xref: /openbmc/linux/drivers/infiniband/core/device.c (revision b664e06d)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <net/netns/generic.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/hashtable.h>
46 #include <rdma/rdma_netlink.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static LIST_HEAD(client_list);
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 /*
102  * If client_data is registered then the corresponding client must also still
103  * be registered.
104  */
105 #define CLIENT_DATA_REGISTERED XA_MARK_1
106 
107 /**
108  * struct rdma_dev_net - rdma net namespace metadata for a net
109  * @net:	Pointer to owner net namespace
110  * @id:		xarray id to identify the net namespace.
111  */
112 struct rdma_dev_net {
113 	possible_net_t net;
114 	u32 id;
115 };
116 
117 static unsigned int rdma_dev_net_id;
118 
119 /*
120  * A list of net namespaces is maintained in an xarray. This is necessary
121  * because we can't get the locking right using the existing net ns list. We
122  * would require a init_net callback after the list is updated.
123  */
124 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
125 /*
126  * rwsem to protect accessing the rdma_nets xarray entries.
127  */
128 static DECLARE_RWSEM(rdma_nets_rwsem);
129 
130 bool ib_devices_shared_netns = true;
131 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
132 MODULE_PARM_DESC(netns_mode,
133 		 "Share device among net namespaces; default=1 (shared)");
134 /**
135  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
136  *			     from a specified net namespace or not.
137  * @device:	Pointer to rdma device which needs to be checked
138  * @net:	Pointer to net namesapce for which access to be checked
139  *
140  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
141  *			     from a specified net namespace or not. When
142  *			     rdma device is in shared mode, it ignores the
143  *			     net namespace. When rdma device is exclusive
144  *			     to a net namespace, rdma device net namespace is
145  *			     checked against the specified one.
146  */
147 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
148 {
149 	return (ib_devices_shared_netns ||
150 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
151 }
152 EXPORT_SYMBOL(rdma_dev_access_netns);
153 
154 /*
155  * xarray has this behavior where it won't iterate over NULL values stored in
156  * allocated arrays.  So we need our own iterator to see all values stored in
157  * the array. This does the same thing as xa_for_each except that it also
158  * returns NULL valued entries if the array is allocating. Simplified to only
159  * work on simple xarrays.
160  */
161 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
162 			     xa_mark_t filter)
163 {
164 	XA_STATE(xas, xa, *indexp);
165 	void *entry;
166 
167 	rcu_read_lock();
168 	do {
169 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
170 		if (xa_is_zero(entry))
171 			break;
172 	} while (xas_retry(&xas, entry));
173 	rcu_read_unlock();
174 
175 	if (entry) {
176 		*indexp = xas.xa_index;
177 		if (xa_is_zero(entry))
178 			return NULL;
179 		return entry;
180 	}
181 	return XA_ERROR(-ENOENT);
182 }
183 #define xan_for_each_marked(xa, index, entry, filter)                          \
184 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
185 	     !xa_is_err(entry);                                                \
186 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
187 
188 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
189 static DEFINE_SPINLOCK(ndev_hash_lock);
190 static DECLARE_HASHTABLE(ndev_hash, 5);
191 
192 static void free_netdevs(struct ib_device *ib_dev);
193 static void ib_unregister_work(struct work_struct *work);
194 static void __ib_unregister_device(struct ib_device *device);
195 static int ib_security_change(struct notifier_block *nb, unsigned long event,
196 			      void *lsm_data);
197 static void ib_policy_change_task(struct work_struct *work);
198 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
199 
200 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
201 			   struct va_format *vaf)
202 {
203 	if (ibdev && ibdev->dev.parent)
204 		dev_printk_emit(level[1] - '0',
205 				ibdev->dev.parent,
206 				"%s %s %s: %pV",
207 				dev_driver_string(ibdev->dev.parent),
208 				dev_name(ibdev->dev.parent),
209 				dev_name(&ibdev->dev),
210 				vaf);
211 	else if (ibdev)
212 		printk("%s%s: %pV",
213 		       level, dev_name(&ibdev->dev), vaf);
214 	else
215 		printk("%s(NULL ib_device): %pV", level, vaf);
216 }
217 
218 void ibdev_printk(const char *level, const struct ib_device *ibdev,
219 		  const char *format, ...)
220 {
221 	struct va_format vaf;
222 	va_list args;
223 
224 	va_start(args, format);
225 
226 	vaf.fmt = format;
227 	vaf.va = &args;
228 
229 	__ibdev_printk(level, ibdev, &vaf);
230 
231 	va_end(args);
232 }
233 EXPORT_SYMBOL(ibdev_printk);
234 
235 #define define_ibdev_printk_level(func, level)                  \
236 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
237 {                                                               \
238 	struct va_format vaf;                                   \
239 	va_list args;                                           \
240 								\
241 	va_start(args, fmt);                                    \
242 								\
243 	vaf.fmt = fmt;                                          \
244 	vaf.va = &args;                                         \
245 								\
246 	__ibdev_printk(level, ibdev, &vaf);                     \
247 								\
248 	va_end(args);                                           \
249 }                                                               \
250 EXPORT_SYMBOL(func);
251 
252 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
253 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
254 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
255 define_ibdev_printk_level(ibdev_err, KERN_ERR);
256 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
257 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
258 define_ibdev_printk_level(ibdev_info, KERN_INFO);
259 
260 static struct notifier_block ibdev_lsm_nb = {
261 	.notifier_call = ib_security_change,
262 };
263 
264 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
265 				 struct net *net);
266 
267 /* Pointer to the RCU head at the start of the ib_port_data array */
268 struct ib_port_data_rcu {
269 	struct rcu_head rcu_head;
270 	struct ib_port_data pdata[];
271 };
272 
273 static int ib_device_check_mandatory(struct ib_device *device)
274 {
275 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
276 	static const struct {
277 		size_t offset;
278 		char  *name;
279 	} mandatory_table[] = {
280 		IB_MANDATORY_FUNC(query_device),
281 		IB_MANDATORY_FUNC(query_port),
282 		IB_MANDATORY_FUNC(query_pkey),
283 		IB_MANDATORY_FUNC(alloc_pd),
284 		IB_MANDATORY_FUNC(dealloc_pd),
285 		IB_MANDATORY_FUNC(create_qp),
286 		IB_MANDATORY_FUNC(modify_qp),
287 		IB_MANDATORY_FUNC(destroy_qp),
288 		IB_MANDATORY_FUNC(post_send),
289 		IB_MANDATORY_FUNC(post_recv),
290 		IB_MANDATORY_FUNC(create_cq),
291 		IB_MANDATORY_FUNC(destroy_cq),
292 		IB_MANDATORY_FUNC(poll_cq),
293 		IB_MANDATORY_FUNC(req_notify_cq),
294 		IB_MANDATORY_FUNC(get_dma_mr),
295 		IB_MANDATORY_FUNC(dereg_mr),
296 		IB_MANDATORY_FUNC(get_port_immutable)
297 	};
298 	int i;
299 
300 	device->kverbs_provider = true;
301 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
302 		if (!*(void **) ((void *) &device->ops +
303 				 mandatory_table[i].offset)) {
304 			device->kverbs_provider = false;
305 			break;
306 		}
307 	}
308 
309 	return 0;
310 }
311 
312 /*
313  * Caller must perform ib_device_put() to return the device reference count
314  * when ib_device_get_by_index() returns valid device pointer.
315  */
316 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
317 {
318 	struct ib_device *device;
319 
320 	down_read(&devices_rwsem);
321 	device = xa_load(&devices, index);
322 	if (device) {
323 		if (!rdma_dev_access_netns(device, net)) {
324 			device = NULL;
325 			goto out;
326 		}
327 
328 		if (!ib_device_try_get(device))
329 			device = NULL;
330 	}
331 out:
332 	up_read(&devices_rwsem);
333 	return device;
334 }
335 
336 /**
337  * ib_device_put - Release IB device reference
338  * @device: device whose reference to be released
339  *
340  * ib_device_put() releases reference to the IB device to allow it to be
341  * unregistered and eventually free.
342  */
343 void ib_device_put(struct ib_device *device)
344 {
345 	if (refcount_dec_and_test(&device->refcount))
346 		complete(&device->unreg_completion);
347 }
348 EXPORT_SYMBOL(ib_device_put);
349 
350 static struct ib_device *__ib_device_get_by_name(const char *name)
351 {
352 	struct ib_device *device;
353 	unsigned long index;
354 
355 	xa_for_each (&devices, index, device)
356 		if (!strcmp(name, dev_name(&device->dev)))
357 			return device;
358 
359 	return NULL;
360 }
361 
362 /**
363  * ib_device_get_by_name - Find an IB device by name
364  * @name: The name to look for
365  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
366  *
367  * Find and hold an ib_device by its name. The caller must call
368  * ib_device_put() on the returned pointer.
369  */
370 struct ib_device *ib_device_get_by_name(const char *name,
371 					enum rdma_driver_id driver_id)
372 {
373 	struct ib_device *device;
374 
375 	down_read(&devices_rwsem);
376 	device = __ib_device_get_by_name(name);
377 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
378 	    device->driver_id != driver_id)
379 		device = NULL;
380 
381 	if (device) {
382 		if (!ib_device_try_get(device))
383 			device = NULL;
384 	}
385 	up_read(&devices_rwsem);
386 	return device;
387 }
388 EXPORT_SYMBOL(ib_device_get_by_name);
389 
390 static int rename_compat_devs(struct ib_device *device)
391 {
392 	struct ib_core_device *cdev;
393 	unsigned long index;
394 	int ret = 0;
395 
396 	mutex_lock(&device->compat_devs_mutex);
397 	xa_for_each (&device->compat_devs, index, cdev) {
398 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
399 		if (ret) {
400 			dev_warn(&cdev->dev,
401 				 "Fail to rename compatdev to new name %s\n",
402 				 dev_name(&device->dev));
403 			break;
404 		}
405 	}
406 	mutex_unlock(&device->compat_devs_mutex);
407 	return ret;
408 }
409 
410 int ib_device_rename(struct ib_device *ibdev, const char *name)
411 {
412 	int ret;
413 
414 	down_write(&devices_rwsem);
415 	if (!strcmp(name, dev_name(&ibdev->dev))) {
416 		ret = 0;
417 		goto out;
418 	}
419 
420 	if (__ib_device_get_by_name(name)) {
421 		ret = -EEXIST;
422 		goto out;
423 	}
424 
425 	ret = device_rename(&ibdev->dev, name);
426 	if (ret)
427 		goto out;
428 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
429 	ret = rename_compat_devs(ibdev);
430 out:
431 	up_write(&devices_rwsem);
432 	return ret;
433 }
434 
435 static int alloc_name(struct ib_device *ibdev, const char *name)
436 {
437 	struct ib_device *device;
438 	unsigned long index;
439 	struct ida inuse;
440 	int rc;
441 	int i;
442 
443 	lockdep_assert_held_exclusive(&devices_rwsem);
444 	ida_init(&inuse);
445 	xa_for_each (&devices, index, device) {
446 		char buf[IB_DEVICE_NAME_MAX];
447 
448 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
449 			continue;
450 		if (i < 0 || i >= INT_MAX)
451 			continue;
452 		snprintf(buf, sizeof buf, name, i);
453 		if (strcmp(buf, dev_name(&device->dev)) != 0)
454 			continue;
455 
456 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
457 		if (rc < 0)
458 			goto out;
459 	}
460 
461 	rc = ida_alloc(&inuse, GFP_KERNEL);
462 	if (rc < 0)
463 		goto out;
464 
465 	rc = dev_set_name(&ibdev->dev, name, rc);
466 out:
467 	ida_destroy(&inuse);
468 	return rc;
469 }
470 
471 static void ib_device_release(struct device *device)
472 {
473 	struct ib_device *dev = container_of(device, struct ib_device, dev);
474 
475 	free_netdevs(dev);
476 	WARN_ON(refcount_read(&dev->refcount));
477 	ib_cache_release_one(dev);
478 	ib_security_release_port_pkey_list(dev);
479 	xa_destroy(&dev->compat_devs);
480 	xa_destroy(&dev->client_data);
481 	if (dev->port_data)
482 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
483 				       pdata[0]),
484 			  rcu_head);
485 	kfree_rcu(dev, rcu_head);
486 }
487 
488 static int ib_device_uevent(struct device *device,
489 			    struct kobj_uevent_env *env)
490 {
491 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
492 		return -ENOMEM;
493 
494 	/*
495 	 * It would be nice to pass the node GUID with the event...
496 	 */
497 
498 	return 0;
499 }
500 
501 static const void *net_namespace(struct device *d)
502 {
503 	struct ib_core_device *coredev =
504 			container_of(d, struct ib_core_device, dev);
505 
506 	return read_pnet(&coredev->rdma_net);
507 }
508 
509 static struct class ib_class = {
510 	.name    = "infiniband",
511 	.dev_release = ib_device_release,
512 	.dev_uevent = ib_device_uevent,
513 	.ns_type = &net_ns_type_operations,
514 	.namespace = net_namespace,
515 };
516 
517 static void rdma_init_coredev(struct ib_core_device *coredev,
518 			      struct ib_device *dev, struct net *net)
519 {
520 	/* This BUILD_BUG_ON is intended to catch layout change
521 	 * of union of ib_core_device and device.
522 	 * dev must be the first element as ib_core and providers
523 	 * driver uses it. Adding anything in ib_core_device before
524 	 * device will break this assumption.
525 	 */
526 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
527 		     offsetof(struct ib_device, dev));
528 
529 	coredev->dev.class = &ib_class;
530 	coredev->dev.groups = dev->groups;
531 	device_initialize(&coredev->dev);
532 	coredev->owner = dev;
533 	INIT_LIST_HEAD(&coredev->port_list);
534 	write_pnet(&coredev->rdma_net, net);
535 }
536 
537 /**
538  * _ib_alloc_device - allocate an IB device struct
539  * @size:size of structure to allocate
540  *
541  * Low-level drivers should use ib_alloc_device() to allocate &struct
542  * ib_device.  @size is the size of the structure to be allocated,
543  * including any private data used by the low-level driver.
544  * ib_dealloc_device() must be used to free structures allocated with
545  * ib_alloc_device().
546  */
547 struct ib_device *_ib_alloc_device(size_t size)
548 {
549 	struct ib_device *device;
550 
551 	if (WARN_ON(size < sizeof(struct ib_device)))
552 		return NULL;
553 
554 	device = kzalloc(size, GFP_KERNEL);
555 	if (!device)
556 		return NULL;
557 
558 	if (rdma_restrack_init(device)) {
559 		kfree(device);
560 		return NULL;
561 	}
562 
563 	device->groups[0] = &ib_dev_attr_group;
564 	rdma_init_coredev(&device->coredev, device, &init_net);
565 
566 	INIT_LIST_HEAD(&device->event_handler_list);
567 	spin_lock_init(&device->event_handler_lock);
568 	mutex_init(&device->unregistration_lock);
569 	/*
570 	 * client_data needs to be alloc because we don't want our mark to be
571 	 * destroyed if the user stores NULL in the client data.
572 	 */
573 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
574 	init_rwsem(&device->client_data_rwsem);
575 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
576 	mutex_init(&device->compat_devs_mutex);
577 	init_completion(&device->unreg_completion);
578 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
579 
580 	return device;
581 }
582 EXPORT_SYMBOL(_ib_alloc_device);
583 
584 /**
585  * ib_dealloc_device - free an IB device struct
586  * @device:structure to free
587  *
588  * Free a structure allocated with ib_alloc_device().
589  */
590 void ib_dealloc_device(struct ib_device *device)
591 {
592 	if (device->ops.dealloc_driver)
593 		device->ops.dealloc_driver(device);
594 
595 	/*
596 	 * ib_unregister_driver() requires all devices to remain in the xarray
597 	 * while their ops are callable. The last op we call is dealloc_driver
598 	 * above.  This is needed to create a fence on op callbacks prior to
599 	 * allowing the driver module to unload.
600 	 */
601 	down_write(&devices_rwsem);
602 	if (xa_load(&devices, device->index) == device)
603 		xa_erase(&devices, device->index);
604 	up_write(&devices_rwsem);
605 
606 	/* Expedite releasing netdev references */
607 	free_netdevs(device);
608 
609 	WARN_ON(!xa_empty(&device->compat_devs));
610 	WARN_ON(!xa_empty(&device->client_data));
611 	WARN_ON(refcount_read(&device->refcount));
612 	rdma_restrack_clean(device);
613 	/* Balances with device_initialize */
614 	put_device(&device->dev);
615 }
616 EXPORT_SYMBOL(ib_dealloc_device);
617 
618 /*
619  * add_client_context() and remove_client_context() must be safe against
620  * parallel calls on the same device - registration/unregistration of both the
621  * device and client can be occurring in parallel.
622  *
623  * The routines need to be a fence, any caller must not return until the add
624  * or remove is fully completed.
625  */
626 static int add_client_context(struct ib_device *device,
627 			      struct ib_client *client)
628 {
629 	int ret = 0;
630 
631 	if (!device->kverbs_provider && !client->no_kverbs_req)
632 		return 0;
633 
634 	down_write(&device->client_data_rwsem);
635 	/*
636 	 * Another caller to add_client_context got here first and has already
637 	 * completely initialized context.
638 	 */
639 	if (xa_get_mark(&device->client_data, client->client_id,
640 		    CLIENT_DATA_REGISTERED))
641 		goto out;
642 
643 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
644 			      GFP_KERNEL));
645 	if (ret)
646 		goto out;
647 	downgrade_write(&device->client_data_rwsem);
648 	if (client->add)
649 		client->add(device);
650 
651 	/* Readers shall not see a client until add has been completed */
652 	xa_set_mark(&device->client_data, client->client_id,
653 		    CLIENT_DATA_REGISTERED);
654 	up_read(&device->client_data_rwsem);
655 	return 0;
656 
657 out:
658 	up_write(&device->client_data_rwsem);
659 	return ret;
660 }
661 
662 static void remove_client_context(struct ib_device *device,
663 				  unsigned int client_id)
664 {
665 	struct ib_client *client;
666 	void *client_data;
667 
668 	down_write(&device->client_data_rwsem);
669 	if (!xa_get_mark(&device->client_data, client_id,
670 			 CLIENT_DATA_REGISTERED)) {
671 		up_write(&device->client_data_rwsem);
672 		return;
673 	}
674 	client_data = xa_load(&device->client_data, client_id);
675 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
676 	client = xa_load(&clients, client_id);
677 	downgrade_write(&device->client_data_rwsem);
678 
679 	/*
680 	 * Notice we cannot be holding any exclusive locks when calling the
681 	 * remove callback as the remove callback can recurse back into any
682 	 * public functions in this module and thus try for any locks those
683 	 * functions take.
684 	 *
685 	 * For this reason clients and drivers should not call the
686 	 * unregistration functions will holdling any locks.
687 	 *
688 	 * It tempting to drop the client_data_rwsem too, but this is required
689 	 * to ensure that unregister_client does not return until all clients
690 	 * are completely unregistered, which is required to avoid module
691 	 * unloading races.
692 	 */
693 	if (client->remove)
694 		client->remove(device, client_data);
695 
696 	xa_erase(&device->client_data, client_id);
697 	up_read(&device->client_data_rwsem);
698 }
699 
700 static int alloc_port_data(struct ib_device *device)
701 {
702 	struct ib_port_data_rcu *pdata_rcu;
703 	unsigned int port;
704 
705 	if (device->port_data)
706 		return 0;
707 
708 	/* This can only be called once the physical port range is defined */
709 	if (WARN_ON(!device->phys_port_cnt))
710 		return -EINVAL;
711 
712 	/*
713 	 * device->port_data is indexed directly by the port number to make
714 	 * access to this data as efficient as possible.
715 	 *
716 	 * Therefore port_data is declared as a 1 based array with potential
717 	 * empty slots at the beginning.
718 	 */
719 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
720 					rdma_end_port(device) + 1),
721 			    GFP_KERNEL);
722 	if (!pdata_rcu)
723 		return -ENOMEM;
724 	/*
725 	 * The rcu_head is put in front of the port data array and the stored
726 	 * pointer is adjusted since we never need to see that member until
727 	 * kfree_rcu.
728 	 */
729 	device->port_data = pdata_rcu->pdata;
730 
731 	rdma_for_each_port (device, port) {
732 		struct ib_port_data *pdata = &device->port_data[port];
733 
734 		pdata->ib_dev = device;
735 		spin_lock_init(&pdata->pkey_list_lock);
736 		INIT_LIST_HEAD(&pdata->pkey_list);
737 		spin_lock_init(&pdata->netdev_lock);
738 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
739 	}
740 	return 0;
741 }
742 
743 static int verify_immutable(const struct ib_device *dev, u8 port)
744 {
745 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
746 			    rdma_max_mad_size(dev, port) != 0);
747 }
748 
749 static int setup_port_data(struct ib_device *device)
750 {
751 	unsigned int port;
752 	int ret;
753 
754 	ret = alloc_port_data(device);
755 	if (ret)
756 		return ret;
757 
758 	rdma_for_each_port (device, port) {
759 		struct ib_port_data *pdata = &device->port_data[port];
760 
761 		ret = device->ops.get_port_immutable(device, port,
762 						     &pdata->immutable);
763 		if (ret)
764 			return ret;
765 
766 		if (verify_immutable(device, port))
767 			return -EINVAL;
768 	}
769 	return 0;
770 }
771 
772 void ib_get_device_fw_str(struct ib_device *dev, char *str)
773 {
774 	if (dev->ops.get_dev_fw_str)
775 		dev->ops.get_dev_fw_str(dev, str);
776 	else
777 		str[0] = '\0';
778 }
779 EXPORT_SYMBOL(ib_get_device_fw_str);
780 
781 static void ib_policy_change_task(struct work_struct *work)
782 {
783 	struct ib_device *dev;
784 	unsigned long index;
785 
786 	down_read(&devices_rwsem);
787 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
788 		unsigned int i;
789 
790 		rdma_for_each_port (dev, i) {
791 			u64 sp;
792 			int ret = ib_get_cached_subnet_prefix(dev,
793 							      i,
794 							      &sp);
795 
796 			WARN_ONCE(ret,
797 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
798 				  ret);
799 			if (!ret)
800 				ib_security_cache_change(dev, i, sp);
801 		}
802 	}
803 	up_read(&devices_rwsem);
804 }
805 
806 static int ib_security_change(struct notifier_block *nb, unsigned long event,
807 			      void *lsm_data)
808 {
809 	if (event != LSM_POLICY_CHANGE)
810 		return NOTIFY_DONE;
811 
812 	schedule_work(&ib_policy_change_work);
813 	ib_mad_agent_security_change();
814 
815 	return NOTIFY_OK;
816 }
817 
818 static void compatdev_release(struct device *dev)
819 {
820 	struct ib_core_device *cdev =
821 		container_of(dev, struct ib_core_device, dev);
822 
823 	kfree(cdev);
824 }
825 
826 static int add_one_compat_dev(struct ib_device *device,
827 			      struct rdma_dev_net *rnet)
828 {
829 	struct ib_core_device *cdev;
830 	int ret;
831 
832 	lockdep_assert_held(&rdma_nets_rwsem);
833 	if (!ib_devices_shared_netns)
834 		return 0;
835 
836 	/*
837 	 * Create and add compat device in all namespaces other than where it
838 	 * is currently bound to.
839 	 */
840 	if (net_eq(read_pnet(&rnet->net),
841 		   read_pnet(&device->coredev.rdma_net)))
842 		return 0;
843 
844 	/*
845 	 * The first of init_net() or ib_register_device() to take the
846 	 * compat_devs_mutex wins and gets to add the device. Others will wait
847 	 * for completion here.
848 	 */
849 	mutex_lock(&device->compat_devs_mutex);
850 	cdev = xa_load(&device->compat_devs, rnet->id);
851 	if (cdev) {
852 		ret = 0;
853 		goto done;
854 	}
855 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
856 	if (ret)
857 		goto done;
858 
859 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
860 	if (!cdev) {
861 		ret = -ENOMEM;
862 		goto cdev_err;
863 	}
864 
865 	cdev->dev.parent = device->dev.parent;
866 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
867 	cdev->dev.release = compatdev_release;
868 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
869 
870 	ret = device_add(&cdev->dev);
871 	if (ret)
872 		goto add_err;
873 	ret = ib_setup_port_attrs(cdev);
874 	if (ret)
875 		goto port_err;
876 
877 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
878 			      cdev, GFP_KERNEL));
879 	if (ret)
880 		goto insert_err;
881 
882 	mutex_unlock(&device->compat_devs_mutex);
883 	return 0;
884 
885 insert_err:
886 	ib_free_port_attrs(cdev);
887 port_err:
888 	device_del(&cdev->dev);
889 add_err:
890 	put_device(&cdev->dev);
891 cdev_err:
892 	xa_release(&device->compat_devs, rnet->id);
893 done:
894 	mutex_unlock(&device->compat_devs_mutex);
895 	return ret;
896 }
897 
898 static void remove_one_compat_dev(struct ib_device *device, u32 id)
899 {
900 	struct ib_core_device *cdev;
901 
902 	mutex_lock(&device->compat_devs_mutex);
903 	cdev = xa_erase(&device->compat_devs, id);
904 	mutex_unlock(&device->compat_devs_mutex);
905 	if (cdev) {
906 		ib_free_port_attrs(cdev);
907 		device_del(&cdev->dev);
908 		put_device(&cdev->dev);
909 	}
910 }
911 
912 static void remove_compat_devs(struct ib_device *device)
913 {
914 	struct ib_core_device *cdev;
915 	unsigned long index;
916 
917 	xa_for_each (&device->compat_devs, index, cdev)
918 		remove_one_compat_dev(device, index);
919 }
920 
921 static int add_compat_devs(struct ib_device *device)
922 {
923 	struct rdma_dev_net *rnet;
924 	unsigned long index;
925 	int ret = 0;
926 
927 	lockdep_assert_held(&devices_rwsem);
928 
929 	down_read(&rdma_nets_rwsem);
930 	xa_for_each (&rdma_nets, index, rnet) {
931 		ret = add_one_compat_dev(device, rnet);
932 		if (ret)
933 			break;
934 	}
935 	up_read(&rdma_nets_rwsem);
936 	return ret;
937 }
938 
939 static void remove_all_compat_devs(void)
940 {
941 	struct ib_compat_device *cdev;
942 	struct ib_device *dev;
943 	unsigned long index;
944 
945 	down_read(&devices_rwsem);
946 	xa_for_each (&devices, index, dev) {
947 		unsigned long c_index = 0;
948 
949 		/* Hold nets_rwsem so that any other thread modifying this
950 		 * system param can sync with this thread.
951 		 */
952 		down_read(&rdma_nets_rwsem);
953 		xa_for_each (&dev->compat_devs, c_index, cdev)
954 			remove_one_compat_dev(dev, c_index);
955 		up_read(&rdma_nets_rwsem);
956 	}
957 	up_read(&devices_rwsem);
958 }
959 
960 static int add_all_compat_devs(void)
961 {
962 	struct rdma_dev_net *rnet;
963 	struct ib_device *dev;
964 	unsigned long index;
965 	int ret = 0;
966 
967 	down_read(&devices_rwsem);
968 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
969 		unsigned long net_index = 0;
970 
971 		/* Hold nets_rwsem so that any other thread modifying this
972 		 * system param can sync with this thread.
973 		 */
974 		down_read(&rdma_nets_rwsem);
975 		xa_for_each (&rdma_nets, net_index, rnet) {
976 			ret = add_one_compat_dev(dev, rnet);
977 			if (ret)
978 				break;
979 		}
980 		up_read(&rdma_nets_rwsem);
981 	}
982 	up_read(&devices_rwsem);
983 	if (ret)
984 		remove_all_compat_devs();
985 	return ret;
986 }
987 
988 int rdma_compatdev_set(u8 enable)
989 {
990 	struct rdma_dev_net *rnet;
991 	unsigned long index;
992 	int ret = 0;
993 
994 	down_write(&rdma_nets_rwsem);
995 	if (ib_devices_shared_netns == enable) {
996 		up_write(&rdma_nets_rwsem);
997 		return 0;
998 	}
999 
1000 	/* enable/disable of compat devices is not supported
1001 	 * when more than default init_net exists.
1002 	 */
1003 	xa_for_each (&rdma_nets, index, rnet) {
1004 		ret++;
1005 		break;
1006 	}
1007 	if (!ret)
1008 		ib_devices_shared_netns = enable;
1009 	up_write(&rdma_nets_rwsem);
1010 	if (ret)
1011 		return -EBUSY;
1012 
1013 	if (enable)
1014 		ret = add_all_compat_devs();
1015 	else
1016 		remove_all_compat_devs();
1017 	return ret;
1018 }
1019 
1020 static void rdma_dev_exit_net(struct net *net)
1021 {
1022 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1023 	struct ib_device *dev;
1024 	unsigned long index;
1025 	int ret;
1026 
1027 	down_write(&rdma_nets_rwsem);
1028 	/*
1029 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1030 	 */
1031 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1032 	WARN_ON(ret);
1033 	up_write(&rdma_nets_rwsem);
1034 
1035 	down_read(&devices_rwsem);
1036 	xa_for_each (&devices, index, dev) {
1037 		get_device(&dev->dev);
1038 		/*
1039 		 * Release the devices_rwsem so that pontentially blocking
1040 		 * device_del, doesn't hold the devices_rwsem for too long.
1041 		 */
1042 		up_read(&devices_rwsem);
1043 
1044 		remove_one_compat_dev(dev, rnet->id);
1045 
1046 		/*
1047 		 * If the real device is in the NS then move it back to init.
1048 		 */
1049 		rdma_dev_change_netns(dev, net, &init_net);
1050 
1051 		put_device(&dev->dev);
1052 		down_read(&devices_rwsem);
1053 	}
1054 	up_read(&devices_rwsem);
1055 
1056 	xa_erase(&rdma_nets, rnet->id);
1057 }
1058 
1059 static __net_init int rdma_dev_init_net(struct net *net)
1060 {
1061 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1062 	unsigned long index;
1063 	struct ib_device *dev;
1064 	int ret;
1065 
1066 	/* No need to create any compat devices in default init_net. */
1067 	if (net_eq(net, &init_net))
1068 		return 0;
1069 
1070 	write_pnet(&rnet->net, net);
1071 
1072 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1073 	if (ret)
1074 		return ret;
1075 
1076 	down_read(&devices_rwsem);
1077 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1078 		/* Hold nets_rwsem so that netlink command cannot change
1079 		 * system configuration for device sharing mode.
1080 		 */
1081 		down_read(&rdma_nets_rwsem);
1082 		ret = add_one_compat_dev(dev, rnet);
1083 		up_read(&rdma_nets_rwsem);
1084 		if (ret)
1085 			break;
1086 	}
1087 	up_read(&devices_rwsem);
1088 
1089 	if (ret)
1090 		rdma_dev_exit_net(net);
1091 
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Assign the unique string device name and the unique device index. This is
1097  * undone by ib_dealloc_device.
1098  */
1099 static int assign_name(struct ib_device *device, const char *name)
1100 {
1101 	static u32 last_id;
1102 	int ret;
1103 
1104 	down_write(&devices_rwsem);
1105 	/* Assign a unique name to the device */
1106 	if (strchr(name, '%'))
1107 		ret = alloc_name(device, name);
1108 	else
1109 		ret = dev_set_name(&device->dev, name);
1110 	if (ret)
1111 		goto out;
1112 
1113 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1114 		ret = -ENFILE;
1115 		goto out;
1116 	}
1117 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1118 
1119 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1120 			&last_id, GFP_KERNEL);
1121 	if (ret > 0)
1122 		ret = 0;
1123 
1124 out:
1125 	up_write(&devices_rwsem);
1126 	return ret;
1127 }
1128 
1129 static void setup_dma_device(struct ib_device *device)
1130 {
1131 	struct device *parent = device->dev.parent;
1132 
1133 	WARN_ON_ONCE(device->dma_device);
1134 	if (device->dev.dma_ops) {
1135 		/*
1136 		 * The caller provided custom DMA operations. Copy the
1137 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1138 		 * into device->dev.
1139 		 */
1140 		device->dma_device = &device->dev;
1141 		if (!device->dev.dma_mask) {
1142 			if (parent)
1143 				device->dev.dma_mask = parent->dma_mask;
1144 			else
1145 				WARN_ON_ONCE(true);
1146 		}
1147 		if (!device->dev.coherent_dma_mask) {
1148 			if (parent)
1149 				device->dev.coherent_dma_mask =
1150 					parent->coherent_dma_mask;
1151 			else
1152 				WARN_ON_ONCE(true);
1153 		}
1154 	} else {
1155 		/*
1156 		 * The caller did not provide custom DMA operations. Use the
1157 		 * DMA mapping operations of the parent device.
1158 		 */
1159 		WARN_ON_ONCE(!parent);
1160 		device->dma_device = parent;
1161 	}
1162 	/* Setup default max segment size for all IB devices */
1163 	dma_set_max_seg_size(device->dma_device, SZ_2G);
1164 
1165 }
1166 
1167 /*
1168  * setup_device() allocates memory and sets up data that requires calling the
1169  * device ops, this is the only reason these actions are not done during
1170  * ib_alloc_device. It is undone by ib_dealloc_device().
1171  */
1172 static int setup_device(struct ib_device *device)
1173 {
1174 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1175 	int ret;
1176 
1177 	setup_dma_device(device);
1178 
1179 	ret = ib_device_check_mandatory(device);
1180 	if (ret)
1181 		return ret;
1182 
1183 	ret = setup_port_data(device);
1184 	if (ret) {
1185 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1186 		return ret;
1187 	}
1188 
1189 	memset(&device->attrs, 0, sizeof(device->attrs));
1190 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1191 	if (ret) {
1192 		dev_warn(&device->dev,
1193 			 "Couldn't query the device attributes\n");
1194 		return ret;
1195 	}
1196 
1197 	return 0;
1198 }
1199 
1200 static void disable_device(struct ib_device *device)
1201 {
1202 	struct ib_client *client;
1203 
1204 	WARN_ON(!refcount_read(&device->refcount));
1205 
1206 	down_write(&devices_rwsem);
1207 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1208 	up_write(&devices_rwsem);
1209 
1210 	down_read(&clients_rwsem);
1211 	list_for_each_entry_reverse(client, &client_list, list)
1212 		remove_client_context(device, client->client_id);
1213 	up_read(&clients_rwsem);
1214 
1215 	/* Pairs with refcount_set in enable_device */
1216 	ib_device_put(device);
1217 	wait_for_completion(&device->unreg_completion);
1218 
1219 	/*
1220 	 * compat devices must be removed after device refcount drops to zero.
1221 	 * Otherwise init_net() may add more compatdevs after removing compat
1222 	 * devices and before device is disabled.
1223 	 */
1224 	remove_compat_devs(device);
1225 }
1226 
1227 /*
1228  * An enabled device is visible to all clients and to all the public facing
1229  * APIs that return a device pointer. This always returns with a new get, even
1230  * if it fails.
1231  */
1232 static int enable_device_and_get(struct ib_device *device)
1233 {
1234 	struct ib_client *client;
1235 	unsigned long index;
1236 	int ret = 0;
1237 
1238 	/*
1239 	 * One ref belongs to the xa and the other belongs to this
1240 	 * thread. This is needed to guard against parallel unregistration.
1241 	 */
1242 	refcount_set(&device->refcount, 2);
1243 	down_write(&devices_rwsem);
1244 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1245 
1246 	/*
1247 	 * By using downgrade_write() we ensure that no other thread can clear
1248 	 * DEVICE_REGISTERED while we are completing the client setup.
1249 	 */
1250 	downgrade_write(&devices_rwsem);
1251 
1252 	if (device->ops.enable_driver) {
1253 		ret = device->ops.enable_driver(device);
1254 		if (ret)
1255 			goto out;
1256 	}
1257 
1258 	down_read(&clients_rwsem);
1259 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1260 		ret = add_client_context(device, client);
1261 		if (ret)
1262 			break;
1263 	}
1264 	up_read(&clients_rwsem);
1265 	if (!ret)
1266 		ret = add_compat_devs(device);
1267 out:
1268 	up_read(&devices_rwsem);
1269 	return ret;
1270 }
1271 
1272 /**
1273  * ib_register_device - Register an IB device with IB core
1274  * @device:Device to register
1275  *
1276  * Low-level drivers use ib_register_device() to register their
1277  * devices with the IB core.  All registered clients will receive a
1278  * callback for each device that is added. @device must be allocated
1279  * with ib_alloc_device().
1280  *
1281  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1282  * asynchronously then the device pointer may become freed as soon as this
1283  * function returns.
1284  */
1285 int ib_register_device(struct ib_device *device, const char *name)
1286 {
1287 	int ret;
1288 
1289 	ret = assign_name(device, name);
1290 	if (ret)
1291 		return ret;
1292 
1293 	ret = setup_device(device);
1294 	if (ret)
1295 		return ret;
1296 
1297 	ret = ib_cache_setup_one(device);
1298 	if (ret) {
1299 		dev_warn(&device->dev,
1300 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1301 		return ret;
1302 	}
1303 
1304 	ib_device_register_rdmacg(device);
1305 
1306 	/*
1307 	 * Ensure that ADD uevent is not fired because it
1308 	 * is too early amd device is not initialized yet.
1309 	 */
1310 	dev_set_uevent_suppress(&device->dev, true);
1311 	ret = device_add(&device->dev);
1312 	if (ret)
1313 		goto cg_cleanup;
1314 
1315 	ret = ib_device_register_sysfs(device);
1316 	if (ret) {
1317 		dev_warn(&device->dev,
1318 			 "Couldn't register device with driver model\n");
1319 		goto dev_cleanup;
1320 	}
1321 
1322 	ret = enable_device_and_get(device);
1323 	dev_set_uevent_suppress(&device->dev, false);
1324 	/* Mark for userspace that device is ready */
1325 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1326 	if (ret) {
1327 		void (*dealloc_fn)(struct ib_device *);
1328 
1329 		/*
1330 		 * If we hit this error flow then we don't want to
1331 		 * automatically dealloc the device since the caller is
1332 		 * expected to call ib_dealloc_device() after
1333 		 * ib_register_device() fails. This is tricky due to the
1334 		 * possibility for a parallel unregistration along with this
1335 		 * error flow. Since we have a refcount here we know any
1336 		 * parallel flow is stopped in disable_device and will see the
1337 		 * NULL pointers, causing the responsibility to
1338 		 * ib_dealloc_device() to revert back to this thread.
1339 		 */
1340 		dealloc_fn = device->ops.dealloc_driver;
1341 		device->ops.dealloc_driver = NULL;
1342 		ib_device_put(device);
1343 		__ib_unregister_device(device);
1344 		device->ops.dealloc_driver = dealloc_fn;
1345 		return ret;
1346 	}
1347 	ib_device_put(device);
1348 
1349 	return 0;
1350 
1351 dev_cleanup:
1352 	device_del(&device->dev);
1353 cg_cleanup:
1354 	dev_set_uevent_suppress(&device->dev, false);
1355 	ib_device_unregister_rdmacg(device);
1356 	ib_cache_cleanup_one(device);
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL(ib_register_device);
1360 
1361 /* Callers must hold a get on the device. */
1362 static void __ib_unregister_device(struct ib_device *ib_dev)
1363 {
1364 	/*
1365 	 * We have a registration lock so that all the calls to unregister are
1366 	 * fully fenced, once any unregister returns the device is truely
1367 	 * unregistered even if multiple callers are unregistering it at the
1368 	 * same time. This also interacts with the registration flow and
1369 	 * provides sane semantics if register and unregister are racing.
1370 	 */
1371 	mutex_lock(&ib_dev->unregistration_lock);
1372 	if (!refcount_read(&ib_dev->refcount))
1373 		goto out;
1374 
1375 	disable_device(ib_dev);
1376 
1377 	/* Expedite removing unregistered pointers from the hash table */
1378 	free_netdevs(ib_dev);
1379 
1380 	ib_device_unregister_sysfs(ib_dev);
1381 	device_del(&ib_dev->dev);
1382 	ib_device_unregister_rdmacg(ib_dev);
1383 	ib_cache_cleanup_one(ib_dev);
1384 
1385 	/*
1386 	 * Drivers using the new flow may not call ib_dealloc_device except
1387 	 * in error unwind prior to registration success.
1388 	 */
1389 	if (ib_dev->ops.dealloc_driver) {
1390 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1391 		ib_dealloc_device(ib_dev);
1392 	}
1393 out:
1394 	mutex_unlock(&ib_dev->unregistration_lock);
1395 }
1396 
1397 /**
1398  * ib_unregister_device - Unregister an IB device
1399  * @device: The device to unregister
1400  *
1401  * Unregister an IB device.  All clients will receive a remove callback.
1402  *
1403  * Callers should call this routine only once, and protect against races with
1404  * registration. Typically it should only be called as part of a remove
1405  * callback in an implementation of driver core's struct device_driver and
1406  * related.
1407  *
1408  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1409  * this function.
1410  */
1411 void ib_unregister_device(struct ib_device *ib_dev)
1412 {
1413 	get_device(&ib_dev->dev);
1414 	__ib_unregister_device(ib_dev);
1415 	put_device(&ib_dev->dev);
1416 }
1417 EXPORT_SYMBOL(ib_unregister_device);
1418 
1419 /**
1420  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1421  * device: The device to unregister
1422  *
1423  * This is the same as ib_unregister_device(), except it includes an internal
1424  * ib_device_put() that should match a 'get' obtained by the caller.
1425  *
1426  * It is safe to call this routine concurrently from multiple threads while
1427  * holding the 'get'. When the function returns the device is fully
1428  * unregistered.
1429  *
1430  * Drivers using this flow MUST use the driver_unregister callback to clean up
1431  * their resources associated with the device and dealloc it.
1432  */
1433 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1434 {
1435 	WARN_ON(!ib_dev->ops.dealloc_driver);
1436 	get_device(&ib_dev->dev);
1437 	ib_device_put(ib_dev);
1438 	__ib_unregister_device(ib_dev);
1439 	put_device(&ib_dev->dev);
1440 }
1441 EXPORT_SYMBOL(ib_unregister_device_and_put);
1442 
1443 /**
1444  * ib_unregister_driver - Unregister all IB devices for a driver
1445  * @driver_id: The driver to unregister
1446  *
1447  * This implements a fence for device unregistration. It only returns once all
1448  * devices associated with the driver_id have fully completed their
1449  * unregistration and returned from ib_unregister_device*().
1450  *
1451  * If device's are not yet unregistered it goes ahead and starts unregistering
1452  * them.
1453  *
1454  * This does not block creation of new devices with the given driver_id, that
1455  * is the responsibility of the caller.
1456  */
1457 void ib_unregister_driver(enum rdma_driver_id driver_id)
1458 {
1459 	struct ib_device *ib_dev;
1460 	unsigned long index;
1461 
1462 	down_read(&devices_rwsem);
1463 	xa_for_each (&devices, index, ib_dev) {
1464 		if (ib_dev->driver_id != driver_id)
1465 			continue;
1466 
1467 		get_device(&ib_dev->dev);
1468 		up_read(&devices_rwsem);
1469 
1470 		WARN_ON(!ib_dev->ops.dealloc_driver);
1471 		__ib_unregister_device(ib_dev);
1472 
1473 		put_device(&ib_dev->dev);
1474 		down_read(&devices_rwsem);
1475 	}
1476 	up_read(&devices_rwsem);
1477 }
1478 EXPORT_SYMBOL(ib_unregister_driver);
1479 
1480 static void ib_unregister_work(struct work_struct *work)
1481 {
1482 	struct ib_device *ib_dev =
1483 		container_of(work, struct ib_device, unregistration_work);
1484 
1485 	__ib_unregister_device(ib_dev);
1486 	put_device(&ib_dev->dev);
1487 }
1488 
1489 /**
1490  * ib_unregister_device_queued - Unregister a device using a work queue
1491  * device: The device to unregister
1492  *
1493  * This schedules an asynchronous unregistration using a WQ for the device. A
1494  * driver should use this to avoid holding locks while doing unregistration,
1495  * such as holding the RTNL lock.
1496  *
1497  * Drivers using this API must use ib_unregister_driver before module unload
1498  * to ensure that all scheduled unregistrations have completed.
1499  */
1500 void ib_unregister_device_queued(struct ib_device *ib_dev)
1501 {
1502 	WARN_ON(!refcount_read(&ib_dev->refcount));
1503 	WARN_ON(!ib_dev->ops.dealloc_driver);
1504 	get_device(&ib_dev->dev);
1505 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1506 		put_device(&ib_dev->dev);
1507 }
1508 EXPORT_SYMBOL(ib_unregister_device_queued);
1509 
1510 /*
1511  * The caller must pass in a device that has the kref held and the refcount
1512  * released. If the device is in cur_net and still registered then it is moved
1513  * into net.
1514  */
1515 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1516 				 struct net *net)
1517 {
1518 	int ret2 = -EINVAL;
1519 	int ret;
1520 
1521 	mutex_lock(&device->unregistration_lock);
1522 
1523 	/*
1524 	 * If a device not under ib_device_get() or if the unregistration_lock
1525 	 * is not held, the namespace can be changed, or it can be unregistered.
1526 	 * Check again under the lock.
1527 	 */
1528 	if (refcount_read(&device->refcount) == 0 ||
1529 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1530 		ret = -ENODEV;
1531 		goto out;
1532 	}
1533 
1534 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1535 	disable_device(device);
1536 
1537 	/*
1538 	 * At this point no one can be using the device, so it is safe to
1539 	 * change the namespace.
1540 	 */
1541 	write_pnet(&device->coredev.rdma_net, net);
1542 
1543 	down_read(&devices_rwsem);
1544 	/*
1545 	 * Currently rdma devices are system wide unique. So the device name
1546 	 * is guaranteed free in the new namespace. Publish the new namespace
1547 	 * at the sysfs level.
1548 	 */
1549 	ret = device_rename(&device->dev, dev_name(&device->dev));
1550 	up_read(&devices_rwsem);
1551 	if (ret) {
1552 		dev_warn(&device->dev,
1553 			 "%s: Couldn't rename device after namespace change\n",
1554 			 __func__);
1555 		/* Try and put things back and re-enable the device */
1556 		write_pnet(&device->coredev.rdma_net, cur_net);
1557 	}
1558 
1559 	ret2 = enable_device_and_get(device);
1560 	if (ret2) {
1561 		/*
1562 		 * This shouldn't really happen, but if it does, let the user
1563 		 * retry at later point. So don't disable the device.
1564 		 */
1565 		dev_warn(&device->dev,
1566 			 "%s: Couldn't re-enable device after namespace change\n",
1567 			 __func__);
1568 	}
1569 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1570 
1571 	ib_device_put(device);
1572 out:
1573 	mutex_unlock(&device->unregistration_lock);
1574 	if (ret)
1575 		return ret;
1576 	return ret2;
1577 }
1578 
1579 int ib_device_set_netns_put(struct sk_buff *skb,
1580 			    struct ib_device *dev, u32 ns_fd)
1581 {
1582 	struct net *net;
1583 	int ret;
1584 
1585 	net = get_net_ns_by_fd(ns_fd);
1586 	if (IS_ERR(net)) {
1587 		ret = PTR_ERR(net);
1588 		goto net_err;
1589 	}
1590 
1591 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1592 		ret = -EPERM;
1593 		goto ns_err;
1594 	}
1595 
1596 	/*
1597 	 * Currently supported only for those providers which support
1598 	 * disassociation and don't do port specific sysfs init. Once a
1599 	 * port_cleanup infrastructure is implemented, this limitation will be
1600 	 * removed.
1601 	 */
1602 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1603 	    ib_devices_shared_netns) {
1604 		ret = -EOPNOTSUPP;
1605 		goto ns_err;
1606 	}
1607 
1608 	get_device(&dev->dev);
1609 	ib_device_put(dev);
1610 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1611 	put_device(&dev->dev);
1612 
1613 	put_net(net);
1614 	return ret;
1615 
1616 ns_err:
1617 	put_net(net);
1618 net_err:
1619 	ib_device_put(dev);
1620 	return ret;
1621 }
1622 
1623 static struct pernet_operations rdma_dev_net_ops = {
1624 	.init = rdma_dev_init_net,
1625 	.exit = rdma_dev_exit_net,
1626 	.id = &rdma_dev_net_id,
1627 	.size = sizeof(struct rdma_dev_net),
1628 };
1629 
1630 static int assign_client_id(struct ib_client *client)
1631 {
1632 	int ret;
1633 
1634 	down_write(&clients_rwsem);
1635 	/*
1636 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1637 	 * achieve this we assign client_ids so they are sorted in
1638 	 * registration order, and retain a linked list we can reverse iterate
1639 	 * to get the LIFO order. The extra linked list can go away if xarray
1640 	 * learns to reverse iterate.
1641 	 */
1642 	if (list_empty(&client_list)) {
1643 		client->client_id = 0;
1644 	} else {
1645 		struct ib_client *last;
1646 
1647 		last = list_last_entry(&client_list, struct ib_client, list);
1648 		client->client_id = last->client_id + 1;
1649 	}
1650 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1651 	if (ret)
1652 		goto out;
1653 
1654 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1655 	list_add_tail(&client->list, &client_list);
1656 
1657 out:
1658 	up_write(&clients_rwsem);
1659 	return ret;
1660 }
1661 
1662 /**
1663  * ib_register_client - Register an IB client
1664  * @client:Client to register
1665  *
1666  * Upper level users of the IB drivers can use ib_register_client() to
1667  * register callbacks for IB device addition and removal.  When an IB
1668  * device is added, each registered client's add method will be called
1669  * (in the order the clients were registered), and when a device is
1670  * removed, each client's remove method will be called (in the reverse
1671  * order that clients were registered).  In addition, when
1672  * ib_register_client() is called, the client will receive an add
1673  * callback for all devices already registered.
1674  */
1675 int ib_register_client(struct ib_client *client)
1676 {
1677 	struct ib_device *device;
1678 	unsigned long index;
1679 	int ret;
1680 
1681 	ret = assign_client_id(client);
1682 	if (ret)
1683 		return ret;
1684 
1685 	down_read(&devices_rwsem);
1686 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1687 		ret = add_client_context(device, client);
1688 		if (ret) {
1689 			up_read(&devices_rwsem);
1690 			ib_unregister_client(client);
1691 			return ret;
1692 		}
1693 	}
1694 	up_read(&devices_rwsem);
1695 	return 0;
1696 }
1697 EXPORT_SYMBOL(ib_register_client);
1698 
1699 /**
1700  * ib_unregister_client - Unregister an IB client
1701  * @client:Client to unregister
1702  *
1703  * Upper level users use ib_unregister_client() to remove their client
1704  * registration.  When ib_unregister_client() is called, the client
1705  * will receive a remove callback for each IB device still registered.
1706  *
1707  * This is a full fence, once it returns no client callbacks will be called,
1708  * or are running in another thread.
1709  */
1710 void ib_unregister_client(struct ib_client *client)
1711 {
1712 	struct ib_device *device;
1713 	unsigned long index;
1714 
1715 	down_write(&clients_rwsem);
1716 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1717 	up_write(&clients_rwsem);
1718 	/*
1719 	 * Every device still known must be serialized to make sure we are
1720 	 * done with the client callbacks before we return.
1721 	 */
1722 	down_read(&devices_rwsem);
1723 	xa_for_each (&devices, index, device)
1724 		remove_client_context(device, client->client_id);
1725 	up_read(&devices_rwsem);
1726 
1727 	down_write(&clients_rwsem);
1728 	list_del(&client->list);
1729 	xa_erase(&clients, client->client_id);
1730 	up_write(&clients_rwsem);
1731 }
1732 EXPORT_SYMBOL(ib_unregister_client);
1733 
1734 /**
1735  * ib_set_client_data - Set IB client context
1736  * @device:Device to set context for
1737  * @client:Client to set context for
1738  * @data:Context to set
1739  *
1740  * ib_set_client_data() sets client context data that can be retrieved with
1741  * ib_get_client_data(). This can only be called while the client is
1742  * registered to the device, once the ib_client remove() callback returns this
1743  * cannot be called.
1744  */
1745 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1746 			void *data)
1747 {
1748 	void *rc;
1749 
1750 	if (WARN_ON(IS_ERR(data)))
1751 		data = NULL;
1752 
1753 	rc = xa_store(&device->client_data, client->client_id, data,
1754 		      GFP_KERNEL);
1755 	WARN_ON(xa_is_err(rc));
1756 }
1757 EXPORT_SYMBOL(ib_set_client_data);
1758 
1759 /**
1760  * ib_register_event_handler - Register an IB event handler
1761  * @event_handler:Handler to register
1762  *
1763  * ib_register_event_handler() registers an event handler that will be
1764  * called back when asynchronous IB events occur (as defined in
1765  * chapter 11 of the InfiniBand Architecture Specification).  This
1766  * callback may occur in interrupt context.
1767  */
1768 void ib_register_event_handler(struct ib_event_handler *event_handler)
1769 {
1770 	unsigned long flags;
1771 
1772 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1773 	list_add_tail(&event_handler->list,
1774 		      &event_handler->device->event_handler_list);
1775 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1776 }
1777 EXPORT_SYMBOL(ib_register_event_handler);
1778 
1779 /**
1780  * ib_unregister_event_handler - Unregister an event handler
1781  * @event_handler:Handler to unregister
1782  *
1783  * Unregister an event handler registered with
1784  * ib_register_event_handler().
1785  */
1786 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1787 {
1788 	unsigned long flags;
1789 
1790 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1791 	list_del(&event_handler->list);
1792 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1793 }
1794 EXPORT_SYMBOL(ib_unregister_event_handler);
1795 
1796 /**
1797  * ib_dispatch_event - Dispatch an asynchronous event
1798  * @event:Event to dispatch
1799  *
1800  * Low-level drivers must call ib_dispatch_event() to dispatch the
1801  * event to all registered event handlers when an asynchronous event
1802  * occurs.
1803  */
1804 void ib_dispatch_event(struct ib_event *event)
1805 {
1806 	unsigned long flags;
1807 	struct ib_event_handler *handler;
1808 
1809 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1810 
1811 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1812 		handler->handler(handler, event);
1813 
1814 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1815 }
1816 EXPORT_SYMBOL(ib_dispatch_event);
1817 
1818 /**
1819  * ib_query_port - Query IB port attributes
1820  * @device:Device to query
1821  * @port_num:Port number to query
1822  * @port_attr:Port attributes
1823  *
1824  * ib_query_port() returns the attributes of a port through the
1825  * @port_attr pointer.
1826  */
1827 int ib_query_port(struct ib_device *device,
1828 		  u8 port_num,
1829 		  struct ib_port_attr *port_attr)
1830 {
1831 	union ib_gid gid;
1832 	int err;
1833 
1834 	if (!rdma_is_port_valid(device, port_num))
1835 		return -EINVAL;
1836 
1837 	memset(port_attr, 0, sizeof(*port_attr));
1838 	err = device->ops.query_port(device, port_num, port_attr);
1839 	if (err || port_attr->subnet_prefix)
1840 		return err;
1841 
1842 	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
1843 		return 0;
1844 
1845 	err = device->ops.query_gid(device, port_num, 0, &gid);
1846 	if (err)
1847 		return err;
1848 
1849 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
1850 	return 0;
1851 }
1852 EXPORT_SYMBOL(ib_query_port);
1853 
1854 static void add_ndev_hash(struct ib_port_data *pdata)
1855 {
1856 	unsigned long flags;
1857 
1858 	might_sleep();
1859 
1860 	spin_lock_irqsave(&ndev_hash_lock, flags);
1861 	if (hash_hashed(&pdata->ndev_hash_link)) {
1862 		hash_del_rcu(&pdata->ndev_hash_link);
1863 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
1864 		/*
1865 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
1866 		 * grace period
1867 		 */
1868 		synchronize_rcu();
1869 		spin_lock_irqsave(&ndev_hash_lock, flags);
1870 	}
1871 	if (pdata->netdev)
1872 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
1873 			     (uintptr_t)pdata->netdev);
1874 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
1875 }
1876 
1877 /**
1878  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
1879  * @ib_dev: Device to modify
1880  * @ndev: net_device to affiliate, may be NULL
1881  * @port: IB port the net_device is connected to
1882  *
1883  * Drivers should use this to link the ib_device to a netdev so the netdev
1884  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
1885  * affiliated with any port.
1886  *
1887  * The caller must ensure that the given ndev is not unregistered or
1888  * unregistering, and that either the ib_device is unregistered or
1889  * ib_device_set_netdev() is called with NULL when the ndev sends a
1890  * NETDEV_UNREGISTER event.
1891  */
1892 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
1893 			 unsigned int port)
1894 {
1895 	struct net_device *old_ndev;
1896 	struct ib_port_data *pdata;
1897 	unsigned long flags;
1898 	int ret;
1899 
1900 	/*
1901 	 * Drivers wish to call this before ib_register_driver, so we have to
1902 	 * setup the port data early.
1903 	 */
1904 	ret = alloc_port_data(ib_dev);
1905 	if (ret)
1906 		return ret;
1907 
1908 	if (!rdma_is_port_valid(ib_dev, port))
1909 		return -EINVAL;
1910 
1911 	pdata = &ib_dev->port_data[port];
1912 	spin_lock_irqsave(&pdata->netdev_lock, flags);
1913 	old_ndev = rcu_dereference_protected(
1914 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
1915 	if (old_ndev == ndev) {
1916 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
1917 		return 0;
1918 	}
1919 
1920 	if (ndev)
1921 		dev_hold(ndev);
1922 	rcu_assign_pointer(pdata->netdev, ndev);
1923 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
1924 
1925 	add_ndev_hash(pdata);
1926 	if (old_ndev)
1927 		dev_put(old_ndev);
1928 
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL(ib_device_set_netdev);
1932 
1933 static void free_netdevs(struct ib_device *ib_dev)
1934 {
1935 	unsigned long flags;
1936 	unsigned int port;
1937 
1938 	rdma_for_each_port (ib_dev, port) {
1939 		struct ib_port_data *pdata = &ib_dev->port_data[port];
1940 		struct net_device *ndev;
1941 
1942 		spin_lock_irqsave(&pdata->netdev_lock, flags);
1943 		ndev = rcu_dereference_protected(
1944 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
1945 		if (ndev) {
1946 			spin_lock(&ndev_hash_lock);
1947 			hash_del_rcu(&pdata->ndev_hash_link);
1948 			spin_unlock(&ndev_hash_lock);
1949 
1950 			/*
1951 			 * If this is the last dev_put there is still a
1952 			 * synchronize_rcu before the netdev is kfreed, so we
1953 			 * can continue to rely on unlocked pointer
1954 			 * comparisons after the put
1955 			 */
1956 			rcu_assign_pointer(pdata->netdev, NULL);
1957 			dev_put(ndev);
1958 		}
1959 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
1960 	}
1961 }
1962 
1963 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
1964 					unsigned int port)
1965 {
1966 	struct ib_port_data *pdata;
1967 	struct net_device *res;
1968 
1969 	if (!rdma_is_port_valid(ib_dev, port))
1970 		return NULL;
1971 
1972 	pdata = &ib_dev->port_data[port];
1973 
1974 	/*
1975 	 * New drivers should use ib_device_set_netdev() not the legacy
1976 	 * get_netdev().
1977 	 */
1978 	if (ib_dev->ops.get_netdev)
1979 		res = ib_dev->ops.get_netdev(ib_dev, port);
1980 	else {
1981 		spin_lock(&pdata->netdev_lock);
1982 		res = rcu_dereference_protected(
1983 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
1984 		if (res)
1985 			dev_hold(res);
1986 		spin_unlock(&pdata->netdev_lock);
1987 	}
1988 
1989 	/*
1990 	 * If we are starting to unregister expedite things by preventing
1991 	 * propagation of an unregistering netdev.
1992 	 */
1993 	if (res && res->reg_state != NETREG_REGISTERED) {
1994 		dev_put(res);
1995 		return NULL;
1996 	}
1997 
1998 	return res;
1999 }
2000 
2001 /**
2002  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2003  * @ndev: netdev to locate
2004  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2005  *
2006  * Find and hold an ib_device that is associated with a netdev via
2007  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2008  * returned pointer.
2009  */
2010 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2011 					  enum rdma_driver_id driver_id)
2012 {
2013 	struct ib_device *res = NULL;
2014 	struct ib_port_data *cur;
2015 
2016 	rcu_read_lock();
2017 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2018 				    (uintptr_t)ndev) {
2019 		if (rcu_access_pointer(cur->netdev) == ndev &&
2020 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2021 		     cur->ib_dev->driver_id == driver_id) &&
2022 		    ib_device_try_get(cur->ib_dev)) {
2023 			res = cur->ib_dev;
2024 			break;
2025 		}
2026 	}
2027 	rcu_read_unlock();
2028 
2029 	return res;
2030 }
2031 EXPORT_SYMBOL(ib_device_get_by_netdev);
2032 
2033 /**
2034  * ib_enum_roce_netdev - enumerate all RoCE ports
2035  * @ib_dev : IB device we want to query
2036  * @filter: Should we call the callback?
2037  * @filter_cookie: Cookie passed to filter
2038  * @cb: Callback to call for each found RoCE ports
2039  * @cookie: Cookie passed back to the callback
2040  *
2041  * Enumerates all of the physical RoCE ports of ib_dev
2042  * which are related to netdevice and calls callback() on each
2043  * device for which filter() function returns non zero.
2044  */
2045 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2046 			 roce_netdev_filter filter,
2047 			 void *filter_cookie,
2048 			 roce_netdev_callback cb,
2049 			 void *cookie)
2050 {
2051 	unsigned int port;
2052 
2053 	rdma_for_each_port (ib_dev, port)
2054 		if (rdma_protocol_roce(ib_dev, port)) {
2055 			struct net_device *idev =
2056 				ib_device_get_netdev(ib_dev, port);
2057 
2058 			if (filter(ib_dev, port, idev, filter_cookie))
2059 				cb(ib_dev, port, idev, cookie);
2060 
2061 			if (idev)
2062 				dev_put(idev);
2063 		}
2064 }
2065 
2066 /**
2067  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2068  * @filter: Should we call the callback?
2069  * @filter_cookie: Cookie passed to filter
2070  * @cb: Callback to call for each found RoCE ports
2071  * @cookie: Cookie passed back to the callback
2072  *
2073  * Enumerates all RoCE devices' physical ports which are related
2074  * to netdevices and calls callback() on each device for which
2075  * filter() function returns non zero.
2076  */
2077 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2078 			      void *filter_cookie,
2079 			      roce_netdev_callback cb,
2080 			      void *cookie)
2081 {
2082 	struct ib_device *dev;
2083 	unsigned long index;
2084 
2085 	down_read(&devices_rwsem);
2086 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2087 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2088 	up_read(&devices_rwsem);
2089 }
2090 
2091 /**
2092  * ib_enum_all_devs - enumerate all ib_devices
2093  * @cb: Callback to call for each found ib_device
2094  *
2095  * Enumerates all ib_devices and calls callback() on each device.
2096  */
2097 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2098 		     struct netlink_callback *cb)
2099 {
2100 	unsigned long index;
2101 	struct ib_device *dev;
2102 	unsigned int idx = 0;
2103 	int ret = 0;
2104 
2105 	down_read(&devices_rwsem);
2106 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2107 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2108 			continue;
2109 
2110 		ret = nldev_cb(dev, skb, cb, idx);
2111 		if (ret)
2112 			break;
2113 		idx++;
2114 	}
2115 	up_read(&devices_rwsem);
2116 	return ret;
2117 }
2118 
2119 /**
2120  * ib_query_pkey - Get P_Key table entry
2121  * @device:Device to query
2122  * @port_num:Port number to query
2123  * @index:P_Key table index to query
2124  * @pkey:Returned P_Key
2125  *
2126  * ib_query_pkey() fetches the specified P_Key table entry.
2127  */
2128 int ib_query_pkey(struct ib_device *device,
2129 		  u8 port_num, u16 index, u16 *pkey)
2130 {
2131 	if (!rdma_is_port_valid(device, port_num))
2132 		return -EINVAL;
2133 
2134 	return device->ops.query_pkey(device, port_num, index, pkey);
2135 }
2136 EXPORT_SYMBOL(ib_query_pkey);
2137 
2138 /**
2139  * ib_modify_device - Change IB device attributes
2140  * @device:Device to modify
2141  * @device_modify_mask:Mask of attributes to change
2142  * @device_modify:New attribute values
2143  *
2144  * ib_modify_device() changes a device's attributes as specified by
2145  * the @device_modify_mask and @device_modify structure.
2146  */
2147 int ib_modify_device(struct ib_device *device,
2148 		     int device_modify_mask,
2149 		     struct ib_device_modify *device_modify)
2150 {
2151 	if (!device->ops.modify_device)
2152 		return -ENOSYS;
2153 
2154 	return device->ops.modify_device(device, device_modify_mask,
2155 					 device_modify);
2156 }
2157 EXPORT_SYMBOL(ib_modify_device);
2158 
2159 /**
2160  * ib_modify_port - Modifies the attributes for the specified port.
2161  * @device: The device to modify.
2162  * @port_num: The number of the port to modify.
2163  * @port_modify_mask: Mask used to specify which attributes of the port
2164  *   to change.
2165  * @port_modify: New attribute values for the port.
2166  *
2167  * ib_modify_port() changes a port's attributes as specified by the
2168  * @port_modify_mask and @port_modify structure.
2169  */
2170 int ib_modify_port(struct ib_device *device,
2171 		   u8 port_num, int port_modify_mask,
2172 		   struct ib_port_modify *port_modify)
2173 {
2174 	int rc;
2175 
2176 	if (!rdma_is_port_valid(device, port_num))
2177 		return -EINVAL;
2178 
2179 	if (device->ops.modify_port)
2180 		rc = device->ops.modify_port(device, port_num,
2181 					     port_modify_mask,
2182 					     port_modify);
2183 	else
2184 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
2185 	return rc;
2186 }
2187 EXPORT_SYMBOL(ib_modify_port);
2188 
2189 /**
2190  * ib_find_gid - Returns the port number and GID table index where
2191  *   a specified GID value occurs. Its searches only for IB link layer.
2192  * @device: The device to query.
2193  * @gid: The GID value to search for.
2194  * @port_num: The port number of the device where the GID value was found.
2195  * @index: The index into the GID table where the GID was found.  This
2196  *   parameter may be NULL.
2197  */
2198 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2199 		u8 *port_num, u16 *index)
2200 {
2201 	union ib_gid tmp_gid;
2202 	unsigned int port;
2203 	int ret, i;
2204 
2205 	rdma_for_each_port (device, port) {
2206 		if (!rdma_protocol_ib(device, port))
2207 			continue;
2208 
2209 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2210 		     ++i) {
2211 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2212 			if (ret)
2213 				return ret;
2214 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2215 				*port_num = port;
2216 				if (index)
2217 					*index = i;
2218 				return 0;
2219 			}
2220 		}
2221 	}
2222 
2223 	return -ENOENT;
2224 }
2225 EXPORT_SYMBOL(ib_find_gid);
2226 
2227 /**
2228  * ib_find_pkey - Returns the PKey table index where a specified
2229  *   PKey value occurs.
2230  * @device: The device to query.
2231  * @port_num: The port number of the device to search for the PKey.
2232  * @pkey: The PKey value to search for.
2233  * @index: The index into the PKey table where the PKey was found.
2234  */
2235 int ib_find_pkey(struct ib_device *device,
2236 		 u8 port_num, u16 pkey, u16 *index)
2237 {
2238 	int ret, i;
2239 	u16 tmp_pkey;
2240 	int partial_ix = -1;
2241 
2242 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2243 	     ++i) {
2244 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2245 		if (ret)
2246 			return ret;
2247 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2248 			/* if there is full-member pkey take it.*/
2249 			if (tmp_pkey & 0x8000) {
2250 				*index = i;
2251 				return 0;
2252 			}
2253 			if (partial_ix < 0)
2254 				partial_ix = i;
2255 		}
2256 	}
2257 
2258 	/*no full-member, if exists take the limited*/
2259 	if (partial_ix >= 0) {
2260 		*index = partial_ix;
2261 		return 0;
2262 	}
2263 	return -ENOENT;
2264 }
2265 EXPORT_SYMBOL(ib_find_pkey);
2266 
2267 /**
2268  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2269  * for a received CM request
2270  * @dev:	An RDMA device on which the request has been received.
2271  * @port:	Port number on the RDMA device.
2272  * @pkey:	The Pkey the request came on.
2273  * @gid:	A GID that the net_dev uses to communicate.
2274  * @addr:	Contains the IP address that the request specified as its
2275  *		destination.
2276  *
2277  */
2278 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2279 					    u8 port,
2280 					    u16 pkey,
2281 					    const union ib_gid *gid,
2282 					    const struct sockaddr *addr)
2283 {
2284 	struct net_device *net_dev = NULL;
2285 	unsigned long index;
2286 	void *client_data;
2287 
2288 	if (!rdma_protocol_ib(dev, port))
2289 		return NULL;
2290 
2291 	/*
2292 	 * Holding the read side guarantees that the client will not become
2293 	 * unregistered while we are calling get_net_dev_by_params()
2294 	 */
2295 	down_read(&dev->client_data_rwsem);
2296 	xan_for_each_marked (&dev->client_data, index, client_data,
2297 			     CLIENT_DATA_REGISTERED) {
2298 		struct ib_client *client = xa_load(&clients, index);
2299 
2300 		if (!client || !client->get_net_dev_by_params)
2301 			continue;
2302 
2303 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2304 							addr, client_data);
2305 		if (net_dev)
2306 			break;
2307 	}
2308 	up_read(&dev->client_data_rwsem);
2309 
2310 	return net_dev;
2311 }
2312 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2313 
2314 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2315 {
2316 	struct ib_device_ops *dev_ops = &dev->ops;
2317 #define SET_DEVICE_OP(ptr, name)                                               \
2318 	do {                                                                   \
2319 		if (ops->name)                                                 \
2320 			if (!((ptr)->name))				       \
2321 				(ptr)->name = ops->name;                       \
2322 	} while (0)
2323 
2324 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2325 
2326 	SET_DEVICE_OP(dev_ops, add_gid);
2327 	SET_DEVICE_OP(dev_ops, advise_mr);
2328 	SET_DEVICE_OP(dev_ops, alloc_dm);
2329 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2330 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2331 	SET_DEVICE_OP(dev_ops, alloc_mr);
2332 	SET_DEVICE_OP(dev_ops, alloc_mw);
2333 	SET_DEVICE_OP(dev_ops, alloc_pd);
2334 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2335 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2336 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2337 	SET_DEVICE_OP(dev_ops, attach_mcast);
2338 	SET_DEVICE_OP(dev_ops, check_mr_status);
2339 	SET_DEVICE_OP(dev_ops, create_ah);
2340 	SET_DEVICE_OP(dev_ops, create_counters);
2341 	SET_DEVICE_OP(dev_ops, create_cq);
2342 	SET_DEVICE_OP(dev_ops, create_flow);
2343 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2344 	SET_DEVICE_OP(dev_ops, create_qp);
2345 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2346 	SET_DEVICE_OP(dev_ops, create_srq);
2347 	SET_DEVICE_OP(dev_ops, create_wq);
2348 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2349 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2350 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2351 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2352 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2353 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2354 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2355 	SET_DEVICE_OP(dev_ops, del_gid);
2356 	SET_DEVICE_OP(dev_ops, dereg_mr);
2357 	SET_DEVICE_OP(dev_ops, destroy_ah);
2358 	SET_DEVICE_OP(dev_ops, destroy_counters);
2359 	SET_DEVICE_OP(dev_ops, destroy_cq);
2360 	SET_DEVICE_OP(dev_ops, destroy_flow);
2361 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2362 	SET_DEVICE_OP(dev_ops, destroy_qp);
2363 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2364 	SET_DEVICE_OP(dev_ops, destroy_srq);
2365 	SET_DEVICE_OP(dev_ops, destroy_wq);
2366 	SET_DEVICE_OP(dev_ops, detach_mcast);
2367 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2368 	SET_DEVICE_OP(dev_ops, drain_rq);
2369 	SET_DEVICE_OP(dev_ops, drain_sq);
2370 	SET_DEVICE_OP(dev_ops, enable_driver);
2371 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2372 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2373 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2374 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2375 	SET_DEVICE_OP(dev_ops, get_link_layer);
2376 	SET_DEVICE_OP(dev_ops, get_netdev);
2377 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2378 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2379 	SET_DEVICE_OP(dev_ops, get_vf_config);
2380 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2381 	SET_DEVICE_OP(dev_ops, init_port);
2382 	SET_DEVICE_OP(dev_ops, iw_accept);
2383 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2384 	SET_DEVICE_OP(dev_ops, iw_connect);
2385 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2386 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2387 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2388 	SET_DEVICE_OP(dev_ops, iw_reject);
2389 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2390 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2391 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2392 	SET_DEVICE_OP(dev_ops, mmap);
2393 	SET_DEVICE_OP(dev_ops, modify_ah);
2394 	SET_DEVICE_OP(dev_ops, modify_cq);
2395 	SET_DEVICE_OP(dev_ops, modify_device);
2396 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2397 	SET_DEVICE_OP(dev_ops, modify_port);
2398 	SET_DEVICE_OP(dev_ops, modify_qp);
2399 	SET_DEVICE_OP(dev_ops, modify_srq);
2400 	SET_DEVICE_OP(dev_ops, modify_wq);
2401 	SET_DEVICE_OP(dev_ops, peek_cq);
2402 	SET_DEVICE_OP(dev_ops, poll_cq);
2403 	SET_DEVICE_OP(dev_ops, post_recv);
2404 	SET_DEVICE_OP(dev_ops, post_send);
2405 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2406 	SET_DEVICE_OP(dev_ops, process_mad);
2407 	SET_DEVICE_OP(dev_ops, query_ah);
2408 	SET_DEVICE_OP(dev_ops, query_device);
2409 	SET_DEVICE_OP(dev_ops, query_gid);
2410 	SET_DEVICE_OP(dev_ops, query_pkey);
2411 	SET_DEVICE_OP(dev_ops, query_port);
2412 	SET_DEVICE_OP(dev_ops, query_qp);
2413 	SET_DEVICE_OP(dev_ops, query_srq);
2414 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2415 	SET_DEVICE_OP(dev_ops, read_counters);
2416 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2417 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2418 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2419 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2420 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2421 	SET_DEVICE_OP(dev_ops, resize_cq);
2422 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2423 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2424 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2425 
2426 	SET_OBJ_SIZE(dev_ops, ib_ah);
2427 	SET_OBJ_SIZE(dev_ops, ib_pd);
2428 	SET_OBJ_SIZE(dev_ops, ib_srq);
2429 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2430 }
2431 EXPORT_SYMBOL(ib_set_device_ops);
2432 
2433 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2434 	[RDMA_NL_LS_OP_RESOLVE] = {
2435 		.doit = ib_nl_handle_resolve_resp,
2436 		.flags = RDMA_NL_ADMIN_PERM,
2437 	},
2438 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2439 		.doit = ib_nl_handle_set_timeout,
2440 		.flags = RDMA_NL_ADMIN_PERM,
2441 	},
2442 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2443 		.doit = ib_nl_handle_ip_res_resp,
2444 		.flags = RDMA_NL_ADMIN_PERM,
2445 	},
2446 };
2447 
2448 static int __init ib_core_init(void)
2449 {
2450 	int ret;
2451 
2452 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2453 	if (!ib_wq)
2454 		return -ENOMEM;
2455 
2456 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2457 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2458 	if (!ib_comp_wq) {
2459 		ret = -ENOMEM;
2460 		goto err;
2461 	}
2462 
2463 	ib_comp_unbound_wq =
2464 		alloc_workqueue("ib-comp-unb-wq",
2465 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2466 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2467 	if (!ib_comp_unbound_wq) {
2468 		ret = -ENOMEM;
2469 		goto err_comp;
2470 	}
2471 
2472 	ret = class_register(&ib_class);
2473 	if (ret) {
2474 		pr_warn("Couldn't create InfiniBand device class\n");
2475 		goto err_comp_unbound;
2476 	}
2477 
2478 	ret = rdma_nl_init();
2479 	if (ret) {
2480 		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
2481 		goto err_sysfs;
2482 	}
2483 
2484 	ret = addr_init();
2485 	if (ret) {
2486 		pr_warn("Could't init IB address resolution\n");
2487 		goto err_ibnl;
2488 	}
2489 
2490 	ret = ib_mad_init();
2491 	if (ret) {
2492 		pr_warn("Couldn't init IB MAD\n");
2493 		goto err_addr;
2494 	}
2495 
2496 	ret = ib_sa_init();
2497 	if (ret) {
2498 		pr_warn("Couldn't init SA\n");
2499 		goto err_mad;
2500 	}
2501 
2502 	ret = register_lsm_notifier(&ibdev_lsm_nb);
2503 	if (ret) {
2504 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2505 		goto err_sa;
2506 	}
2507 
2508 	ret = register_pernet_device(&rdma_dev_net_ops);
2509 	if (ret) {
2510 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2511 		goto err_compat;
2512 	}
2513 
2514 	nldev_init();
2515 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2516 	roce_gid_mgmt_init();
2517 
2518 	return 0;
2519 
2520 err_compat:
2521 	unregister_lsm_notifier(&ibdev_lsm_nb);
2522 err_sa:
2523 	ib_sa_cleanup();
2524 err_mad:
2525 	ib_mad_cleanup();
2526 err_addr:
2527 	addr_cleanup();
2528 err_ibnl:
2529 	rdma_nl_exit();
2530 err_sysfs:
2531 	class_unregister(&ib_class);
2532 err_comp_unbound:
2533 	destroy_workqueue(ib_comp_unbound_wq);
2534 err_comp:
2535 	destroy_workqueue(ib_comp_wq);
2536 err:
2537 	destroy_workqueue(ib_wq);
2538 	return ret;
2539 }
2540 
2541 static void __exit ib_core_cleanup(void)
2542 {
2543 	roce_gid_mgmt_cleanup();
2544 	nldev_exit();
2545 	rdma_nl_unregister(RDMA_NL_LS);
2546 	unregister_pernet_device(&rdma_dev_net_ops);
2547 	unregister_lsm_notifier(&ibdev_lsm_nb);
2548 	ib_sa_cleanup();
2549 	ib_mad_cleanup();
2550 	addr_cleanup();
2551 	rdma_nl_exit();
2552 	class_unregister(&ib_class);
2553 	destroy_workqueue(ib_comp_unbound_wq);
2554 	destroy_workqueue(ib_comp_wq);
2555 	/* Make sure that any pending umem accounting work is done. */
2556 	destroy_workqueue(ib_wq);
2557 	flush_workqueue(system_unbound_wq);
2558 	WARN_ON(!xa_empty(&clients));
2559 	WARN_ON(!xa_empty(&devices));
2560 }
2561 
2562 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2563 
2564 /* ib core relies on netdev stack to first register net_ns_type_operations
2565  * ns kobject type before ib_core initialization.
2566  */
2567 fs_initcall(ib_core_init);
2568 module_exit(ib_core_cleanup);
2569