xref: /openbmc/linux/drivers/infiniband/core/device.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(query_pkey),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 
574 	if (WARN_ON(size < sizeof(struct ib_device)))
575 		return NULL;
576 
577 	device = kzalloc(size, GFP_KERNEL);
578 	if (!device)
579 		return NULL;
580 
581 	if (rdma_restrack_init(device)) {
582 		kfree(device);
583 		return NULL;
584 	}
585 
586 	device->groups[0] = &ib_dev_attr_group;
587 	rdma_init_coredev(&device->coredev, device, &init_net);
588 
589 	INIT_LIST_HEAD(&device->event_handler_list);
590 	spin_lock_init(&device->qp_open_list_lock);
591 	init_rwsem(&device->event_handler_rwsem);
592 	mutex_init(&device->unregistration_lock);
593 	/*
594 	 * client_data needs to be alloc because we don't want our mark to be
595 	 * destroyed if the user stores NULL in the client data.
596 	 */
597 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
598 	init_rwsem(&device->client_data_rwsem);
599 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
600 	mutex_init(&device->compat_devs_mutex);
601 	init_completion(&device->unreg_completion);
602 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
603 
604 	return device;
605 }
606 EXPORT_SYMBOL(_ib_alloc_device);
607 
608 /**
609  * ib_dealloc_device - free an IB device struct
610  * @device:structure to free
611  *
612  * Free a structure allocated with ib_alloc_device().
613  */
614 void ib_dealloc_device(struct ib_device *device)
615 {
616 	if (device->ops.dealloc_driver)
617 		device->ops.dealloc_driver(device);
618 
619 	/*
620 	 * ib_unregister_driver() requires all devices to remain in the xarray
621 	 * while their ops are callable. The last op we call is dealloc_driver
622 	 * above.  This is needed to create a fence on op callbacks prior to
623 	 * allowing the driver module to unload.
624 	 */
625 	down_write(&devices_rwsem);
626 	if (xa_load(&devices, device->index) == device)
627 		xa_erase(&devices, device->index);
628 	up_write(&devices_rwsem);
629 
630 	/* Expedite releasing netdev references */
631 	free_netdevs(device);
632 
633 	WARN_ON(!xa_empty(&device->compat_devs));
634 	WARN_ON(!xa_empty(&device->client_data));
635 	WARN_ON(refcount_read(&device->refcount));
636 	rdma_restrack_clean(device);
637 	/* Balances with device_initialize */
638 	put_device(&device->dev);
639 }
640 EXPORT_SYMBOL(ib_dealloc_device);
641 
642 /*
643  * add_client_context() and remove_client_context() must be safe against
644  * parallel calls on the same device - registration/unregistration of both the
645  * device and client can be occurring in parallel.
646  *
647  * The routines need to be a fence, any caller must not return until the add
648  * or remove is fully completed.
649  */
650 static int add_client_context(struct ib_device *device,
651 			      struct ib_client *client)
652 {
653 	int ret = 0;
654 
655 	if (!device->kverbs_provider && !client->no_kverbs_req)
656 		return 0;
657 
658 	down_write(&device->client_data_rwsem);
659 	/*
660 	 * So long as the client is registered hold both the client and device
661 	 * unregistration locks.
662 	 */
663 	if (!refcount_inc_not_zero(&client->uses))
664 		goto out_unlock;
665 	refcount_inc(&device->refcount);
666 
667 	/*
668 	 * Another caller to add_client_context got here first and has already
669 	 * completely initialized context.
670 	 */
671 	if (xa_get_mark(&device->client_data, client->client_id,
672 		    CLIENT_DATA_REGISTERED))
673 		goto out;
674 
675 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
676 			      GFP_KERNEL));
677 	if (ret)
678 		goto out;
679 	downgrade_write(&device->client_data_rwsem);
680 	if (client->add)
681 		client->add(device);
682 
683 	/* Readers shall not see a client until add has been completed */
684 	xa_set_mark(&device->client_data, client->client_id,
685 		    CLIENT_DATA_REGISTERED);
686 	up_read(&device->client_data_rwsem);
687 	return 0;
688 
689 out:
690 	ib_device_put(device);
691 	ib_client_put(client);
692 out_unlock:
693 	up_write(&device->client_data_rwsem);
694 	return ret;
695 }
696 
697 static void remove_client_context(struct ib_device *device,
698 				  unsigned int client_id)
699 {
700 	struct ib_client *client;
701 	void *client_data;
702 
703 	down_write(&device->client_data_rwsem);
704 	if (!xa_get_mark(&device->client_data, client_id,
705 			 CLIENT_DATA_REGISTERED)) {
706 		up_write(&device->client_data_rwsem);
707 		return;
708 	}
709 	client_data = xa_load(&device->client_data, client_id);
710 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
711 	client = xa_load(&clients, client_id);
712 	up_write(&device->client_data_rwsem);
713 
714 	/*
715 	 * Notice we cannot be holding any exclusive locks when calling the
716 	 * remove callback as the remove callback can recurse back into any
717 	 * public functions in this module and thus try for any locks those
718 	 * functions take.
719 	 *
720 	 * For this reason clients and drivers should not call the
721 	 * unregistration functions will holdling any locks.
722 	 */
723 	if (client->remove)
724 		client->remove(device, client_data);
725 
726 	xa_erase(&device->client_data, client_id);
727 	ib_device_put(device);
728 	ib_client_put(client);
729 }
730 
731 static int alloc_port_data(struct ib_device *device)
732 {
733 	struct ib_port_data_rcu *pdata_rcu;
734 	unsigned int port;
735 
736 	if (device->port_data)
737 		return 0;
738 
739 	/* This can only be called once the physical port range is defined */
740 	if (WARN_ON(!device->phys_port_cnt))
741 		return -EINVAL;
742 
743 	/*
744 	 * device->port_data is indexed directly by the port number to make
745 	 * access to this data as efficient as possible.
746 	 *
747 	 * Therefore port_data is declared as a 1 based array with potential
748 	 * empty slots at the beginning.
749 	 */
750 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
751 					rdma_end_port(device) + 1),
752 			    GFP_KERNEL);
753 	if (!pdata_rcu)
754 		return -ENOMEM;
755 	/*
756 	 * The rcu_head is put in front of the port data array and the stored
757 	 * pointer is adjusted since we never need to see that member until
758 	 * kfree_rcu.
759 	 */
760 	device->port_data = pdata_rcu->pdata;
761 
762 	rdma_for_each_port (device, port) {
763 		struct ib_port_data *pdata = &device->port_data[port];
764 
765 		pdata->ib_dev = device;
766 		spin_lock_init(&pdata->pkey_list_lock);
767 		INIT_LIST_HEAD(&pdata->pkey_list);
768 		spin_lock_init(&pdata->netdev_lock);
769 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
770 	}
771 	return 0;
772 }
773 
774 static int verify_immutable(const struct ib_device *dev, u8 port)
775 {
776 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
777 			    rdma_max_mad_size(dev, port) != 0);
778 }
779 
780 static int setup_port_data(struct ib_device *device)
781 {
782 	unsigned int port;
783 	int ret;
784 
785 	ret = alloc_port_data(device);
786 	if (ret)
787 		return ret;
788 
789 	rdma_for_each_port (device, port) {
790 		struct ib_port_data *pdata = &device->port_data[port];
791 
792 		ret = device->ops.get_port_immutable(device, port,
793 						     &pdata->immutable);
794 		if (ret)
795 			return ret;
796 
797 		if (verify_immutable(device, port))
798 			return -EINVAL;
799 	}
800 	return 0;
801 }
802 
803 void ib_get_device_fw_str(struct ib_device *dev, char *str)
804 {
805 	if (dev->ops.get_dev_fw_str)
806 		dev->ops.get_dev_fw_str(dev, str);
807 	else
808 		str[0] = '\0';
809 }
810 EXPORT_SYMBOL(ib_get_device_fw_str);
811 
812 static void ib_policy_change_task(struct work_struct *work)
813 {
814 	struct ib_device *dev;
815 	unsigned long index;
816 
817 	down_read(&devices_rwsem);
818 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
819 		unsigned int i;
820 
821 		rdma_for_each_port (dev, i) {
822 			u64 sp;
823 			int ret = ib_get_cached_subnet_prefix(dev,
824 							      i,
825 							      &sp);
826 
827 			WARN_ONCE(ret,
828 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
829 				  ret);
830 			if (!ret)
831 				ib_security_cache_change(dev, i, sp);
832 		}
833 	}
834 	up_read(&devices_rwsem);
835 }
836 
837 static int ib_security_change(struct notifier_block *nb, unsigned long event,
838 			      void *lsm_data)
839 {
840 	if (event != LSM_POLICY_CHANGE)
841 		return NOTIFY_DONE;
842 
843 	schedule_work(&ib_policy_change_work);
844 	ib_mad_agent_security_change();
845 
846 	return NOTIFY_OK;
847 }
848 
849 static void compatdev_release(struct device *dev)
850 {
851 	struct ib_core_device *cdev =
852 		container_of(dev, struct ib_core_device, dev);
853 
854 	kfree(cdev);
855 }
856 
857 static int add_one_compat_dev(struct ib_device *device,
858 			      struct rdma_dev_net *rnet)
859 {
860 	struct ib_core_device *cdev;
861 	int ret;
862 
863 	lockdep_assert_held(&rdma_nets_rwsem);
864 	if (!ib_devices_shared_netns)
865 		return 0;
866 
867 	/*
868 	 * Create and add compat device in all namespaces other than where it
869 	 * is currently bound to.
870 	 */
871 	if (net_eq(read_pnet(&rnet->net),
872 		   read_pnet(&device->coredev.rdma_net)))
873 		return 0;
874 
875 	/*
876 	 * The first of init_net() or ib_register_device() to take the
877 	 * compat_devs_mutex wins and gets to add the device. Others will wait
878 	 * for completion here.
879 	 */
880 	mutex_lock(&device->compat_devs_mutex);
881 	cdev = xa_load(&device->compat_devs, rnet->id);
882 	if (cdev) {
883 		ret = 0;
884 		goto done;
885 	}
886 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
887 	if (ret)
888 		goto done;
889 
890 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
891 	if (!cdev) {
892 		ret = -ENOMEM;
893 		goto cdev_err;
894 	}
895 
896 	cdev->dev.parent = device->dev.parent;
897 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
898 	cdev->dev.release = compatdev_release;
899 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
900 	if (ret)
901 		goto add_err;
902 
903 	ret = device_add(&cdev->dev);
904 	if (ret)
905 		goto add_err;
906 	ret = ib_setup_port_attrs(cdev);
907 	if (ret)
908 		goto port_err;
909 
910 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
911 			      cdev, GFP_KERNEL));
912 	if (ret)
913 		goto insert_err;
914 
915 	mutex_unlock(&device->compat_devs_mutex);
916 	return 0;
917 
918 insert_err:
919 	ib_free_port_attrs(cdev);
920 port_err:
921 	device_del(&cdev->dev);
922 add_err:
923 	put_device(&cdev->dev);
924 cdev_err:
925 	xa_release(&device->compat_devs, rnet->id);
926 done:
927 	mutex_unlock(&device->compat_devs_mutex);
928 	return ret;
929 }
930 
931 static void remove_one_compat_dev(struct ib_device *device, u32 id)
932 {
933 	struct ib_core_device *cdev;
934 
935 	mutex_lock(&device->compat_devs_mutex);
936 	cdev = xa_erase(&device->compat_devs, id);
937 	mutex_unlock(&device->compat_devs_mutex);
938 	if (cdev) {
939 		ib_free_port_attrs(cdev);
940 		device_del(&cdev->dev);
941 		put_device(&cdev->dev);
942 	}
943 }
944 
945 static void remove_compat_devs(struct ib_device *device)
946 {
947 	struct ib_core_device *cdev;
948 	unsigned long index;
949 
950 	xa_for_each (&device->compat_devs, index, cdev)
951 		remove_one_compat_dev(device, index);
952 }
953 
954 static int add_compat_devs(struct ib_device *device)
955 {
956 	struct rdma_dev_net *rnet;
957 	unsigned long index;
958 	int ret = 0;
959 
960 	lockdep_assert_held(&devices_rwsem);
961 
962 	down_read(&rdma_nets_rwsem);
963 	xa_for_each (&rdma_nets, index, rnet) {
964 		ret = add_one_compat_dev(device, rnet);
965 		if (ret)
966 			break;
967 	}
968 	up_read(&rdma_nets_rwsem);
969 	return ret;
970 }
971 
972 static void remove_all_compat_devs(void)
973 {
974 	struct ib_compat_device *cdev;
975 	struct ib_device *dev;
976 	unsigned long index;
977 
978 	down_read(&devices_rwsem);
979 	xa_for_each (&devices, index, dev) {
980 		unsigned long c_index = 0;
981 
982 		/* Hold nets_rwsem so that any other thread modifying this
983 		 * system param can sync with this thread.
984 		 */
985 		down_read(&rdma_nets_rwsem);
986 		xa_for_each (&dev->compat_devs, c_index, cdev)
987 			remove_one_compat_dev(dev, c_index);
988 		up_read(&rdma_nets_rwsem);
989 	}
990 	up_read(&devices_rwsem);
991 }
992 
993 static int add_all_compat_devs(void)
994 {
995 	struct rdma_dev_net *rnet;
996 	struct ib_device *dev;
997 	unsigned long index;
998 	int ret = 0;
999 
1000 	down_read(&devices_rwsem);
1001 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1002 		unsigned long net_index = 0;
1003 
1004 		/* Hold nets_rwsem so that any other thread modifying this
1005 		 * system param can sync with this thread.
1006 		 */
1007 		down_read(&rdma_nets_rwsem);
1008 		xa_for_each (&rdma_nets, net_index, rnet) {
1009 			ret = add_one_compat_dev(dev, rnet);
1010 			if (ret)
1011 				break;
1012 		}
1013 		up_read(&rdma_nets_rwsem);
1014 	}
1015 	up_read(&devices_rwsem);
1016 	if (ret)
1017 		remove_all_compat_devs();
1018 	return ret;
1019 }
1020 
1021 int rdma_compatdev_set(u8 enable)
1022 {
1023 	struct rdma_dev_net *rnet;
1024 	unsigned long index;
1025 	int ret = 0;
1026 
1027 	down_write(&rdma_nets_rwsem);
1028 	if (ib_devices_shared_netns == enable) {
1029 		up_write(&rdma_nets_rwsem);
1030 		return 0;
1031 	}
1032 
1033 	/* enable/disable of compat devices is not supported
1034 	 * when more than default init_net exists.
1035 	 */
1036 	xa_for_each (&rdma_nets, index, rnet) {
1037 		ret++;
1038 		break;
1039 	}
1040 	if (!ret)
1041 		ib_devices_shared_netns = enable;
1042 	up_write(&rdma_nets_rwsem);
1043 	if (ret)
1044 		return -EBUSY;
1045 
1046 	if (enable)
1047 		ret = add_all_compat_devs();
1048 	else
1049 		remove_all_compat_devs();
1050 	return ret;
1051 }
1052 
1053 static void rdma_dev_exit_net(struct net *net)
1054 {
1055 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1056 	struct ib_device *dev;
1057 	unsigned long index;
1058 	int ret;
1059 
1060 	down_write(&rdma_nets_rwsem);
1061 	/*
1062 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1063 	 */
1064 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1065 	WARN_ON(ret);
1066 	up_write(&rdma_nets_rwsem);
1067 
1068 	down_read(&devices_rwsem);
1069 	xa_for_each (&devices, index, dev) {
1070 		get_device(&dev->dev);
1071 		/*
1072 		 * Release the devices_rwsem so that pontentially blocking
1073 		 * device_del, doesn't hold the devices_rwsem for too long.
1074 		 */
1075 		up_read(&devices_rwsem);
1076 
1077 		remove_one_compat_dev(dev, rnet->id);
1078 
1079 		/*
1080 		 * If the real device is in the NS then move it back to init.
1081 		 */
1082 		rdma_dev_change_netns(dev, net, &init_net);
1083 
1084 		put_device(&dev->dev);
1085 		down_read(&devices_rwsem);
1086 	}
1087 	up_read(&devices_rwsem);
1088 
1089 	rdma_nl_net_exit(rnet);
1090 	xa_erase(&rdma_nets, rnet->id);
1091 }
1092 
1093 static __net_init int rdma_dev_init_net(struct net *net)
1094 {
1095 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1096 	unsigned long index;
1097 	struct ib_device *dev;
1098 	int ret;
1099 
1100 	write_pnet(&rnet->net, net);
1101 
1102 	ret = rdma_nl_net_init(rnet);
1103 	if (ret)
1104 		return ret;
1105 
1106 	/* No need to create any compat devices in default init_net. */
1107 	if (net_eq(net, &init_net))
1108 		return 0;
1109 
1110 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1111 	if (ret) {
1112 		rdma_nl_net_exit(rnet);
1113 		return ret;
1114 	}
1115 
1116 	down_read(&devices_rwsem);
1117 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1118 		/* Hold nets_rwsem so that netlink command cannot change
1119 		 * system configuration for device sharing mode.
1120 		 */
1121 		down_read(&rdma_nets_rwsem);
1122 		ret = add_one_compat_dev(dev, rnet);
1123 		up_read(&rdma_nets_rwsem);
1124 		if (ret)
1125 			break;
1126 	}
1127 	up_read(&devices_rwsem);
1128 
1129 	if (ret)
1130 		rdma_dev_exit_net(net);
1131 
1132 	return ret;
1133 }
1134 
1135 /*
1136  * Assign the unique string device name and the unique device index. This is
1137  * undone by ib_dealloc_device.
1138  */
1139 static int assign_name(struct ib_device *device, const char *name)
1140 {
1141 	static u32 last_id;
1142 	int ret;
1143 
1144 	down_write(&devices_rwsem);
1145 	/* Assign a unique name to the device */
1146 	if (strchr(name, '%'))
1147 		ret = alloc_name(device, name);
1148 	else
1149 		ret = dev_set_name(&device->dev, name);
1150 	if (ret)
1151 		goto out;
1152 
1153 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1154 		ret = -ENFILE;
1155 		goto out;
1156 	}
1157 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1158 
1159 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1160 			&last_id, GFP_KERNEL);
1161 	if (ret > 0)
1162 		ret = 0;
1163 
1164 out:
1165 	up_write(&devices_rwsem);
1166 	return ret;
1167 }
1168 
1169 static void setup_dma_device(struct ib_device *device)
1170 {
1171 	struct device *parent = device->dev.parent;
1172 
1173 	WARN_ON_ONCE(device->dma_device);
1174 	if (device->dev.dma_ops) {
1175 		/*
1176 		 * The caller provided custom DMA operations. Copy the
1177 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1178 		 * into device->dev.
1179 		 */
1180 		device->dma_device = &device->dev;
1181 		if (!device->dev.dma_mask) {
1182 			if (parent)
1183 				device->dev.dma_mask = parent->dma_mask;
1184 			else
1185 				WARN_ON_ONCE(true);
1186 		}
1187 		if (!device->dev.coherent_dma_mask) {
1188 			if (parent)
1189 				device->dev.coherent_dma_mask =
1190 					parent->coherent_dma_mask;
1191 			else
1192 				WARN_ON_ONCE(true);
1193 		}
1194 	} else {
1195 		/*
1196 		 * The caller did not provide custom DMA operations. Use the
1197 		 * DMA mapping operations of the parent device.
1198 		 */
1199 		WARN_ON_ONCE(!parent);
1200 		device->dma_device = parent;
1201 	}
1202 
1203 	if (!device->dev.dma_parms) {
1204 		if (parent) {
1205 			/*
1206 			 * The caller did not provide DMA parameters, so
1207 			 * 'parent' probably represents a PCI device. The PCI
1208 			 * core sets the maximum segment size to 64
1209 			 * KB. Increase this parameter to 2 GB.
1210 			 */
1211 			device->dev.dma_parms = parent->dma_parms;
1212 			dma_set_max_seg_size(device->dma_device, SZ_2G);
1213 		} else {
1214 			WARN_ON_ONCE(true);
1215 		}
1216 	}
1217 }
1218 
1219 /*
1220  * setup_device() allocates memory and sets up data that requires calling the
1221  * device ops, this is the only reason these actions are not done during
1222  * ib_alloc_device. It is undone by ib_dealloc_device().
1223  */
1224 static int setup_device(struct ib_device *device)
1225 {
1226 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1227 	int ret;
1228 
1229 	setup_dma_device(device);
1230 	ib_device_check_mandatory(device);
1231 
1232 	ret = setup_port_data(device);
1233 	if (ret) {
1234 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1235 		return ret;
1236 	}
1237 
1238 	memset(&device->attrs, 0, sizeof(device->attrs));
1239 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1240 	if (ret) {
1241 		dev_warn(&device->dev,
1242 			 "Couldn't query the device attributes\n");
1243 		return ret;
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 static void disable_device(struct ib_device *device)
1250 {
1251 	u32 cid;
1252 
1253 	WARN_ON(!refcount_read(&device->refcount));
1254 
1255 	down_write(&devices_rwsem);
1256 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1257 	up_write(&devices_rwsem);
1258 
1259 	/*
1260 	 * Remove clients in LIFO order, see assign_client_id. This could be
1261 	 * more efficient if xarray learns to reverse iterate. Since no new
1262 	 * clients can be added to this ib_device past this point we only need
1263 	 * the maximum possible client_id value here.
1264 	 */
1265 	down_read(&clients_rwsem);
1266 	cid = highest_client_id;
1267 	up_read(&clients_rwsem);
1268 	while (cid) {
1269 		cid--;
1270 		remove_client_context(device, cid);
1271 	}
1272 
1273 	/* Pairs with refcount_set in enable_device */
1274 	ib_device_put(device);
1275 	wait_for_completion(&device->unreg_completion);
1276 
1277 	/*
1278 	 * compat devices must be removed after device refcount drops to zero.
1279 	 * Otherwise init_net() may add more compatdevs after removing compat
1280 	 * devices and before device is disabled.
1281 	 */
1282 	remove_compat_devs(device);
1283 }
1284 
1285 /*
1286  * An enabled device is visible to all clients and to all the public facing
1287  * APIs that return a device pointer. This always returns with a new get, even
1288  * if it fails.
1289  */
1290 static int enable_device_and_get(struct ib_device *device)
1291 {
1292 	struct ib_client *client;
1293 	unsigned long index;
1294 	int ret = 0;
1295 
1296 	/*
1297 	 * One ref belongs to the xa and the other belongs to this
1298 	 * thread. This is needed to guard against parallel unregistration.
1299 	 */
1300 	refcount_set(&device->refcount, 2);
1301 	down_write(&devices_rwsem);
1302 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1303 
1304 	/*
1305 	 * By using downgrade_write() we ensure that no other thread can clear
1306 	 * DEVICE_REGISTERED while we are completing the client setup.
1307 	 */
1308 	downgrade_write(&devices_rwsem);
1309 
1310 	if (device->ops.enable_driver) {
1311 		ret = device->ops.enable_driver(device);
1312 		if (ret)
1313 			goto out;
1314 	}
1315 
1316 	down_read(&clients_rwsem);
1317 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1318 		ret = add_client_context(device, client);
1319 		if (ret)
1320 			break;
1321 	}
1322 	up_read(&clients_rwsem);
1323 	if (!ret)
1324 		ret = add_compat_devs(device);
1325 out:
1326 	up_read(&devices_rwsem);
1327 	return ret;
1328 }
1329 
1330 /**
1331  * ib_register_device - Register an IB device with IB core
1332  * @device: Device to register
1333  * @name: unique string device name. This may include a '%' which will
1334  * cause a unique index to be added to the passed device name.
1335  *
1336  * Low-level drivers use ib_register_device() to register their
1337  * devices with the IB core.  All registered clients will receive a
1338  * callback for each device that is added. @device must be allocated
1339  * with ib_alloc_device().
1340  *
1341  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1342  * asynchronously then the device pointer may become freed as soon as this
1343  * function returns.
1344  */
1345 int ib_register_device(struct ib_device *device, const char *name)
1346 {
1347 	int ret;
1348 
1349 	ret = assign_name(device, name);
1350 	if (ret)
1351 		return ret;
1352 
1353 	ret = setup_device(device);
1354 	if (ret)
1355 		return ret;
1356 
1357 	ret = ib_cache_setup_one(device);
1358 	if (ret) {
1359 		dev_warn(&device->dev,
1360 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1361 		return ret;
1362 	}
1363 
1364 	ib_device_register_rdmacg(device);
1365 
1366 	rdma_counter_init(device);
1367 
1368 	/*
1369 	 * Ensure that ADD uevent is not fired because it
1370 	 * is too early amd device is not initialized yet.
1371 	 */
1372 	dev_set_uevent_suppress(&device->dev, true);
1373 	ret = device_add(&device->dev);
1374 	if (ret)
1375 		goto cg_cleanup;
1376 
1377 	ret = ib_device_register_sysfs(device);
1378 	if (ret) {
1379 		dev_warn(&device->dev,
1380 			 "Couldn't register device with driver model\n");
1381 		goto dev_cleanup;
1382 	}
1383 
1384 	ret = enable_device_and_get(device);
1385 	dev_set_uevent_suppress(&device->dev, false);
1386 	/* Mark for userspace that device is ready */
1387 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1388 	if (ret) {
1389 		void (*dealloc_fn)(struct ib_device *);
1390 
1391 		/*
1392 		 * If we hit this error flow then we don't want to
1393 		 * automatically dealloc the device since the caller is
1394 		 * expected to call ib_dealloc_device() after
1395 		 * ib_register_device() fails. This is tricky due to the
1396 		 * possibility for a parallel unregistration along with this
1397 		 * error flow. Since we have a refcount here we know any
1398 		 * parallel flow is stopped in disable_device and will see the
1399 		 * NULL pointers, causing the responsibility to
1400 		 * ib_dealloc_device() to revert back to this thread.
1401 		 */
1402 		dealloc_fn = device->ops.dealloc_driver;
1403 		device->ops.dealloc_driver = NULL;
1404 		ib_device_put(device);
1405 		__ib_unregister_device(device);
1406 		device->ops.dealloc_driver = dealloc_fn;
1407 		return ret;
1408 	}
1409 	ib_device_put(device);
1410 
1411 	return 0;
1412 
1413 dev_cleanup:
1414 	device_del(&device->dev);
1415 cg_cleanup:
1416 	dev_set_uevent_suppress(&device->dev, false);
1417 	ib_device_unregister_rdmacg(device);
1418 	ib_cache_cleanup_one(device);
1419 	return ret;
1420 }
1421 EXPORT_SYMBOL(ib_register_device);
1422 
1423 /* Callers must hold a get on the device. */
1424 static void __ib_unregister_device(struct ib_device *ib_dev)
1425 {
1426 	/*
1427 	 * We have a registration lock so that all the calls to unregister are
1428 	 * fully fenced, once any unregister returns the device is truely
1429 	 * unregistered even if multiple callers are unregistering it at the
1430 	 * same time. This also interacts with the registration flow and
1431 	 * provides sane semantics if register and unregister are racing.
1432 	 */
1433 	mutex_lock(&ib_dev->unregistration_lock);
1434 	if (!refcount_read(&ib_dev->refcount))
1435 		goto out;
1436 
1437 	disable_device(ib_dev);
1438 
1439 	/* Expedite removing unregistered pointers from the hash table */
1440 	free_netdevs(ib_dev);
1441 
1442 	ib_device_unregister_sysfs(ib_dev);
1443 	device_del(&ib_dev->dev);
1444 	ib_device_unregister_rdmacg(ib_dev);
1445 	ib_cache_cleanup_one(ib_dev);
1446 
1447 	/*
1448 	 * Drivers using the new flow may not call ib_dealloc_device except
1449 	 * in error unwind prior to registration success.
1450 	 */
1451 	if (ib_dev->ops.dealloc_driver) {
1452 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1453 		ib_dealloc_device(ib_dev);
1454 	}
1455 out:
1456 	mutex_unlock(&ib_dev->unregistration_lock);
1457 }
1458 
1459 /**
1460  * ib_unregister_device - Unregister an IB device
1461  * @ib_dev: The device to unregister
1462  *
1463  * Unregister an IB device.  All clients will receive a remove callback.
1464  *
1465  * Callers should call this routine only once, and protect against races with
1466  * registration. Typically it should only be called as part of a remove
1467  * callback in an implementation of driver core's struct device_driver and
1468  * related.
1469  *
1470  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1471  * this function.
1472  */
1473 void ib_unregister_device(struct ib_device *ib_dev)
1474 {
1475 	get_device(&ib_dev->dev);
1476 	__ib_unregister_device(ib_dev);
1477 	put_device(&ib_dev->dev);
1478 }
1479 EXPORT_SYMBOL(ib_unregister_device);
1480 
1481 /**
1482  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1483  * @ib_dev: The device to unregister
1484  *
1485  * This is the same as ib_unregister_device(), except it includes an internal
1486  * ib_device_put() that should match a 'get' obtained by the caller.
1487  *
1488  * It is safe to call this routine concurrently from multiple threads while
1489  * holding the 'get'. When the function returns the device is fully
1490  * unregistered.
1491  *
1492  * Drivers using this flow MUST use the driver_unregister callback to clean up
1493  * their resources associated with the device and dealloc it.
1494  */
1495 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1496 {
1497 	WARN_ON(!ib_dev->ops.dealloc_driver);
1498 	get_device(&ib_dev->dev);
1499 	ib_device_put(ib_dev);
1500 	__ib_unregister_device(ib_dev);
1501 	put_device(&ib_dev->dev);
1502 }
1503 EXPORT_SYMBOL(ib_unregister_device_and_put);
1504 
1505 /**
1506  * ib_unregister_driver - Unregister all IB devices for a driver
1507  * @driver_id: The driver to unregister
1508  *
1509  * This implements a fence for device unregistration. It only returns once all
1510  * devices associated with the driver_id have fully completed their
1511  * unregistration and returned from ib_unregister_device*().
1512  *
1513  * If device's are not yet unregistered it goes ahead and starts unregistering
1514  * them.
1515  *
1516  * This does not block creation of new devices with the given driver_id, that
1517  * is the responsibility of the caller.
1518  */
1519 void ib_unregister_driver(enum rdma_driver_id driver_id)
1520 {
1521 	struct ib_device *ib_dev;
1522 	unsigned long index;
1523 
1524 	down_read(&devices_rwsem);
1525 	xa_for_each (&devices, index, ib_dev) {
1526 		if (ib_dev->ops.driver_id != driver_id)
1527 			continue;
1528 
1529 		get_device(&ib_dev->dev);
1530 		up_read(&devices_rwsem);
1531 
1532 		WARN_ON(!ib_dev->ops.dealloc_driver);
1533 		__ib_unregister_device(ib_dev);
1534 
1535 		put_device(&ib_dev->dev);
1536 		down_read(&devices_rwsem);
1537 	}
1538 	up_read(&devices_rwsem);
1539 }
1540 EXPORT_SYMBOL(ib_unregister_driver);
1541 
1542 static void ib_unregister_work(struct work_struct *work)
1543 {
1544 	struct ib_device *ib_dev =
1545 		container_of(work, struct ib_device, unregistration_work);
1546 
1547 	__ib_unregister_device(ib_dev);
1548 	put_device(&ib_dev->dev);
1549 }
1550 
1551 /**
1552  * ib_unregister_device_queued - Unregister a device using a work queue
1553  * @ib_dev: The device to unregister
1554  *
1555  * This schedules an asynchronous unregistration using a WQ for the device. A
1556  * driver should use this to avoid holding locks while doing unregistration,
1557  * such as holding the RTNL lock.
1558  *
1559  * Drivers using this API must use ib_unregister_driver before module unload
1560  * to ensure that all scheduled unregistrations have completed.
1561  */
1562 void ib_unregister_device_queued(struct ib_device *ib_dev)
1563 {
1564 	WARN_ON(!refcount_read(&ib_dev->refcount));
1565 	WARN_ON(!ib_dev->ops.dealloc_driver);
1566 	get_device(&ib_dev->dev);
1567 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1568 		put_device(&ib_dev->dev);
1569 }
1570 EXPORT_SYMBOL(ib_unregister_device_queued);
1571 
1572 /*
1573  * The caller must pass in a device that has the kref held and the refcount
1574  * released. If the device is in cur_net and still registered then it is moved
1575  * into net.
1576  */
1577 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1578 				 struct net *net)
1579 {
1580 	int ret2 = -EINVAL;
1581 	int ret;
1582 
1583 	mutex_lock(&device->unregistration_lock);
1584 
1585 	/*
1586 	 * If a device not under ib_device_get() or if the unregistration_lock
1587 	 * is not held, the namespace can be changed, or it can be unregistered.
1588 	 * Check again under the lock.
1589 	 */
1590 	if (refcount_read(&device->refcount) == 0 ||
1591 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1592 		ret = -ENODEV;
1593 		goto out;
1594 	}
1595 
1596 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1597 	disable_device(device);
1598 
1599 	/*
1600 	 * At this point no one can be using the device, so it is safe to
1601 	 * change the namespace.
1602 	 */
1603 	write_pnet(&device->coredev.rdma_net, net);
1604 
1605 	down_read(&devices_rwsem);
1606 	/*
1607 	 * Currently rdma devices are system wide unique. So the device name
1608 	 * is guaranteed free in the new namespace. Publish the new namespace
1609 	 * at the sysfs level.
1610 	 */
1611 	ret = device_rename(&device->dev, dev_name(&device->dev));
1612 	up_read(&devices_rwsem);
1613 	if (ret) {
1614 		dev_warn(&device->dev,
1615 			 "%s: Couldn't rename device after namespace change\n",
1616 			 __func__);
1617 		/* Try and put things back and re-enable the device */
1618 		write_pnet(&device->coredev.rdma_net, cur_net);
1619 	}
1620 
1621 	ret2 = enable_device_and_get(device);
1622 	if (ret2) {
1623 		/*
1624 		 * This shouldn't really happen, but if it does, let the user
1625 		 * retry at later point. So don't disable the device.
1626 		 */
1627 		dev_warn(&device->dev,
1628 			 "%s: Couldn't re-enable device after namespace change\n",
1629 			 __func__);
1630 	}
1631 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1632 
1633 	ib_device_put(device);
1634 out:
1635 	mutex_unlock(&device->unregistration_lock);
1636 	if (ret)
1637 		return ret;
1638 	return ret2;
1639 }
1640 
1641 int ib_device_set_netns_put(struct sk_buff *skb,
1642 			    struct ib_device *dev, u32 ns_fd)
1643 {
1644 	struct net *net;
1645 	int ret;
1646 
1647 	net = get_net_ns_by_fd(ns_fd);
1648 	if (IS_ERR(net)) {
1649 		ret = PTR_ERR(net);
1650 		goto net_err;
1651 	}
1652 
1653 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1654 		ret = -EPERM;
1655 		goto ns_err;
1656 	}
1657 
1658 	/*
1659 	 * Currently supported only for those providers which support
1660 	 * disassociation and don't do port specific sysfs init. Once a
1661 	 * port_cleanup infrastructure is implemented, this limitation will be
1662 	 * removed.
1663 	 */
1664 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1665 	    ib_devices_shared_netns) {
1666 		ret = -EOPNOTSUPP;
1667 		goto ns_err;
1668 	}
1669 
1670 	get_device(&dev->dev);
1671 	ib_device_put(dev);
1672 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1673 	put_device(&dev->dev);
1674 
1675 	put_net(net);
1676 	return ret;
1677 
1678 ns_err:
1679 	put_net(net);
1680 net_err:
1681 	ib_device_put(dev);
1682 	return ret;
1683 }
1684 
1685 static struct pernet_operations rdma_dev_net_ops = {
1686 	.init = rdma_dev_init_net,
1687 	.exit = rdma_dev_exit_net,
1688 	.id = &rdma_dev_net_id,
1689 	.size = sizeof(struct rdma_dev_net),
1690 };
1691 
1692 static int assign_client_id(struct ib_client *client)
1693 {
1694 	int ret;
1695 
1696 	down_write(&clients_rwsem);
1697 	/*
1698 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1699 	 * achieve this we assign client_ids so they are sorted in
1700 	 * registration order.
1701 	 */
1702 	client->client_id = highest_client_id;
1703 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1704 	if (ret)
1705 		goto out;
1706 
1707 	highest_client_id++;
1708 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1709 
1710 out:
1711 	up_write(&clients_rwsem);
1712 	return ret;
1713 }
1714 
1715 static void remove_client_id(struct ib_client *client)
1716 {
1717 	down_write(&clients_rwsem);
1718 	xa_erase(&clients, client->client_id);
1719 	for (; highest_client_id; highest_client_id--)
1720 		if (xa_load(&clients, highest_client_id - 1))
1721 			break;
1722 	up_write(&clients_rwsem);
1723 }
1724 
1725 /**
1726  * ib_register_client - Register an IB client
1727  * @client:Client to register
1728  *
1729  * Upper level users of the IB drivers can use ib_register_client() to
1730  * register callbacks for IB device addition and removal.  When an IB
1731  * device is added, each registered client's add method will be called
1732  * (in the order the clients were registered), and when a device is
1733  * removed, each client's remove method will be called (in the reverse
1734  * order that clients were registered).  In addition, when
1735  * ib_register_client() is called, the client will receive an add
1736  * callback for all devices already registered.
1737  */
1738 int ib_register_client(struct ib_client *client)
1739 {
1740 	struct ib_device *device;
1741 	unsigned long index;
1742 	int ret;
1743 
1744 	refcount_set(&client->uses, 1);
1745 	init_completion(&client->uses_zero);
1746 	ret = assign_client_id(client);
1747 	if (ret)
1748 		return ret;
1749 
1750 	down_read(&devices_rwsem);
1751 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1752 		ret = add_client_context(device, client);
1753 		if (ret) {
1754 			up_read(&devices_rwsem);
1755 			ib_unregister_client(client);
1756 			return ret;
1757 		}
1758 	}
1759 	up_read(&devices_rwsem);
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(ib_register_client);
1763 
1764 /**
1765  * ib_unregister_client - Unregister an IB client
1766  * @client:Client to unregister
1767  *
1768  * Upper level users use ib_unregister_client() to remove their client
1769  * registration.  When ib_unregister_client() is called, the client
1770  * will receive a remove callback for each IB device still registered.
1771  *
1772  * This is a full fence, once it returns no client callbacks will be called,
1773  * or are running in another thread.
1774  */
1775 void ib_unregister_client(struct ib_client *client)
1776 {
1777 	struct ib_device *device;
1778 	unsigned long index;
1779 
1780 	down_write(&clients_rwsem);
1781 	ib_client_put(client);
1782 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1783 	up_write(&clients_rwsem);
1784 
1785 	/* We do not want to have locks while calling client->remove() */
1786 	rcu_read_lock();
1787 	xa_for_each (&devices, index, device) {
1788 		if (!ib_device_try_get(device))
1789 			continue;
1790 		rcu_read_unlock();
1791 
1792 		remove_client_context(device, client->client_id);
1793 
1794 		ib_device_put(device);
1795 		rcu_read_lock();
1796 	}
1797 	rcu_read_unlock();
1798 
1799 	/*
1800 	 * remove_client_context() is not a fence, it can return even though a
1801 	 * removal is ongoing. Wait until all removals are completed.
1802 	 */
1803 	wait_for_completion(&client->uses_zero);
1804 	remove_client_id(client);
1805 }
1806 EXPORT_SYMBOL(ib_unregister_client);
1807 
1808 static int __ib_get_global_client_nl_info(const char *client_name,
1809 					  struct ib_client_nl_info *res)
1810 {
1811 	struct ib_client *client;
1812 	unsigned long index;
1813 	int ret = -ENOENT;
1814 
1815 	down_read(&clients_rwsem);
1816 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1817 		if (strcmp(client->name, client_name) != 0)
1818 			continue;
1819 		if (!client->get_global_nl_info) {
1820 			ret = -EOPNOTSUPP;
1821 			break;
1822 		}
1823 		ret = client->get_global_nl_info(res);
1824 		if (WARN_ON(ret == -ENOENT))
1825 			ret = -EINVAL;
1826 		if (!ret && res->cdev)
1827 			get_device(res->cdev);
1828 		break;
1829 	}
1830 	up_read(&clients_rwsem);
1831 	return ret;
1832 }
1833 
1834 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1835 				   const char *client_name,
1836 				   struct ib_client_nl_info *res)
1837 {
1838 	unsigned long index;
1839 	void *client_data;
1840 	int ret = -ENOENT;
1841 
1842 	down_read(&ibdev->client_data_rwsem);
1843 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1844 			     CLIENT_DATA_REGISTERED) {
1845 		struct ib_client *client = xa_load(&clients, index);
1846 
1847 		if (!client || strcmp(client->name, client_name) != 0)
1848 			continue;
1849 		if (!client->get_nl_info) {
1850 			ret = -EOPNOTSUPP;
1851 			break;
1852 		}
1853 		ret = client->get_nl_info(ibdev, client_data, res);
1854 		if (WARN_ON(ret == -ENOENT))
1855 			ret = -EINVAL;
1856 
1857 		/*
1858 		 * The cdev is guaranteed valid as long as we are inside the
1859 		 * client_data_rwsem as remove_one can't be called. Keep it
1860 		 * valid for the caller.
1861 		 */
1862 		if (!ret && res->cdev)
1863 			get_device(res->cdev);
1864 		break;
1865 	}
1866 	up_read(&ibdev->client_data_rwsem);
1867 
1868 	return ret;
1869 }
1870 
1871 /**
1872  * ib_get_client_nl_info - Fetch the nl_info from a client
1873  * @device - IB device
1874  * @client_name - Name of the client
1875  * @res - Result of the query
1876  */
1877 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1878 			  struct ib_client_nl_info *res)
1879 {
1880 	int ret;
1881 
1882 	if (ibdev)
1883 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1884 	else
1885 		ret = __ib_get_global_client_nl_info(client_name, res);
1886 #ifdef CONFIG_MODULES
1887 	if (ret == -ENOENT) {
1888 		request_module("rdma-client-%s", client_name);
1889 		if (ibdev)
1890 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1891 		else
1892 			ret = __ib_get_global_client_nl_info(client_name, res);
1893 	}
1894 #endif
1895 	if (ret) {
1896 		if (ret == -ENOENT)
1897 			return -EOPNOTSUPP;
1898 		return ret;
1899 	}
1900 
1901 	if (WARN_ON(!res->cdev))
1902 		return -EINVAL;
1903 	return 0;
1904 }
1905 
1906 /**
1907  * ib_set_client_data - Set IB client context
1908  * @device:Device to set context for
1909  * @client:Client to set context for
1910  * @data:Context to set
1911  *
1912  * ib_set_client_data() sets client context data that can be retrieved with
1913  * ib_get_client_data(). This can only be called while the client is
1914  * registered to the device, once the ib_client remove() callback returns this
1915  * cannot be called.
1916  */
1917 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1918 			void *data)
1919 {
1920 	void *rc;
1921 
1922 	if (WARN_ON(IS_ERR(data)))
1923 		data = NULL;
1924 
1925 	rc = xa_store(&device->client_data, client->client_id, data,
1926 		      GFP_KERNEL);
1927 	WARN_ON(xa_is_err(rc));
1928 }
1929 EXPORT_SYMBOL(ib_set_client_data);
1930 
1931 /**
1932  * ib_register_event_handler - Register an IB event handler
1933  * @event_handler:Handler to register
1934  *
1935  * ib_register_event_handler() registers an event handler that will be
1936  * called back when asynchronous IB events occur (as defined in
1937  * chapter 11 of the InfiniBand Architecture Specification). This
1938  * callback occurs in workqueue context.
1939  */
1940 void ib_register_event_handler(struct ib_event_handler *event_handler)
1941 {
1942 	down_write(&event_handler->device->event_handler_rwsem);
1943 	list_add_tail(&event_handler->list,
1944 		      &event_handler->device->event_handler_list);
1945 	up_write(&event_handler->device->event_handler_rwsem);
1946 }
1947 EXPORT_SYMBOL(ib_register_event_handler);
1948 
1949 /**
1950  * ib_unregister_event_handler - Unregister an event handler
1951  * @event_handler:Handler to unregister
1952  *
1953  * Unregister an event handler registered with
1954  * ib_register_event_handler().
1955  */
1956 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1957 {
1958 	down_write(&event_handler->device->event_handler_rwsem);
1959 	list_del(&event_handler->list);
1960 	up_write(&event_handler->device->event_handler_rwsem);
1961 }
1962 EXPORT_SYMBOL(ib_unregister_event_handler);
1963 
1964 void ib_dispatch_event_clients(struct ib_event *event)
1965 {
1966 	struct ib_event_handler *handler;
1967 
1968 	down_read(&event->device->event_handler_rwsem);
1969 
1970 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1971 		handler->handler(handler, event);
1972 
1973 	up_read(&event->device->event_handler_rwsem);
1974 }
1975 
1976 static int iw_query_port(struct ib_device *device,
1977 			   u8 port_num,
1978 			   struct ib_port_attr *port_attr)
1979 {
1980 	struct in_device *inetdev;
1981 	struct net_device *netdev;
1982 
1983 	memset(port_attr, 0, sizeof(*port_attr));
1984 
1985 	netdev = ib_device_get_netdev(device, port_num);
1986 	if (!netdev)
1987 		return -ENODEV;
1988 
1989 	port_attr->max_mtu = IB_MTU_4096;
1990 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
1991 
1992 	if (!netif_carrier_ok(netdev)) {
1993 		port_attr->state = IB_PORT_DOWN;
1994 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
1995 	} else {
1996 		rcu_read_lock();
1997 		inetdev = __in_dev_get_rcu(netdev);
1998 
1999 		if (inetdev && inetdev->ifa_list) {
2000 			port_attr->state = IB_PORT_ACTIVE;
2001 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2002 		} else {
2003 			port_attr->state = IB_PORT_INIT;
2004 			port_attr->phys_state =
2005 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2006 		}
2007 
2008 		rcu_read_unlock();
2009 	}
2010 
2011 	dev_put(netdev);
2012 	return device->ops.query_port(device, port_num, port_attr);
2013 }
2014 
2015 static int __ib_query_port(struct ib_device *device,
2016 			   u8 port_num,
2017 			   struct ib_port_attr *port_attr)
2018 {
2019 	union ib_gid gid = {};
2020 	int err;
2021 
2022 	memset(port_attr, 0, sizeof(*port_attr));
2023 
2024 	err = device->ops.query_port(device, port_num, port_attr);
2025 	if (err || port_attr->subnet_prefix)
2026 		return err;
2027 
2028 	if (rdma_port_get_link_layer(device, port_num) !=
2029 	    IB_LINK_LAYER_INFINIBAND)
2030 		return 0;
2031 
2032 	err = device->ops.query_gid(device, port_num, 0, &gid);
2033 	if (err)
2034 		return err;
2035 
2036 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2037 	return 0;
2038 }
2039 
2040 /**
2041  * ib_query_port - Query IB port attributes
2042  * @device:Device to query
2043  * @port_num:Port number to query
2044  * @port_attr:Port attributes
2045  *
2046  * ib_query_port() returns the attributes of a port through the
2047  * @port_attr pointer.
2048  */
2049 int ib_query_port(struct ib_device *device,
2050 		  u8 port_num,
2051 		  struct ib_port_attr *port_attr)
2052 {
2053 	if (!rdma_is_port_valid(device, port_num))
2054 		return -EINVAL;
2055 
2056 	if (rdma_protocol_iwarp(device, port_num))
2057 		return iw_query_port(device, port_num, port_attr);
2058 	else
2059 		return __ib_query_port(device, port_num, port_attr);
2060 }
2061 EXPORT_SYMBOL(ib_query_port);
2062 
2063 static void add_ndev_hash(struct ib_port_data *pdata)
2064 {
2065 	unsigned long flags;
2066 
2067 	might_sleep();
2068 
2069 	spin_lock_irqsave(&ndev_hash_lock, flags);
2070 	if (hash_hashed(&pdata->ndev_hash_link)) {
2071 		hash_del_rcu(&pdata->ndev_hash_link);
2072 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2073 		/*
2074 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2075 		 * grace period
2076 		 */
2077 		synchronize_rcu();
2078 		spin_lock_irqsave(&ndev_hash_lock, flags);
2079 	}
2080 	if (pdata->netdev)
2081 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2082 			     (uintptr_t)pdata->netdev);
2083 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2084 }
2085 
2086 /**
2087  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2088  * @ib_dev: Device to modify
2089  * @ndev: net_device to affiliate, may be NULL
2090  * @port: IB port the net_device is connected to
2091  *
2092  * Drivers should use this to link the ib_device to a netdev so the netdev
2093  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2094  * affiliated with any port.
2095  *
2096  * The caller must ensure that the given ndev is not unregistered or
2097  * unregistering, and that either the ib_device is unregistered or
2098  * ib_device_set_netdev() is called with NULL when the ndev sends a
2099  * NETDEV_UNREGISTER event.
2100  */
2101 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2102 			 unsigned int port)
2103 {
2104 	struct net_device *old_ndev;
2105 	struct ib_port_data *pdata;
2106 	unsigned long flags;
2107 	int ret;
2108 
2109 	/*
2110 	 * Drivers wish to call this before ib_register_driver, so we have to
2111 	 * setup the port data early.
2112 	 */
2113 	ret = alloc_port_data(ib_dev);
2114 	if (ret)
2115 		return ret;
2116 
2117 	if (!rdma_is_port_valid(ib_dev, port))
2118 		return -EINVAL;
2119 
2120 	pdata = &ib_dev->port_data[port];
2121 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2122 	old_ndev = rcu_dereference_protected(
2123 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2124 	if (old_ndev == ndev) {
2125 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2126 		return 0;
2127 	}
2128 
2129 	if (ndev)
2130 		dev_hold(ndev);
2131 	rcu_assign_pointer(pdata->netdev, ndev);
2132 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2133 
2134 	add_ndev_hash(pdata);
2135 	if (old_ndev)
2136 		dev_put(old_ndev);
2137 
2138 	return 0;
2139 }
2140 EXPORT_SYMBOL(ib_device_set_netdev);
2141 
2142 static void free_netdevs(struct ib_device *ib_dev)
2143 {
2144 	unsigned long flags;
2145 	unsigned int port;
2146 
2147 	if (!ib_dev->port_data)
2148 		return;
2149 
2150 	rdma_for_each_port (ib_dev, port) {
2151 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2152 		struct net_device *ndev;
2153 
2154 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2155 		ndev = rcu_dereference_protected(
2156 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2157 		if (ndev) {
2158 			spin_lock(&ndev_hash_lock);
2159 			hash_del_rcu(&pdata->ndev_hash_link);
2160 			spin_unlock(&ndev_hash_lock);
2161 
2162 			/*
2163 			 * If this is the last dev_put there is still a
2164 			 * synchronize_rcu before the netdev is kfreed, so we
2165 			 * can continue to rely on unlocked pointer
2166 			 * comparisons after the put
2167 			 */
2168 			rcu_assign_pointer(pdata->netdev, NULL);
2169 			dev_put(ndev);
2170 		}
2171 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2172 	}
2173 }
2174 
2175 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2176 					unsigned int port)
2177 {
2178 	struct ib_port_data *pdata;
2179 	struct net_device *res;
2180 
2181 	if (!rdma_is_port_valid(ib_dev, port))
2182 		return NULL;
2183 
2184 	pdata = &ib_dev->port_data[port];
2185 
2186 	/*
2187 	 * New drivers should use ib_device_set_netdev() not the legacy
2188 	 * get_netdev().
2189 	 */
2190 	if (ib_dev->ops.get_netdev)
2191 		res = ib_dev->ops.get_netdev(ib_dev, port);
2192 	else {
2193 		spin_lock(&pdata->netdev_lock);
2194 		res = rcu_dereference_protected(
2195 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2196 		if (res)
2197 			dev_hold(res);
2198 		spin_unlock(&pdata->netdev_lock);
2199 	}
2200 
2201 	/*
2202 	 * If we are starting to unregister expedite things by preventing
2203 	 * propagation of an unregistering netdev.
2204 	 */
2205 	if (res && res->reg_state != NETREG_REGISTERED) {
2206 		dev_put(res);
2207 		return NULL;
2208 	}
2209 
2210 	return res;
2211 }
2212 
2213 /**
2214  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2215  * @ndev: netdev to locate
2216  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2217  *
2218  * Find and hold an ib_device that is associated with a netdev via
2219  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2220  * returned pointer.
2221  */
2222 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2223 					  enum rdma_driver_id driver_id)
2224 {
2225 	struct ib_device *res = NULL;
2226 	struct ib_port_data *cur;
2227 
2228 	rcu_read_lock();
2229 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2230 				    (uintptr_t)ndev) {
2231 		if (rcu_access_pointer(cur->netdev) == ndev &&
2232 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2233 		     cur->ib_dev->ops.driver_id == driver_id) &&
2234 		    ib_device_try_get(cur->ib_dev)) {
2235 			res = cur->ib_dev;
2236 			break;
2237 		}
2238 	}
2239 	rcu_read_unlock();
2240 
2241 	return res;
2242 }
2243 EXPORT_SYMBOL(ib_device_get_by_netdev);
2244 
2245 /**
2246  * ib_enum_roce_netdev - enumerate all RoCE ports
2247  * @ib_dev : IB device we want to query
2248  * @filter: Should we call the callback?
2249  * @filter_cookie: Cookie passed to filter
2250  * @cb: Callback to call for each found RoCE ports
2251  * @cookie: Cookie passed back to the callback
2252  *
2253  * Enumerates all of the physical RoCE ports of ib_dev
2254  * which are related to netdevice and calls callback() on each
2255  * device for which filter() function returns non zero.
2256  */
2257 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2258 			 roce_netdev_filter filter,
2259 			 void *filter_cookie,
2260 			 roce_netdev_callback cb,
2261 			 void *cookie)
2262 {
2263 	unsigned int port;
2264 
2265 	rdma_for_each_port (ib_dev, port)
2266 		if (rdma_protocol_roce(ib_dev, port)) {
2267 			struct net_device *idev =
2268 				ib_device_get_netdev(ib_dev, port);
2269 
2270 			if (filter(ib_dev, port, idev, filter_cookie))
2271 				cb(ib_dev, port, idev, cookie);
2272 
2273 			if (idev)
2274 				dev_put(idev);
2275 		}
2276 }
2277 
2278 /**
2279  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2280  * @filter: Should we call the callback?
2281  * @filter_cookie: Cookie passed to filter
2282  * @cb: Callback to call for each found RoCE ports
2283  * @cookie: Cookie passed back to the callback
2284  *
2285  * Enumerates all RoCE devices' physical ports which are related
2286  * to netdevices and calls callback() on each device for which
2287  * filter() function returns non zero.
2288  */
2289 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2290 			      void *filter_cookie,
2291 			      roce_netdev_callback cb,
2292 			      void *cookie)
2293 {
2294 	struct ib_device *dev;
2295 	unsigned long index;
2296 
2297 	down_read(&devices_rwsem);
2298 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2299 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2300 	up_read(&devices_rwsem);
2301 }
2302 
2303 /**
2304  * ib_enum_all_devs - enumerate all ib_devices
2305  * @cb: Callback to call for each found ib_device
2306  *
2307  * Enumerates all ib_devices and calls callback() on each device.
2308  */
2309 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2310 		     struct netlink_callback *cb)
2311 {
2312 	unsigned long index;
2313 	struct ib_device *dev;
2314 	unsigned int idx = 0;
2315 	int ret = 0;
2316 
2317 	down_read(&devices_rwsem);
2318 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2319 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2320 			continue;
2321 
2322 		ret = nldev_cb(dev, skb, cb, idx);
2323 		if (ret)
2324 			break;
2325 		idx++;
2326 	}
2327 	up_read(&devices_rwsem);
2328 	return ret;
2329 }
2330 
2331 /**
2332  * ib_query_pkey - Get P_Key table entry
2333  * @device:Device to query
2334  * @port_num:Port number to query
2335  * @index:P_Key table index to query
2336  * @pkey:Returned P_Key
2337  *
2338  * ib_query_pkey() fetches the specified P_Key table entry.
2339  */
2340 int ib_query_pkey(struct ib_device *device,
2341 		  u8 port_num, u16 index, u16 *pkey)
2342 {
2343 	if (!rdma_is_port_valid(device, port_num))
2344 		return -EINVAL;
2345 
2346 	return device->ops.query_pkey(device, port_num, index, pkey);
2347 }
2348 EXPORT_SYMBOL(ib_query_pkey);
2349 
2350 /**
2351  * ib_modify_device - Change IB device attributes
2352  * @device:Device to modify
2353  * @device_modify_mask:Mask of attributes to change
2354  * @device_modify:New attribute values
2355  *
2356  * ib_modify_device() changes a device's attributes as specified by
2357  * the @device_modify_mask and @device_modify structure.
2358  */
2359 int ib_modify_device(struct ib_device *device,
2360 		     int device_modify_mask,
2361 		     struct ib_device_modify *device_modify)
2362 {
2363 	if (!device->ops.modify_device)
2364 		return -EOPNOTSUPP;
2365 
2366 	return device->ops.modify_device(device, device_modify_mask,
2367 					 device_modify);
2368 }
2369 EXPORT_SYMBOL(ib_modify_device);
2370 
2371 /**
2372  * ib_modify_port - Modifies the attributes for the specified port.
2373  * @device: The device to modify.
2374  * @port_num: The number of the port to modify.
2375  * @port_modify_mask: Mask used to specify which attributes of the port
2376  *   to change.
2377  * @port_modify: New attribute values for the port.
2378  *
2379  * ib_modify_port() changes a port's attributes as specified by the
2380  * @port_modify_mask and @port_modify structure.
2381  */
2382 int ib_modify_port(struct ib_device *device,
2383 		   u8 port_num, int port_modify_mask,
2384 		   struct ib_port_modify *port_modify)
2385 {
2386 	int rc;
2387 
2388 	if (!rdma_is_port_valid(device, port_num))
2389 		return -EINVAL;
2390 
2391 	if (device->ops.modify_port)
2392 		rc = device->ops.modify_port(device, port_num,
2393 					     port_modify_mask,
2394 					     port_modify);
2395 	else if (rdma_protocol_roce(device, port_num) &&
2396 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2397 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2398 		rc = 0;
2399 	else
2400 		rc = -EOPNOTSUPP;
2401 	return rc;
2402 }
2403 EXPORT_SYMBOL(ib_modify_port);
2404 
2405 /**
2406  * ib_find_gid - Returns the port number and GID table index where
2407  *   a specified GID value occurs. Its searches only for IB link layer.
2408  * @device: The device to query.
2409  * @gid: The GID value to search for.
2410  * @port_num: The port number of the device where the GID value was found.
2411  * @index: The index into the GID table where the GID was found.  This
2412  *   parameter may be NULL.
2413  */
2414 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2415 		u8 *port_num, u16 *index)
2416 {
2417 	union ib_gid tmp_gid;
2418 	unsigned int port;
2419 	int ret, i;
2420 
2421 	rdma_for_each_port (device, port) {
2422 		if (!rdma_protocol_ib(device, port))
2423 			continue;
2424 
2425 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2426 		     ++i) {
2427 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2428 			if (ret)
2429 				return ret;
2430 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2431 				*port_num = port;
2432 				if (index)
2433 					*index = i;
2434 				return 0;
2435 			}
2436 		}
2437 	}
2438 
2439 	return -ENOENT;
2440 }
2441 EXPORT_SYMBOL(ib_find_gid);
2442 
2443 /**
2444  * ib_find_pkey - Returns the PKey table index where a specified
2445  *   PKey value occurs.
2446  * @device: The device to query.
2447  * @port_num: The port number of the device to search for the PKey.
2448  * @pkey: The PKey value to search for.
2449  * @index: The index into the PKey table where the PKey was found.
2450  */
2451 int ib_find_pkey(struct ib_device *device,
2452 		 u8 port_num, u16 pkey, u16 *index)
2453 {
2454 	int ret, i;
2455 	u16 tmp_pkey;
2456 	int partial_ix = -1;
2457 
2458 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2459 	     ++i) {
2460 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2461 		if (ret)
2462 			return ret;
2463 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2464 			/* if there is full-member pkey take it.*/
2465 			if (tmp_pkey & 0x8000) {
2466 				*index = i;
2467 				return 0;
2468 			}
2469 			if (partial_ix < 0)
2470 				partial_ix = i;
2471 		}
2472 	}
2473 
2474 	/*no full-member, if exists take the limited*/
2475 	if (partial_ix >= 0) {
2476 		*index = partial_ix;
2477 		return 0;
2478 	}
2479 	return -ENOENT;
2480 }
2481 EXPORT_SYMBOL(ib_find_pkey);
2482 
2483 /**
2484  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2485  * for a received CM request
2486  * @dev:	An RDMA device on which the request has been received.
2487  * @port:	Port number on the RDMA device.
2488  * @pkey:	The Pkey the request came on.
2489  * @gid:	A GID that the net_dev uses to communicate.
2490  * @addr:	Contains the IP address that the request specified as its
2491  *		destination.
2492  *
2493  */
2494 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2495 					    u8 port,
2496 					    u16 pkey,
2497 					    const union ib_gid *gid,
2498 					    const struct sockaddr *addr)
2499 {
2500 	struct net_device *net_dev = NULL;
2501 	unsigned long index;
2502 	void *client_data;
2503 
2504 	if (!rdma_protocol_ib(dev, port))
2505 		return NULL;
2506 
2507 	/*
2508 	 * Holding the read side guarantees that the client will not become
2509 	 * unregistered while we are calling get_net_dev_by_params()
2510 	 */
2511 	down_read(&dev->client_data_rwsem);
2512 	xan_for_each_marked (&dev->client_data, index, client_data,
2513 			     CLIENT_DATA_REGISTERED) {
2514 		struct ib_client *client = xa_load(&clients, index);
2515 
2516 		if (!client || !client->get_net_dev_by_params)
2517 			continue;
2518 
2519 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2520 							addr, client_data);
2521 		if (net_dev)
2522 			break;
2523 	}
2524 	up_read(&dev->client_data_rwsem);
2525 
2526 	return net_dev;
2527 }
2528 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2529 
2530 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2531 {
2532 	struct ib_device_ops *dev_ops = &dev->ops;
2533 #define SET_DEVICE_OP(ptr, name)                                               \
2534 	do {                                                                   \
2535 		if (ops->name)                                                 \
2536 			if (!((ptr)->name))				       \
2537 				(ptr)->name = ops->name;                       \
2538 	} while (0)
2539 
2540 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2541 
2542 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2543 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2544 			dev_ops->driver_id != ops->driver_id);
2545 		dev_ops->driver_id = ops->driver_id;
2546 	}
2547 	if (ops->owner) {
2548 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2549 		dev_ops->owner = ops->owner;
2550 	}
2551 	if (ops->uverbs_abi_ver)
2552 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2553 
2554 	dev_ops->uverbs_no_driver_id_binding |=
2555 		ops->uverbs_no_driver_id_binding;
2556 
2557 	SET_DEVICE_OP(dev_ops, add_gid);
2558 	SET_DEVICE_OP(dev_ops, advise_mr);
2559 	SET_DEVICE_OP(dev_ops, alloc_dm);
2560 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2561 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2562 	SET_DEVICE_OP(dev_ops, alloc_mr);
2563 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2564 	SET_DEVICE_OP(dev_ops, alloc_mw);
2565 	SET_DEVICE_OP(dev_ops, alloc_pd);
2566 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2567 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2568 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2569 	SET_DEVICE_OP(dev_ops, attach_mcast);
2570 	SET_DEVICE_OP(dev_ops, check_mr_status);
2571 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2572 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2573 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2574 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2575 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2576 	SET_DEVICE_OP(dev_ops, create_ah);
2577 	SET_DEVICE_OP(dev_ops, create_counters);
2578 	SET_DEVICE_OP(dev_ops, create_cq);
2579 	SET_DEVICE_OP(dev_ops, create_flow);
2580 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2581 	SET_DEVICE_OP(dev_ops, create_qp);
2582 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2583 	SET_DEVICE_OP(dev_ops, create_srq);
2584 	SET_DEVICE_OP(dev_ops, create_wq);
2585 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2586 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2587 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2588 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2589 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2590 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2591 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2592 	SET_DEVICE_OP(dev_ops, del_gid);
2593 	SET_DEVICE_OP(dev_ops, dereg_mr);
2594 	SET_DEVICE_OP(dev_ops, destroy_ah);
2595 	SET_DEVICE_OP(dev_ops, destroy_counters);
2596 	SET_DEVICE_OP(dev_ops, destroy_cq);
2597 	SET_DEVICE_OP(dev_ops, destroy_flow);
2598 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2599 	SET_DEVICE_OP(dev_ops, destroy_qp);
2600 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2601 	SET_DEVICE_OP(dev_ops, destroy_srq);
2602 	SET_DEVICE_OP(dev_ops, destroy_wq);
2603 	SET_DEVICE_OP(dev_ops, detach_mcast);
2604 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2605 	SET_DEVICE_OP(dev_ops, drain_rq);
2606 	SET_DEVICE_OP(dev_ops, drain_sq);
2607 	SET_DEVICE_OP(dev_ops, enable_driver);
2608 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2609 	SET_DEVICE_OP(dev_ops, fill_stat_entry);
2610 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2611 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2612 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2613 	SET_DEVICE_OP(dev_ops, get_link_layer);
2614 	SET_DEVICE_OP(dev_ops, get_netdev);
2615 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2616 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2617 	SET_DEVICE_OP(dev_ops, get_vf_config);
2618 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2619 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2620 	SET_DEVICE_OP(dev_ops, init_port);
2621 	SET_DEVICE_OP(dev_ops, iw_accept);
2622 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2623 	SET_DEVICE_OP(dev_ops, iw_connect);
2624 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2625 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2626 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2627 	SET_DEVICE_OP(dev_ops, iw_reject);
2628 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2629 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2630 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2631 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2632 	SET_DEVICE_OP(dev_ops, mmap);
2633 	SET_DEVICE_OP(dev_ops, mmap_free);
2634 	SET_DEVICE_OP(dev_ops, modify_ah);
2635 	SET_DEVICE_OP(dev_ops, modify_cq);
2636 	SET_DEVICE_OP(dev_ops, modify_device);
2637 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2638 	SET_DEVICE_OP(dev_ops, modify_port);
2639 	SET_DEVICE_OP(dev_ops, modify_qp);
2640 	SET_DEVICE_OP(dev_ops, modify_srq);
2641 	SET_DEVICE_OP(dev_ops, modify_wq);
2642 	SET_DEVICE_OP(dev_ops, peek_cq);
2643 	SET_DEVICE_OP(dev_ops, poll_cq);
2644 	SET_DEVICE_OP(dev_ops, post_recv);
2645 	SET_DEVICE_OP(dev_ops, post_send);
2646 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2647 	SET_DEVICE_OP(dev_ops, process_mad);
2648 	SET_DEVICE_OP(dev_ops, query_ah);
2649 	SET_DEVICE_OP(dev_ops, query_device);
2650 	SET_DEVICE_OP(dev_ops, query_gid);
2651 	SET_DEVICE_OP(dev_ops, query_pkey);
2652 	SET_DEVICE_OP(dev_ops, query_port);
2653 	SET_DEVICE_OP(dev_ops, query_qp);
2654 	SET_DEVICE_OP(dev_ops, query_srq);
2655 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2656 	SET_DEVICE_OP(dev_ops, read_counters);
2657 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2658 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2659 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2660 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2661 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2662 	SET_DEVICE_OP(dev_ops, resize_cq);
2663 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2664 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2665 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2666 
2667 	SET_OBJ_SIZE(dev_ops, ib_ah);
2668 	SET_OBJ_SIZE(dev_ops, ib_cq);
2669 	SET_OBJ_SIZE(dev_ops, ib_pd);
2670 	SET_OBJ_SIZE(dev_ops, ib_srq);
2671 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2672 }
2673 EXPORT_SYMBOL(ib_set_device_ops);
2674 
2675 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2676 	[RDMA_NL_LS_OP_RESOLVE] = {
2677 		.doit = ib_nl_handle_resolve_resp,
2678 		.flags = RDMA_NL_ADMIN_PERM,
2679 	},
2680 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2681 		.doit = ib_nl_handle_set_timeout,
2682 		.flags = RDMA_NL_ADMIN_PERM,
2683 	},
2684 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2685 		.doit = ib_nl_handle_ip_res_resp,
2686 		.flags = RDMA_NL_ADMIN_PERM,
2687 	},
2688 };
2689 
2690 static int __init ib_core_init(void)
2691 {
2692 	int ret;
2693 
2694 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2695 	if (!ib_wq)
2696 		return -ENOMEM;
2697 
2698 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2699 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2700 	if (!ib_comp_wq) {
2701 		ret = -ENOMEM;
2702 		goto err;
2703 	}
2704 
2705 	ib_comp_unbound_wq =
2706 		alloc_workqueue("ib-comp-unb-wq",
2707 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2708 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2709 	if (!ib_comp_unbound_wq) {
2710 		ret = -ENOMEM;
2711 		goto err_comp;
2712 	}
2713 
2714 	ret = class_register(&ib_class);
2715 	if (ret) {
2716 		pr_warn("Couldn't create InfiniBand device class\n");
2717 		goto err_comp_unbound;
2718 	}
2719 
2720 	rdma_nl_init();
2721 
2722 	ret = addr_init();
2723 	if (ret) {
2724 		pr_warn("Could't init IB address resolution\n");
2725 		goto err_ibnl;
2726 	}
2727 
2728 	ret = ib_mad_init();
2729 	if (ret) {
2730 		pr_warn("Couldn't init IB MAD\n");
2731 		goto err_addr;
2732 	}
2733 
2734 	ret = ib_sa_init();
2735 	if (ret) {
2736 		pr_warn("Couldn't init SA\n");
2737 		goto err_mad;
2738 	}
2739 
2740 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2741 	if (ret) {
2742 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2743 		goto err_sa;
2744 	}
2745 
2746 	ret = register_pernet_device(&rdma_dev_net_ops);
2747 	if (ret) {
2748 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2749 		goto err_compat;
2750 	}
2751 
2752 	nldev_init();
2753 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2754 	roce_gid_mgmt_init();
2755 
2756 	return 0;
2757 
2758 err_compat:
2759 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2760 err_sa:
2761 	ib_sa_cleanup();
2762 err_mad:
2763 	ib_mad_cleanup();
2764 err_addr:
2765 	addr_cleanup();
2766 err_ibnl:
2767 	class_unregister(&ib_class);
2768 err_comp_unbound:
2769 	destroy_workqueue(ib_comp_unbound_wq);
2770 err_comp:
2771 	destroy_workqueue(ib_comp_wq);
2772 err:
2773 	destroy_workqueue(ib_wq);
2774 	return ret;
2775 }
2776 
2777 static void __exit ib_core_cleanup(void)
2778 {
2779 	roce_gid_mgmt_cleanup();
2780 	nldev_exit();
2781 	rdma_nl_unregister(RDMA_NL_LS);
2782 	unregister_pernet_device(&rdma_dev_net_ops);
2783 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2784 	ib_sa_cleanup();
2785 	ib_mad_cleanup();
2786 	addr_cleanup();
2787 	rdma_nl_exit();
2788 	class_unregister(&ib_class);
2789 	destroy_workqueue(ib_comp_unbound_wq);
2790 	destroy_workqueue(ib_comp_wq);
2791 	/* Make sure that any pending umem accounting work is done. */
2792 	destroy_workqueue(ib_wq);
2793 	flush_workqueue(system_unbound_wq);
2794 	WARN_ON(!xa_empty(&clients));
2795 	WARN_ON(!xa_empty(&devices));
2796 }
2797 
2798 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2799 
2800 /* ib core relies on netdev stack to first register net_ns_type_operations
2801  * ns kobject type before ib_core initialization.
2802  */
2803 fs_initcall(ib_core_init);
2804 module_exit(ib_core_cleanup);
2805