	 * The first of init_net() or ib_register_device() to take the
874 	 * compat_devs_mutex wins and gets to add the device. Others will wait
875 	 * for completion here.
876 	 */
877 	mutex_lock(&device->compat_devs_mutex);
878 	cdev = xa_load(&device->compat_devs, rnet->id);
879 	if (cdev) {
880 		ret = 0;
881 		goto done;
882 	}
883 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
884 	if (ret)
885 		goto done;
886 
887 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
888 	if (!cdev) {
889 		ret = -ENOMEM;
890 		goto cdev_err;
891 	}
892 
893 	cdev->dev.parent = device->dev.parent;
894 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
895 	cdev->dev.release = compatdev_release;
896 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
897 
898 	ret = device_add(&cdev->dev);
899 	if (ret)
900 		goto add_err;
901 	ret = ib_setup_port_attrs(cdev);
902 	if (ret)
903 		goto port_err;
904 
905 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
906 			      cdev, GFP_KERNEL));
907 	if (ret)
908 		goto insert_err;
909 
910 	mutex_unlock(&device->compat_devs_mutex);
911 	return 0;
912 
913 insert_err:
914 	ib_free_port_attrs(cdev);
915 port_err:
916 	device_del(&cdev->dev);
917 add_err:
918 	put_device(&cdev->dev);
919 cdev_err:
920 	xa_release(&device->compat_devs, rnet->id);
921 done:
922 	mutex_unlock(&device->compat_devs_mutex);
923 	return ret;
924 }
925 
926 static void remove_one_compat_dev(struct ib_device *device, u32 id)
927 {
928 	struct ib_core_device *cdev;
929 
930 	mutex_lock(&device->compat_devs_mutex);
931 	cdev = xa_erase(&device->compat_devs, id);
932 	mutex_unlock(&device->compat_devs_mutex);
933 	if (cdev) {
934 		ib_free_port_attrs(cdev);
935 		device_del(&cdev->dev);
936 		put_device(&cdev->dev);
937 	}
938 }
939 
940 static void remove_compat_devs(struct ib_device *device)
941 {
942 	struct ib_core_device *cdev;
943 	unsigned long index;
944 
945 	xa_for_each (&device->compat_devs, index, cdev)
946 		remove_one_compat_dev(device, index);
947 }
948 
949 static int add_compat_devs(struct ib_device *device)
950 {
951 	struct rdma_dev_net *rnet;
952 	unsigned long index;
953 	int ret = 0;
954 
955 	lockdep_assert_held(&devices_rwsem);
956 
957 	down_read(&rdma_nets_rwsem);
958 	xa_for_each (&rdma_nets, index, rnet) {
959 		ret = add_one_compat_dev(device, rnet);
960 		if (ret)
961 			break;
962 	}
963 	up_read(&rdma_nets_rwsem);
964 	return ret;
965 }
966 
967 static void remove_all_compat_devs(void)
968 {
969 	struct ib_compat_device *cdev;
970 	struct ib_device *dev;
971 	unsigned long index;
972 
973 	down_read(&devices_rwsem);
974 	xa_for_each (&devices, index, dev) {
975 		unsigned long c_index = 0;
976 
977 		/* Hold nets_rwsem so that any other thread modifying this
978 		 * system param can sync with this thread.
979 		 */
980 		down_read(&rdma_nets_rwsem);
981 		xa_for_each (&dev->compat_devs, c_index, cdev)
982 			remove_one_compat_dev(dev, c_index);
983 		up_read(&rdma_nets_rwsem);
984 	}
985 	up_read(&devices_rwsem);
986 }
987 
988 static int add_all_compat_devs(void)
989 {
990 	struct rdma_dev_net *rnet;
991 	struct ib_device *dev;
992 	unsigned long index;
993 	int ret = 0;
994 
995 	down_read(&devices_rwsem);
996 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
997 		unsigned long net_index = 0;
998 
999 		/* Hold nets_rwsem so that any other thread modifying this
1000 		 * system param can sync with this thread.
1001 		 */
1002 		down_read(&rdma_nets_rwsem);
1003 		xa_for_each (&rdma_nets, net_index, rnet) {
1004 			ret = add_one_compat_dev(dev, rnet);
1005 			if (ret)
1006 				break;
1007 		}
1008 		up_read(&rdma_nets_rwsem);
1009 	}
1010 	up_read(&devices_rwsem);
1011 	if (ret)
1012 		remove_all_compat_devs();
1013 	return ret;
1014 }
1015 
1016 int rdma_compatdev_set(u8 enable)
1017 {
1018 	struct rdma_dev_net *rnet;
1019 	unsigned long index;
1020 	int ret = 0;
1021 
1022 	down_write(&rdma_nets_rwsem);
1023 	if (ib_devices_shared_netns == enable) {
1024 		up_write(&rdma_nets_rwsem);
1025 		return 0;
1026 	}
1027 
1028 	/* enable/disable of compat devices is not supported
1029 	 * when more than default init_net exists.
1030 	 */
1031 	xa_for_each (&rdma_nets, index, rnet) {
1032 		ret++;
1033 		break;
1034 	}
1035 	if (!ret)
1036 		ib_devices_shared_netns = enable;
1037 	up_write(&rdma_nets_rwsem);
1038 	if (ret)
1039 		return -EBUSY;
1040 
1041 	if (enable)
1042 		ret = add_all_compat_devs();
1043 	else
1044 		remove_all_compat_devs();
1045 	return ret;
1046 }
1047 
1048 static void rdma_dev_exit_net(struct net *net)
1049 {
1050 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1051 	struct ib_device *dev;
1052 	unsigned long index;
1053 	int ret;
1054 
1055 	down_write(&rdma_nets_rwsem);
1056 	/*
1057 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1058 	 */
1059 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1060 	WARN_ON(ret);
1061 	up_write(&rdma_nets_rwsem);
1062 
1063 	down_read(&devices_rwsem);
1064 	xa_for_each (&devices, index, dev) {
1065 		get_device(&dev->dev);
1066 		/*
1067 		 * Release the devices_rwsem so that pontentially blocking
1068 		 * device_del, doesn't hold the devices_rwsem for too long.
1069 		 */
1070 		up_read(&devices_rwsem);
1071 
1072 		remove_one_compat_dev(dev, rnet->id);
1073 
1074 		/*
1075 		 * If the real device is in the NS then move it back to init.
1076 		 */
1077 		rdma_dev_change_netns(dev, net, &init_net);
1078 
1079 		put_device(&dev->dev);
1080 		down_read(&devices_rwsem);
1081 	}
1082 	up_read(&devices_rwsem);
1083 
1084 	xa_erase(&rdma_nets, rnet->id);
1085 }
1086 
1087 static __net_init int rdma_dev_init_net(struct net *net)
1088 {
1089 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1090 	unsigned long index;
1091 	struct ib_device *dev;
1092 	int ret;
1093 
1094 	/* No need to create any compat devices in default init_net. */
1095 	if (net_eq(net, &init_net))
1096 		return 0;
1097 
1098 	write_pnet(&rnet->net, net);
1099 
1100 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1101 	if (ret)
1102 		return ret;
1103 
1104 	down_read(&devices_rwsem);
1105 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1106 		/* Hold nets_rwsem so that netlink command cannot change
1107 		 * system configuration for device sharing mode.
1108 		 */
1109 		down_read(&rdma_nets_rwsem);
1110 		ret = add_one_compat_dev(dev, rnet);
1111 		up_read(&rdma_nets_rwsem);
1112 		if (ret)
1113 			break;
1114 	}
1115 	up_read(&devices_rwsem);
1116 
1117 	if (ret)
1118 		rdma_dev_exit_net(net);
1119 
1120 	return ret;
1121 }
1122 
1123 /*
1124  * Assign the unique string device name and the unique device index. This is
1125  * undone by ib_dealloc_device.
1126  */
1127 static int assign_name(struct ib_device *device, const char *name)
1128 {
1129 	static u32 last_id;
1130 	int ret;
1131 
1132 	down_write(&devices_rwsem);
1133 	/* Assign a unique name to the device */
1134 	if (strchr(name, '%'))
1135 		ret = alloc_name(device, name);
1136 	else
1137 		ret = dev_set_name(&device->dev, name);
1138 	if (ret)
1139 		goto out;
1140 
1141 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1142 		ret = -ENFILE;
1143 		goto out;
1144 	}
1145 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1146 
1147 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1148 			&last_id, GFP_KERNEL);
1149 	if (ret > 0)
1150 		ret = 0;
1151 
1152 out:
1153 	up_write(&devices_rwsem);
1154 	return ret;
1155 }
1156 
1157 static void setup_dma_device(struct ib_device *device)
1158 {
1159 	struct device *parent = device->dev.parent;
1160 
1161 	WARN_ON_ONCE(device->dma_device);
1162 	if (device->dev.dma_ops) {
1163 		/*
1164 		 * The caller provided custom DMA operations. Copy the
1165 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1166 		 * into device->dev.
1167 		 */
1168 		device->dma_device = &device->dev;
1169 		if (!device->dev.dma_mask) {
1170 			if (parent)
1171 				device->dev.dma_mask = parent->dma_mask;
1172 			else
1173 				WARN_ON_ONCE(true);
1174 		}
1175 		if (!device->dev.coherent_dma_mask) {
1176 			if (parent)
1177 				device->dev.coherent_dma_mask =
1178 					parent->coherent_dma_mask;
1179 			else
1180 				WARN_ON_ONCE(true);
1181 		}
1182 	} else {
1183 		/*
1184 		 * The caller did not provide custom DMA operations. Use the
1185 		 * DMA mapping operations of the parent device.
1186 		 */
1187 		WARN_ON_ONCE(!parent);
1188 		device->dma_device = parent;
1189 	}
1190 	/* Setup default max segment size for all IB devices */
1191 	dma_set_max_seg_size(device->dma_device, SZ_2G);
1192 
1193 }
1194 
1195 /*
1196  * setup_device() allocates memory and sets up data that requires calling the
1197  * device ops, this is the only reason these actions are not done during
1198  * ib_alloc_device. It is undone by ib_dealloc_device().
1199  */
1200 static int setup_device(struct ib_device *device)
1201 {
1202 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1203 	int ret;
1204 
1205 	setup_dma_device(device);
1206 	ib_device_check_mandatory(device);
1207 
1208 	ret = setup_port_data(device);
1209 	if (ret) {
1210 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1211 		return ret;
1212 	}
1213 
1214 	memset(&device->attrs, 0, sizeof(device->attrs));
1215 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1216 	if (ret) {
1217 		dev_warn(&device->dev,
1218 			 "Couldn't query the device attributes\n");
1219 		return ret;
1220 	}
1221 
1222 	return 0;
1223 }
1224 
1225 static void disable_device(struct ib_device *device)
1226 {
1227 	struct ib_client *client;
1228 
1229 	WARN_ON(!refcount_read(&device->refcount));
1230 
1231 	down_write(&devices_rwsem);
1232 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1233 	up_write(&devices_rwsem);
1234 
1235 	down_read(&clients_rwsem);
1236 	list_for_each_entry_reverse(client, &client_list, list)
1237 		remove_client_context(device, client->client_id);
1238 	up_read(&clients_rwsem);
1239 
1240 	/* Pairs with refcount_set in enable_device */
1241 	ib_device_put(device);
1242 	wait_for_completion(&device->unreg_completion);
1243 
1244 	/*
1245 	 * compat devices must be removed after device refcount drops to zero.
1246 	 * Otherwise init_net() may add more compatdevs after removing compat
1247 	 * devices and before device is disabled.
1248 	 */
1249 	remove_compat_devs(device);
1250 }
1251 
1252 /*
1253  * An enabled device is visible to all clients and to all the public facing
1254  * APIs that return a device pointer. This always returns with a new get, even
1255  * if it fails.
1256  */
1257 static int enable_device_and_get(struct ib_device *device)
1258 {
1259 	struct ib_client *client;
1260 	unsigned long index;
1261 	int ret = 0;
1262 
1263 	/*
1264 	 * One ref belongs to the xa and the other belongs to this
1265 	 * thread. This is needed to guard against parallel unregistration.
1266 	 */
1267 	refcount_set(&device->refcount, 2);
1268 	down_write(&devices_rwsem);
1269 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1270 
1271 	/*
1272 	 * By using downgrade_write() we ensure that no other thread can clear
1273 	 * DEVICE_REGISTERED while we are completing the client setup.
1274 	 */
1275 	downgrade_write(&devices_rwsem);
1276 
1277 	if (device->ops.enable_driver) {
1278 		ret = device->ops.enable_driver(device);
1279 		if (ret)
1280 			goto out;
1281 	}
1282 
1283 	down_read(&clients_rwsem);
1284 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1285 		ret = add_client_context(device, client);
1286 		if (ret)
1287 			break;
1288 	}
1289 	up_read(&clients_rwsem);
1290 	if (!ret)
1291 		ret = add_compat_devs(device);
1292 out:
1293 	up_read(&devices_rwsem);
1294 	return ret;
1295 }
1296 
1297 /**
1298  * ib_register_device - Register an IB device with IB core
1299  * @device:Device to register
1300  *
1301  * Low-level drivers use ib_register_device() to register their
1302  * devices with the IB core.  All registered clients will receive a
1303  * callback for each device that is added. @device must be allocated
1304  * with ib_alloc_device().
1305  *
1306  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1307  * asynchronously then the device pointer may become freed as soon as this
1308  * function returns.
1309  */
1310 int ib_register_device(struct ib_device *device, const char *name)
1311 {
1312 	int ret;
1313 
1314 	ret = assign_name(device, name);
1315 	if (ret)
1316 		return ret;
1317 
1318 	ret = setup_device(device);
1319 	if (ret)
1320 		return ret;
1321 
1322 	ret = ib_cache_setup_one(device);
1323 	if (ret) {
1324 		dev_warn(&device->dev,
1325 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1326 		return ret;
1327 	}
1328 
1329 	ib_device_register_rdmacg(device);
1330 
1331 	rdma_counter_init(device);
1332 
1333 	/*
1334 	 * Ensure that ADD uevent is not fired because it
1335 	 * is too early amd device is not initialized yet.
1336 	 */
1337 	dev_set_uevent_suppress(&device->dev, true);
1338 	ret = device_add(&device->dev);
1339 	if (ret)
1340 		goto cg_cleanup;
1341 
1342 	ret = ib_device_register_sysfs(device);
1343 	if (ret) {
1344 		dev_warn(&device->dev,
1345 			 "Couldn't register device with driver model\n");
1346 		goto dev_cleanup;
1347 	}
1348 
1349 	ret = enable_device_and_get(device);
1350 	dev_set_uevent_suppress(&device->dev, false);
1351 	/* Mark for userspace that device is ready */
1352 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1353 	if (ret) {
1354 		void (*dealloc_fn)(struct ib_device *);
1355 
1356 		/*
1357 		 * If we hit this error flow then we don't want to
1358 		 * automatically dealloc the device since the caller is
1359 		 * expected to call ib_dealloc_device() after
1360 		 * ib_register_device() fails. This is tricky due to the
1361 		 * possibility for a parallel unregistration along with this
1362 		 * error flow. Since we have a refcount here we know any
1363 		 * parallel flow is stopped in disable_device and will see the
1364 		 * NULL pointers, causing the responsibility to
1365 		 * ib_dealloc_device() to revert back to this thread.
1366 		 */
1367 		dealloc_fn = device->ops.dealloc_driver;
1368 		device->ops.dealloc_driver = NULL;
1369 		ib_device_put(device);
1370 		__ib_unregister_device(device);
1371 		device->ops.dealloc_driver = dealloc_fn;
1372 		return ret;
1373 	}
1374 	ib_device_put(device);
1375 
1376 	return 0;
1377 
1378 dev_cleanup:
1379 	device_del(&device->dev);
1380 cg_cleanup:
1381 	dev_set_uevent_suppress(&device->dev, false);
1382 	ib_device_unregister_rdmacg(device);
1383 	ib_cache_cleanup_one(device);
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL(ib_register_device);
1387 
1388 /* Callers must hold a get on the device. */
1389 static void __ib_unregister_device(struct ib_device *ib_dev)
1390 {
1391 	/*
1392 	 * We have a registration lock so that all the calls to unregister are
1393 	 * fully fenced, once any unregister returns the device is truely
1394 	 * unregistered even if multiple callers are unregistering it at the
1395 	 * same time. This also interacts with the registration flow and
1396 	 * provides sane semantics if register and unregister are racing.
1397 	 */
1398 	mutex_lock(&ib_dev->unregistration_lock);
1399 	if (!refcount_read(&ib_dev->refcount))
1400 		goto out;
1401 
1402 	disable_device(ib_dev);
1403 
1404 	/* Expedite removing unregistered pointers from the hash table */
1405 	free_netdevs(ib_dev);
1406 
1407 	ib_device_unregister_sysfs(ib_dev);
1408 	device_del(&ib_dev->dev);
1409 	ib_device_unregister_rdmacg(ib_dev);
1410 	ib_cache_cleanup_one(ib_dev);
1411 
1412 	/*
1413 	 * Drivers using the new flow may not call ib_dealloc_device except
1414 	 * in error unwind prior to registration success.
1415 	 */
1416 	if (ib_dev->ops.dealloc_driver) {
1417 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1418 		ib_dealloc_device(ib_dev);
1419 	}
1420 out:
1421 	mutex_unlock(&ib_dev->unregistration_lock);
1422 }
1423 
1424 /**
1425  * ib_unregister_device - Unregister an IB device
1426  * @device: The device to unregister
1427  *
1428  * Unregister an IB device.  All clients will receive a remove callback.
1429  *
1430  * Callers should call this routine only once, and protect against races with
1431  * registration. Typically it should only be called as part of a remove
1432  * callback in an implementation of driver core's struct device_driver and
1433  * related.
1434  *
1435  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1436  * this function.
1437  */
1438 void ib_unregister_device(struct ib_device *ib_dev)
1439 {
1440 	get_device(&ib_dev->dev);
1441 	__ib_unregister_device(ib_dev);
1442 	put_device(&ib_dev->dev);
1443 }
1444 EXPORT_SYMBOL(ib_unregister_device);
1445 
1446 /**
1447  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1448  * device: The device to unregister
1449  *
1450  * This is the same as ib_unregister_device(), except it includes an internal
1451  * ib_device_put() that should match a 'get' obtained by the caller.
1452  *
1453  * It is safe to call this routine concurrently from multiple threads while
1454  * holding the 'get'. When the function returns the device is fully
1455  * unregistered.
1456  *
1457  * Drivers using this flow MUST use the driver_unregister callback to clean up
1458  * their resources associated with the device and dealloc it.
1459  */
1460 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1461 {
1462 	WARN_ON(!ib_dev->ops.dealloc_driver);
1463 	get_device(&ib_dev->dev);
1464 	ib_device_put(ib_dev);
1465 	__ib_unregister_device(ib_dev);
1466 	put_device(&ib_dev->dev);
1467 }
1468 EXPORT_SYMBOL(ib_unregister_device_and_put);
1469 
1470 /**
1471  * ib_unregister_driver - Unregister all IB devices for a driver
1472  * @driver_id: The driver to unregister
1473  *
1474  * This implements a fence for device unregistration. It only returns once all
1475  * devices associated with the driver_id have fully completed their
1476  * unregistration and returned from ib_unregister_device*().
1477  *
1478  * If device's are not yet unregistered it goes ahead and starts unregistering
1479  * them.
1480  *
1481  * This does not block creation of new devices with the given driver_id, that
1482  * is the responsibility of the caller.
1483  */
1484 void ib_unregister_driver(enum rdma_driver_id driver_id)
1485 {
1486 	struct ib_device *ib_dev;
1487 	unsigned long index;
1488 
1489 	down_read(&devices_rwsem);
1490 	xa_for_each (&devices, index, ib_dev) {
1491 		if (ib_dev->ops.driver_id != driver_id)
1492 			continue;
1493 
1494 		get_device(&ib_dev->dev);
1495 		up_read(&devices_rwsem);
1496 
1497 		WARN_ON(!ib_dev->ops.dealloc_driver);
1498 		__ib_unregister_device(ib_dev);
1499 
1500 		put_device(&ib_dev->dev);
1501 		down_read(&devices_rwsem);
1502 	}
1503 	up_read(&devices_rwsem);
1504 }
1505 EXPORT_SYMBOL(ib_unregister_driver);
1506 
1507 static void ib_unregister_work(struct work_struct *work)
1508 {
1509 	struct ib_device *ib_dev =
1510 		container_of(work, struct ib_device, unregistration_work);
1511 
1512 	__ib_unregister_device(ib_dev);
1513 	put_device(&ib_dev->dev);
1514 }
1515 
1516 /**
1517  * ib_unregister_device_queued - Unregister a device using a work queue
1518  * device: The device to unregister
1519  *
1520  * This schedules an asynchronous unregistration using a WQ for the device. A
1521  * driver should use this to avoid holding locks while doing unregistration,
1522  * such as holding the RTNL lock.
1523  *
1524  * Drivers using this API must use ib_unregister_driver before module unload
1525  * to ensure that all scheduled unregistrations have completed.
1526  */
1527 void ib_unregister_device_queued(struct ib_device *ib_dev)
1528 {
1529 	WARN_ON(!refcount_read(&ib_dev->refcount));
1530 	WARN_ON(!ib_dev->ops.dealloc_driver);
1531 	get_device(&ib_dev->dev);
1532 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1533 		put_device(&ib_dev->dev);
1534 }
1535 EXPORT_SYMBOL(ib_unregister_device_queued);
1536 
1537 /*
1538  * The caller must pass in a device that has the kref held and the refcount
1539  * released. If the device is in cur_net and still registered then it is moved
1540  * into net.
1541  */
1542 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1543 				 struct net *net)
1544 {
1545 	int ret2 = -EINVAL;
1546 	int ret;
1547 
1548 	mutex_lock(&device->unregistration_lock);
1549 
1550 	/*
1551 	 * If a device not under ib_device_get() or if the unregistration_lock
1552 	 * is not held, the namespace can be changed, or it can be unregistered.
1553 	 * Check again under the lock.
1554 	 */
1555 	if (refcount_read(&device->refcount) == 0 ||
1556 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1557 		ret = -ENODEV;
1558 		goto out;
1559 	}
1560 
1561 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1562 	disable_device(device);
1563 
1564 	/*
1565 	 * At this point no one can be using the device, so it is safe to
1566 	 * change the namespace.
1567 	 */
1568 	write_pnet(&device->coredev.rdma_net, net);
1569 
1570 	down_read(&devices_rwsem);
1571 	/*
1572 	 * Currently rdma devices are system wide unique. So the device name
1573 	 * is guaranteed free in the new namespace. Publish the new namespace
1574 	 * at the sysfs level.
1575 	 */
1576 	ret = device_rename(&device->dev, dev_name(&device->dev));
1577 	up_read(&devices_rwsem);
1578 	if (ret) {
1579 		dev_warn(&device->dev,
1580 			 "%s: Couldn't rename device after namespace change\n",
1581 			 __func__);
1582 		/* Try and put things back and re-enable the device */
1583 		write_pnet(&device->coredev.rdma_net, cur_net);
1584 	}
1585 
1586 	ret2 = enable_device_and_get(device);
1587 	if (ret2) {
1588 		/*
1589 		 * This shouldn't really happen, but if it does, let the user
1590 		 * retry at later point. So don't disable the device.
1591 		 */
1592 		dev_warn(&device->dev,
1593 			 "%s: Couldn't re-enable device after namespace change\n",
1594 			 __func__);
1595 	}
1596 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1597 
1598 	ib_device_put(device);
1599 out:
1600 	mutex_unlock(&device->unregistration_lock);
1601 	if (ret)
1602 		return ret;
1603 	return ret2;
1604 }
1605 
1606 int ib_device_set_netns_put(struct sk_buff *skb,
1607 			    struct ib_device *dev, u32 ns_fd)
1608 {
1609 	struct net *net;
1610 	int ret;
1611 
1612 	net = get_net_ns_by_fd(ns_fd);
1613 	if (IS_ERR(net)) {
1614 		ret = PTR_ERR(net);
1615 		goto net_err;
1616 	}
1617 
1618 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1619 		ret = -EPERM;
1620 		goto ns_err;
1621 	}
1622 
1623 	/*
1624 	 * Currently supported only for those providers which support
1625 	 * disassociation and don't do port specific sysfs init. Once a
1626 	 * port_cleanup infrastructure is implemented, this limitation will be
1627 	 * removed.
1628 	 */
1629 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1630 	    ib_devices_shared_netns) {
1631 		ret = -EOPNOTSUPP;
1632 		goto ns_err;
1633 	}
1634 
1635 	get_device(&dev->dev);
1636 	ib_device_put(dev);
1637 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1638 	put_device(&dev->dev);
1639 
1640 	put_net(net);
1641 	return ret;
1642 
1643 ns_err:
1644 	put_net(net);
1645 net_err:
1646 	ib_device_put(dev);
1647 	return ret;
1648 }
1649 
1650 static struct pernet_operations rdma_dev_net_ops = {
1651 	.init = rdma_dev_init_net,
1652 	.exit = rdma_dev_exit_net,
1653 	.id = &rdma_dev_net_id,
1654 	.size = sizeof(struct rdma_dev_net),
1655 };
1656 
1657 static int assign_client_id(struct ib_client *client)
1658 {
1659 	int ret;
1660 
1661 	down_write(&clients_rwsem);
1662 	/*
1663 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1664 	 * achieve this we assign client_ids so they are sorted in
1665 	 * registration order, and retain a linked list we can reverse iterate
1666 	 * to get the LIFO order. The extra linked list can go away if xarray
1667 	 * learns to reverse iterate.
1668 	 */
1669 	if (list_empty(&client_list)) {
1670 		client->client_id = 0;
1671 	} else {
1672 		struct ib_client *last;
1673 
1674 		last = list_last_entry(&client_list, struct ib_client, list);
1675 		client->client_id = last->client_id + 1;
1676 	}
1677 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1678 	if (ret)
1679 		goto out;
1680 
1681 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1682 	list_add_tail(&client->list, &client_list);
1683 
1684 out:
1685 	up_write(&clients_rwsem);
1686 	return ret;
1687 }
1688 
1689 /**
1690  * ib_register_client - Register an IB client
1691  * @client:Client to register
1692  *
1693  * Upper level users of the IB drivers can use ib_register_client() to
1694  * register callbacks for IB device addition and removal.  When an IB
1695  * device is added, each registered client's add method will be called
1696  * (in the order the clients were registered), and when a device is
1697  * removed, each client's remove method will be called (in the reverse
1698  * order that clients were registered).  In addition, when
1699  * ib_register_client() is called, the client will receive an add
1700  * callback for all devices already registered.
1701  */
1702 int ib_register_client(struct ib_client *client)
1703 {
1704 	struct ib_device *device;
1705 	unsigned long index;
1706 	int ret;
1707 
1708 	ret = assign_client_id(client);
1709 	if (ret)
1710 		return ret;
1711 
1712 	down_read(&devices_rwsem);
1713 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1714 		ret = add_client_context(device, client);
1715 		if (ret) {
1716 			up_read(&devices_rwsem);
1717 			ib_unregister_client(client);
1718 			return ret;
1719 		}
1720 	}
1721 	up_read(&devices_rwsem);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(ib_register_client);
1725 
1726 /**
1727  * ib_unregister_client - Unregister an IB client
1728  * @client:Client to unregister
1729  *
1730  * Upper level users use ib_unregister_client() to remove their client
1731  * registration.  When ib_unregister_client() is called, the client
1732  * will receive a remove callback for each IB device still registered.
1733  *
1734  * This is a full fence, once it returns no client callbacks will be called,
1735  * or are running in another thread.
1736  */
1737 void ib_unregister_client(struct ib_client *client)
1738 {
1739 	struct ib_device *device;
1740 	unsigned long index;
1741 
1742 	down_write(&clients_rwsem);
1743 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1744 	up_write(&clients_rwsem);
1745 	/*
1746 	 * Every device still known must be serialized to make sure we are
1747 	 * done with the client callbacks before we return.
1748 	 */
1749 	down_read(&devices_rwsem);
1750 	xa_for_each (&devices, index, device)
1751 		remove_client_context(device, client->client_id);
1752 	up_read(&devices_rwsem);
1753 
1754 	down_write(&clients_rwsem);
1755 	list_del(&client->list);
1756 	xa_erase(&clients, client->client_id);
1757 	up_write(&clients_rwsem);
1758 }
1759 EXPORT_SYMBOL(ib_unregister_client);
1760 
1761 static int __ib_get_global_client_nl_info(const char *client_name,
1762 					  struct ib_client_nl_info *res)
1763 {
1764 	struct ib_client *client;
1765 	unsigned long index;
1766 	int ret = -ENOENT;
1767 
1768 	down_read(&clients_rwsem);
1769 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1770 		if (strcmp(client->name, client_name) != 0)
1771 			continue;
1772 		if (!client->get_global_nl_info) {
1773 			ret = -EOPNOTSUPP;
1774 			break;
1775 		}
1776 		ret = client->get_global_nl_info(res);
1777 		if (WARN_ON(ret == -ENOENT))
1778 			ret = -EINVAL;
1779 		if (!ret && res->cdev)
1780 			get_device(res->cdev);
1781 		break;
1782 	}
1783 	up_read(&clients_rwsem);
1784 	return ret;
1785 }
1786 
1787 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1788 				   const char *client_name,
1789 				   struct ib_client_nl_info *res)
1790 {
1791 	unsigned long index;
1792 	void *client_data;
1793 	int ret = -ENOENT;
1794 
1795 	down_read(&ibdev->client_data_rwsem);
1796 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1797 			     CLIENT_DATA_REGISTERED) {
1798 		struct ib_client *client = xa_load(&clients, index);
1799 
1800 		if (!client || strcmp(client->name, client_name) != 0)
1801 			continue;
1802 		if (!client->get_nl_info) {
1803 			ret = -EOPNOTSUPP;
1804 			break;
1805 		}
1806 		ret = client->get_nl_info(ibdev, client_data, res);
1807 		if (WARN_ON(ret == -ENOENT))
1808 			ret = -EINVAL;
1809 
1810 		/*
1811 		 * The cdev is guaranteed valid as long as we are inside the
1812 		 * client_data_rwsem as remove_one can't be called. Keep it
1813 		 * valid for the caller.
1814 		 */
1815 		if (!ret && res->cdev)
1816 			get_device(res->cdev);
1817 		break;
1818 	}
1819 	up_read(&ibdev->client_data_rwsem);
1820 
1821 	return ret;
1822 }
1823 
1824 /**
1825  * ib_get_client_nl_info - Fetch the nl_info from a client
1826  * @device - IB device
1827  * @client_name - Name of the client
1828  * @res - Result of the query
1829  */
1830 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1831 			  struct ib_client_nl_info *res)
1832 {
1833 	int ret;
1834 
1835 	if (ibdev)
1836 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1837 	else
1838 		ret = __ib_get_global_client_nl_info(client_name, res);
1839 #ifdef CONFIG_MODULES
1840 	if (ret == -ENOENT) {
1841 		request_module("rdma-client-%s", client_name);
1842 		if (ibdev)
1843 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1844 		else
1845 			ret = __ib_get_global_client_nl_info(client_name, res);
1846 	}
1847 #endif
1848 	if (ret) {
1849 		if (ret == -ENOENT)
1850 			return -EOPNOTSUPP;
1851 		return ret;
1852 	}
1853 
1854 	if (WARN_ON(!res->cdev))
1855 		return -EINVAL;
1856 	return 0;
1857 }
1858 
1859 /**
1860  * ib_set_client_data - Set IB client context
1861  * @device:Device to set context for
1862  * @client:Client to set context for
1863  * @data:Context to set
1864  *
1865  * ib_set_client_data() sets client context data that can be retrieved with
1866  * ib_get_client_data(). This can only be called while the client is
1867  * registered to the device, once the ib_client remove() callback returns this
1868  * cannot be called.
1869  */
1870 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1871 			void *data)
1872 {
1873 	void *rc;
1874 
1875 	if (WARN_ON(IS_ERR(data)))
1876 		data = NULL;
1877 
1878 	rc = xa_store(&device->client_data, client->client_id, data,
1879 		      GFP_KERNEL);
1880 	WARN_ON(xa_is_err(rc));
1881 }
1882 EXPORT_SYMBOL(ib_set_client_data);
1883 
1884 /**
1885  * ib_register_event_handler - Register an IB event handler
1886  * @event_handler:Handler to register
1887  *
1888  * ib_register_event_handler() registers an event handler that will be
1889  * called back when asynchronous IB events occur (as defined in
1890  * chapter 11 of the InfiniBand Architecture Specification).  This
1891  * callback may occur in interrupt context.
1892  */
1893 void ib_register_event_handler(struct ib_event_handler *event_handler)
1894 {
1895 	unsigned long flags;
1896 
1897 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1898 	list_add_tail(&event_handler->list,
1899 		      &event_handler->device->event_handler_list);
1900 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1901 }
1902 EXPORT_SYMBOL(ib_register_event_handler);
1903 
1904 /**
1905  * ib_unregister_event_handler - Unregister an event handler
1906  * @event_handler:Handler to unregister
1907  *
1908  * Unregister an event handler registered with
1909  * ib_register_event_handler().
1910  */
1911 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1912 {
1913 	unsigned long flags;
1914 
1915 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1916 	list_del(&event_handler->list);
1917 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1918 }
1919 EXPORT_SYMBOL(ib_unregister_event_handler);
1920 
1921 /**
1922  * ib_dispatch_event - Dispatch an asynchronous event
1923  * @event:Event to dispatch
1924  *
1925  * Low-level drivers must call ib_dispatch_event() to dispatch the
1926  * event to all registered event handlers when an asynchronous event
1927  * occurs.
1928  */
1929 void ib_dispatch_event(struct ib_event *event)
1930 {
1931 	unsigned long flags;
1932 	struct ib_event_handler *handler;
1933 
1934 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1935 
1936 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1937 		handler->handler(handler, event);
1938 
1939 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1940 }
1941 EXPORT_SYMBOL(ib_dispatch_event);
1942 
1943 /**
1944  * ib_query_port - Query IB port attributes
1945  * @device:Device to query
1946  * @port_num:Port number to query
1947  * @port_attr:Port attributes
1948  *
1949  * ib_query_port() returns the attributes of a port through the
1950  * @port_attr pointer.
1951  */
1952 int ib_query_port(struct ib_device *device,
1953 		  u8 port_num,
1954 		  struct ib_port_attr *port_attr)
1955 {
1956 	union ib_gid gid;
1957 	int err;
1958 
1959 	if (!rdma_is_port_valid(device, port_num))
1960 		return -EINVAL;
1961 
1962 	memset(port_attr, 0, sizeof(*port_attr));
1963 	err = device->ops.query_port(device, port_num, port_attr);
1964 	if (err || port_attr->subnet_prefix)
1965 		return err;
1966 
1967 	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
1968 		return 0;
1969 
1970 	err = device->ops.query_gid(device, port_num, 0, &gid);
1971 	if (err)
1972 		return err;
1973 
1974 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL(ib_query_port);
1978 
1979 static void add_ndev_hash(struct ib_port_data *pdata)
1980 {
1981 	unsigned long flags;
1982 
1983 	might_sleep();
1984 
1985 	spin_lock_irqsave(&ndev_hash_lock, flags);
1986 	if (hash_hashed(&pdata->ndev_hash_link)) {
1987 		hash_del_rcu(&pdata->ndev_hash_link);
1988 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
1989 		/*
1990 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
1991 		 * grace period
1992 		 */
1993 		synchronize_rcu();
1994 		spin_lock_irqsave(&ndev_hash_lock, flags);
1995 	}
1996 	if (pdata->netdev)
1997 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
1998 			     (uintptr_t)pdata->netdev);
1999 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2000 }
2001 
2002 /**
2003  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2004  * @ib_dev: Device to modify
2005  * @ndev: net_device to affiliate, may be NULL
2006  * @port: IB port the net_device is connected to
2007  *
2008  * Drivers should use this to link the ib_device to a netdev so the netdev
2009  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2010  * affiliated with any port.
2011  *
2012  * The caller must ensure that the given ndev is not unregistered or
2013  * unregistering, and that either the ib_device is unregistered or
2014  * ib_device_set_netdev() is called with NULL when the ndev sends a
2015  * NETDEV_UNREGISTER event.
2016  */
2017 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2018 			 unsigned int port)
2019 {
2020 	struct net_device *old_ndev;
2021 	struct ib_port_data *pdata;
2022 	unsigned long flags;
2023 	int ret;
2024 
2025 	/*
2026 	 * Drivers wish to call this before ib_register_driver, so we have to
2027 	 * setup the port data early.
2028 	 */
2029 	ret = alloc_port_data(ib_dev);
2030 	if (ret)
2031 		return ret;
2032 
2033 	if (!rdma_is_port_valid(ib_dev, port))
2034 		return -EINVAL;
2035 
2036 	pdata = &ib_dev->port_data[port];
2037 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2038 	old_ndev = rcu_dereference_protected(
2039 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2040 	if (old_ndev == ndev) {
2041 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2042 		return 0;
2043 	}
2044 
2045 	if (ndev)
2046 		dev_hold(ndev);
2047 	rcu_assign_pointer(pdata->netdev, ndev);
2048 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2049 
2050 	add_ndev_hash(pdata);
2051 	if (old_ndev)
2052 		dev_put(old_ndev);
2053 
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(ib_device_set_netdev);
2057 
2058 static void free_netdevs(struct ib_device *ib_dev)
2059 {
2060 	unsigned long flags;
2061 	unsigned int port;
2062 
2063 	if (!ib_dev->port_data)
2064 		return;
2065 
2066 	rdma_for_each_port (ib_dev, port) {
2067 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2068 		struct net_device *ndev;
2069 
2070 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2071 		ndev = rcu_dereference_protected(
2072 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2073 		if (ndev) {
2074 			spin_lock(&ndev_hash_lock);
2075 			hash_del_rcu(&pdata->ndev_hash_link);
2076 			spin_unlock(&ndev_hash_lock);
2077 
2078 			/*
2079 			 * If this is the last dev_put there is still a
2080 			 * synchronize_rcu before the netdev is kfreed, so we
2081 			 * can continue to rely on unlocked pointer
2082 			 * comparisons after the put
2083 			 */
2084 			rcu_assign_pointer(pdata->netdev, NULL);
2085 			dev_put(ndev);
2086 		}
2087 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2088 	}
2089 }
2090 
2091 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2092 					unsigned int port)
2093 {
2094 	struct ib_port_data *pdata;
2095 	struct net_device *res;
2096 
2097 	if (!rdma_is_port_valid(ib_dev, port))
2098 		return NULL;
2099 
2100 	pdata = &ib_dev->port_data[port];
2101 
2102 	/*
2103 	 * New drivers should use ib_device_set_netdev() not the legacy
2104 	 * get_netdev().
2105 	 */
2106 	if (ib_dev->ops.get_netdev)
2107 		res = ib_dev->ops.get_netdev(ib_dev, port);
2108 	else {
2109 		spin_lock(&pdata->netdev_lock);
2110 		res = rcu_dereference_protected(
2111 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2112 		if (res)
2113 			dev_hold(res);
2114 		spin_unlock(&pdata->netdev_lock);
2115 	}
2116 
2117 	/*
2118 	 * If we are starting to unregister expedite things by preventing
2119 	 * propagation of an unregistering netdev.
2120 	 */
2121 	if (res && res->reg_state != NETREG_REGISTERED) {
2122 		dev_put(res);
2123 		return NULL;
2124 	}
2125 
2126 	return res;
2127 }
2128 
2129 /**
2130  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2131  * @ndev: netdev to locate
2132  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2133  *
2134  * Find and hold an ib_device that is associated with a netdev via
2135  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2136  * returned pointer.
2137  */
2138 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2139 					  enum rdma_driver_id driver_id)
2140 {
2141 	struct ib_device *res = NULL;
2142 	struct ib_port_data *cur;
2143 
2144 	rcu_read_lock();
2145 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2146 				    (uintptr_t)ndev) {
2147 		if (rcu_access_pointer(cur->netdev) == ndev &&
2148 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2149 		     cur->ib_dev->ops.driver_id == driver_id) &&
2150 		    ib_device_try_get(cur->ib_dev)) {
2151 			res = cur->ib_dev;
2152 			break;
2153 		}
2154 	}
2155 	rcu_read_unlock();
2156 
2157 	return res;
2158 }
2159 EXPORT_SYMBOL(ib_device_get_by_netdev);
2160 
2161 /**
2162  * ib_enum_roce_netdev - enumerate all RoCE ports
2163  * @ib_dev : IB device we want to query
2164  * @filter: Should we call the callback?
2165  * @filter_cookie: Cookie passed to filter
2166  * @cb: Callback to call for each found RoCE ports
2167  * @cookie: Cookie passed back to the callback
2168  *
2169  * Enumerates all of the physical RoCE ports of ib_dev
2170  * which are related to netdevice and calls callback() on each
2171  * device for which filter() function returns non zero.
2172  */
2173 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2174 			 roce_netdev_filter filter,
2175 			 void *filter_cookie,
2176 			 roce_netdev_callback cb,
2177 			 void *cookie)
2178 {
2179 	unsigned int port;
2180 
2181 	rdma_for_each_port (ib_dev, port)
2182 		if (rdma_protocol_roce(ib_dev, port)) {
2183 			struct net_device *idev =
2184 				ib_device_get_netdev(ib_dev, port);
2185 
2186 			if (filter(ib_dev, port, idev, filter_cookie))
2187 				cb(ib_dev, port, idev, cookie);
2188 
2189 			if (idev)
2190 				dev_put(idev);
2191 		}
2192 }
2193 
2194 /**
2195  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2196  * @filter: Should we call the callback?
2197  * @filter_cookie: Cookie passed to filter
2198  * @cb: Callback to call for each found RoCE ports
2199  * @cookie: Cookie passed back to the callback
2200  *
2201  * Enumerates all RoCE devices' physical ports which are related
2202  * to netdevices and calls callback() on each device for which
2203  * filter() function returns non zero.
2204  */
2205 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2206 			      void *filter_cookie,
2207 			      roce_netdev_callback cb,
2208 			      void *cookie)
2209 {
2210 	struct ib_device *dev;
2211 	unsigned long index;
2212 
2213 	down_read(&devices_rwsem);
2214 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2215 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2216 	up_read(&devices_rwsem);
2217 }
2218 
2219 /**
2220  * ib_enum_all_devs - enumerate all ib_devices
2221  * @cb: Callback to call for each found ib_device
2222  *
2223  * Enumerates all ib_devices and calls callback() on each device.
2224  */
2225 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2226 		     struct netlink_callback *cb)
2227 {
2228 	unsigned long index;
2229 	struct ib_device *dev;
2230 	unsigned int idx = 0;
2231 	int ret = 0;
2232 
2233 	down_read(&devices_rwsem);
2234 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2235 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2236 			continue;
2237 
2238 		ret = nldev_cb(dev, skb, cb, idx);
2239 		if (ret)
2240 			break;
2241 		idx++;
2242 	}
2243 	up_read(&devices_rwsem);
2244 	return ret;
2245 }
2246 
2247 /**
2248  * ib_query_pkey - Get P_Key table entry
2249  * @device:Device to query
2250  * @port_num:Port number to query
2251  * @index:P_Key table index to query
2252  * @pkey:Returned P_Key
2253  *
2254  * ib_query_pkey() fetches the specified P_Key table entry.
2255  */
2256 int ib_query_pkey(struct ib_device *device,
2257 		  u8 port_num, u16 index, u16 *pkey)
2258 {
2259 	if (!rdma_is_port_valid(device, port_num))
2260 		return -EINVAL;
2261 
2262 	return device->ops.query_pkey(device, port_num, index, pkey);
2263 }
2264 EXPORT_SYMBOL(ib_query_pkey);
2265 
2266 /**
2267  * ib_modify_device - Change IB device attributes
2268  * @device:Device to modify
2269  * @device_modify_mask:Mask of attributes to change
2270  * @device_modify:New attribute values
2271  *
2272  * ib_modify_device() changes a device's attributes as specified by
2273  * the @device_modify_mask and @device_modify structure.
2274  */
2275 int ib_modify_device(struct ib_device *device,
2276 		     int device_modify_mask,
2277 		     struct ib_device_modify *device_modify)
2278 {
2279 	if (!device->ops.modify_device)
2280 		return -ENOSYS;
2281 
2282 	return device->ops.modify_device(device, device_modify_mask,
2283 					 device_modify);
2284 }
2285 EXPORT_SYMBOL(ib_modify_device);
2286 
2287 /**
2288  * ib_modify_port - Modifies the attributes for the specified port.
2289  * @device: The device to modify.
2290  * @port_num: The number of the port to modify.
2291  * @port_modify_mask: Mask used to specify which attributes of the port
2292  *   to change.
2293  * @port_modify: New attribute values for the port.
2294  *
2295  * ib_modify_port() changes a port's attributes as specified by the
2296  * @port_modify_mask and @port_modify structure.
2297  */
2298 int ib_modify_port(struct ib_device *device,
2299 		   u8 port_num, int port_modify_mask,
2300 		   struct ib_port_modify *port_modify)
2301 {
2302 	int rc;
2303 
2304 	if (!rdma_is_port_valid(device, port_num))
2305 		return -EINVAL;
2306 
2307 	if (device->ops.modify_port)
2308 		rc = device->ops.modify_port(device, port_num,
2309 					     port_modify_mask,
2310 					     port_modify);
2311 	else
2312 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
2313 	return rc;
2314 }
2315 EXPORT_SYMBOL(ib_modify_port);
2316 
2317 /**
2318  * ib_find_gid - Returns the port number and GID table index where
2319  *   a specified GID value occurs. Its searches only for IB link layer.
2320  * @device: The device to query.
2321  * @gid: The GID value to search for.
2322  * @port_num: The port number of the device where the GID value was found.
2323  * @index: The index into the GID table where the GID was found.  This
2324  *   parameter may be NULL.
2325  */
2326 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2327 		u8 *port_num, u16 *index)
2328 {
2329 	union ib_gid tmp_gid;
2330 	unsigned int port;
2331 	int ret, i;
2332 
2333 	rdma_for_each_port (device, port) {
2334 		if (!rdma_protocol_ib(device, port))
2335 			continue;
2336 
2337 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2338 		     ++i) {
2339 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2340 			if (ret)
2341 				return ret;
2342 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2343 				*port_num = port;
2344 				if (index)
2345 					*index = i;
2346 				return 0;
2347 			}
2348 		}
2349 	}
2350 
2351 	return -ENOENT;
2352 }
2353 EXPORT_SYMBOL(ib_find_gid);
2354 
2355 /**
2356  * ib_find_pkey - Returns the PKey table index where a specified
2357  *   PKey value occurs.
2358  * @device: The device to query.
2359  * @port_num: The port number of the device to search for the PKey.
2360  * @pkey: The PKey value to search for.
2361  * @index: The index into the PKey table where the PKey was found.
2362  */
2363 int ib_find_pkey(struct ib_device *device,
2364 		 u8 port_num, u16 pkey, u16 *index)
2365 {
2366 	int ret, i;
2367 	u16 tmp_pkey;
2368 	int partial_ix = -1;
2369 
2370 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2371 	     ++i) {
2372 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2373 		if (ret)
2374 			return ret;
2375 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2376 			/* if there is full-member pkey take it.*/
2377 			if (tmp_pkey & 0x8000) {
2378 				*index = i;
2379 				return 0;
2380 			}
2381 			if (partial_ix < 0)
2382 				partial_ix = i;
2383 		}
2384 	}
2385 
2386 	/*no full-member, if exists take the limited*/
2387 	if (partial_ix >= 0) {
2388 		*index = partial_ix;
2389 		return 0;
2390 	}
2391 	return -ENOENT;
2392 }
2393 EXPORT_SYMBOL(ib_find_pkey);
2394 
2395 /**
2396  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2397  * for a received CM request
2398  * @dev:	An RDMA device on which the request has been received.
2399  * @port:	Port number on the RDMA device.
2400  * @pkey:	The Pkey the request came on.
2401  * @gid:	A GID that the net_dev uses to communicate.
2402  * @addr:	Contains the IP address that the request specified as its
2403  *		destination.
2404  *
2405  */
2406 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2407 					    u8 port,
2408 					    u16 pkey,
2409 					    const union ib_gid *gid,
2410 					    const struct sockaddr *addr)
2411 {
2412 	struct net_device *net_dev = NULL;
2413 	unsigned long index;
2414 	void *client_data;
2415 
2416 	if (!rdma_protocol_ib(dev, port))
2417 		return NULL;
2418 
2419 	/*
2420 	 * Holding the read side guarantees that the client will not become
2421 	 * unregistered while we are calling get_net_dev_by_params()
2422 	 */
2423 	down_read(&dev->client_data_rwsem);
2424 	xan_for_each_marked (&dev->client_data, index, client_data,
2425 			     CLIENT_DATA_REGISTERED) {
2426 		struct ib_client *client = xa_load(&clients, index);
2427 
2428 		if (!client || !client->get_net_dev_by_params)
2429 			continue;
2430 
2431 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2432 							addr, client_data);
2433 		if (net_dev)
2434 			break;
2435 	}
2436 	up_read(&dev->client_data_rwsem);
2437 
2438 	return net_dev;
2439 }
2440 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2441 
2442 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2443 {
2444 	struct ib_device_ops *dev_ops = &dev->ops;
2445 #define SET_DEVICE_OP(ptr, name)                                               \
2446 	do {                                                                   \
2447 		if (ops->name)                                                 \
2448 			if (!((ptr)->name))				       \
2449 				(ptr)->name = ops->name;                       \
2450 	} while (0)
2451 
2452 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2453 
2454 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2455 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2456 			dev_ops->driver_id != ops->driver_id);
2457 		dev_ops->driver_id = ops->driver_id;
2458 	}
2459 	if (ops->owner) {
2460 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2461 		dev_ops->owner = ops->owner;
2462 	}
2463 	if (ops->uverbs_abi_ver)
2464 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2465 
2466 	dev_ops->uverbs_no_driver_id_binding |=
2467 		ops->uverbs_no_driver_id_binding;
2468 
2469 	SET_DEVICE_OP(dev_ops, add_gid);
2470 	SET_DEVICE_OP(dev_ops, advise_mr);
2471 	SET_DEVICE_OP(dev_ops, alloc_dm);
2472 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2473 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2474 	SET_DEVICE_OP(dev_ops, alloc_mr);
2475 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2476 	SET_DEVICE_OP(dev_ops, alloc_mw);
2477 	SET_DEVICE_OP(dev_ops, alloc_pd);
2478 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2479 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2480 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2481 	SET_DEVICE_OP(dev_ops, attach_mcast);
2482 	SET_DEVICE_OP(dev_ops, check_mr_status);
2483 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2484 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2485 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2486 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2487 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2488 	SET_DEVICE_OP(dev_ops, create_ah);
2489 	SET_DEVICE_OP(dev_ops, create_counters);
2490 	SET_DEVICE_OP(dev_ops, create_cq);
2491 	SET_DEVICE_OP(dev_ops, create_flow);
2492 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2493 	SET_DEVICE_OP(dev_ops, create_qp);
2494 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2495 	SET_DEVICE_OP(dev_ops, create_srq);
2496 	SET_DEVICE_OP(dev_ops, create_wq);
2497 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2498 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2499 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2500 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2501 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2502 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2503 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2504 	SET_DEVICE_OP(dev_ops, del_gid);
2505 	SET_DEVICE_OP(dev_ops, dereg_mr);
2506 	SET_DEVICE_OP(dev_ops, destroy_ah);
2507 	SET_DEVICE_OP(dev_ops, destroy_counters);
2508 	SET_DEVICE_OP(dev_ops, destroy_cq);
2509 	SET_DEVICE_OP(dev_ops, destroy_flow);
2510 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2511 	SET_DEVICE_OP(dev_ops, destroy_qp);
2512 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2513 	SET_DEVICE_OP(dev_ops, destroy_srq);
2514 	SET_DEVICE_OP(dev_ops, destroy_wq);
2515 	SET_DEVICE_OP(dev_ops, detach_mcast);
2516 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2517 	SET_DEVICE_OP(dev_ops, drain_rq);
2518 	SET_DEVICE_OP(dev_ops, drain_sq);
2519 	SET_DEVICE_OP(dev_ops, enable_driver);
2520 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2521 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2522 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2523 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2524 	SET_DEVICE_OP(dev_ops, get_link_layer);
2525 	SET_DEVICE_OP(dev_ops, get_netdev);
2526 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2527 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2528 	SET_DEVICE_OP(dev_ops, get_vf_config);
2529 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2530 	SET_DEVICE_OP(dev_ops, init_port);
2531 	SET_DEVICE_OP(dev_ops, iw_accept);
2532 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2533 	SET_DEVICE_OP(dev_ops, iw_connect);
2534 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2535 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2536 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2537 	SET_DEVICE_OP(dev_ops, iw_reject);
2538 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2539 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2540 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2541 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2542 	SET_DEVICE_OP(dev_ops, mmap);
2543 	SET_DEVICE_OP(dev_ops, modify_ah);
2544 	SET_DEVICE_OP(dev_ops, modify_cq);
2545 	SET_DEVICE_OP(dev_ops, modify_device);
2546 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2547 	SET_DEVICE_OP(dev_ops, modify_port);
2548 	SET_DEVICE_OP(dev_ops, modify_qp);
2549 	SET_DEVICE_OP(dev_ops, modify_srq);
2550 	SET_DEVICE_OP(dev_ops, modify_wq);
2551 	SET_DEVICE_OP(dev_ops, peek_cq);
2552 	SET_DEVICE_OP(dev_ops, poll_cq);
2553 	SET_DEVICE_OP(dev_ops, post_recv);
2554 	SET_DEVICE_OP(dev_ops, post_send);
2555 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2556 	SET_DEVICE_OP(dev_ops, process_mad);
2557 	SET_DEVICE_OP(dev_ops, query_ah);
2558 	SET_DEVICE_OP(dev_ops, query_device);
2559 	SET_DEVICE_OP(dev_ops, query_gid);
2560 	SET_DEVICE_OP(dev_ops, query_pkey);
2561 	SET_DEVICE_OP(dev_ops, query_port);
2562 	SET_DEVICE_OP(dev_ops, query_qp);
2563 	SET_DEVICE_OP(dev_ops, query_srq);
2564 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2565 	SET_DEVICE_OP(dev_ops, read_counters);
2566 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2567 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2568 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2569 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2570 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2571 	SET_DEVICE_OP(dev_ops, resize_cq);
2572 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2573 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2574 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2575 
2576 	SET_OBJ_SIZE(dev_ops, ib_ah);
2577 	SET_OBJ_SIZE(dev_ops, ib_cq);
2578 	SET_OBJ_SIZE(dev_ops, ib_pd);
2579 	SET_OBJ_SIZE(dev_ops, ib_srq);
2580 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2581 }
2582 EXPORT_SYMBOL(ib_set_device_ops);
2583 
2584 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2585 	[RDMA_NL_LS_OP_RESOLVE] = {
2586 		.doit = ib_nl_handle_resolve_resp,
2587 		.flags = RDMA_NL_ADMIN_PERM,
2588 	},
2589 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2590 		.doit = ib_nl_handle_set_timeout,
2591 		.flags = RDMA_NL_ADMIN_PERM,
2592 	},
2593 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2594 		.doit = ib_nl_handle_ip_res_resp,
2595 		.flags = RDMA_NL_ADMIN_PERM,
2596 	},
2597 };
2598 
2599 static int __init ib_core_init(void)
2600 {
2601 	int ret;
2602 
2603 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2604 	if (!ib_wq)
2605 		return -ENOMEM;
2606 
2607 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2608 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2609 	if (!ib_comp_wq) {
2610 		ret = -ENOMEM;
2611 		goto err;
2612 	}
2613 
2614 	ib_comp_unbound_wq =
2615 		alloc_workqueue("ib-comp-unb-wq",
2616 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2617 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2618 	if (!ib_comp_unbound_wq) {
2619 		ret = -ENOMEM;
2620 		goto err_comp;
2621 	}
2622 
2623 	ret = class_register(&ib_class);
2624 	if (ret) {
2625 		pr_warn("Couldn't create InfiniBand device class\n");
2626 		goto err_comp_unbound;
2627 	}
2628 
2629 	ret = rdma_nl_init();
2630 	if (ret) {
2631 		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
2632 		goto err_sysfs;
2633 	}
2634 
2635 	ret = addr_init();
2636 	if (ret) {
2637 		pr_warn("Could't init IB address resolution\n");
2638 		goto err_ibnl;
2639 	}
2640 
2641 	ret = ib_mad_init();
2642 	if (ret) {
2643 		pr_warn("Couldn't init IB MAD\n");
2644 		goto err_addr;
2645 	}
2646 
2647 	ret = ib_sa_init();
2648 	if (ret) {
2649 		pr_warn("Couldn't init SA\n");
2650 		goto err_mad;
2651 	}
2652 
2653 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2654 	if (ret) {
2655 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2656 		goto err_sa;
2657 	}
2658 
2659 	ret = register_pernet_device(&rdma_dev_net_ops);
2660 	if (ret) {
2661 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2662 		goto err_compat;
2663 	}
2664 
2665 	nldev_init();
2666 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2667 	roce_gid_mgmt_init();
2668 
2669 	return 0;
2670 
2671 err_compat:
2672 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2673 err_sa:
2674 	ib_sa_cleanup();
2675 err_mad:
2676 	ib_mad_cleanup();
2677 err_addr:
2678 	addr_cleanup();
2679 err_ibnl:
2680 	rdma_nl_exit();
2681 err_sysfs:
2682 	class_unregister(&ib_class);
2683 err_comp_unbound:
2684 	destroy_workqueue(ib_comp_unbound_wq);
2685 err_comp:
2686 	destroy_workqueue(ib_comp_wq);
2687 err:
2688 	destroy_workqueue(ib_wq);
2689 	return ret;
2690 }
2691 
2692 static void __exit ib_core_cleanup(void)
2693 {
2694 	roce_gid_mgmt_cleanup();
2695 	nldev_exit();
2696 	rdma_nl_unregister(RDMA_NL_LS);
2697 	unregister_pernet_device(&rdma_dev_net_ops);
2698 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2699 	ib_sa_cleanup();
2700 	ib_mad_cleanup();
2701 	addr_cleanup();
2702 	rdma_nl_exit();
2703 	class_unregister(&ib_class);
2704 	destroy_workqueue(ib_comp_unbound_wq);
2705 	destroy_workqueue(ib_comp_wq);
2706 	/* Make sure that any pending umem accounting work is done. */
2707 	destroy_workqueue(ib_wq);
2708 	flush_workqueue(system_unbound_wq);
2709 	WARN_ON(!xa_empty(&clients));
2710 	WARN_ON(!xa_empty(&devices));
2711 }
2712 
2713 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2714 
2715 /* ib core relies on netdev stack to first register net_ns_type_operations
2716  * ns kobject type before ib_core initialization.
2717  */
2718 fs_initcall(ib_core_init);
2719 module_exit(ib_core_cleanup);
2720