xref: /openbmc/linux/drivers/infiniband/core/device.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(reg_user_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 	unsigned int i;
574 
575 	if (WARN_ON(size < sizeof(struct ib_device)))
576 		return NULL;
577 
578 	device = kzalloc(size, GFP_KERNEL);
579 	if (!device)
580 		return NULL;
581 
582 	if (rdma_restrack_init(device)) {
583 		kfree(device);
584 		return NULL;
585 	}
586 
587 	device->groups[0] = &ib_dev_attr_group;
588 	rdma_init_coredev(&device->coredev, device, &init_net);
589 
590 	INIT_LIST_HEAD(&device->event_handler_list);
591 	spin_lock_init(&device->qp_open_list_lock);
592 	init_rwsem(&device->event_handler_rwsem);
593 	mutex_init(&device->unregistration_lock);
594 	/*
595 	 * client_data needs to be alloc because we don't want our mark to be
596 	 * destroyed if the user stores NULL in the client data.
597 	 */
598 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
599 	init_rwsem(&device->client_data_rwsem);
600 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
601 	mutex_init(&device->compat_devs_mutex);
602 	init_completion(&device->unreg_completion);
603 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
604 
605 	spin_lock_init(&device->cq_pools_lock);
606 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
607 		INIT_LIST_HEAD(&device->cq_pools[i]);
608 
609 	device->uverbs_cmd_mask =
610 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
611 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
612 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
613 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
614 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
615 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
616 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
617 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
620 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
621 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
622 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
623 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
624 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
628 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
629 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
630 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
631 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
632 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
633 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
634 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
635 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
636 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
637 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
638 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
639 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
640 	return device;
641 }
642 EXPORT_SYMBOL(_ib_alloc_device);
643 
644 /**
645  * ib_dealloc_device - free an IB device struct
646  * @device:structure to free
647  *
648  * Free a structure allocated with ib_alloc_device().
649  */
650 void ib_dealloc_device(struct ib_device *device)
651 {
652 	if (device->ops.dealloc_driver)
653 		device->ops.dealloc_driver(device);
654 
655 	/*
656 	 * ib_unregister_driver() requires all devices to remain in the xarray
657 	 * while their ops are callable. The last op we call is dealloc_driver
658 	 * above.  This is needed to create a fence on op callbacks prior to
659 	 * allowing the driver module to unload.
660 	 */
661 	down_write(&devices_rwsem);
662 	if (xa_load(&devices, device->index) == device)
663 		xa_erase(&devices, device->index);
664 	up_write(&devices_rwsem);
665 
666 	/* Expedite releasing netdev references */
667 	free_netdevs(device);
668 
669 	WARN_ON(!xa_empty(&device->compat_devs));
670 	WARN_ON(!xa_empty(&device->client_data));
671 	WARN_ON(refcount_read(&device->refcount));
672 	rdma_restrack_clean(device);
673 	/* Balances with device_initialize */
674 	put_device(&device->dev);
675 }
676 EXPORT_SYMBOL(ib_dealloc_device);
677 
678 /*
679  * add_client_context() and remove_client_context() must be safe against
680  * parallel calls on the same device - registration/unregistration of both the
681  * device and client can be occurring in parallel.
682  *
683  * The routines need to be a fence, any caller must not return until the add
684  * or remove is fully completed.
685  */
686 static int add_client_context(struct ib_device *device,
687 			      struct ib_client *client)
688 {
689 	int ret = 0;
690 
691 	if (!device->kverbs_provider && !client->no_kverbs_req)
692 		return 0;
693 
694 	down_write(&device->client_data_rwsem);
695 	/*
696 	 * So long as the client is registered hold both the client and device
697 	 * unregistration locks.
698 	 */
699 	if (!refcount_inc_not_zero(&client->uses))
700 		goto out_unlock;
701 	refcount_inc(&device->refcount);
702 
703 	/*
704 	 * Another caller to add_client_context got here first and has already
705 	 * completely initialized context.
706 	 */
707 	if (xa_get_mark(&device->client_data, client->client_id,
708 		    CLIENT_DATA_REGISTERED))
709 		goto out;
710 
711 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
712 			      GFP_KERNEL));
713 	if (ret)
714 		goto out;
715 	downgrade_write(&device->client_data_rwsem);
716 	if (client->add) {
717 		if (client->add(device)) {
718 			/*
719 			 * If a client fails to add then the error code is
720 			 * ignored, but we won't call any more ops on this
721 			 * client.
722 			 */
723 			xa_erase(&device->client_data, client->client_id);
724 			up_read(&device->client_data_rwsem);
725 			ib_device_put(device);
726 			ib_client_put(client);
727 			return 0;
728 		}
729 	}
730 
731 	/* Readers shall not see a client until add has been completed */
732 	xa_set_mark(&device->client_data, client->client_id,
733 		    CLIENT_DATA_REGISTERED);
734 	up_read(&device->client_data_rwsem);
735 	return 0;
736 
737 out:
738 	ib_device_put(device);
739 	ib_client_put(client);
740 out_unlock:
741 	up_write(&device->client_data_rwsem);
742 	return ret;
743 }
744 
745 static void remove_client_context(struct ib_device *device,
746 				  unsigned int client_id)
747 {
748 	struct ib_client *client;
749 	void *client_data;
750 
751 	down_write(&device->client_data_rwsem);
752 	if (!xa_get_mark(&device->client_data, client_id,
753 			 CLIENT_DATA_REGISTERED)) {
754 		up_write(&device->client_data_rwsem);
755 		return;
756 	}
757 	client_data = xa_load(&device->client_data, client_id);
758 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
759 	client = xa_load(&clients, client_id);
760 	up_write(&device->client_data_rwsem);
761 
762 	/*
763 	 * Notice we cannot be holding any exclusive locks when calling the
764 	 * remove callback as the remove callback can recurse back into any
765 	 * public functions in this module and thus try for any locks those
766 	 * functions take.
767 	 *
768 	 * For this reason clients and drivers should not call the
769 	 * unregistration functions will holdling any locks.
770 	 */
771 	if (client->remove)
772 		client->remove(device, client_data);
773 
774 	xa_erase(&device->client_data, client_id);
775 	ib_device_put(device);
776 	ib_client_put(client);
777 }
778 
779 static int alloc_port_data(struct ib_device *device)
780 {
781 	struct ib_port_data_rcu *pdata_rcu;
782 	unsigned int port;
783 
784 	if (device->port_data)
785 		return 0;
786 
787 	/* This can only be called once the physical port range is defined */
788 	if (WARN_ON(!device->phys_port_cnt))
789 		return -EINVAL;
790 
791 	/*
792 	 * device->port_data is indexed directly by the port number to make
793 	 * access to this data as efficient as possible.
794 	 *
795 	 * Therefore port_data is declared as a 1 based array with potential
796 	 * empty slots at the beginning.
797 	 */
798 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
799 					rdma_end_port(device) + 1),
800 			    GFP_KERNEL);
801 	if (!pdata_rcu)
802 		return -ENOMEM;
803 	/*
804 	 * The rcu_head is put in front of the port data array and the stored
805 	 * pointer is adjusted since we never need to see that member until
806 	 * kfree_rcu.
807 	 */
808 	device->port_data = pdata_rcu->pdata;
809 
810 	rdma_for_each_port (device, port) {
811 		struct ib_port_data *pdata = &device->port_data[port];
812 
813 		pdata->ib_dev = device;
814 		spin_lock_init(&pdata->pkey_list_lock);
815 		INIT_LIST_HEAD(&pdata->pkey_list);
816 		spin_lock_init(&pdata->netdev_lock);
817 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
818 	}
819 	return 0;
820 }
821 
822 static int verify_immutable(const struct ib_device *dev, u8 port)
823 {
824 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
825 			    rdma_max_mad_size(dev, port) != 0);
826 }
827 
828 static int setup_port_data(struct ib_device *device)
829 {
830 	unsigned int port;
831 	int ret;
832 
833 	ret = alloc_port_data(device);
834 	if (ret)
835 		return ret;
836 
837 	rdma_for_each_port (device, port) {
838 		struct ib_port_data *pdata = &device->port_data[port];
839 
840 		ret = device->ops.get_port_immutable(device, port,
841 						     &pdata->immutable);
842 		if (ret)
843 			return ret;
844 
845 		if (verify_immutable(device, port))
846 			return -EINVAL;
847 	}
848 	return 0;
849 }
850 
851 /**
852  * ib_port_immutable_read() - Read rdma port's immutable data
853  * @dev: IB device
854  * @port: port number whose immutable data to read. It starts with index 1 and
855  *        valid upto including rdma_end_port().
856  */
857 const struct ib_port_immutable*
858 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
859 {
860 	WARN_ON(!rdma_is_port_valid(dev, port));
861 	return &dev->port_data[port].immutable;
862 }
863 EXPORT_SYMBOL(ib_port_immutable_read);
864 
865 void ib_get_device_fw_str(struct ib_device *dev, char *str)
866 {
867 	if (dev->ops.get_dev_fw_str)
868 		dev->ops.get_dev_fw_str(dev, str);
869 	else
870 		str[0] = '\0';
871 }
872 EXPORT_SYMBOL(ib_get_device_fw_str);
873 
874 static void ib_policy_change_task(struct work_struct *work)
875 {
876 	struct ib_device *dev;
877 	unsigned long index;
878 
879 	down_read(&devices_rwsem);
880 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
881 		unsigned int i;
882 
883 		rdma_for_each_port (dev, i) {
884 			u64 sp;
885 			int ret = ib_get_cached_subnet_prefix(dev,
886 							      i,
887 							      &sp);
888 
889 			WARN_ONCE(ret,
890 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
891 				  ret);
892 			if (!ret)
893 				ib_security_cache_change(dev, i, sp);
894 		}
895 	}
896 	up_read(&devices_rwsem);
897 }
898 
899 static int ib_security_change(struct notifier_block *nb, unsigned long event,
900 			      void *lsm_data)
901 {
902 	if (event != LSM_POLICY_CHANGE)
903 		return NOTIFY_DONE;
904 
905 	schedule_work(&ib_policy_change_work);
906 	ib_mad_agent_security_change();
907 
908 	return NOTIFY_OK;
909 }
910 
911 static void compatdev_release(struct device *dev)
912 {
913 	struct ib_core_device *cdev =
914 		container_of(dev, struct ib_core_device, dev);
915 
916 	kfree(cdev);
917 }
918 
919 static int add_one_compat_dev(struct ib_device *device,
920 			      struct rdma_dev_net *rnet)
921 {
922 	struct ib_core_device *cdev;
923 	int ret;
924 
925 	lockdep_assert_held(&rdma_nets_rwsem);
926 	if (!ib_devices_shared_netns)
927 		return 0;
928 
929 	/*
930 	 * Create and add compat device in all namespaces other than where it
931 	 * is currently bound to.
932 	 */
933 	if (net_eq(read_pnet(&rnet->net),
934 		   read_pnet(&device->coredev.rdma_net)))
935 		return 0;
936 
937 	/*
938 	 * The first of init_net() or ib_register_device() to take the
939 	 * compat_devs_mutex wins and gets to add the device. Others will wait
940 	 * for completion here.
941 	 */
942 	mutex_lock(&device->compat_devs_mutex);
943 	cdev = xa_load(&device->compat_devs, rnet->id);
944 	if (cdev) {
945 		ret = 0;
946 		goto done;
947 	}
948 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
949 	if (ret)
950 		goto done;
951 
952 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
953 	if (!cdev) {
954 		ret = -ENOMEM;
955 		goto cdev_err;
956 	}
957 
958 	cdev->dev.parent = device->dev.parent;
959 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
960 	cdev->dev.release = compatdev_release;
961 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
962 	if (ret)
963 		goto add_err;
964 
965 	ret = device_add(&cdev->dev);
966 	if (ret)
967 		goto add_err;
968 	ret = ib_setup_port_attrs(cdev);
969 	if (ret)
970 		goto port_err;
971 
972 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
973 			      cdev, GFP_KERNEL));
974 	if (ret)
975 		goto insert_err;
976 
977 	mutex_unlock(&device->compat_devs_mutex);
978 	return 0;
979 
980 insert_err:
981 	ib_free_port_attrs(cdev);
982 port_err:
983 	device_del(&cdev->dev);
984 add_err:
985 	put_device(&cdev->dev);
986 cdev_err:
987 	xa_release(&device->compat_devs, rnet->id);
988 done:
989 	mutex_unlock(&device->compat_devs_mutex);
990 	return ret;
991 }
992 
993 static void remove_one_compat_dev(struct ib_device *device, u32 id)
994 {
995 	struct ib_core_device *cdev;
996 
997 	mutex_lock(&device->compat_devs_mutex);
998 	cdev = xa_erase(&device->compat_devs, id);
999 	mutex_unlock(&device->compat_devs_mutex);
1000 	if (cdev) {
1001 		ib_free_port_attrs(cdev);
1002 		device_del(&cdev->dev);
1003 		put_device(&cdev->dev);
1004 	}
1005 }
1006 
1007 static void remove_compat_devs(struct ib_device *device)
1008 {
1009 	struct ib_core_device *cdev;
1010 	unsigned long index;
1011 
1012 	xa_for_each (&device->compat_devs, index, cdev)
1013 		remove_one_compat_dev(device, index);
1014 }
1015 
1016 static int add_compat_devs(struct ib_device *device)
1017 {
1018 	struct rdma_dev_net *rnet;
1019 	unsigned long index;
1020 	int ret = 0;
1021 
1022 	lockdep_assert_held(&devices_rwsem);
1023 
1024 	down_read(&rdma_nets_rwsem);
1025 	xa_for_each (&rdma_nets, index, rnet) {
1026 		ret = add_one_compat_dev(device, rnet);
1027 		if (ret)
1028 			break;
1029 	}
1030 	up_read(&rdma_nets_rwsem);
1031 	return ret;
1032 }
1033 
1034 static void remove_all_compat_devs(void)
1035 {
1036 	struct ib_compat_device *cdev;
1037 	struct ib_device *dev;
1038 	unsigned long index;
1039 
1040 	down_read(&devices_rwsem);
1041 	xa_for_each (&devices, index, dev) {
1042 		unsigned long c_index = 0;
1043 
1044 		/* Hold nets_rwsem so that any other thread modifying this
1045 		 * system param can sync with this thread.
1046 		 */
1047 		down_read(&rdma_nets_rwsem);
1048 		xa_for_each (&dev->compat_devs, c_index, cdev)
1049 			remove_one_compat_dev(dev, c_index);
1050 		up_read(&rdma_nets_rwsem);
1051 	}
1052 	up_read(&devices_rwsem);
1053 }
1054 
1055 static int add_all_compat_devs(void)
1056 {
1057 	struct rdma_dev_net *rnet;
1058 	struct ib_device *dev;
1059 	unsigned long index;
1060 	int ret = 0;
1061 
1062 	down_read(&devices_rwsem);
1063 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1064 		unsigned long net_index = 0;
1065 
1066 		/* Hold nets_rwsem so that any other thread modifying this
1067 		 * system param can sync with this thread.
1068 		 */
1069 		down_read(&rdma_nets_rwsem);
1070 		xa_for_each (&rdma_nets, net_index, rnet) {
1071 			ret = add_one_compat_dev(dev, rnet);
1072 			if (ret)
1073 				break;
1074 		}
1075 		up_read(&rdma_nets_rwsem);
1076 	}
1077 	up_read(&devices_rwsem);
1078 	if (ret)
1079 		remove_all_compat_devs();
1080 	return ret;
1081 }
1082 
1083 int rdma_compatdev_set(u8 enable)
1084 {
1085 	struct rdma_dev_net *rnet;
1086 	unsigned long index;
1087 	int ret = 0;
1088 
1089 	down_write(&rdma_nets_rwsem);
1090 	if (ib_devices_shared_netns == enable) {
1091 		up_write(&rdma_nets_rwsem);
1092 		return 0;
1093 	}
1094 
1095 	/* enable/disable of compat devices is not supported
1096 	 * when more than default init_net exists.
1097 	 */
1098 	xa_for_each (&rdma_nets, index, rnet) {
1099 		ret++;
1100 		break;
1101 	}
1102 	if (!ret)
1103 		ib_devices_shared_netns = enable;
1104 	up_write(&rdma_nets_rwsem);
1105 	if (ret)
1106 		return -EBUSY;
1107 
1108 	if (enable)
1109 		ret = add_all_compat_devs();
1110 	else
1111 		remove_all_compat_devs();
1112 	return ret;
1113 }
1114 
1115 static void rdma_dev_exit_net(struct net *net)
1116 {
1117 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1118 	struct ib_device *dev;
1119 	unsigned long index;
1120 	int ret;
1121 
1122 	down_write(&rdma_nets_rwsem);
1123 	/*
1124 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1125 	 */
1126 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1127 	WARN_ON(ret);
1128 	up_write(&rdma_nets_rwsem);
1129 
1130 	down_read(&devices_rwsem);
1131 	xa_for_each (&devices, index, dev) {
1132 		get_device(&dev->dev);
1133 		/*
1134 		 * Release the devices_rwsem so that pontentially blocking
1135 		 * device_del, doesn't hold the devices_rwsem for too long.
1136 		 */
1137 		up_read(&devices_rwsem);
1138 
1139 		remove_one_compat_dev(dev, rnet->id);
1140 
1141 		/*
1142 		 * If the real device is in the NS then move it back to init.
1143 		 */
1144 		rdma_dev_change_netns(dev, net, &init_net);
1145 
1146 		put_device(&dev->dev);
1147 		down_read(&devices_rwsem);
1148 	}
1149 	up_read(&devices_rwsem);
1150 
1151 	rdma_nl_net_exit(rnet);
1152 	xa_erase(&rdma_nets, rnet->id);
1153 }
1154 
1155 static __net_init int rdma_dev_init_net(struct net *net)
1156 {
1157 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1158 	unsigned long index;
1159 	struct ib_device *dev;
1160 	int ret;
1161 
1162 	write_pnet(&rnet->net, net);
1163 
1164 	ret = rdma_nl_net_init(rnet);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* No need to create any compat devices in default init_net. */
1169 	if (net_eq(net, &init_net))
1170 		return 0;
1171 
1172 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1173 	if (ret) {
1174 		rdma_nl_net_exit(rnet);
1175 		return ret;
1176 	}
1177 
1178 	down_read(&devices_rwsem);
1179 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1180 		/* Hold nets_rwsem so that netlink command cannot change
1181 		 * system configuration for device sharing mode.
1182 		 */
1183 		down_read(&rdma_nets_rwsem);
1184 		ret = add_one_compat_dev(dev, rnet);
1185 		up_read(&rdma_nets_rwsem);
1186 		if (ret)
1187 			break;
1188 	}
1189 	up_read(&devices_rwsem);
1190 
1191 	if (ret)
1192 		rdma_dev_exit_net(net);
1193 
1194 	return ret;
1195 }
1196 
1197 /*
1198  * Assign the unique string device name and the unique device index. This is
1199  * undone by ib_dealloc_device.
1200  */
1201 static int assign_name(struct ib_device *device, const char *name)
1202 {
1203 	static u32 last_id;
1204 	int ret;
1205 
1206 	down_write(&devices_rwsem);
1207 	/* Assign a unique name to the device */
1208 	if (strchr(name, '%'))
1209 		ret = alloc_name(device, name);
1210 	else
1211 		ret = dev_set_name(&device->dev, name);
1212 	if (ret)
1213 		goto out;
1214 
1215 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1216 		ret = -ENFILE;
1217 		goto out;
1218 	}
1219 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1220 
1221 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1222 			&last_id, GFP_KERNEL);
1223 	if (ret > 0)
1224 		ret = 0;
1225 
1226 out:
1227 	up_write(&devices_rwsem);
1228 	return ret;
1229 }
1230 
1231 /*
1232  * setup_device() allocates memory and sets up data that requires calling the
1233  * device ops, this is the only reason these actions are not done during
1234  * ib_alloc_device. It is undone by ib_dealloc_device().
1235  */
1236 static int setup_device(struct ib_device *device)
1237 {
1238 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1239 	int ret;
1240 
1241 	ib_device_check_mandatory(device);
1242 
1243 	ret = setup_port_data(device);
1244 	if (ret) {
1245 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1246 		return ret;
1247 	}
1248 
1249 	memset(&device->attrs, 0, sizeof(device->attrs));
1250 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1251 	if (ret) {
1252 		dev_warn(&device->dev,
1253 			 "Couldn't query the device attributes\n");
1254 		return ret;
1255 	}
1256 
1257 	return 0;
1258 }
1259 
1260 static void disable_device(struct ib_device *device)
1261 {
1262 	u32 cid;
1263 
1264 	WARN_ON(!refcount_read(&device->refcount));
1265 
1266 	down_write(&devices_rwsem);
1267 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1268 	up_write(&devices_rwsem);
1269 
1270 	/*
1271 	 * Remove clients in LIFO order, see assign_client_id. This could be
1272 	 * more efficient if xarray learns to reverse iterate. Since no new
1273 	 * clients can be added to this ib_device past this point we only need
1274 	 * the maximum possible client_id value here.
1275 	 */
1276 	down_read(&clients_rwsem);
1277 	cid = highest_client_id;
1278 	up_read(&clients_rwsem);
1279 	while (cid) {
1280 		cid--;
1281 		remove_client_context(device, cid);
1282 	}
1283 
1284 	ib_cq_pool_cleanup(device);
1285 
1286 	/* Pairs with refcount_set in enable_device */
1287 	ib_device_put(device);
1288 	wait_for_completion(&device->unreg_completion);
1289 
1290 	/*
1291 	 * compat devices must be removed after device refcount drops to zero.
1292 	 * Otherwise init_net() may add more compatdevs after removing compat
1293 	 * devices and before device is disabled.
1294 	 */
1295 	remove_compat_devs(device);
1296 }
1297 
1298 /*
1299  * An enabled device is visible to all clients and to all the public facing
1300  * APIs that return a device pointer. This always returns with a new get, even
1301  * if it fails.
1302  */
1303 static int enable_device_and_get(struct ib_device *device)
1304 {
1305 	struct ib_client *client;
1306 	unsigned long index;
1307 	int ret = 0;
1308 
1309 	/*
1310 	 * One ref belongs to the xa and the other belongs to this
1311 	 * thread. This is needed to guard against parallel unregistration.
1312 	 */
1313 	refcount_set(&device->refcount, 2);
1314 	down_write(&devices_rwsem);
1315 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1316 
1317 	/*
1318 	 * By using downgrade_write() we ensure that no other thread can clear
1319 	 * DEVICE_REGISTERED while we are completing the client setup.
1320 	 */
1321 	downgrade_write(&devices_rwsem);
1322 
1323 	if (device->ops.enable_driver) {
1324 		ret = device->ops.enable_driver(device);
1325 		if (ret)
1326 			goto out;
1327 	}
1328 
1329 	down_read(&clients_rwsem);
1330 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1331 		ret = add_client_context(device, client);
1332 		if (ret)
1333 			break;
1334 	}
1335 	up_read(&clients_rwsem);
1336 	if (!ret)
1337 		ret = add_compat_devs(device);
1338 out:
1339 	up_read(&devices_rwsem);
1340 	return ret;
1341 }
1342 
1343 static void prevent_dealloc_device(struct ib_device *ib_dev)
1344 {
1345 }
1346 
1347 /**
1348  * ib_register_device - Register an IB device with IB core
1349  * @device: Device to register
1350  * @name: unique string device name. This may include a '%' which will
1351  * 	  cause a unique index to be added to the passed device name.
1352  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1353  *	        device will be used. In this case the caller should fully
1354  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1355  *
1356  * Low-level drivers use ib_register_device() to register their
1357  * devices with the IB core.  All registered clients will receive a
1358  * callback for each device that is added. @device must be allocated
1359  * with ib_alloc_device().
1360  *
1361  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1362  * asynchronously then the device pointer may become freed as soon as this
1363  * function returns.
1364  */
1365 int ib_register_device(struct ib_device *device, const char *name,
1366 		       struct device *dma_device)
1367 {
1368 	int ret;
1369 
1370 	ret = assign_name(device, name);
1371 	if (ret)
1372 		return ret;
1373 
1374 	/*
1375 	 * If the caller does not provide a DMA capable device then the IB core
1376 	 * will set up ib_sge and scatterlist structures that stash the kernel
1377 	 * virtual address into the address field.
1378 	 */
1379 	WARN_ON(dma_device && !dma_device->dma_parms);
1380 	device->dma_device = dma_device;
1381 
1382 	ret = setup_device(device);
1383 	if (ret)
1384 		return ret;
1385 
1386 	ret = ib_cache_setup_one(device);
1387 	if (ret) {
1388 		dev_warn(&device->dev,
1389 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1390 		return ret;
1391 	}
1392 
1393 	ib_device_register_rdmacg(device);
1394 
1395 	rdma_counter_init(device);
1396 
1397 	/*
1398 	 * Ensure that ADD uevent is not fired because it
1399 	 * is too early amd device is not initialized yet.
1400 	 */
1401 	dev_set_uevent_suppress(&device->dev, true);
1402 	ret = device_add(&device->dev);
1403 	if (ret)
1404 		goto cg_cleanup;
1405 
1406 	ret = ib_device_register_sysfs(device);
1407 	if (ret) {
1408 		dev_warn(&device->dev,
1409 			 "Couldn't register device with driver model\n");
1410 		goto dev_cleanup;
1411 	}
1412 
1413 	ret = enable_device_and_get(device);
1414 	if (ret) {
1415 		void (*dealloc_fn)(struct ib_device *);
1416 
1417 		/*
1418 		 * If we hit this error flow then we don't want to
1419 		 * automatically dealloc the device since the caller is
1420 		 * expected to call ib_dealloc_device() after
1421 		 * ib_register_device() fails. This is tricky due to the
1422 		 * possibility for a parallel unregistration along with this
1423 		 * error flow. Since we have a refcount here we know any
1424 		 * parallel flow is stopped in disable_device and will see the
1425 		 * special dealloc_driver pointer, causing the responsibility to
1426 		 * ib_dealloc_device() to revert back to this thread.
1427 		 */
1428 		dealloc_fn = device->ops.dealloc_driver;
1429 		device->ops.dealloc_driver = prevent_dealloc_device;
1430 		ib_device_put(device);
1431 		__ib_unregister_device(device);
1432 		device->ops.dealloc_driver = dealloc_fn;
1433 		dev_set_uevent_suppress(&device->dev, false);
1434 		return ret;
1435 	}
1436 	dev_set_uevent_suppress(&device->dev, false);
1437 	/* Mark for userspace that device is ready */
1438 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1439 	ib_device_put(device);
1440 
1441 	return 0;
1442 
1443 dev_cleanup:
1444 	device_del(&device->dev);
1445 cg_cleanup:
1446 	dev_set_uevent_suppress(&device->dev, false);
1447 	ib_device_unregister_rdmacg(device);
1448 	ib_cache_cleanup_one(device);
1449 	return ret;
1450 }
1451 EXPORT_SYMBOL(ib_register_device);
1452 
1453 /* Callers must hold a get on the device. */
1454 static void __ib_unregister_device(struct ib_device *ib_dev)
1455 {
1456 	/*
1457 	 * We have a registration lock so that all the calls to unregister are
1458 	 * fully fenced, once any unregister returns the device is truely
1459 	 * unregistered even if multiple callers are unregistering it at the
1460 	 * same time. This also interacts with the registration flow and
1461 	 * provides sane semantics if register and unregister are racing.
1462 	 */
1463 	mutex_lock(&ib_dev->unregistration_lock);
1464 	if (!refcount_read(&ib_dev->refcount))
1465 		goto out;
1466 
1467 	disable_device(ib_dev);
1468 
1469 	/* Expedite removing unregistered pointers from the hash table */
1470 	free_netdevs(ib_dev);
1471 
1472 	ib_device_unregister_sysfs(ib_dev);
1473 	device_del(&ib_dev->dev);
1474 	ib_device_unregister_rdmacg(ib_dev);
1475 	ib_cache_cleanup_one(ib_dev);
1476 
1477 	/*
1478 	 * Drivers using the new flow may not call ib_dealloc_device except
1479 	 * in error unwind prior to registration success.
1480 	 */
1481 	if (ib_dev->ops.dealloc_driver &&
1482 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1483 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1484 		ib_dealloc_device(ib_dev);
1485 	}
1486 out:
1487 	mutex_unlock(&ib_dev->unregistration_lock);
1488 }
1489 
1490 /**
1491  * ib_unregister_device - Unregister an IB device
1492  * @ib_dev: The device to unregister
1493  *
1494  * Unregister an IB device.  All clients will receive a remove callback.
1495  *
1496  * Callers should call this routine only once, and protect against races with
1497  * registration. Typically it should only be called as part of a remove
1498  * callback in an implementation of driver core's struct device_driver and
1499  * related.
1500  *
1501  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1502  * this function.
1503  */
1504 void ib_unregister_device(struct ib_device *ib_dev)
1505 {
1506 	get_device(&ib_dev->dev);
1507 	__ib_unregister_device(ib_dev);
1508 	put_device(&ib_dev->dev);
1509 }
1510 EXPORT_SYMBOL(ib_unregister_device);
1511 
1512 /**
1513  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1514  * @ib_dev: The device to unregister
1515  *
1516  * This is the same as ib_unregister_device(), except it includes an internal
1517  * ib_device_put() that should match a 'get' obtained by the caller.
1518  *
1519  * It is safe to call this routine concurrently from multiple threads while
1520  * holding the 'get'. When the function returns the device is fully
1521  * unregistered.
1522  *
1523  * Drivers using this flow MUST use the driver_unregister callback to clean up
1524  * their resources associated with the device and dealloc it.
1525  */
1526 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1527 {
1528 	WARN_ON(!ib_dev->ops.dealloc_driver);
1529 	get_device(&ib_dev->dev);
1530 	ib_device_put(ib_dev);
1531 	__ib_unregister_device(ib_dev);
1532 	put_device(&ib_dev->dev);
1533 }
1534 EXPORT_SYMBOL(ib_unregister_device_and_put);
1535 
1536 /**
1537  * ib_unregister_driver - Unregister all IB devices for a driver
1538  * @driver_id: The driver to unregister
1539  *
1540  * This implements a fence for device unregistration. It only returns once all
1541  * devices associated with the driver_id have fully completed their
1542  * unregistration and returned from ib_unregister_device*().
1543  *
1544  * If device's are not yet unregistered it goes ahead and starts unregistering
1545  * them.
1546  *
1547  * This does not block creation of new devices with the given driver_id, that
1548  * is the responsibility of the caller.
1549  */
1550 void ib_unregister_driver(enum rdma_driver_id driver_id)
1551 {
1552 	struct ib_device *ib_dev;
1553 	unsigned long index;
1554 
1555 	down_read(&devices_rwsem);
1556 	xa_for_each (&devices, index, ib_dev) {
1557 		if (ib_dev->ops.driver_id != driver_id)
1558 			continue;
1559 
1560 		get_device(&ib_dev->dev);
1561 		up_read(&devices_rwsem);
1562 
1563 		WARN_ON(!ib_dev->ops.dealloc_driver);
1564 		__ib_unregister_device(ib_dev);
1565 
1566 		put_device(&ib_dev->dev);
1567 		down_read(&devices_rwsem);
1568 	}
1569 	up_read(&devices_rwsem);
1570 }
1571 EXPORT_SYMBOL(ib_unregister_driver);
1572 
1573 static void ib_unregister_work(struct work_struct *work)
1574 {
1575 	struct ib_device *ib_dev =
1576 		container_of(work, struct ib_device, unregistration_work);
1577 
1578 	__ib_unregister_device(ib_dev);
1579 	put_device(&ib_dev->dev);
1580 }
1581 
1582 /**
1583  * ib_unregister_device_queued - Unregister a device using a work queue
1584  * @ib_dev: The device to unregister
1585  *
1586  * This schedules an asynchronous unregistration using a WQ for the device. A
1587  * driver should use this to avoid holding locks while doing unregistration,
1588  * such as holding the RTNL lock.
1589  *
1590  * Drivers using this API must use ib_unregister_driver before module unload
1591  * to ensure that all scheduled unregistrations have completed.
1592  */
1593 void ib_unregister_device_queued(struct ib_device *ib_dev)
1594 {
1595 	WARN_ON(!refcount_read(&ib_dev->refcount));
1596 	WARN_ON(!ib_dev->ops.dealloc_driver);
1597 	get_device(&ib_dev->dev);
1598 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1599 		put_device(&ib_dev->dev);
1600 }
1601 EXPORT_SYMBOL(ib_unregister_device_queued);
1602 
1603 /*
1604  * The caller must pass in a device that has the kref held and the refcount
1605  * released. If the device is in cur_net and still registered then it is moved
1606  * into net.
1607  */
1608 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1609 				 struct net *net)
1610 {
1611 	int ret2 = -EINVAL;
1612 	int ret;
1613 
1614 	mutex_lock(&device->unregistration_lock);
1615 
1616 	/*
1617 	 * If a device not under ib_device_get() or if the unregistration_lock
1618 	 * is not held, the namespace can be changed, or it can be unregistered.
1619 	 * Check again under the lock.
1620 	 */
1621 	if (refcount_read(&device->refcount) == 0 ||
1622 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1623 		ret = -ENODEV;
1624 		goto out;
1625 	}
1626 
1627 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1628 	disable_device(device);
1629 
1630 	/*
1631 	 * At this point no one can be using the device, so it is safe to
1632 	 * change the namespace.
1633 	 */
1634 	write_pnet(&device->coredev.rdma_net, net);
1635 
1636 	down_read(&devices_rwsem);
1637 	/*
1638 	 * Currently rdma devices are system wide unique. So the device name
1639 	 * is guaranteed free in the new namespace. Publish the new namespace
1640 	 * at the sysfs level.
1641 	 */
1642 	ret = device_rename(&device->dev, dev_name(&device->dev));
1643 	up_read(&devices_rwsem);
1644 	if (ret) {
1645 		dev_warn(&device->dev,
1646 			 "%s: Couldn't rename device after namespace change\n",
1647 			 __func__);
1648 		/* Try and put things back and re-enable the device */
1649 		write_pnet(&device->coredev.rdma_net, cur_net);
1650 	}
1651 
1652 	ret2 = enable_device_and_get(device);
1653 	if (ret2) {
1654 		/*
1655 		 * This shouldn't really happen, but if it does, let the user
1656 		 * retry at later point. So don't disable the device.
1657 		 */
1658 		dev_warn(&device->dev,
1659 			 "%s: Couldn't re-enable device after namespace change\n",
1660 			 __func__);
1661 	}
1662 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1663 
1664 	ib_device_put(device);
1665 out:
1666 	mutex_unlock(&device->unregistration_lock);
1667 	if (ret)
1668 		return ret;
1669 	return ret2;
1670 }
1671 
1672 int ib_device_set_netns_put(struct sk_buff *skb,
1673 			    struct ib_device *dev, u32 ns_fd)
1674 {
1675 	struct net *net;
1676 	int ret;
1677 
1678 	net = get_net_ns_by_fd(ns_fd);
1679 	if (IS_ERR(net)) {
1680 		ret = PTR_ERR(net);
1681 		goto net_err;
1682 	}
1683 
1684 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1685 		ret = -EPERM;
1686 		goto ns_err;
1687 	}
1688 
1689 	/*
1690 	 * Currently supported only for those providers which support
1691 	 * disassociation and don't do port specific sysfs init. Once a
1692 	 * port_cleanup infrastructure is implemented, this limitation will be
1693 	 * removed.
1694 	 */
1695 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1696 	    ib_devices_shared_netns) {
1697 		ret = -EOPNOTSUPP;
1698 		goto ns_err;
1699 	}
1700 
1701 	get_device(&dev->dev);
1702 	ib_device_put(dev);
1703 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1704 	put_device(&dev->dev);
1705 
1706 	put_net(net);
1707 	return ret;
1708 
1709 ns_err:
1710 	put_net(net);
1711 net_err:
1712 	ib_device_put(dev);
1713 	return ret;
1714 }
1715 
1716 static struct pernet_operations rdma_dev_net_ops = {
1717 	.init = rdma_dev_init_net,
1718 	.exit = rdma_dev_exit_net,
1719 	.id = &rdma_dev_net_id,
1720 	.size = sizeof(struct rdma_dev_net),
1721 };
1722 
1723 static int assign_client_id(struct ib_client *client)
1724 {
1725 	int ret;
1726 
1727 	down_write(&clients_rwsem);
1728 	/*
1729 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1730 	 * achieve this we assign client_ids so they are sorted in
1731 	 * registration order.
1732 	 */
1733 	client->client_id = highest_client_id;
1734 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1735 	if (ret)
1736 		goto out;
1737 
1738 	highest_client_id++;
1739 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1740 
1741 out:
1742 	up_write(&clients_rwsem);
1743 	return ret;
1744 }
1745 
1746 static void remove_client_id(struct ib_client *client)
1747 {
1748 	down_write(&clients_rwsem);
1749 	xa_erase(&clients, client->client_id);
1750 	for (; highest_client_id; highest_client_id--)
1751 		if (xa_load(&clients, highest_client_id - 1))
1752 			break;
1753 	up_write(&clients_rwsem);
1754 }
1755 
1756 /**
1757  * ib_register_client - Register an IB client
1758  * @client:Client to register
1759  *
1760  * Upper level users of the IB drivers can use ib_register_client() to
1761  * register callbacks for IB device addition and removal.  When an IB
1762  * device is added, each registered client's add method will be called
1763  * (in the order the clients were registered), and when a device is
1764  * removed, each client's remove method will be called (in the reverse
1765  * order that clients were registered).  In addition, when
1766  * ib_register_client() is called, the client will receive an add
1767  * callback for all devices already registered.
1768  */
1769 int ib_register_client(struct ib_client *client)
1770 {
1771 	struct ib_device *device;
1772 	unsigned long index;
1773 	int ret;
1774 
1775 	refcount_set(&client->uses, 1);
1776 	init_completion(&client->uses_zero);
1777 	ret = assign_client_id(client);
1778 	if (ret)
1779 		return ret;
1780 
1781 	down_read(&devices_rwsem);
1782 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1783 		ret = add_client_context(device, client);
1784 		if (ret) {
1785 			up_read(&devices_rwsem);
1786 			ib_unregister_client(client);
1787 			return ret;
1788 		}
1789 	}
1790 	up_read(&devices_rwsem);
1791 	return 0;
1792 }
1793 EXPORT_SYMBOL(ib_register_client);
1794 
1795 /**
1796  * ib_unregister_client - Unregister an IB client
1797  * @client:Client to unregister
1798  *
1799  * Upper level users use ib_unregister_client() to remove their client
1800  * registration.  When ib_unregister_client() is called, the client
1801  * will receive a remove callback for each IB device still registered.
1802  *
1803  * This is a full fence, once it returns no client callbacks will be called,
1804  * or are running in another thread.
1805  */
1806 void ib_unregister_client(struct ib_client *client)
1807 {
1808 	struct ib_device *device;
1809 	unsigned long index;
1810 
1811 	down_write(&clients_rwsem);
1812 	ib_client_put(client);
1813 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1814 	up_write(&clients_rwsem);
1815 
1816 	/* We do not want to have locks while calling client->remove() */
1817 	rcu_read_lock();
1818 	xa_for_each (&devices, index, device) {
1819 		if (!ib_device_try_get(device))
1820 			continue;
1821 		rcu_read_unlock();
1822 
1823 		remove_client_context(device, client->client_id);
1824 
1825 		ib_device_put(device);
1826 		rcu_read_lock();
1827 	}
1828 	rcu_read_unlock();
1829 
1830 	/*
1831 	 * remove_client_context() is not a fence, it can return even though a
1832 	 * removal is ongoing. Wait until all removals are completed.
1833 	 */
1834 	wait_for_completion(&client->uses_zero);
1835 	remove_client_id(client);
1836 }
1837 EXPORT_SYMBOL(ib_unregister_client);
1838 
1839 static int __ib_get_global_client_nl_info(const char *client_name,
1840 					  struct ib_client_nl_info *res)
1841 {
1842 	struct ib_client *client;
1843 	unsigned long index;
1844 	int ret = -ENOENT;
1845 
1846 	down_read(&clients_rwsem);
1847 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1848 		if (strcmp(client->name, client_name) != 0)
1849 			continue;
1850 		if (!client->get_global_nl_info) {
1851 			ret = -EOPNOTSUPP;
1852 			break;
1853 		}
1854 		ret = client->get_global_nl_info(res);
1855 		if (WARN_ON(ret == -ENOENT))
1856 			ret = -EINVAL;
1857 		if (!ret && res->cdev)
1858 			get_device(res->cdev);
1859 		break;
1860 	}
1861 	up_read(&clients_rwsem);
1862 	return ret;
1863 }
1864 
1865 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1866 				   const char *client_name,
1867 				   struct ib_client_nl_info *res)
1868 {
1869 	unsigned long index;
1870 	void *client_data;
1871 	int ret = -ENOENT;
1872 
1873 	down_read(&ibdev->client_data_rwsem);
1874 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1875 			     CLIENT_DATA_REGISTERED) {
1876 		struct ib_client *client = xa_load(&clients, index);
1877 
1878 		if (!client || strcmp(client->name, client_name) != 0)
1879 			continue;
1880 		if (!client->get_nl_info) {
1881 			ret = -EOPNOTSUPP;
1882 			break;
1883 		}
1884 		ret = client->get_nl_info(ibdev, client_data, res);
1885 		if (WARN_ON(ret == -ENOENT))
1886 			ret = -EINVAL;
1887 
1888 		/*
1889 		 * The cdev is guaranteed valid as long as we are inside the
1890 		 * client_data_rwsem as remove_one can't be called. Keep it
1891 		 * valid for the caller.
1892 		 */
1893 		if (!ret && res->cdev)
1894 			get_device(res->cdev);
1895 		break;
1896 	}
1897 	up_read(&ibdev->client_data_rwsem);
1898 
1899 	return ret;
1900 }
1901 
1902 /**
1903  * ib_get_client_nl_info - Fetch the nl_info from a client
1904  * @ibdev: IB device
1905  * @client_name: Name of the client
1906  * @res: Result of the query
1907  */
1908 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1909 			  struct ib_client_nl_info *res)
1910 {
1911 	int ret;
1912 
1913 	if (ibdev)
1914 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1915 	else
1916 		ret = __ib_get_global_client_nl_info(client_name, res);
1917 #ifdef CONFIG_MODULES
1918 	if (ret == -ENOENT) {
1919 		request_module("rdma-client-%s", client_name);
1920 		if (ibdev)
1921 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1922 		else
1923 			ret = __ib_get_global_client_nl_info(client_name, res);
1924 	}
1925 #endif
1926 	if (ret) {
1927 		if (ret == -ENOENT)
1928 			return -EOPNOTSUPP;
1929 		return ret;
1930 	}
1931 
1932 	if (WARN_ON(!res->cdev))
1933 		return -EINVAL;
1934 	return 0;
1935 }
1936 
1937 /**
1938  * ib_set_client_data - Set IB client context
1939  * @device:Device to set context for
1940  * @client:Client to set context for
1941  * @data:Context to set
1942  *
1943  * ib_set_client_data() sets client context data that can be retrieved with
1944  * ib_get_client_data(). This can only be called while the client is
1945  * registered to the device, once the ib_client remove() callback returns this
1946  * cannot be called.
1947  */
1948 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1949 			void *data)
1950 {
1951 	void *rc;
1952 
1953 	if (WARN_ON(IS_ERR(data)))
1954 		data = NULL;
1955 
1956 	rc = xa_store(&device->client_data, client->client_id, data,
1957 		      GFP_KERNEL);
1958 	WARN_ON(xa_is_err(rc));
1959 }
1960 EXPORT_SYMBOL(ib_set_client_data);
1961 
1962 /**
1963  * ib_register_event_handler - Register an IB event handler
1964  * @event_handler:Handler to register
1965  *
1966  * ib_register_event_handler() registers an event handler that will be
1967  * called back when asynchronous IB events occur (as defined in
1968  * chapter 11 of the InfiniBand Architecture Specification). This
1969  * callback occurs in workqueue context.
1970  */
1971 void ib_register_event_handler(struct ib_event_handler *event_handler)
1972 {
1973 	down_write(&event_handler->device->event_handler_rwsem);
1974 	list_add_tail(&event_handler->list,
1975 		      &event_handler->device->event_handler_list);
1976 	up_write(&event_handler->device->event_handler_rwsem);
1977 }
1978 EXPORT_SYMBOL(ib_register_event_handler);
1979 
1980 /**
1981  * ib_unregister_event_handler - Unregister an event handler
1982  * @event_handler:Handler to unregister
1983  *
1984  * Unregister an event handler registered with
1985  * ib_register_event_handler().
1986  */
1987 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1988 {
1989 	down_write(&event_handler->device->event_handler_rwsem);
1990 	list_del(&event_handler->list);
1991 	up_write(&event_handler->device->event_handler_rwsem);
1992 }
1993 EXPORT_SYMBOL(ib_unregister_event_handler);
1994 
1995 void ib_dispatch_event_clients(struct ib_event *event)
1996 {
1997 	struct ib_event_handler *handler;
1998 
1999 	down_read(&event->device->event_handler_rwsem);
2000 
2001 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2002 		handler->handler(handler, event);
2003 
2004 	up_read(&event->device->event_handler_rwsem);
2005 }
2006 
2007 static int iw_query_port(struct ib_device *device,
2008 			   u8 port_num,
2009 			   struct ib_port_attr *port_attr)
2010 {
2011 	struct in_device *inetdev;
2012 	struct net_device *netdev;
2013 
2014 	memset(port_attr, 0, sizeof(*port_attr));
2015 
2016 	netdev = ib_device_get_netdev(device, port_num);
2017 	if (!netdev)
2018 		return -ENODEV;
2019 
2020 	port_attr->max_mtu = IB_MTU_4096;
2021 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2022 
2023 	if (!netif_carrier_ok(netdev)) {
2024 		port_attr->state = IB_PORT_DOWN;
2025 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2026 	} else {
2027 		rcu_read_lock();
2028 		inetdev = __in_dev_get_rcu(netdev);
2029 
2030 		if (inetdev && inetdev->ifa_list) {
2031 			port_attr->state = IB_PORT_ACTIVE;
2032 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2033 		} else {
2034 			port_attr->state = IB_PORT_INIT;
2035 			port_attr->phys_state =
2036 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2037 		}
2038 
2039 		rcu_read_unlock();
2040 	}
2041 
2042 	dev_put(netdev);
2043 	return device->ops.query_port(device, port_num, port_attr);
2044 }
2045 
2046 static int __ib_query_port(struct ib_device *device,
2047 			   u8 port_num,
2048 			   struct ib_port_attr *port_attr)
2049 {
2050 	union ib_gid gid = {};
2051 	int err;
2052 
2053 	memset(port_attr, 0, sizeof(*port_attr));
2054 
2055 	err = device->ops.query_port(device, port_num, port_attr);
2056 	if (err || port_attr->subnet_prefix)
2057 		return err;
2058 
2059 	if (rdma_port_get_link_layer(device, port_num) !=
2060 	    IB_LINK_LAYER_INFINIBAND)
2061 		return 0;
2062 
2063 	err = device->ops.query_gid(device, port_num, 0, &gid);
2064 	if (err)
2065 		return err;
2066 
2067 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2068 	return 0;
2069 }
2070 
2071 /**
2072  * ib_query_port - Query IB port attributes
2073  * @device:Device to query
2074  * @port_num:Port number to query
2075  * @port_attr:Port attributes
2076  *
2077  * ib_query_port() returns the attributes of a port through the
2078  * @port_attr pointer.
2079  */
2080 int ib_query_port(struct ib_device *device,
2081 		  u8 port_num,
2082 		  struct ib_port_attr *port_attr)
2083 {
2084 	if (!rdma_is_port_valid(device, port_num))
2085 		return -EINVAL;
2086 
2087 	if (rdma_protocol_iwarp(device, port_num))
2088 		return iw_query_port(device, port_num, port_attr);
2089 	else
2090 		return __ib_query_port(device, port_num, port_attr);
2091 }
2092 EXPORT_SYMBOL(ib_query_port);
2093 
2094 static void add_ndev_hash(struct ib_port_data *pdata)
2095 {
2096 	unsigned long flags;
2097 
2098 	might_sleep();
2099 
2100 	spin_lock_irqsave(&ndev_hash_lock, flags);
2101 	if (hash_hashed(&pdata->ndev_hash_link)) {
2102 		hash_del_rcu(&pdata->ndev_hash_link);
2103 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2104 		/*
2105 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2106 		 * grace period
2107 		 */
2108 		synchronize_rcu();
2109 		spin_lock_irqsave(&ndev_hash_lock, flags);
2110 	}
2111 	if (pdata->netdev)
2112 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2113 			     (uintptr_t)pdata->netdev);
2114 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2115 }
2116 
2117 /**
2118  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2119  * @ib_dev: Device to modify
2120  * @ndev: net_device to affiliate, may be NULL
2121  * @port: IB port the net_device is connected to
2122  *
2123  * Drivers should use this to link the ib_device to a netdev so the netdev
2124  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2125  * affiliated with any port.
2126  *
2127  * The caller must ensure that the given ndev is not unregistered or
2128  * unregistering, and that either the ib_device is unregistered or
2129  * ib_device_set_netdev() is called with NULL when the ndev sends a
2130  * NETDEV_UNREGISTER event.
2131  */
2132 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2133 			 unsigned int port)
2134 {
2135 	struct net_device *old_ndev;
2136 	struct ib_port_data *pdata;
2137 	unsigned long flags;
2138 	int ret;
2139 
2140 	/*
2141 	 * Drivers wish to call this before ib_register_driver, so we have to
2142 	 * setup the port data early.
2143 	 */
2144 	ret = alloc_port_data(ib_dev);
2145 	if (ret)
2146 		return ret;
2147 
2148 	if (!rdma_is_port_valid(ib_dev, port))
2149 		return -EINVAL;
2150 
2151 	pdata = &ib_dev->port_data[port];
2152 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2153 	old_ndev = rcu_dereference_protected(
2154 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2155 	if (old_ndev == ndev) {
2156 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2157 		return 0;
2158 	}
2159 
2160 	if (ndev)
2161 		dev_hold(ndev);
2162 	rcu_assign_pointer(pdata->netdev, ndev);
2163 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2164 
2165 	add_ndev_hash(pdata);
2166 	if (old_ndev)
2167 		dev_put(old_ndev);
2168 
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL(ib_device_set_netdev);
2172 
2173 static void free_netdevs(struct ib_device *ib_dev)
2174 {
2175 	unsigned long flags;
2176 	unsigned int port;
2177 
2178 	if (!ib_dev->port_data)
2179 		return;
2180 
2181 	rdma_for_each_port (ib_dev, port) {
2182 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2183 		struct net_device *ndev;
2184 
2185 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2186 		ndev = rcu_dereference_protected(
2187 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2188 		if (ndev) {
2189 			spin_lock(&ndev_hash_lock);
2190 			hash_del_rcu(&pdata->ndev_hash_link);
2191 			spin_unlock(&ndev_hash_lock);
2192 
2193 			/*
2194 			 * If this is the last dev_put there is still a
2195 			 * synchronize_rcu before the netdev is kfreed, so we
2196 			 * can continue to rely on unlocked pointer
2197 			 * comparisons after the put
2198 			 */
2199 			rcu_assign_pointer(pdata->netdev, NULL);
2200 			dev_put(ndev);
2201 		}
2202 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2203 	}
2204 }
2205 
2206 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2207 					unsigned int port)
2208 {
2209 	struct ib_port_data *pdata;
2210 	struct net_device *res;
2211 
2212 	if (!rdma_is_port_valid(ib_dev, port))
2213 		return NULL;
2214 
2215 	pdata = &ib_dev->port_data[port];
2216 
2217 	/*
2218 	 * New drivers should use ib_device_set_netdev() not the legacy
2219 	 * get_netdev().
2220 	 */
2221 	if (ib_dev->ops.get_netdev)
2222 		res = ib_dev->ops.get_netdev(ib_dev, port);
2223 	else {
2224 		spin_lock(&pdata->netdev_lock);
2225 		res = rcu_dereference_protected(
2226 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2227 		if (res)
2228 			dev_hold(res);
2229 		spin_unlock(&pdata->netdev_lock);
2230 	}
2231 
2232 	/*
2233 	 * If we are starting to unregister expedite things by preventing
2234 	 * propagation of an unregistering netdev.
2235 	 */
2236 	if (res && res->reg_state != NETREG_REGISTERED) {
2237 		dev_put(res);
2238 		return NULL;
2239 	}
2240 
2241 	return res;
2242 }
2243 
2244 /**
2245  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2246  * @ndev: netdev to locate
2247  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2248  *
2249  * Find and hold an ib_device that is associated with a netdev via
2250  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2251  * returned pointer.
2252  */
2253 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2254 					  enum rdma_driver_id driver_id)
2255 {
2256 	struct ib_device *res = NULL;
2257 	struct ib_port_data *cur;
2258 
2259 	rcu_read_lock();
2260 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2261 				    (uintptr_t)ndev) {
2262 		if (rcu_access_pointer(cur->netdev) == ndev &&
2263 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2264 		     cur->ib_dev->ops.driver_id == driver_id) &&
2265 		    ib_device_try_get(cur->ib_dev)) {
2266 			res = cur->ib_dev;
2267 			break;
2268 		}
2269 	}
2270 	rcu_read_unlock();
2271 
2272 	return res;
2273 }
2274 EXPORT_SYMBOL(ib_device_get_by_netdev);
2275 
2276 /**
2277  * ib_enum_roce_netdev - enumerate all RoCE ports
2278  * @ib_dev : IB device we want to query
2279  * @filter: Should we call the callback?
2280  * @filter_cookie: Cookie passed to filter
2281  * @cb: Callback to call for each found RoCE ports
2282  * @cookie: Cookie passed back to the callback
2283  *
2284  * Enumerates all of the physical RoCE ports of ib_dev
2285  * which are related to netdevice and calls callback() on each
2286  * device for which filter() function returns non zero.
2287  */
2288 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2289 			 roce_netdev_filter filter,
2290 			 void *filter_cookie,
2291 			 roce_netdev_callback cb,
2292 			 void *cookie)
2293 {
2294 	unsigned int port;
2295 
2296 	rdma_for_each_port (ib_dev, port)
2297 		if (rdma_protocol_roce(ib_dev, port)) {
2298 			struct net_device *idev =
2299 				ib_device_get_netdev(ib_dev, port);
2300 
2301 			if (filter(ib_dev, port, idev, filter_cookie))
2302 				cb(ib_dev, port, idev, cookie);
2303 
2304 			if (idev)
2305 				dev_put(idev);
2306 		}
2307 }
2308 
2309 /**
2310  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2311  * @filter: Should we call the callback?
2312  * @filter_cookie: Cookie passed to filter
2313  * @cb: Callback to call for each found RoCE ports
2314  * @cookie: Cookie passed back to the callback
2315  *
2316  * Enumerates all RoCE devices' physical ports which are related
2317  * to netdevices and calls callback() on each device for which
2318  * filter() function returns non zero.
2319  */
2320 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2321 			      void *filter_cookie,
2322 			      roce_netdev_callback cb,
2323 			      void *cookie)
2324 {
2325 	struct ib_device *dev;
2326 	unsigned long index;
2327 
2328 	down_read(&devices_rwsem);
2329 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2330 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2331 	up_read(&devices_rwsem);
2332 }
2333 
2334 /*
2335  * ib_enum_all_devs - enumerate all ib_devices
2336  * @cb: Callback to call for each found ib_device
2337  *
2338  * Enumerates all ib_devices and calls callback() on each device.
2339  */
2340 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2341 		     struct netlink_callback *cb)
2342 {
2343 	unsigned long index;
2344 	struct ib_device *dev;
2345 	unsigned int idx = 0;
2346 	int ret = 0;
2347 
2348 	down_read(&devices_rwsem);
2349 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2350 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2351 			continue;
2352 
2353 		ret = nldev_cb(dev, skb, cb, idx);
2354 		if (ret)
2355 			break;
2356 		idx++;
2357 	}
2358 	up_read(&devices_rwsem);
2359 	return ret;
2360 }
2361 
2362 /**
2363  * ib_query_pkey - Get P_Key table entry
2364  * @device:Device to query
2365  * @port_num:Port number to query
2366  * @index:P_Key table index to query
2367  * @pkey:Returned P_Key
2368  *
2369  * ib_query_pkey() fetches the specified P_Key table entry.
2370  */
2371 int ib_query_pkey(struct ib_device *device,
2372 		  u8 port_num, u16 index, u16 *pkey)
2373 {
2374 	if (!rdma_is_port_valid(device, port_num))
2375 		return -EINVAL;
2376 
2377 	if (!device->ops.query_pkey)
2378 		return -EOPNOTSUPP;
2379 
2380 	return device->ops.query_pkey(device, port_num, index, pkey);
2381 }
2382 EXPORT_SYMBOL(ib_query_pkey);
2383 
2384 /**
2385  * ib_modify_device - Change IB device attributes
2386  * @device:Device to modify
2387  * @device_modify_mask:Mask of attributes to change
2388  * @device_modify:New attribute values
2389  *
2390  * ib_modify_device() changes a device's attributes as specified by
2391  * the @device_modify_mask and @device_modify structure.
2392  */
2393 int ib_modify_device(struct ib_device *device,
2394 		     int device_modify_mask,
2395 		     struct ib_device_modify *device_modify)
2396 {
2397 	if (!device->ops.modify_device)
2398 		return -EOPNOTSUPP;
2399 
2400 	return device->ops.modify_device(device, device_modify_mask,
2401 					 device_modify);
2402 }
2403 EXPORT_SYMBOL(ib_modify_device);
2404 
2405 /**
2406  * ib_modify_port - Modifies the attributes for the specified port.
2407  * @device: The device to modify.
2408  * @port_num: The number of the port to modify.
2409  * @port_modify_mask: Mask used to specify which attributes of the port
2410  *   to change.
2411  * @port_modify: New attribute values for the port.
2412  *
2413  * ib_modify_port() changes a port's attributes as specified by the
2414  * @port_modify_mask and @port_modify structure.
2415  */
2416 int ib_modify_port(struct ib_device *device,
2417 		   u8 port_num, int port_modify_mask,
2418 		   struct ib_port_modify *port_modify)
2419 {
2420 	int rc;
2421 
2422 	if (!rdma_is_port_valid(device, port_num))
2423 		return -EINVAL;
2424 
2425 	if (device->ops.modify_port)
2426 		rc = device->ops.modify_port(device, port_num,
2427 					     port_modify_mask,
2428 					     port_modify);
2429 	else if (rdma_protocol_roce(device, port_num) &&
2430 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2431 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2432 		rc = 0;
2433 	else
2434 		rc = -EOPNOTSUPP;
2435 	return rc;
2436 }
2437 EXPORT_SYMBOL(ib_modify_port);
2438 
2439 /**
2440  * ib_find_gid - Returns the port number and GID table index where
2441  *   a specified GID value occurs. Its searches only for IB link layer.
2442  * @device: The device to query.
2443  * @gid: The GID value to search for.
2444  * @port_num: The port number of the device where the GID value was found.
2445  * @index: The index into the GID table where the GID was found.  This
2446  *   parameter may be NULL.
2447  */
2448 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2449 		u8 *port_num, u16 *index)
2450 {
2451 	union ib_gid tmp_gid;
2452 	unsigned int port;
2453 	int ret, i;
2454 
2455 	rdma_for_each_port (device, port) {
2456 		if (!rdma_protocol_ib(device, port))
2457 			continue;
2458 
2459 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2460 		     ++i) {
2461 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2462 			if (ret)
2463 				return ret;
2464 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2465 				*port_num = port;
2466 				if (index)
2467 					*index = i;
2468 				return 0;
2469 			}
2470 		}
2471 	}
2472 
2473 	return -ENOENT;
2474 }
2475 EXPORT_SYMBOL(ib_find_gid);
2476 
2477 /**
2478  * ib_find_pkey - Returns the PKey table index where a specified
2479  *   PKey value occurs.
2480  * @device: The device to query.
2481  * @port_num: The port number of the device to search for the PKey.
2482  * @pkey: The PKey value to search for.
2483  * @index: The index into the PKey table where the PKey was found.
2484  */
2485 int ib_find_pkey(struct ib_device *device,
2486 		 u8 port_num, u16 pkey, u16 *index)
2487 {
2488 	int ret, i;
2489 	u16 tmp_pkey;
2490 	int partial_ix = -1;
2491 
2492 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2493 	     ++i) {
2494 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2495 		if (ret)
2496 			return ret;
2497 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2498 			/* if there is full-member pkey take it.*/
2499 			if (tmp_pkey & 0x8000) {
2500 				*index = i;
2501 				return 0;
2502 			}
2503 			if (partial_ix < 0)
2504 				partial_ix = i;
2505 		}
2506 	}
2507 
2508 	/*no full-member, if exists take the limited*/
2509 	if (partial_ix >= 0) {
2510 		*index = partial_ix;
2511 		return 0;
2512 	}
2513 	return -ENOENT;
2514 }
2515 EXPORT_SYMBOL(ib_find_pkey);
2516 
2517 /**
2518  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2519  * for a received CM request
2520  * @dev:	An RDMA device on which the request has been received.
2521  * @port:	Port number on the RDMA device.
2522  * @pkey:	The Pkey the request came on.
2523  * @gid:	A GID that the net_dev uses to communicate.
2524  * @addr:	Contains the IP address that the request specified as its
2525  *		destination.
2526  *
2527  */
2528 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2529 					    u8 port,
2530 					    u16 pkey,
2531 					    const union ib_gid *gid,
2532 					    const struct sockaddr *addr)
2533 {
2534 	struct net_device *net_dev = NULL;
2535 	unsigned long index;
2536 	void *client_data;
2537 
2538 	if (!rdma_protocol_ib(dev, port))
2539 		return NULL;
2540 
2541 	/*
2542 	 * Holding the read side guarantees that the client will not become
2543 	 * unregistered while we are calling get_net_dev_by_params()
2544 	 */
2545 	down_read(&dev->client_data_rwsem);
2546 	xan_for_each_marked (&dev->client_data, index, client_data,
2547 			     CLIENT_DATA_REGISTERED) {
2548 		struct ib_client *client = xa_load(&clients, index);
2549 
2550 		if (!client || !client->get_net_dev_by_params)
2551 			continue;
2552 
2553 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2554 							addr, client_data);
2555 		if (net_dev)
2556 			break;
2557 	}
2558 	up_read(&dev->client_data_rwsem);
2559 
2560 	return net_dev;
2561 }
2562 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2563 
2564 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2565 {
2566 	struct ib_device_ops *dev_ops = &dev->ops;
2567 #define SET_DEVICE_OP(ptr, name)                                               \
2568 	do {                                                                   \
2569 		if (ops->name)                                                 \
2570 			if (!((ptr)->name))				       \
2571 				(ptr)->name = ops->name;                       \
2572 	} while (0)
2573 
2574 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2575 
2576 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2577 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2578 			dev_ops->driver_id != ops->driver_id);
2579 		dev_ops->driver_id = ops->driver_id;
2580 	}
2581 	if (ops->owner) {
2582 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2583 		dev_ops->owner = ops->owner;
2584 	}
2585 	if (ops->uverbs_abi_ver)
2586 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2587 
2588 	dev_ops->uverbs_no_driver_id_binding |=
2589 		ops->uverbs_no_driver_id_binding;
2590 
2591 	SET_DEVICE_OP(dev_ops, add_gid);
2592 	SET_DEVICE_OP(dev_ops, advise_mr);
2593 	SET_DEVICE_OP(dev_ops, alloc_dm);
2594 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2595 	SET_DEVICE_OP(dev_ops, alloc_mr);
2596 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2597 	SET_DEVICE_OP(dev_ops, alloc_mw);
2598 	SET_DEVICE_OP(dev_ops, alloc_pd);
2599 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2600 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2601 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2602 	SET_DEVICE_OP(dev_ops, attach_mcast);
2603 	SET_DEVICE_OP(dev_ops, check_mr_status);
2604 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2605 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2606 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2607 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2608 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2609 	SET_DEVICE_OP(dev_ops, create_ah);
2610 	SET_DEVICE_OP(dev_ops, create_counters);
2611 	SET_DEVICE_OP(dev_ops, create_cq);
2612 	SET_DEVICE_OP(dev_ops, create_flow);
2613 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2614 	SET_DEVICE_OP(dev_ops, create_qp);
2615 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2616 	SET_DEVICE_OP(dev_ops, create_srq);
2617 	SET_DEVICE_OP(dev_ops, create_user_ah);
2618 	SET_DEVICE_OP(dev_ops, create_wq);
2619 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2620 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2621 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2622 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2623 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2624 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2625 	SET_DEVICE_OP(dev_ops, del_gid);
2626 	SET_DEVICE_OP(dev_ops, dereg_mr);
2627 	SET_DEVICE_OP(dev_ops, destroy_ah);
2628 	SET_DEVICE_OP(dev_ops, destroy_counters);
2629 	SET_DEVICE_OP(dev_ops, destroy_cq);
2630 	SET_DEVICE_OP(dev_ops, destroy_flow);
2631 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2632 	SET_DEVICE_OP(dev_ops, destroy_qp);
2633 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2634 	SET_DEVICE_OP(dev_ops, destroy_srq);
2635 	SET_DEVICE_OP(dev_ops, destroy_wq);
2636 	SET_DEVICE_OP(dev_ops, detach_mcast);
2637 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2638 	SET_DEVICE_OP(dev_ops, drain_rq);
2639 	SET_DEVICE_OP(dev_ops, drain_sq);
2640 	SET_DEVICE_OP(dev_ops, enable_driver);
2641 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2642 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2643 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2644 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2645 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2646 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2647 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2648 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2649 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2650 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2651 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2652 	SET_DEVICE_OP(dev_ops, get_link_layer);
2653 	SET_DEVICE_OP(dev_ops, get_netdev);
2654 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2655 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2656 	SET_DEVICE_OP(dev_ops, get_vf_config);
2657 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2658 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2659 	SET_DEVICE_OP(dev_ops, init_port);
2660 	SET_DEVICE_OP(dev_ops, iw_accept);
2661 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2662 	SET_DEVICE_OP(dev_ops, iw_connect);
2663 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2664 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2665 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2666 	SET_DEVICE_OP(dev_ops, iw_reject);
2667 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2668 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2669 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2670 	SET_DEVICE_OP(dev_ops, mmap);
2671 	SET_DEVICE_OP(dev_ops, mmap_free);
2672 	SET_DEVICE_OP(dev_ops, modify_ah);
2673 	SET_DEVICE_OP(dev_ops, modify_cq);
2674 	SET_DEVICE_OP(dev_ops, modify_device);
2675 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2676 	SET_DEVICE_OP(dev_ops, modify_port);
2677 	SET_DEVICE_OP(dev_ops, modify_qp);
2678 	SET_DEVICE_OP(dev_ops, modify_srq);
2679 	SET_DEVICE_OP(dev_ops, modify_wq);
2680 	SET_DEVICE_OP(dev_ops, peek_cq);
2681 	SET_DEVICE_OP(dev_ops, poll_cq);
2682 	SET_DEVICE_OP(dev_ops, post_recv);
2683 	SET_DEVICE_OP(dev_ops, post_send);
2684 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2685 	SET_DEVICE_OP(dev_ops, process_mad);
2686 	SET_DEVICE_OP(dev_ops, query_ah);
2687 	SET_DEVICE_OP(dev_ops, query_device);
2688 	SET_DEVICE_OP(dev_ops, query_gid);
2689 	SET_DEVICE_OP(dev_ops, query_pkey);
2690 	SET_DEVICE_OP(dev_ops, query_port);
2691 	SET_DEVICE_OP(dev_ops, query_qp);
2692 	SET_DEVICE_OP(dev_ops, query_srq);
2693 	SET_DEVICE_OP(dev_ops, query_ucontext);
2694 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2695 	SET_DEVICE_OP(dev_ops, read_counters);
2696 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2697 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2698 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2699 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2700 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2701 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2702 	SET_DEVICE_OP(dev_ops, resize_cq);
2703 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2704 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2705 
2706 	SET_OBJ_SIZE(dev_ops, ib_ah);
2707 	SET_OBJ_SIZE(dev_ops, ib_counters);
2708 	SET_OBJ_SIZE(dev_ops, ib_cq);
2709 	SET_OBJ_SIZE(dev_ops, ib_mw);
2710 	SET_OBJ_SIZE(dev_ops, ib_pd);
2711 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2712 	SET_OBJ_SIZE(dev_ops, ib_srq);
2713 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2714 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2715 }
2716 EXPORT_SYMBOL(ib_set_device_ops);
2717 
2718 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2719 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2720 {
2721 	struct scatterlist *s;
2722 	int i;
2723 
2724 	for_each_sg(sg, s, nents, i) {
2725 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2726 		sg_dma_len(s) = s->length;
2727 	}
2728 	return nents;
2729 }
2730 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2731 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2732 
2733 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2734 	[RDMA_NL_LS_OP_RESOLVE] = {
2735 		.doit = ib_nl_handle_resolve_resp,
2736 		.flags = RDMA_NL_ADMIN_PERM,
2737 	},
2738 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2739 		.doit = ib_nl_handle_set_timeout,
2740 		.flags = RDMA_NL_ADMIN_PERM,
2741 	},
2742 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2743 		.doit = ib_nl_handle_ip_res_resp,
2744 		.flags = RDMA_NL_ADMIN_PERM,
2745 	},
2746 };
2747 
2748 static int __init ib_core_init(void)
2749 {
2750 	int ret;
2751 
2752 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2753 	if (!ib_wq)
2754 		return -ENOMEM;
2755 
2756 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2757 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2758 	if (!ib_comp_wq) {
2759 		ret = -ENOMEM;
2760 		goto err;
2761 	}
2762 
2763 	ib_comp_unbound_wq =
2764 		alloc_workqueue("ib-comp-unb-wq",
2765 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2766 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2767 	if (!ib_comp_unbound_wq) {
2768 		ret = -ENOMEM;
2769 		goto err_comp;
2770 	}
2771 
2772 	ret = class_register(&ib_class);
2773 	if (ret) {
2774 		pr_warn("Couldn't create InfiniBand device class\n");
2775 		goto err_comp_unbound;
2776 	}
2777 
2778 	rdma_nl_init();
2779 
2780 	ret = addr_init();
2781 	if (ret) {
2782 		pr_warn("Couldn't init IB address resolution\n");
2783 		goto err_ibnl;
2784 	}
2785 
2786 	ret = ib_mad_init();
2787 	if (ret) {
2788 		pr_warn("Couldn't init IB MAD\n");
2789 		goto err_addr;
2790 	}
2791 
2792 	ret = ib_sa_init();
2793 	if (ret) {
2794 		pr_warn("Couldn't init SA\n");
2795 		goto err_mad;
2796 	}
2797 
2798 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2799 	if (ret) {
2800 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2801 		goto err_sa;
2802 	}
2803 
2804 	ret = register_pernet_device(&rdma_dev_net_ops);
2805 	if (ret) {
2806 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2807 		goto err_compat;
2808 	}
2809 
2810 	nldev_init();
2811 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2812 	roce_gid_mgmt_init();
2813 
2814 	return 0;
2815 
2816 err_compat:
2817 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2818 err_sa:
2819 	ib_sa_cleanup();
2820 err_mad:
2821 	ib_mad_cleanup();
2822 err_addr:
2823 	addr_cleanup();
2824 err_ibnl:
2825 	class_unregister(&ib_class);
2826 err_comp_unbound:
2827 	destroy_workqueue(ib_comp_unbound_wq);
2828 err_comp:
2829 	destroy_workqueue(ib_comp_wq);
2830 err:
2831 	destroy_workqueue(ib_wq);
2832 	return ret;
2833 }
2834 
2835 static void __exit ib_core_cleanup(void)
2836 {
2837 	roce_gid_mgmt_cleanup();
2838 	nldev_exit();
2839 	rdma_nl_unregister(RDMA_NL_LS);
2840 	unregister_pernet_device(&rdma_dev_net_ops);
2841 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2842 	ib_sa_cleanup();
2843 	ib_mad_cleanup();
2844 	addr_cleanup();
2845 	rdma_nl_exit();
2846 	class_unregister(&ib_class);
2847 	destroy_workqueue(ib_comp_unbound_wq);
2848 	destroy_workqueue(ib_comp_wq);
2849 	/* Make sure that any pending umem accounting work is done. */
2850 	destroy_workqueue(ib_wq);
2851 	flush_workqueue(system_unbound_wq);
2852 	WARN_ON(!xa_empty(&clients));
2853 	WARN_ON(!xa_empty(&devices));
2854 }
2855 
2856 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2857 
2858 /* ib core relies on netdev stack to first register net_ns_type_operations
2859  * ns kobject type before ib_core initialization.
2860  */
2861 fs_initcall(ib_core_init);
2862 module_exit(ib_core_cleanup);
2863