1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/mutex.h> 41 #include <linux/netdevice.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <rdma/rdma_netlink.h> 45 #include <rdma/ib_addr.h> 46 #include <rdma/ib_cache.h> 47 48 #include "core_priv.h" 49 50 MODULE_AUTHOR("Roland Dreier"); 51 MODULE_DESCRIPTION("core kernel InfiniBand API"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 54 struct ib_client_data { 55 struct list_head list; 56 struct ib_client *client; 57 void * data; 58 /* The device or client is going down. Do not call client or device 59 * callbacks other than remove(). */ 60 bool going_down; 61 }; 62 63 struct workqueue_struct *ib_comp_wq; 64 struct workqueue_struct *ib_wq; 65 EXPORT_SYMBOL_GPL(ib_wq); 66 67 /* The device_list and client_list contain devices and clients after their 68 * registration has completed, and the devices and clients are removed 69 * during unregistration. */ 70 static LIST_HEAD(device_list); 71 static LIST_HEAD(client_list); 72 73 /* 74 * device_mutex and lists_rwsem protect access to both device_list and 75 * client_list. device_mutex protects writer access by device and client 76 * registration / de-registration. lists_rwsem protects reader access to 77 * these lists. Iterators of these lists must lock it for read, while updates 78 * to the lists must be done with a write lock. A special case is when the 79 * device_mutex is locked. In this case locking the lists for read access is 80 * not necessary as the device_mutex implies it. 81 * 82 * lists_rwsem also protects access to the client data list. 83 */ 84 static DEFINE_MUTEX(device_mutex); 85 static DECLARE_RWSEM(lists_rwsem); 86 87 static int ib_security_change(struct notifier_block *nb, unsigned long event, 88 void *lsm_data); 89 static void ib_policy_change_task(struct work_struct *work); 90 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 91 92 static struct notifier_block ibdev_lsm_nb = { 93 .notifier_call = ib_security_change, 94 }; 95 96 static int ib_device_check_mandatory(struct ib_device *device) 97 { 98 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device, x), #x } 99 static const struct { 100 size_t offset; 101 char *name; 102 } mandatory_table[] = { 103 IB_MANDATORY_FUNC(query_device), 104 IB_MANDATORY_FUNC(query_port), 105 IB_MANDATORY_FUNC(query_pkey), 106 IB_MANDATORY_FUNC(query_gid), 107 IB_MANDATORY_FUNC(alloc_pd), 108 IB_MANDATORY_FUNC(dealloc_pd), 109 IB_MANDATORY_FUNC(create_ah), 110 IB_MANDATORY_FUNC(destroy_ah), 111 IB_MANDATORY_FUNC(create_qp), 112 IB_MANDATORY_FUNC(modify_qp), 113 IB_MANDATORY_FUNC(destroy_qp), 114 IB_MANDATORY_FUNC(post_send), 115 IB_MANDATORY_FUNC(post_recv), 116 IB_MANDATORY_FUNC(create_cq), 117 IB_MANDATORY_FUNC(destroy_cq), 118 IB_MANDATORY_FUNC(poll_cq), 119 IB_MANDATORY_FUNC(req_notify_cq), 120 IB_MANDATORY_FUNC(get_dma_mr), 121 IB_MANDATORY_FUNC(dereg_mr), 122 IB_MANDATORY_FUNC(get_port_immutable) 123 }; 124 int i; 125 126 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 127 if (!*(void **) ((void *) device + mandatory_table[i].offset)) { 128 pr_warn("Device %s is missing mandatory function %s\n", 129 device->name, mandatory_table[i].name); 130 return -EINVAL; 131 } 132 } 133 134 return 0; 135 } 136 137 static struct ib_device *__ib_device_get_by_index(u32 index) 138 { 139 struct ib_device *device; 140 141 list_for_each_entry(device, &device_list, core_list) 142 if (device->index == index) 143 return device; 144 145 return NULL; 146 } 147 148 /* 149 * Caller is responsible to return refrerence count by calling put_device() 150 */ 151 struct ib_device *ib_device_get_by_index(u32 index) 152 { 153 struct ib_device *device; 154 155 down_read(&lists_rwsem); 156 device = __ib_device_get_by_index(index); 157 if (device) 158 get_device(&device->dev); 159 160 up_read(&lists_rwsem); 161 return device; 162 } 163 164 static struct ib_device *__ib_device_get_by_name(const char *name) 165 { 166 struct ib_device *device; 167 168 list_for_each_entry(device, &device_list, core_list) 169 if (!strncmp(name, device->name, IB_DEVICE_NAME_MAX)) 170 return device; 171 172 return NULL; 173 } 174 175 static int alloc_name(char *name) 176 { 177 unsigned long *inuse; 178 char buf[IB_DEVICE_NAME_MAX]; 179 struct ib_device *device; 180 int i; 181 182 inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL); 183 if (!inuse) 184 return -ENOMEM; 185 186 list_for_each_entry(device, &device_list, core_list) { 187 if (!sscanf(device->name, name, &i)) 188 continue; 189 if (i < 0 || i >= PAGE_SIZE * 8) 190 continue; 191 snprintf(buf, sizeof buf, name, i); 192 if (!strncmp(buf, device->name, IB_DEVICE_NAME_MAX)) 193 set_bit(i, inuse); 194 } 195 196 i = find_first_zero_bit(inuse, PAGE_SIZE * 8); 197 free_page((unsigned long) inuse); 198 snprintf(buf, sizeof buf, name, i); 199 200 if (__ib_device_get_by_name(buf)) 201 return -ENFILE; 202 203 strlcpy(name, buf, IB_DEVICE_NAME_MAX); 204 return 0; 205 } 206 207 static void ib_device_release(struct device *device) 208 { 209 struct ib_device *dev = container_of(device, struct ib_device, dev); 210 211 WARN_ON(dev->reg_state == IB_DEV_REGISTERED); 212 if (dev->reg_state == IB_DEV_UNREGISTERED) { 213 /* 214 * In IB_DEV_UNINITIALIZED state, cache or port table 215 * is not even created. Free cache and port table only when 216 * device reaches UNREGISTERED state. 217 */ 218 ib_cache_release_one(dev); 219 kfree(dev->port_immutable); 220 } 221 kfree(dev); 222 } 223 224 static int ib_device_uevent(struct device *device, 225 struct kobj_uevent_env *env) 226 { 227 struct ib_device *dev = container_of(device, struct ib_device, dev); 228 229 if (add_uevent_var(env, "NAME=%s", dev->name)) 230 return -ENOMEM; 231 232 /* 233 * It would be nice to pass the node GUID with the event... 234 */ 235 236 return 0; 237 } 238 239 static struct class ib_class = { 240 .name = "infiniband", 241 .dev_release = ib_device_release, 242 .dev_uevent = ib_device_uevent, 243 }; 244 245 /** 246 * ib_alloc_device - allocate an IB device struct 247 * @size:size of structure to allocate 248 * 249 * Low-level drivers should use ib_alloc_device() to allocate &struct 250 * ib_device. @size is the size of the structure to be allocated, 251 * including any private data used by the low-level driver. 252 * ib_dealloc_device() must be used to free structures allocated with 253 * ib_alloc_device(). 254 */ 255 struct ib_device *ib_alloc_device(size_t size) 256 { 257 struct ib_device *device; 258 259 if (WARN_ON(size < sizeof(struct ib_device))) 260 return NULL; 261 262 device = kzalloc(size, GFP_KERNEL); 263 if (!device) 264 return NULL; 265 266 rdma_restrack_init(&device->res); 267 268 device->dev.class = &ib_class; 269 device_initialize(&device->dev); 270 271 dev_set_drvdata(&device->dev, device); 272 273 INIT_LIST_HEAD(&device->event_handler_list); 274 spin_lock_init(&device->event_handler_lock); 275 spin_lock_init(&device->client_data_lock); 276 INIT_LIST_HEAD(&device->client_data_list); 277 INIT_LIST_HEAD(&device->port_list); 278 279 return device; 280 } 281 EXPORT_SYMBOL(ib_alloc_device); 282 283 /** 284 * ib_dealloc_device - free an IB device struct 285 * @device:structure to free 286 * 287 * Free a structure allocated with ib_alloc_device(). 288 */ 289 void ib_dealloc_device(struct ib_device *device) 290 { 291 WARN_ON(device->reg_state != IB_DEV_UNREGISTERED && 292 device->reg_state != IB_DEV_UNINITIALIZED); 293 rdma_restrack_clean(&device->res); 294 put_device(&device->dev); 295 } 296 EXPORT_SYMBOL(ib_dealloc_device); 297 298 static int add_client_context(struct ib_device *device, struct ib_client *client) 299 { 300 struct ib_client_data *context; 301 unsigned long flags; 302 303 context = kmalloc(sizeof *context, GFP_KERNEL); 304 if (!context) 305 return -ENOMEM; 306 307 context->client = client; 308 context->data = NULL; 309 context->going_down = false; 310 311 down_write(&lists_rwsem); 312 spin_lock_irqsave(&device->client_data_lock, flags); 313 list_add(&context->list, &device->client_data_list); 314 spin_unlock_irqrestore(&device->client_data_lock, flags); 315 up_write(&lists_rwsem); 316 317 return 0; 318 } 319 320 static int verify_immutable(const struct ib_device *dev, u8 port) 321 { 322 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 323 rdma_max_mad_size(dev, port) != 0); 324 } 325 326 static int read_port_immutable(struct ib_device *device) 327 { 328 int ret; 329 u8 start_port = rdma_start_port(device); 330 u8 end_port = rdma_end_port(device); 331 u8 port; 332 333 /** 334 * device->port_immutable is indexed directly by the port number to make 335 * access to this data as efficient as possible. 336 * 337 * Therefore port_immutable is declared as a 1 based array with 338 * potential empty slots at the beginning. 339 */ 340 device->port_immutable = kzalloc(sizeof(*device->port_immutable) 341 * (end_port + 1), 342 GFP_KERNEL); 343 if (!device->port_immutable) 344 return -ENOMEM; 345 346 for (port = start_port; port <= end_port; ++port) { 347 ret = device->get_port_immutable(device, port, 348 &device->port_immutable[port]); 349 if (ret) 350 return ret; 351 352 if (verify_immutable(device, port)) 353 return -EINVAL; 354 } 355 return 0; 356 } 357 358 void ib_get_device_fw_str(struct ib_device *dev, char *str) 359 { 360 if (dev->get_dev_fw_str) 361 dev->get_dev_fw_str(dev, str); 362 else 363 str[0] = '\0'; 364 } 365 EXPORT_SYMBOL(ib_get_device_fw_str); 366 367 static int setup_port_pkey_list(struct ib_device *device) 368 { 369 int i; 370 371 /** 372 * device->port_pkey_list is indexed directly by the port number, 373 * Therefore it is declared as a 1 based array with potential empty 374 * slots at the beginning. 375 */ 376 device->port_pkey_list = kcalloc(rdma_end_port(device) + 1, 377 sizeof(*device->port_pkey_list), 378 GFP_KERNEL); 379 380 if (!device->port_pkey_list) 381 return -ENOMEM; 382 383 for (i = 0; i < (rdma_end_port(device) + 1); i++) { 384 spin_lock_init(&device->port_pkey_list[i].list_lock); 385 INIT_LIST_HEAD(&device->port_pkey_list[i].pkey_list); 386 } 387 388 return 0; 389 } 390 391 static void ib_policy_change_task(struct work_struct *work) 392 { 393 struct ib_device *dev; 394 395 down_read(&lists_rwsem); 396 list_for_each_entry(dev, &device_list, core_list) { 397 int i; 398 399 for (i = rdma_start_port(dev); i <= rdma_end_port(dev); i++) { 400 u64 sp; 401 int ret = ib_get_cached_subnet_prefix(dev, 402 i, 403 &sp); 404 405 WARN_ONCE(ret, 406 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 407 ret); 408 if (!ret) 409 ib_security_cache_change(dev, i, sp); 410 } 411 } 412 up_read(&lists_rwsem); 413 } 414 415 static int ib_security_change(struct notifier_block *nb, unsigned long event, 416 void *lsm_data) 417 { 418 if (event != LSM_POLICY_CHANGE) 419 return NOTIFY_DONE; 420 421 schedule_work(&ib_policy_change_work); 422 423 return NOTIFY_OK; 424 } 425 426 /** 427 * __dev_new_index - allocate an device index 428 * 429 * Returns a suitable unique value for a new device interface 430 * number. It assumes that there are less than 2^32-1 ib devices 431 * will be present in the system. 432 */ 433 static u32 __dev_new_index(void) 434 { 435 /* 436 * The device index to allow stable naming. 437 * Similar to struct net -> ifindex. 438 */ 439 static u32 index; 440 441 for (;;) { 442 if (!(++index)) 443 index = 1; 444 445 if (!__ib_device_get_by_index(index)) 446 return index; 447 } 448 } 449 450 /** 451 * ib_register_device - Register an IB device with IB core 452 * @device:Device to register 453 * 454 * Low-level drivers use ib_register_device() to register their 455 * devices with the IB core. All registered clients will receive a 456 * callback for each device that is added. @device must be allocated 457 * with ib_alloc_device(). 458 */ 459 int ib_register_device(struct ib_device *device, 460 int (*port_callback)(struct ib_device *, 461 u8, struct kobject *)) 462 { 463 int ret; 464 struct ib_client *client; 465 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 466 struct device *parent = device->dev.parent; 467 468 WARN_ON_ONCE(device->dma_device); 469 if (device->dev.dma_ops) { 470 /* 471 * The caller provided custom DMA operations. Copy the 472 * DMA-related fields that are used by e.g. dma_alloc_coherent() 473 * into device->dev. 474 */ 475 device->dma_device = &device->dev; 476 if (!device->dev.dma_mask) { 477 if (parent) 478 device->dev.dma_mask = parent->dma_mask; 479 else 480 WARN_ON_ONCE(true); 481 } 482 if (!device->dev.coherent_dma_mask) { 483 if (parent) 484 device->dev.coherent_dma_mask = 485 parent->coherent_dma_mask; 486 else 487 WARN_ON_ONCE(true); 488 } 489 } else { 490 /* 491 * The caller did not provide custom DMA operations. Use the 492 * DMA mapping operations of the parent device. 493 */ 494 WARN_ON_ONCE(!parent); 495 device->dma_device = parent; 496 } 497 498 mutex_lock(&device_mutex); 499 500 if (strchr(device->name, '%')) { 501 ret = alloc_name(device->name); 502 if (ret) 503 goto out; 504 } 505 506 if (ib_device_check_mandatory(device)) { 507 ret = -EINVAL; 508 goto out; 509 } 510 511 ret = read_port_immutable(device); 512 if (ret) { 513 pr_warn("Couldn't create per port immutable data %s\n", 514 device->name); 515 goto out; 516 } 517 518 ret = setup_port_pkey_list(device); 519 if (ret) { 520 pr_warn("Couldn't create per port_pkey_list\n"); 521 goto out; 522 } 523 524 ret = ib_cache_setup_one(device); 525 if (ret) { 526 pr_warn("Couldn't set up InfiniBand P_Key/GID cache\n"); 527 goto port_cleanup; 528 } 529 530 ret = ib_device_register_rdmacg(device); 531 if (ret) { 532 pr_warn("Couldn't register device with rdma cgroup\n"); 533 goto cache_cleanup; 534 } 535 536 memset(&device->attrs, 0, sizeof(device->attrs)); 537 ret = device->query_device(device, &device->attrs, &uhw); 538 if (ret) { 539 pr_warn("Couldn't query the device attributes\n"); 540 goto cg_cleanup; 541 } 542 543 ret = ib_device_register_sysfs(device, port_callback); 544 if (ret) { 545 pr_warn("Couldn't register device %s with driver model\n", 546 device->name); 547 goto cg_cleanup; 548 } 549 550 device->reg_state = IB_DEV_REGISTERED; 551 552 list_for_each_entry(client, &client_list, list) 553 if (!add_client_context(device, client) && client->add) 554 client->add(device); 555 556 device->index = __dev_new_index(); 557 down_write(&lists_rwsem); 558 list_add_tail(&device->core_list, &device_list); 559 up_write(&lists_rwsem); 560 mutex_unlock(&device_mutex); 561 return 0; 562 563 cg_cleanup: 564 ib_device_unregister_rdmacg(device); 565 cache_cleanup: 566 ib_cache_cleanup_one(device); 567 ib_cache_release_one(device); 568 port_cleanup: 569 kfree(device->port_immutable); 570 out: 571 mutex_unlock(&device_mutex); 572 return ret; 573 } 574 EXPORT_SYMBOL(ib_register_device); 575 576 /** 577 * ib_unregister_device - Unregister an IB device 578 * @device:Device to unregister 579 * 580 * Unregister an IB device. All clients will receive a remove callback. 581 */ 582 void ib_unregister_device(struct ib_device *device) 583 { 584 struct ib_client_data *context, *tmp; 585 unsigned long flags; 586 587 mutex_lock(&device_mutex); 588 589 down_write(&lists_rwsem); 590 list_del(&device->core_list); 591 spin_lock_irqsave(&device->client_data_lock, flags); 592 list_for_each_entry_safe(context, tmp, &device->client_data_list, list) 593 context->going_down = true; 594 spin_unlock_irqrestore(&device->client_data_lock, flags); 595 downgrade_write(&lists_rwsem); 596 597 list_for_each_entry_safe(context, tmp, &device->client_data_list, 598 list) { 599 if (context->client->remove) 600 context->client->remove(device, context->data); 601 } 602 up_read(&lists_rwsem); 603 604 ib_device_unregister_rdmacg(device); 605 ib_device_unregister_sysfs(device); 606 607 mutex_unlock(&device_mutex); 608 609 ib_cache_cleanup_one(device); 610 611 ib_security_destroy_port_pkey_list(device); 612 kfree(device->port_pkey_list); 613 614 down_write(&lists_rwsem); 615 spin_lock_irqsave(&device->client_data_lock, flags); 616 list_for_each_entry_safe(context, tmp, &device->client_data_list, list) 617 kfree(context); 618 spin_unlock_irqrestore(&device->client_data_lock, flags); 619 up_write(&lists_rwsem); 620 621 device->reg_state = IB_DEV_UNREGISTERED; 622 } 623 EXPORT_SYMBOL(ib_unregister_device); 624 625 /** 626 * ib_register_client - Register an IB client 627 * @client:Client to register 628 * 629 * Upper level users of the IB drivers can use ib_register_client() to 630 * register callbacks for IB device addition and removal. When an IB 631 * device is added, each registered client's add method will be called 632 * (in the order the clients were registered), and when a device is 633 * removed, each client's remove method will be called (in the reverse 634 * order that clients were registered). In addition, when 635 * ib_register_client() is called, the client will receive an add 636 * callback for all devices already registered. 637 */ 638 int ib_register_client(struct ib_client *client) 639 { 640 struct ib_device *device; 641 642 mutex_lock(&device_mutex); 643 644 list_for_each_entry(device, &device_list, core_list) 645 if (!add_client_context(device, client) && client->add) 646 client->add(device); 647 648 down_write(&lists_rwsem); 649 list_add_tail(&client->list, &client_list); 650 up_write(&lists_rwsem); 651 652 mutex_unlock(&device_mutex); 653 654 return 0; 655 } 656 EXPORT_SYMBOL(ib_register_client); 657 658 /** 659 * ib_unregister_client - Unregister an IB client 660 * @client:Client to unregister 661 * 662 * Upper level users use ib_unregister_client() to remove their client 663 * registration. When ib_unregister_client() is called, the client 664 * will receive a remove callback for each IB device still registered. 665 */ 666 void ib_unregister_client(struct ib_client *client) 667 { 668 struct ib_client_data *context, *tmp; 669 struct ib_device *device; 670 unsigned long flags; 671 672 mutex_lock(&device_mutex); 673 674 down_write(&lists_rwsem); 675 list_del(&client->list); 676 up_write(&lists_rwsem); 677 678 list_for_each_entry(device, &device_list, core_list) { 679 struct ib_client_data *found_context = NULL; 680 681 down_write(&lists_rwsem); 682 spin_lock_irqsave(&device->client_data_lock, flags); 683 list_for_each_entry_safe(context, tmp, &device->client_data_list, list) 684 if (context->client == client) { 685 context->going_down = true; 686 found_context = context; 687 break; 688 } 689 spin_unlock_irqrestore(&device->client_data_lock, flags); 690 up_write(&lists_rwsem); 691 692 if (client->remove) 693 client->remove(device, found_context ? 694 found_context->data : NULL); 695 696 if (!found_context) { 697 pr_warn("No client context found for %s/%s\n", 698 device->name, client->name); 699 continue; 700 } 701 702 down_write(&lists_rwsem); 703 spin_lock_irqsave(&device->client_data_lock, flags); 704 list_del(&found_context->list); 705 kfree(found_context); 706 spin_unlock_irqrestore(&device->client_data_lock, flags); 707 up_write(&lists_rwsem); 708 } 709 710 mutex_unlock(&device_mutex); 711 } 712 EXPORT_SYMBOL(ib_unregister_client); 713 714 /** 715 * ib_get_client_data - Get IB client context 716 * @device:Device to get context for 717 * @client:Client to get context for 718 * 719 * ib_get_client_data() returns client context set with 720 * ib_set_client_data(). 721 */ 722 void *ib_get_client_data(struct ib_device *device, struct ib_client *client) 723 { 724 struct ib_client_data *context; 725 void *ret = NULL; 726 unsigned long flags; 727 728 spin_lock_irqsave(&device->client_data_lock, flags); 729 list_for_each_entry(context, &device->client_data_list, list) 730 if (context->client == client) { 731 ret = context->data; 732 break; 733 } 734 spin_unlock_irqrestore(&device->client_data_lock, flags); 735 736 return ret; 737 } 738 EXPORT_SYMBOL(ib_get_client_data); 739 740 /** 741 * ib_set_client_data - Set IB client context 742 * @device:Device to set context for 743 * @client:Client to set context for 744 * @data:Context to set 745 * 746 * ib_set_client_data() sets client context that can be retrieved with 747 * ib_get_client_data(). 748 */ 749 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 750 void *data) 751 { 752 struct ib_client_data *context; 753 unsigned long flags; 754 755 spin_lock_irqsave(&device->client_data_lock, flags); 756 list_for_each_entry(context, &device->client_data_list, list) 757 if (context->client == client) { 758 context->data = data; 759 goto out; 760 } 761 762 pr_warn("No client context found for %s/%s\n", 763 device->name, client->name); 764 765 out: 766 spin_unlock_irqrestore(&device->client_data_lock, flags); 767 } 768 EXPORT_SYMBOL(ib_set_client_data); 769 770 /** 771 * ib_register_event_handler - Register an IB event handler 772 * @event_handler:Handler to register 773 * 774 * ib_register_event_handler() registers an event handler that will be 775 * called back when asynchronous IB events occur (as defined in 776 * chapter 11 of the InfiniBand Architecture Specification). This 777 * callback may occur in interrupt context. 778 */ 779 void ib_register_event_handler(struct ib_event_handler *event_handler) 780 { 781 unsigned long flags; 782 783 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); 784 list_add_tail(&event_handler->list, 785 &event_handler->device->event_handler_list); 786 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); 787 } 788 EXPORT_SYMBOL(ib_register_event_handler); 789 790 /** 791 * ib_unregister_event_handler - Unregister an event handler 792 * @event_handler:Handler to unregister 793 * 794 * Unregister an event handler registered with 795 * ib_register_event_handler(). 796 */ 797 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 798 { 799 unsigned long flags; 800 801 spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); 802 list_del(&event_handler->list); 803 spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); 804 } 805 EXPORT_SYMBOL(ib_unregister_event_handler); 806 807 /** 808 * ib_dispatch_event - Dispatch an asynchronous event 809 * @event:Event to dispatch 810 * 811 * Low-level drivers must call ib_dispatch_event() to dispatch the 812 * event to all registered event handlers when an asynchronous event 813 * occurs. 814 */ 815 void ib_dispatch_event(struct ib_event *event) 816 { 817 unsigned long flags; 818 struct ib_event_handler *handler; 819 820 spin_lock_irqsave(&event->device->event_handler_lock, flags); 821 822 list_for_each_entry(handler, &event->device->event_handler_list, list) 823 handler->handler(handler, event); 824 825 spin_unlock_irqrestore(&event->device->event_handler_lock, flags); 826 } 827 EXPORT_SYMBOL(ib_dispatch_event); 828 829 /** 830 * ib_query_port - Query IB port attributes 831 * @device:Device to query 832 * @port_num:Port number to query 833 * @port_attr:Port attributes 834 * 835 * ib_query_port() returns the attributes of a port through the 836 * @port_attr pointer. 837 */ 838 int ib_query_port(struct ib_device *device, 839 u8 port_num, 840 struct ib_port_attr *port_attr) 841 { 842 union ib_gid gid; 843 int err; 844 845 if (!rdma_is_port_valid(device, port_num)) 846 return -EINVAL; 847 848 memset(port_attr, 0, sizeof(*port_attr)); 849 err = device->query_port(device, port_num, port_attr); 850 if (err || port_attr->subnet_prefix) 851 return err; 852 853 if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND) 854 return 0; 855 856 err = ib_query_gid(device, port_num, 0, &gid, NULL); 857 if (err) 858 return err; 859 860 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 861 return 0; 862 } 863 EXPORT_SYMBOL(ib_query_port); 864 865 /** 866 * ib_query_gid - Get GID table entry 867 * @device:Device to query 868 * @port_num:Port number to query 869 * @index:GID table index to query 870 * @gid:Returned GID 871 * @attr: Returned GID attributes related to this GID index (only in RoCE). 872 * NULL means ignore. 873 * 874 * ib_query_gid() fetches the specified GID table entry. 875 */ 876 int ib_query_gid(struct ib_device *device, 877 u8 port_num, int index, union ib_gid *gid, 878 struct ib_gid_attr *attr) 879 { 880 if (rdma_cap_roce_gid_table(device, port_num)) 881 return ib_get_cached_gid(device, port_num, index, gid, attr); 882 883 if (attr) 884 return -EINVAL; 885 886 return device->query_gid(device, port_num, index, gid); 887 } 888 EXPORT_SYMBOL(ib_query_gid); 889 890 /** 891 * ib_enum_roce_netdev - enumerate all RoCE ports 892 * @ib_dev : IB device we want to query 893 * @filter: Should we call the callback? 894 * @filter_cookie: Cookie passed to filter 895 * @cb: Callback to call for each found RoCE ports 896 * @cookie: Cookie passed back to the callback 897 * 898 * Enumerates all of the physical RoCE ports of ib_dev 899 * which are related to netdevice and calls callback() on each 900 * device for which filter() function returns non zero. 901 */ 902 void ib_enum_roce_netdev(struct ib_device *ib_dev, 903 roce_netdev_filter filter, 904 void *filter_cookie, 905 roce_netdev_callback cb, 906 void *cookie) 907 { 908 u8 port; 909 910 for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev); 911 port++) 912 if (rdma_protocol_roce(ib_dev, port)) { 913 struct net_device *idev = NULL; 914 915 if (ib_dev->get_netdev) 916 idev = ib_dev->get_netdev(ib_dev, port); 917 918 if (idev && 919 idev->reg_state >= NETREG_UNREGISTERED) { 920 dev_put(idev); 921 idev = NULL; 922 } 923 924 if (filter(ib_dev, port, idev, filter_cookie)) 925 cb(ib_dev, port, idev, cookie); 926 927 if (idev) 928 dev_put(idev); 929 } 930 } 931 932 /** 933 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 934 * @filter: Should we call the callback? 935 * @filter_cookie: Cookie passed to filter 936 * @cb: Callback to call for each found RoCE ports 937 * @cookie: Cookie passed back to the callback 938 * 939 * Enumerates all RoCE devices' physical ports which are related 940 * to netdevices and calls callback() on each device for which 941 * filter() function returns non zero. 942 */ 943 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 944 void *filter_cookie, 945 roce_netdev_callback cb, 946 void *cookie) 947 { 948 struct ib_device *dev; 949 950 down_read(&lists_rwsem); 951 list_for_each_entry(dev, &device_list, core_list) 952 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 953 up_read(&lists_rwsem); 954 } 955 956 /** 957 * ib_enum_all_devs - enumerate all ib_devices 958 * @cb: Callback to call for each found ib_device 959 * 960 * Enumerates all ib_devices and calls callback() on each device. 961 */ 962 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 963 struct netlink_callback *cb) 964 { 965 struct ib_device *dev; 966 unsigned int idx = 0; 967 int ret = 0; 968 969 down_read(&lists_rwsem); 970 list_for_each_entry(dev, &device_list, core_list) { 971 ret = nldev_cb(dev, skb, cb, idx); 972 if (ret) 973 break; 974 idx++; 975 } 976 977 up_read(&lists_rwsem); 978 return ret; 979 } 980 981 /** 982 * ib_query_pkey - Get P_Key table entry 983 * @device:Device to query 984 * @port_num:Port number to query 985 * @index:P_Key table index to query 986 * @pkey:Returned P_Key 987 * 988 * ib_query_pkey() fetches the specified P_Key table entry. 989 */ 990 int ib_query_pkey(struct ib_device *device, 991 u8 port_num, u16 index, u16 *pkey) 992 { 993 return device->query_pkey(device, port_num, index, pkey); 994 } 995 EXPORT_SYMBOL(ib_query_pkey); 996 997 /** 998 * ib_modify_device - Change IB device attributes 999 * @device:Device to modify 1000 * @device_modify_mask:Mask of attributes to change 1001 * @device_modify:New attribute values 1002 * 1003 * ib_modify_device() changes a device's attributes as specified by 1004 * the @device_modify_mask and @device_modify structure. 1005 */ 1006 int ib_modify_device(struct ib_device *device, 1007 int device_modify_mask, 1008 struct ib_device_modify *device_modify) 1009 { 1010 if (!device->modify_device) 1011 return -ENOSYS; 1012 1013 return device->modify_device(device, device_modify_mask, 1014 device_modify); 1015 } 1016 EXPORT_SYMBOL(ib_modify_device); 1017 1018 /** 1019 * ib_modify_port - Modifies the attributes for the specified port. 1020 * @device: The device to modify. 1021 * @port_num: The number of the port to modify. 1022 * @port_modify_mask: Mask used to specify which attributes of the port 1023 * to change. 1024 * @port_modify: New attribute values for the port. 1025 * 1026 * ib_modify_port() changes a port's attributes as specified by the 1027 * @port_modify_mask and @port_modify structure. 1028 */ 1029 int ib_modify_port(struct ib_device *device, 1030 u8 port_num, int port_modify_mask, 1031 struct ib_port_modify *port_modify) 1032 { 1033 int rc; 1034 1035 if (!rdma_is_port_valid(device, port_num)) 1036 return -EINVAL; 1037 1038 if (device->modify_port) 1039 rc = device->modify_port(device, port_num, port_modify_mask, 1040 port_modify); 1041 else 1042 rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS; 1043 return rc; 1044 } 1045 EXPORT_SYMBOL(ib_modify_port); 1046 1047 /** 1048 * ib_find_gid - Returns the port number and GID table index where 1049 * a specified GID value occurs. Its searches only for IB link layer. 1050 * @device: The device to query. 1051 * @gid: The GID value to search for. 1052 * @ndev: The ndev related to the GID to search for. 1053 * @port_num: The port number of the device where the GID value was found. 1054 * @index: The index into the GID table where the GID was found. This 1055 * parameter may be NULL. 1056 */ 1057 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1058 struct net_device *ndev, u8 *port_num, u16 *index) 1059 { 1060 union ib_gid tmp_gid; 1061 int ret, port, i; 1062 1063 for (port = rdma_start_port(device); port <= rdma_end_port(device); ++port) { 1064 if (rdma_cap_roce_gid_table(device, port)) 1065 continue; 1066 1067 for (i = 0; i < device->port_immutable[port].gid_tbl_len; ++i) { 1068 ret = ib_query_gid(device, port, i, &tmp_gid, NULL); 1069 if (ret) 1070 return ret; 1071 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 1072 *port_num = port; 1073 if (index) 1074 *index = i; 1075 return 0; 1076 } 1077 } 1078 } 1079 1080 return -ENOENT; 1081 } 1082 EXPORT_SYMBOL(ib_find_gid); 1083 1084 /** 1085 * ib_find_pkey - Returns the PKey table index where a specified 1086 * PKey value occurs. 1087 * @device: The device to query. 1088 * @port_num: The port number of the device to search for the PKey. 1089 * @pkey: The PKey value to search for. 1090 * @index: The index into the PKey table where the PKey was found. 1091 */ 1092 int ib_find_pkey(struct ib_device *device, 1093 u8 port_num, u16 pkey, u16 *index) 1094 { 1095 int ret, i; 1096 u16 tmp_pkey; 1097 int partial_ix = -1; 1098 1099 for (i = 0; i < device->port_immutable[port_num].pkey_tbl_len; ++i) { 1100 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 1101 if (ret) 1102 return ret; 1103 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 1104 /* if there is full-member pkey take it.*/ 1105 if (tmp_pkey & 0x8000) { 1106 *index = i; 1107 return 0; 1108 } 1109 if (partial_ix < 0) 1110 partial_ix = i; 1111 } 1112 } 1113 1114 /*no full-member, if exists take the limited*/ 1115 if (partial_ix >= 0) { 1116 *index = partial_ix; 1117 return 0; 1118 } 1119 return -ENOENT; 1120 } 1121 EXPORT_SYMBOL(ib_find_pkey); 1122 1123 /** 1124 * ib_get_net_dev_by_params() - Return the appropriate net_dev 1125 * for a received CM request 1126 * @dev: An RDMA device on which the request has been received. 1127 * @port: Port number on the RDMA device. 1128 * @pkey: The Pkey the request came on. 1129 * @gid: A GID that the net_dev uses to communicate. 1130 * @addr: Contains the IP address that the request specified as its 1131 * destination. 1132 */ 1133 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 1134 u8 port, 1135 u16 pkey, 1136 const union ib_gid *gid, 1137 const struct sockaddr *addr) 1138 { 1139 struct net_device *net_dev = NULL; 1140 struct ib_client_data *context; 1141 1142 if (!rdma_protocol_ib(dev, port)) 1143 return NULL; 1144 1145 down_read(&lists_rwsem); 1146 1147 list_for_each_entry(context, &dev->client_data_list, list) { 1148 struct ib_client *client = context->client; 1149 1150 if (context->going_down) 1151 continue; 1152 1153 if (client->get_net_dev_by_params) { 1154 net_dev = client->get_net_dev_by_params(dev, port, pkey, 1155 gid, addr, 1156 context->data); 1157 if (net_dev) 1158 break; 1159 } 1160 } 1161 1162 up_read(&lists_rwsem); 1163 1164 return net_dev; 1165 } 1166 EXPORT_SYMBOL(ib_get_net_dev_by_params); 1167 1168 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 1169 [RDMA_NL_LS_OP_RESOLVE] = { 1170 .doit = ib_nl_handle_resolve_resp, 1171 .flags = RDMA_NL_ADMIN_PERM, 1172 }, 1173 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 1174 .doit = ib_nl_handle_set_timeout, 1175 .flags = RDMA_NL_ADMIN_PERM, 1176 }, 1177 [RDMA_NL_LS_OP_IP_RESOLVE] = { 1178 .doit = ib_nl_handle_ip_res_resp, 1179 .flags = RDMA_NL_ADMIN_PERM, 1180 }, 1181 }; 1182 1183 static int __init ib_core_init(void) 1184 { 1185 int ret; 1186 1187 ib_wq = alloc_workqueue("infiniband", 0, 0); 1188 if (!ib_wq) 1189 return -ENOMEM; 1190 1191 ib_comp_wq = alloc_workqueue("ib-comp-wq", 1192 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 1193 if (!ib_comp_wq) { 1194 ret = -ENOMEM; 1195 goto err; 1196 } 1197 1198 ret = class_register(&ib_class); 1199 if (ret) { 1200 pr_warn("Couldn't create InfiniBand device class\n"); 1201 goto err_comp; 1202 } 1203 1204 ret = rdma_nl_init(); 1205 if (ret) { 1206 pr_warn("Couldn't init IB netlink interface: err %d\n", ret); 1207 goto err_sysfs; 1208 } 1209 1210 ret = addr_init(); 1211 if (ret) { 1212 pr_warn("Could't init IB address resolution\n"); 1213 goto err_ibnl; 1214 } 1215 1216 ret = ib_mad_init(); 1217 if (ret) { 1218 pr_warn("Couldn't init IB MAD\n"); 1219 goto err_addr; 1220 } 1221 1222 ret = ib_sa_init(); 1223 if (ret) { 1224 pr_warn("Couldn't init SA\n"); 1225 goto err_mad; 1226 } 1227 1228 ret = register_lsm_notifier(&ibdev_lsm_nb); 1229 if (ret) { 1230 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 1231 goto err_sa; 1232 } 1233 1234 nldev_init(); 1235 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 1236 ib_cache_setup(); 1237 1238 return 0; 1239 1240 err_sa: 1241 ib_sa_cleanup(); 1242 err_mad: 1243 ib_mad_cleanup(); 1244 err_addr: 1245 addr_cleanup(); 1246 err_ibnl: 1247 rdma_nl_exit(); 1248 err_sysfs: 1249 class_unregister(&ib_class); 1250 err_comp: 1251 destroy_workqueue(ib_comp_wq); 1252 err: 1253 destroy_workqueue(ib_wq); 1254 return ret; 1255 } 1256 1257 static void __exit ib_core_cleanup(void) 1258 { 1259 ib_cache_cleanup(); 1260 nldev_exit(); 1261 rdma_nl_unregister(RDMA_NL_LS); 1262 unregister_lsm_notifier(&ibdev_lsm_nb); 1263 ib_sa_cleanup(); 1264 ib_mad_cleanup(); 1265 addr_cleanup(); 1266 rdma_nl_exit(); 1267 class_unregister(&ib_class); 1268 destroy_workqueue(ib_comp_wq); 1269 /* Make sure that any pending umem accounting work is done. */ 1270 destroy_workqueue(ib_wq); 1271 } 1272 1273 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 1274 1275 subsys_initcall(ib_core_init); 1276 module_exit(ib_core_cleanup); 1277