1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 62 /* 63 * Each of the three rwsem locks (devices, clients, client_data) protects the 64 * xarray of the same name. Specifically it allows the caller to assert that 65 * the MARK will/will not be changing under the lock, and for devices and 66 * clients, that the value in the xarray is still a valid pointer. Change of 67 * the MARK is linked to the object state, so holding the lock and testing the 68 * MARK also asserts that the contained object is in a certain state. 69 * 70 * This is used to build a two stage register/unregister flow where objects 71 * can continue to be in the xarray even though they are still in progress to 72 * register/unregister. 73 * 74 * The xarray itself provides additional locking, and restartable iteration, 75 * which is also relied on. 76 * 77 * Locks should not be nested, with the exception of client_data, which is 78 * allowed to nest under the read side of the other two locks. 79 * 80 * The devices_rwsem also protects the device name list, any change or 81 * assignment of device name must also hold the write side to guarantee unique 82 * names. 83 */ 84 85 /* 86 * devices contains devices that have had their names assigned. The 87 * devices may not be registered. Users that care about the registration 88 * status need to call ib_device_try_get() on the device to ensure it is 89 * registered, and keep it registered, for the required duration. 90 * 91 */ 92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 93 static DECLARE_RWSEM(devices_rwsem); 94 #define DEVICE_REGISTERED XA_MARK_1 95 96 static u32 highest_client_id; 97 #define CLIENT_REGISTERED XA_MARK_1 98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 99 static DECLARE_RWSEM(clients_rwsem); 100 101 static void ib_client_put(struct ib_client *client) 102 { 103 if (refcount_dec_and_test(&client->uses)) 104 complete(&client->uses_zero); 105 } 106 107 /* 108 * If client_data is registered then the corresponding client must also still 109 * be registered. 110 */ 111 #define CLIENT_DATA_REGISTERED XA_MARK_1 112 113 unsigned int rdma_dev_net_id; 114 115 /* 116 * A list of net namespaces is maintained in an xarray. This is necessary 117 * because we can't get the locking right using the existing net ns list. We 118 * would require a init_net callback after the list is updated. 119 */ 120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 121 /* 122 * rwsem to protect accessing the rdma_nets xarray entries. 123 */ 124 static DECLARE_RWSEM(rdma_nets_rwsem); 125 126 bool ib_devices_shared_netns = true; 127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 128 MODULE_PARM_DESC(netns_mode, 129 "Share device among net namespaces; default=1 (shared)"); 130 /** 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 132 * from a specified net namespace or not. 133 * @dev: Pointer to rdma device which needs to be checked 134 * @net: Pointer to net namesapce for which access to be checked 135 * 136 * When the rdma device is in shared mode, it ignores the net namespace. 137 * When the rdma device is exclusive to a net namespace, rdma device net 138 * namespace is checked against the specified one. 139 */ 140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 141 { 142 return (ib_devices_shared_netns || 143 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 144 } 145 EXPORT_SYMBOL(rdma_dev_access_netns); 146 147 /* 148 * xarray has this behavior where it won't iterate over NULL values stored in 149 * allocated arrays. So we need our own iterator to see all values stored in 150 * the array. This does the same thing as xa_for_each except that it also 151 * returns NULL valued entries if the array is allocating. Simplified to only 152 * work on simple xarrays. 153 */ 154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 155 xa_mark_t filter) 156 { 157 XA_STATE(xas, xa, *indexp); 158 void *entry; 159 160 rcu_read_lock(); 161 do { 162 entry = xas_find_marked(&xas, ULONG_MAX, filter); 163 if (xa_is_zero(entry)) 164 break; 165 } while (xas_retry(&xas, entry)); 166 rcu_read_unlock(); 167 168 if (entry) { 169 *indexp = xas.xa_index; 170 if (xa_is_zero(entry)) 171 return NULL; 172 return entry; 173 } 174 return XA_ERROR(-ENOENT); 175 } 176 #define xan_for_each_marked(xa, index, entry, filter) \ 177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 178 !xa_is_err(entry); \ 179 (index)++, entry = xan_find_marked(xa, &(index), filter)) 180 181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 182 static DEFINE_SPINLOCK(ndev_hash_lock); 183 static DECLARE_HASHTABLE(ndev_hash, 5); 184 185 static void free_netdevs(struct ib_device *ib_dev); 186 static void ib_unregister_work(struct work_struct *work); 187 static void __ib_unregister_device(struct ib_device *device); 188 static int ib_security_change(struct notifier_block *nb, unsigned long event, 189 void *lsm_data); 190 static void ib_policy_change_task(struct work_struct *work); 191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 192 193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 194 struct va_format *vaf) 195 { 196 if (ibdev && ibdev->dev.parent) 197 dev_printk_emit(level[1] - '0', 198 ibdev->dev.parent, 199 "%s %s %s: %pV", 200 dev_driver_string(ibdev->dev.parent), 201 dev_name(ibdev->dev.parent), 202 dev_name(&ibdev->dev), 203 vaf); 204 else if (ibdev) 205 printk("%s%s: %pV", 206 level, dev_name(&ibdev->dev), vaf); 207 else 208 printk("%s(NULL ib_device): %pV", level, vaf); 209 } 210 211 void ibdev_printk(const char *level, const struct ib_device *ibdev, 212 const char *format, ...) 213 { 214 struct va_format vaf; 215 va_list args; 216 217 va_start(args, format); 218 219 vaf.fmt = format; 220 vaf.va = &args; 221 222 __ibdev_printk(level, ibdev, &vaf); 223 224 va_end(args); 225 } 226 EXPORT_SYMBOL(ibdev_printk); 227 228 #define define_ibdev_printk_level(func, level) \ 229 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 230 { \ 231 struct va_format vaf; \ 232 va_list args; \ 233 \ 234 va_start(args, fmt); \ 235 \ 236 vaf.fmt = fmt; \ 237 vaf.va = &args; \ 238 \ 239 __ibdev_printk(level, ibdev, &vaf); \ 240 \ 241 va_end(args); \ 242 } \ 243 EXPORT_SYMBOL(func); 244 245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 248 define_ibdev_printk_level(ibdev_err, KERN_ERR); 249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 251 define_ibdev_printk_level(ibdev_info, KERN_INFO); 252 253 static struct notifier_block ibdev_lsm_nb = { 254 .notifier_call = ib_security_change, 255 }; 256 257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 258 struct net *net); 259 260 /* Pointer to the RCU head at the start of the ib_port_data array */ 261 struct ib_port_data_rcu { 262 struct rcu_head rcu_head; 263 struct ib_port_data pdata[]; 264 }; 265 266 static void ib_device_check_mandatory(struct ib_device *device) 267 { 268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 269 static const struct { 270 size_t offset; 271 char *name; 272 } mandatory_table[] = { 273 IB_MANDATORY_FUNC(query_device), 274 IB_MANDATORY_FUNC(query_port), 275 IB_MANDATORY_FUNC(query_pkey), 276 IB_MANDATORY_FUNC(alloc_pd), 277 IB_MANDATORY_FUNC(dealloc_pd), 278 IB_MANDATORY_FUNC(create_qp), 279 IB_MANDATORY_FUNC(modify_qp), 280 IB_MANDATORY_FUNC(destroy_qp), 281 IB_MANDATORY_FUNC(post_send), 282 IB_MANDATORY_FUNC(post_recv), 283 IB_MANDATORY_FUNC(create_cq), 284 IB_MANDATORY_FUNC(destroy_cq), 285 IB_MANDATORY_FUNC(poll_cq), 286 IB_MANDATORY_FUNC(req_notify_cq), 287 IB_MANDATORY_FUNC(get_dma_mr), 288 IB_MANDATORY_FUNC(dereg_mr), 289 IB_MANDATORY_FUNC(get_port_immutable) 290 }; 291 int i; 292 293 device->kverbs_provider = true; 294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 295 if (!*(void **) ((void *) &device->ops + 296 mandatory_table[i].offset)) { 297 device->kverbs_provider = false; 298 break; 299 } 300 } 301 } 302 303 /* 304 * Caller must perform ib_device_put() to return the device reference count 305 * when ib_device_get_by_index() returns valid device pointer. 306 */ 307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 308 { 309 struct ib_device *device; 310 311 down_read(&devices_rwsem); 312 device = xa_load(&devices, index); 313 if (device) { 314 if (!rdma_dev_access_netns(device, net)) { 315 device = NULL; 316 goto out; 317 } 318 319 if (!ib_device_try_get(device)) 320 device = NULL; 321 } 322 out: 323 up_read(&devices_rwsem); 324 return device; 325 } 326 327 /** 328 * ib_device_put - Release IB device reference 329 * @device: device whose reference to be released 330 * 331 * ib_device_put() releases reference to the IB device to allow it to be 332 * unregistered and eventually free. 333 */ 334 void ib_device_put(struct ib_device *device) 335 { 336 if (refcount_dec_and_test(&device->refcount)) 337 complete(&device->unreg_completion); 338 } 339 EXPORT_SYMBOL(ib_device_put); 340 341 static struct ib_device *__ib_device_get_by_name(const char *name) 342 { 343 struct ib_device *device; 344 unsigned long index; 345 346 xa_for_each (&devices, index, device) 347 if (!strcmp(name, dev_name(&device->dev))) 348 return device; 349 350 return NULL; 351 } 352 353 /** 354 * ib_device_get_by_name - Find an IB device by name 355 * @name: The name to look for 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 357 * 358 * Find and hold an ib_device by its name. The caller must call 359 * ib_device_put() on the returned pointer. 360 */ 361 struct ib_device *ib_device_get_by_name(const char *name, 362 enum rdma_driver_id driver_id) 363 { 364 struct ib_device *device; 365 366 down_read(&devices_rwsem); 367 device = __ib_device_get_by_name(name); 368 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 369 device->ops.driver_id != driver_id) 370 device = NULL; 371 372 if (device) { 373 if (!ib_device_try_get(device)) 374 device = NULL; 375 } 376 up_read(&devices_rwsem); 377 return device; 378 } 379 EXPORT_SYMBOL(ib_device_get_by_name); 380 381 static int rename_compat_devs(struct ib_device *device) 382 { 383 struct ib_core_device *cdev; 384 unsigned long index; 385 int ret = 0; 386 387 mutex_lock(&device->compat_devs_mutex); 388 xa_for_each (&device->compat_devs, index, cdev) { 389 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 390 if (ret) { 391 dev_warn(&cdev->dev, 392 "Fail to rename compatdev to new name %s\n", 393 dev_name(&device->dev)); 394 break; 395 } 396 } 397 mutex_unlock(&device->compat_devs_mutex); 398 return ret; 399 } 400 401 int ib_device_rename(struct ib_device *ibdev, const char *name) 402 { 403 unsigned long index; 404 void *client_data; 405 int ret; 406 407 down_write(&devices_rwsem); 408 if (!strcmp(name, dev_name(&ibdev->dev))) { 409 up_write(&devices_rwsem); 410 return 0; 411 } 412 413 if (__ib_device_get_by_name(name)) { 414 up_write(&devices_rwsem); 415 return -EEXIST; 416 } 417 418 ret = device_rename(&ibdev->dev, name); 419 if (ret) { 420 up_write(&devices_rwsem); 421 return ret; 422 } 423 424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 425 ret = rename_compat_devs(ibdev); 426 427 downgrade_write(&devices_rwsem); 428 down_read(&ibdev->client_data_rwsem); 429 xan_for_each_marked(&ibdev->client_data, index, client_data, 430 CLIENT_DATA_REGISTERED) { 431 struct ib_client *client = xa_load(&clients, index); 432 433 if (!client || !client->rename) 434 continue; 435 436 client->rename(ibdev, client_data); 437 } 438 up_read(&ibdev->client_data_rwsem); 439 up_read(&devices_rwsem); 440 return 0; 441 } 442 443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 444 { 445 if (use_dim > 1) 446 return -EINVAL; 447 ibdev->use_cq_dim = use_dim; 448 449 return 0; 450 } 451 452 static int alloc_name(struct ib_device *ibdev, const char *name) 453 { 454 struct ib_device *device; 455 unsigned long index; 456 struct ida inuse; 457 int rc; 458 int i; 459 460 lockdep_assert_held_write(&devices_rwsem); 461 ida_init(&inuse); 462 xa_for_each (&devices, index, device) { 463 char buf[IB_DEVICE_NAME_MAX]; 464 465 if (sscanf(dev_name(&device->dev), name, &i) != 1) 466 continue; 467 if (i < 0 || i >= INT_MAX) 468 continue; 469 snprintf(buf, sizeof buf, name, i); 470 if (strcmp(buf, dev_name(&device->dev)) != 0) 471 continue; 472 473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 474 if (rc < 0) 475 goto out; 476 } 477 478 rc = ida_alloc(&inuse, GFP_KERNEL); 479 if (rc < 0) 480 goto out; 481 482 rc = dev_set_name(&ibdev->dev, name, rc); 483 out: 484 ida_destroy(&inuse); 485 return rc; 486 } 487 488 static void ib_device_release(struct device *device) 489 { 490 struct ib_device *dev = container_of(device, struct ib_device, dev); 491 492 free_netdevs(dev); 493 WARN_ON(refcount_read(&dev->refcount)); 494 if (dev->port_data) { 495 ib_cache_release_one(dev); 496 ib_security_release_port_pkey_list(dev); 497 rdma_counter_release(dev); 498 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 499 pdata[0]), 500 rcu_head); 501 } 502 503 mutex_destroy(&dev->unregistration_lock); 504 mutex_destroy(&dev->compat_devs_mutex); 505 506 xa_destroy(&dev->compat_devs); 507 xa_destroy(&dev->client_data); 508 kfree_rcu(dev, rcu_head); 509 } 510 511 static int ib_device_uevent(struct device *device, 512 struct kobj_uevent_env *env) 513 { 514 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 515 return -ENOMEM; 516 517 /* 518 * It would be nice to pass the node GUID with the event... 519 */ 520 521 return 0; 522 } 523 524 static const void *net_namespace(struct device *d) 525 { 526 struct ib_core_device *coredev = 527 container_of(d, struct ib_core_device, dev); 528 529 return read_pnet(&coredev->rdma_net); 530 } 531 532 static struct class ib_class = { 533 .name = "infiniband", 534 .dev_release = ib_device_release, 535 .dev_uevent = ib_device_uevent, 536 .ns_type = &net_ns_type_operations, 537 .namespace = net_namespace, 538 }; 539 540 static void rdma_init_coredev(struct ib_core_device *coredev, 541 struct ib_device *dev, struct net *net) 542 { 543 /* This BUILD_BUG_ON is intended to catch layout change 544 * of union of ib_core_device and device. 545 * dev must be the first element as ib_core and providers 546 * driver uses it. Adding anything in ib_core_device before 547 * device will break this assumption. 548 */ 549 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 550 offsetof(struct ib_device, dev)); 551 552 coredev->dev.class = &ib_class; 553 coredev->dev.groups = dev->groups; 554 device_initialize(&coredev->dev); 555 coredev->owner = dev; 556 INIT_LIST_HEAD(&coredev->port_list); 557 write_pnet(&coredev->rdma_net, net); 558 } 559 560 /** 561 * _ib_alloc_device - allocate an IB device struct 562 * @size:size of structure to allocate 563 * 564 * Low-level drivers should use ib_alloc_device() to allocate &struct 565 * ib_device. @size is the size of the structure to be allocated, 566 * including any private data used by the low-level driver. 567 * ib_dealloc_device() must be used to free structures allocated with 568 * ib_alloc_device(). 569 */ 570 struct ib_device *_ib_alloc_device(size_t size) 571 { 572 struct ib_device *device; 573 574 if (WARN_ON(size < sizeof(struct ib_device))) 575 return NULL; 576 577 device = kzalloc(size, GFP_KERNEL); 578 if (!device) 579 return NULL; 580 581 if (rdma_restrack_init(device)) { 582 kfree(device); 583 return NULL; 584 } 585 586 device->groups[0] = &ib_dev_attr_group; 587 rdma_init_coredev(&device->coredev, device, &init_net); 588 589 INIT_LIST_HEAD(&device->event_handler_list); 590 spin_lock_init(&device->qp_open_list_lock); 591 init_rwsem(&device->event_handler_rwsem); 592 mutex_init(&device->unregistration_lock); 593 /* 594 * client_data needs to be alloc because we don't want our mark to be 595 * destroyed if the user stores NULL in the client data. 596 */ 597 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 598 init_rwsem(&device->client_data_rwsem); 599 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 600 mutex_init(&device->compat_devs_mutex); 601 init_completion(&device->unreg_completion); 602 INIT_WORK(&device->unregistration_work, ib_unregister_work); 603 604 return device; 605 } 606 EXPORT_SYMBOL(_ib_alloc_device); 607 608 /** 609 * ib_dealloc_device - free an IB device struct 610 * @device:structure to free 611 * 612 * Free a structure allocated with ib_alloc_device(). 613 */ 614 void ib_dealloc_device(struct ib_device *device) 615 { 616 if (device->ops.dealloc_driver) 617 device->ops.dealloc_driver(device); 618 619 /* 620 * ib_unregister_driver() requires all devices to remain in the xarray 621 * while their ops are callable. The last op we call is dealloc_driver 622 * above. This is needed to create a fence on op callbacks prior to 623 * allowing the driver module to unload. 624 */ 625 down_write(&devices_rwsem); 626 if (xa_load(&devices, device->index) == device) 627 xa_erase(&devices, device->index); 628 up_write(&devices_rwsem); 629 630 /* Expedite releasing netdev references */ 631 free_netdevs(device); 632 633 WARN_ON(!xa_empty(&device->compat_devs)); 634 WARN_ON(!xa_empty(&device->client_data)); 635 WARN_ON(refcount_read(&device->refcount)); 636 rdma_restrack_clean(device); 637 /* Balances with device_initialize */ 638 put_device(&device->dev); 639 } 640 EXPORT_SYMBOL(ib_dealloc_device); 641 642 /* 643 * add_client_context() and remove_client_context() must be safe against 644 * parallel calls on the same device - registration/unregistration of both the 645 * device and client can be occurring in parallel. 646 * 647 * The routines need to be a fence, any caller must not return until the add 648 * or remove is fully completed. 649 */ 650 static int add_client_context(struct ib_device *device, 651 struct ib_client *client) 652 { 653 int ret = 0; 654 655 if (!device->kverbs_provider && !client->no_kverbs_req) 656 return 0; 657 658 down_write(&device->client_data_rwsem); 659 /* 660 * So long as the client is registered hold both the client and device 661 * unregistration locks. 662 */ 663 if (!refcount_inc_not_zero(&client->uses)) 664 goto out_unlock; 665 refcount_inc(&device->refcount); 666 667 /* 668 * Another caller to add_client_context got here first and has already 669 * completely initialized context. 670 */ 671 if (xa_get_mark(&device->client_data, client->client_id, 672 CLIENT_DATA_REGISTERED)) 673 goto out; 674 675 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 676 GFP_KERNEL)); 677 if (ret) 678 goto out; 679 downgrade_write(&device->client_data_rwsem); 680 if (client->add) 681 client->add(device); 682 683 /* Readers shall not see a client until add has been completed */ 684 xa_set_mark(&device->client_data, client->client_id, 685 CLIENT_DATA_REGISTERED); 686 up_read(&device->client_data_rwsem); 687 return 0; 688 689 out: 690 ib_device_put(device); 691 ib_client_put(client); 692 out_unlock: 693 up_write(&device->client_data_rwsem); 694 return ret; 695 } 696 697 static void remove_client_context(struct ib_device *device, 698 unsigned int client_id) 699 { 700 struct ib_client *client; 701 void *client_data; 702 703 down_write(&device->client_data_rwsem); 704 if (!xa_get_mark(&device->client_data, client_id, 705 CLIENT_DATA_REGISTERED)) { 706 up_write(&device->client_data_rwsem); 707 return; 708 } 709 client_data = xa_load(&device->client_data, client_id); 710 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 711 client = xa_load(&clients, client_id); 712 up_write(&device->client_data_rwsem); 713 714 /* 715 * Notice we cannot be holding any exclusive locks when calling the 716 * remove callback as the remove callback can recurse back into any 717 * public functions in this module and thus try for any locks those 718 * functions take. 719 * 720 * For this reason clients and drivers should not call the 721 * unregistration functions will holdling any locks. 722 */ 723 if (client->remove) 724 client->remove(device, client_data); 725 726 xa_erase(&device->client_data, client_id); 727 ib_device_put(device); 728 ib_client_put(client); 729 } 730 731 static int alloc_port_data(struct ib_device *device) 732 { 733 struct ib_port_data_rcu *pdata_rcu; 734 unsigned int port; 735 736 if (device->port_data) 737 return 0; 738 739 /* This can only be called once the physical port range is defined */ 740 if (WARN_ON(!device->phys_port_cnt)) 741 return -EINVAL; 742 743 /* 744 * device->port_data is indexed directly by the port number to make 745 * access to this data as efficient as possible. 746 * 747 * Therefore port_data is declared as a 1 based array with potential 748 * empty slots at the beginning. 749 */ 750 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 751 rdma_end_port(device) + 1), 752 GFP_KERNEL); 753 if (!pdata_rcu) 754 return -ENOMEM; 755 /* 756 * The rcu_head is put in front of the port data array and the stored 757 * pointer is adjusted since we never need to see that member until 758 * kfree_rcu. 759 */ 760 device->port_data = pdata_rcu->pdata; 761 762 rdma_for_each_port (device, port) { 763 struct ib_port_data *pdata = &device->port_data[port]; 764 765 pdata->ib_dev = device; 766 spin_lock_init(&pdata->pkey_list_lock); 767 INIT_LIST_HEAD(&pdata->pkey_list); 768 spin_lock_init(&pdata->netdev_lock); 769 INIT_HLIST_NODE(&pdata->ndev_hash_link); 770 } 771 return 0; 772 } 773 774 static int verify_immutable(const struct ib_device *dev, u8 port) 775 { 776 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 777 rdma_max_mad_size(dev, port) != 0); 778 } 779 780 static int setup_port_data(struct ib_device *device) 781 { 782 unsigned int port; 783 int ret; 784 785 ret = alloc_port_data(device); 786 if (ret) 787 return ret; 788 789 rdma_for_each_port (device, port) { 790 struct ib_port_data *pdata = &device->port_data[port]; 791 792 ret = device->ops.get_port_immutable(device, port, 793 &pdata->immutable); 794 if (ret) 795 return ret; 796 797 if (verify_immutable(device, port)) 798 return -EINVAL; 799 } 800 return 0; 801 } 802 803 void ib_get_device_fw_str(struct ib_device *dev, char *str) 804 { 805 if (dev->ops.get_dev_fw_str) 806 dev->ops.get_dev_fw_str(dev, str); 807 else 808 str[0] = '\0'; 809 } 810 EXPORT_SYMBOL(ib_get_device_fw_str); 811 812 static void ib_policy_change_task(struct work_struct *work) 813 { 814 struct ib_device *dev; 815 unsigned long index; 816 817 down_read(&devices_rwsem); 818 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 819 unsigned int i; 820 821 rdma_for_each_port (dev, i) { 822 u64 sp; 823 int ret = ib_get_cached_subnet_prefix(dev, 824 i, 825 &sp); 826 827 WARN_ONCE(ret, 828 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 829 ret); 830 if (!ret) 831 ib_security_cache_change(dev, i, sp); 832 } 833 } 834 up_read(&devices_rwsem); 835 } 836 837 static int ib_security_change(struct notifier_block *nb, unsigned long event, 838 void *lsm_data) 839 { 840 if (event != LSM_POLICY_CHANGE) 841 return NOTIFY_DONE; 842 843 schedule_work(&ib_policy_change_work); 844 ib_mad_agent_security_change(); 845 846 return NOTIFY_OK; 847 } 848 849 static void compatdev_release(struct device *dev) 850 { 851 struct ib_core_device *cdev = 852 container_of(dev, struct ib_core_device, dev); 853 854 kfree(cdev); 855 } 856 857 static int add_one_compat_dev(struct ib_device *device, 858 struct rdma_dev_net *rnet) 859 { 860 struct ib_core_device *cdev; 861 int ret; 862 863 lockdep_assert_held(&rdma_nets_rwsem); 864 if (!ib_devices_shared_netns) 865 return 0; 866 867 /* 868 * Create and add compat device in all namespaces other than where it 869 * is currently bound to. 870 */ 871 if (net_eq(read_pnet(&rnet->net), 872 read_pnet(&device->coredev.rdma_net))) 873 return 0; 874 875 /* 876 * The first of init_net() or ib_register_device() to take the 877 * compat_devs_mutex wins and gets to add the device. Others will wait 878 * for completion here. 879 */ 880 mutex_lock(&device->compat_devs_mutex); 881 cdev = xa_load(&device->compat_devs, rnet->id); 882 if (cdev) { 883 ret = 0; 884 goto done; 885 } 886 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 887 if (ret) 888 goto done; 889 890 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 891 if (!cdev) { 892 ret = -ENOMEM; 893 goto cdev_err; 894 } 895 896 cdev->dev.parent = device->dev.parent; 897 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 898 cdev->dev.release = compatdev_release; 899 dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 900 901 ret = device_add(&cdev->dev); 902 if (ret) 903 goto add_err; 904 ret = ib_setup_port_attrs(cdev); 905 if (ret) 906 goto port_err; 907 908 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 909 cdev, GFP_KERNEL)); 910 if (ret) 911 goto insert_err; 912 913 mutex_unlock(&device->compat_devs_mutex); 914 return 0; 915 916 insert_err: 917 ib_free_port_attrs(cdev); 918 port_err: 919 device_del(&cdev->dev); 920 add_err: 921 put_device(&cdev->dev); 922 cdev_err: 923 xa_release(&device->compat_devs, rnet->id); 924 done: 925 mutex_unlock(&device->compat_devs_mutex); 926 return ret; 927 } 928 929 static void remove_one_compat_dev(struct ib_device *device, u32 id) 930 { 931 struct ib_core_device *cdev; 932 933 mutex_lock(&device->compat_devs_mutex); 934 cdev = xa_erase(&device->compat_devs, id); 935 mutex_unlock(&device->compat_devs_mutex); 936 if (cdev) { 937 ib_free_port_attrs(cdev); 938 device_del(&cdev->dev); 939 put_device(&cdev->dev); 940 } 941 } 942 943 static void remove_compat_devs(struct ib_device *device) 944 { 945 struct ib_core_device *cdev; 946 unsigned long index; 947 948 xa_for_each (&device->compat_devs, index, cdev) 949 remove_one_compat_dev(device, index); 950 } 951 952 static int add_compat_devs(struct ib_device *device) 953 { 954 struct rdma_dev_net *rnet; 955 unsigned long index; 956 int ret = 0; 957 958 lockdep_assert_held(&devices_rwsem); 959 960 down_read(&rdma_nets_rwsem); 961 xa_for_each (&rdma_nets, index, rnet) { 962 ret = add_one_compat_dev(device, rnet); 963 if (ret) 964 break; 965 } 966 up_read(&rdma_nets_rwsem); 967 return ret; 968 } 969 970 static void remove_all_compat_devs(void) 971 { 972 struct ib_compat_device *cdev; 973 struct ib_device *dev; 974 unsigned long index; 975 976 down_read(&devices_rwsem); 977 xa_for_each (&devices, index, dev) { 978 unsigned long c_index = 0; 979 980 /* Hold nets_rwsem so that any other thread modifying this 981 * system param can sync with this thread. 982 */ 983 down_read(&rdma_nets_rwsem); 984 xa_for_each (&dev->compat_devs, c_index, cdev) 985 remove_one_compat_dev(dev, c_index); 986 up_read(&rdma_nets_rwsem); 987 } 988 up_read(&devices_rwsem); 989 } 990 991 static int add_all_compat_devs(void) 992 { 993 struct rdma_dev_net *rnet; 994 struct ib_device *dev; 995 unsigned long index; 996 int ret = 0; 997 998 down_read(&devices_rwsem); 999 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1000 unsigned long net_index = 0; 1001 1002 /* Hold nets_rwsem so that any other thread modifying this 1003 * system param can sync with this thread. 1004 */ 1005 down_read(&rdma_nets_rwsem); 1006 xa_for_each (&rdma_nets, net_index, rnet) { 1007 ret = add_one_compat_dev(dev, rnet); 1008 if (ret) 1009 break; 1010 } 1011 up_read(&rdma_nets_rwsem); 1012 } 1013 up_read(&devices_rwsem); 1014 if (ret) 1015 remove_all_compat_devs(); 1016 return ret; 1017 } 1018 1019 int rdma_compatdev_set(u8 enable) 1020 { 1021 struct rdma_dev_net *rnet; 1022 unsigned long index; 1023 int ret = 0; 1024 1025 down_write(&rdma_nets_rwsem); 1026 if (ib_devices_shared_netns == enable) { 1027 up_write(&rdma_nets_rwsem); 1028 return 0; 1029 } 1030 1031 /* enable/disable of compat devices is not supported 1032 * when more than default init_net exists. 1033 */ 1034 xa_for_each (&rdma_nets, index, rnet) { 1035 ret++; 1036 break; 1037 } 1038 if (!ret) 1039 ib_devices_shared_netns = enable; 1040 up_write(&rdma_nets_rwsem); 1041 if (ret) 1042 return -EBUSY; 1043 1044 if (enable) 1045 ret = add_all_compat_devs(); 1046 else 1047 remove_all_compat_devs(); 1048 return ret; 1049 } 1050 1051 static void rdma_dev_exit_net(struct net *net) 1052 { 1053 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1054 struct ib_device *dev; 1055 unsigned long index; 1056 int ret; 1057 1058 down_write(&rdma_nets_rwsem); 1059 /* 1060 * Prevent the ID from being re-used and hide the id from xa_for_each. 1061 */ 1062 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1063 WARN_ON(ret); 1064 up_write(&rdma_nets_rwsem); 1065 1066 down_read(&devices_rwsem); 1067 xa_for_each (&devices, index, dev) { 1068 get_device(&dev->dev); 1069 /* 1070 * Release the devices_rwsem so that pontentially blocking 1071 * device_del, doesn't hold the devices_rwsem for too long. 1072 */ 1073 up_read(&devices_rwsem); 1074 1075 remove_one_compat_dev(dev, rnet->id); 1076 1077 /* 1078 * If the real device is in the NS then move it back to init. 1079 */ 1080 rdma_dev_change_netns(dev, net, &init_net); 1081 1082 put_device(&dev->dev); 1083 down_read(&devices_rwsem); 1084 } 1085 up_read(&devices_rwsem); 1086 1087 rdma_nl_net_exit(rnet); 1088 xa_erase(&rdma_nets, rnet->id); 1089 } 1090 1091 static __net_init int rdma_dev_init_net(struct net *net) 1092 { 1093 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1094 unsigned long index; 1095 struct ib_device *dev; 1096 int ret; 1097 1098 write_pnet(&rnet->net, net); 1099 1100 ret = rdma_nl_net_init(rnet); 1101 if (ret) 1102 return ret; 1103 1104 /* No need to create any compat devices in default init_net. */ 1105 if (net_eq(net, &init_net)) 1106 return 0; 1107 1108 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1109 if (ret) { 1110 rdma_nl_net_exit(rnet); 1111 return ret; 1112 } 1113 1114 down_read(&devices_rwsem); 1115 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1116 /* Hold nets_rwsem so that netlink command cannot change 1117 * system configuration for device sharing mode. 1118 */ 1119 down_read(&rdma_nets_rwsem); 1120 ret = add_one_compat_dev(dev, rnet); 1121 up_read(&rdma_nets_rwsem); 1122 if (ret) 1123 break; 1124 } 1125 up_read(&devices_rwsem); 1126 1127 if (ret) 1128 rdma_dev_exit_net(net); 1129 1130 return ret; 1131 } 1132 1133 /* 1134 * Assign the unique string device name and the unique device index. This is 1135 * undone by ib_dealloc_device. 1136 */ 1137 static int assign_name(struct ib_device *device, const char *name) 1138 { 1139 static u32 last_id; 1140 int ret; 1141 1142 down_write(&devices_rwsem); 1143 /* Assign a unique name to the device */ 1144 if (strchr(name, '%')) 1145 ret = alloc_name(device, name); 1146 else 1147 ret = dev_set_name(&device->dev, name); 1148 if (ret) 1149 goto out; 1150 1151 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1152 ret = -ENFILE; 1153 goto out; 1154 } 1155 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1156 1157 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1158 &last_id, GFP_KERNEL); 1159 if (ret > 0) 1160 ret = 0; 1161 1162 out: 1163 up_write(&devices_rwsem); 1164 return ret; 1165 } 1166 1167 static void setup_dma_device(struct ib_device *device) 1168 { 1169 struct device *parent = device->dev.parent; 1170 1171 WARN_ON_ONCE(device->dma_device); 1172 if (device->dev.dma_ops) { 1173 /* 1174 * The caller provided custom DMA operations. Copy the 1175 * DMA-related fields that are used by e.g. dma_alloc_coherent() 1176 * into device->dev. 1177 */ 1178 device->dma_device = &device->dev; 1179 if (!device->dev.dma_mask) { 1180 if (parent) 1181 device->dev.dma_mask = parent->dma_mask; 1182 else 1183 WARN_ON_ONCE(true); 1184 } 1185 if (!device->dev.coherent_dma_mask) { 1186 if (parent) 1187 device->dev.coherent_dma_mask = 1188 parent->coherent_dma_mask; 1189 else 1190 WARN_ON_ONCE(true); 1191 } 1192 } else { 1193 /* 1194 * The caller did not provide custom DMA operations. Use the 1195 * DMA mapping operations of the parent device. 1196 */ 1197 WARN_ON_ONCE(!parent); 1198 device->dma_device = parent; 1199 } 1200 1201 if (!device->dev.dma_parms) { 1202 if (parent) { 1203 /* 1204 * The caller did not provide DMA parameters, so 1205 * 'parent' probably represents a PCI device. The PCI 1206 * core sets the maximum segment size to 64 1207 * KB. Increase this parameter to 2 GB. 1208 */ 1209 device->dev.dma_parms = parent->dma_parms; 1210 dma_set_max_seg_size(device->dma_device, SZ_2G); 1211 } else { 1212 WARN_ON_ONCE(true); 1213 } 1214 } 1215 } 1216 1217 /* 1218 * setup_device() allocates memory and sets up data that requires calling the 1219 * device ops, this is the only reason these actions are not done during 1220 * ib_alloc_device. It is undone by ib_dealloc_device(). 1221 */ 1222 static int setup_device(struct ib_device *device) 1223 { 1224 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1225 int ret; 1226 1227 setup_dma_device(device); 1228 ib_device_check_mandatory(device); 1229 1230 ret = setup_port_data(device); 1231 if (ret) { 1232 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1233 return ret; 1234 } 1235 1236 memset(&device->attrs, 0, sizeof(device->attrs)); 1237 ret = device->ops.query_device(device, &device->attrs, &uhw); 1238 if (ret) { 1239 dev_warn(&device->dev, 1240 "Couldn't query the device attributes\n"); 1241 return ret; 1242 } 1243 1244 return 0; 1245 } 1246 1247 static void disable_device(struct ib_device *device) 1248 { 1249 u32 cid; 1250 1251 WARN_ON(!refcount_read(&device->refcount)); 1252 1253 down_write(&devices_rwsem); 1254 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1255 up_write(&devices_rwsem); 1256 1257 /* 1258 * Remove clients in LIFO order, see assign_client_id. This could be 1259 * more efficient if xarray learns to reverse iterate. Since no new 1260 * clients can be added to this ib_device past this point we only need 1261 * the maximum possible client_id value here. 1262 */ 1263 down_read(&clients_rwsem); 1264 cid = highest_client_id; 1265 up_read(&clients_rwsem); 1266 while (cid) { 1267 cid--; 1268 remove_client_context(device, cid); 1269 } 1270 1271 /* Pairs with refcount_set in enable_device */ 1272 ib_device_put(device); 1273 wait_for_completion(&device->unreg_completion); 1274 1275 /* 1276 * compat devices must be removed after device refcount drops to zero. 1277 * Otherwise init_net() may add more compatdevs after removing compat 1278 * devices and before device is disabled. 1279 */ 1280 remove_compat_devs(device); 1281 } 1282 1283 /* 1284 * An enabled device is visible to all clients and to all the public facing 1285 * APIs that return a device pointer. This always returns with a new get, even 1286 * if it fails. 1287 */ 1288 static int enable_device_and_get(struct ib_device *device) 1289 { 1290 struct ib_client *client; 1291 unsigned long index; 1292 int ret = 0; 1293 1294 /* 1295 * One ref belongs to the xa and the other belongs to this 1296 * thread. This is needed to guard against parallel unregistration. 1297 */ 1298 refcount_set(&device->refcount, 2); 1299 down_write(&devices_rwsem); 1300 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1301 1302 /* 1303 * By using downgrade_write() we ensure that no other thread can clear 1304 * DEVICE_REGISTERED while we are completing the client setup. 1305 */ 1306 downgrade_write(&devices_rwsem); 1307 1308 if (device->ops.enable_driver) { 1309 ret = device->ops.enable_driver(device); 1310 if (ret) 1311 goto out; 1312 } 1313 1314 down_read(&clients_rwsem); 1315 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1316 ret = add_client_context(device, client); 1317 if (ret) 1318 break; 1319 } 1320 up_read(&clients_rwsem); 1321 if (!ret) 1322 ret = add_compat_devs(device); 1323 out: 1324 up_read(&devices_rwsem); 1325 return ret; 1326 } 1327 1328 /** 1329 * ib_register_device - Register an IB device with IB core 1330 * @device: Device to register 1331 * @name: unique string device name. This may include a '%' which will 1332 * cause a unique index to be added to the passed device name. 1333 * 1334 * Low-level drivers use ib_register_device() to register their 1335 * devices with the IB core. All registered clients will receive a 1336 * callback for each device that is added. @device must be allocated 1337 * with ib_alloc_device(). 1338 * 1339 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1340 * asynchronously then the device pointer may become freed as soon as this 1341 * function returns. 1342 */ 1343 int ib_register_device(struct ib_device *device, const char *name) 1344 { 1345 int ret; 1346 1347 ret = assign_name(device, name); 1348 if (ret) 1349 return ret; 1350 1351 ret = setup_device(device); 1352 if (ret) 1353 return ret; 1354 1355 ret = ib_cache_setup_one(device); 1356 if (ret) { 1357 dev_warn(&device->dev, 1358 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1359 return ret; 1360 } 1361 1362 ib_device_register_rdmacg(device); 1363 1364 rdma_counter_init(device); 1365 1366 /* 1367 * Ensure that ADD uevent is not fired because it 1368 * is too early amd device is not initialized yet. 1369 */ 1370 dev_set_uevent_suppress(&device->dev, true); 1371 ret = device_add(&device->dev); 1372 if (ret) 1373 goto cg_cleanup; 1374 1375 ret = ib_device_register_sysfs(device); 1376 if (ret) { 1377 dev_warn(&device->dev, 1378 "Couldn't register device with driver model\n"); 1379 goto dev_cleanup; 1380 } 1381 1382 ret = enable_device_and_get(device); 1383 dev_set_uevent_suppress(&device->dev, false); 1384 /* Mark for userspace that device is ready */ 1385 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1386 if (ret) { 1387 void (*dealloc_fn)(struct ib_device *); 1388 1389 /* 1390 * If we hit this error flow then we don't want to 1391 * automatically dealloc the device since the caller is 1392 * expected to call ib_dealloc_device() after 1393 * ib_register_device() fails. This is tricky due to the 1394 * possibility for a parallel unregistration along with this 1395 * error flow. Since we have a refcount here we know any 1396 * parallel flow is stopped in disable_device and will see the 1397 * NULL pointers, causing the responsibility to 1398 * ib_dealloc_device() to revert back to this thread. 1399 */ 1400 dealloc_fn = device->ops.dealloc_driver; 1401 device->ops.dealloc_driver = NULL; 1402 ib_device_put(device); 1403 __ib_unregister_device(device); 1404 device->ops.dealloc_driver = dealloc_fn; 1405 return ret; 1406 } 1407 ib_device_put(device); 1408 1409 return 0; 1410 1411 dev_cleanup: 1412 device_del(&device->dev); 1413 cg_cleanup: 1414 dev_set_uevent_suppress(&device->dev, false); 1415 ib_device_unregister_rdmacg(device); 1416 ib_cache_cleanup_one(device); 1417 return ret; 1418 } 1419 EXPORT_SYMBOL(ib_register_device); 1420 1421 /* Callers must hold a get on the device. */ 1422 static void __ib_unregister_device(struct ib_device *ib_dev) 1423 { 1424 /* 1425 * We have a registration lock so that all the calls to unregister are 1426 * fully fenced, once any unregister returns the device is truely 1427 * unregistered even if multiple callers are unregistering it at the 1428 * same time. This also interacts with the registration flow and 1429 * provides sane semantics if register and unregister are racing. 1430 */ 1431 mutex_lock(&ib_dev->unregistration_lock); 1432 if (!refcount_read(&ib_dev->refcount)) 1433 goto out; 1434 1435 disable_device(ib_dev); 1436 1437 /* Expedite removing unregistered pointers from the hash table */ 1438 free_netdevs(ib_dev); 1439 1440 ib_device_unregister_sysfs(ib_dev); 1441 device_del(&ib_dev->dev); 1442 ib_device_unregister_rdmacg(ib_dev); 1443 ib_cache_cleanup_one(ib_dev); 1444 1445 /* 1446 * Drivers using the new flow may not call ib_dealloc_device except 1447 * in error unwind prior to registration success. 1448 */ 1449 if (ib_dev->ops.dealloc_driver) { 1450 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1451 ib_dealloc_device(ib_dev); 1452 } 1453 out: 1454 mutex_unlock(&ib_dev->unregistration_lock); 1455 } 1456 1457 /** 1458 * ib_unregister_device - Unregister an IB device 1459 * @ib_dev: The device to unregister 1460 * 1461 * Unregister an IB device. All clients will receive a remove callback. 1462 * 1463 * Callers should call this routine only once, and protect against races with 1464 * registration. Typically it should only be called as part of a remove 1465 * callback in an implementation of driver core's struct device_driver and 1466 * related. 1467 * 1468 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1469 * this function. 1470 */ 1471 void ib_unregister_device(struct ib_device *ib_dev) 1472 { 1473 get_device(&ib_dev->dev); 1474 __ib_unregister_device(ib_dev); 1475 put_device(&ib_dev->dev); 1476 } 1477 EXPORT_SYMBOL(ib_unregister_device); 1478 1479 /** 1480 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1481 * @ib_dev: The device to unregister 1482 * 1483 * This is the same as ib_unregister_device(), except it includes an internal 1484 * ib_device_put() that should match a 'get' obtained by the caller. 1485 * 1486 * It is safe to call this routine concurrently from multiple threads while 1487 * holding the 'get'. When the function returns the device is fully 1488 * unregistered. 1489 * 1490 * Drivers using this flow MUST use the driver_unregister callback to clean up 1491 * their resources associated with the device and dealloc it. 1492 */ 1493 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1494 { 1495 WARN_ON(!ib_dev->ops.dealloc_driver); 1496 get_device(&ib_dev->dev); 1497 ib_device_put(ib_dev); 1498 __ib_unregister_device(ib_dev); 1499 put_device(&ib_dev->dev); 1500 } 1501 EXPORT_SYMBOL(ib_unregister_device_and_put); 1502 1503 /** 1504 * ib_unregister_driver - Unregister all IB devices for a driver 1505 * @driver_id: The driver to unregister 1506 * 1507 * This implements a fence for device unregistration. It only returns once all 1508 * devices associated with the driver_id have fully completed their 1509 * unregistration and returned from ib_unregister_device*(). 1510 * 1511 * If device's are not yet unregistered it goes ahead and starts unregistering 1512 * them. 1513 * 1514 * This does not block creation of new devices with the given driver_id, that 1515 * is the responsibility of the caller. 1516 */ 1517 void ib_unregister_driver(enum rdma_driver_id driver_id) 1518 { 1519 struct ib_device *ib_dev; 1520 unsigned long index; 1521 1522 down_read(&devices_rwsem); 1523 xa_for_each (&devices, index, ib_dev) { 1524 if (ib_dev->ops.driver_id != driver_id) 1525 continue; 1526 1527 get_device(&ib_dev->dev); 1528 up_read(&devices_rwsem); 1529 1530 WARN_ON(!ib_dev->ops.dealloc_driver); 1531 __ib_unregister_device(ib_dev); 1532 1533 put_device(&ib_dev->dev); 1534 down_read(&devices_rwsem); 1535 } 1536 up_read(&devices_rwsem); 1537 } 1538 EXPORT_SYMBOL(ib_unregister_driver); 1539 1540 static void ib_unregister_work(struct work_struct *work) 1541 { 1542 struct ib_device *ib_dev = 1543 container_of(work, struct ib_device, unregistration_work); 1544 1545 __ib_unregister_device(ib_dev); 1546 put_device(&ib_dev->dev); 1547 } 1548 1549 /** 1550 * ib_unregister_device_queued - Unregister a device using a work queue 1551 * @ib_dev: The device to unregister 1552 * 1553 * This schedules an asynchronous unregistration using a WQ for the device. A 1554 * driver should use this to avoid holding locks while doing unregistration, 1555 * such as holding the RTNL lock. 1556 * 1557 * Drivers using this API must use ib_unregister_driver before module unload 1558 * to ensure that all scheduled unregistrations have completed. 1559 */ 1560 void ib_unregister_device_queued(struct ib_device *ib_dev) 1561 { 1562 WARN_ON(!refcount_read(&ib_dev->refcount)); 1563 WARN_ON(!ib_dev->ops.dealloc_driver); 1564 get_device(&ib_dev->dev); 1565 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) 1566 put_device(&ib_dev->dev); 1567 } 1568 EXPORT_SYMBOL(ib_unregister_device_queued); 1569 1570 /* 1571 * The caller must pass in a device that has the kref held and the refcount 1572 * released. If the device is in cur_net and still registered then it is moved 1573 * into net. 1574 */ 1575 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1576 struct net *net) 1577 { 1578 int ret2 = -EINVAL; 1579 int ret; 1580 1581 mutex_lock(&device->unregistration_lock); 1582 1583 /* 1584 * If a device not under ib_device_get() or if the unregistration_lock 1585 * is not held, the namespace can be changed, or it can be unregistered. 1586 * Check again under the lock. 1587 */ 1588 if (refcount_read(&device->refcount) == 0 || 1589 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1590 ret = -ENODEV; 1591 goto out; 1592 } 1593 1594 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1595 disable_device(device); 1596 1597 /* 1598 * At this point no one can be using the device, so it is safe to 1599 * change the namespace. 1600 */ 1601 write_pnet(&device->coredev.rdma_net, net); 1602 1603 down_read(&devices_rwsem); 1604 /* 1605 * Currently rdma devices are system wide unique. So the device name 1606 * is guaranteed free in the new namespace. Publish the new namespace 1607 * at the sysfs level. 1608 */ 1609 ret = device_rename(&device->dev, dev_name(&device->dev)); 1610 up_read(&devices_rwsem); 1611 if (ret) { 1612 dev_warn(&device->dev, 1613 "%s: Couldn't rename device after namespace change\n", 1614 __func__); 1615 /* Try and put things back and re-enable the device */ 1616 write_pnet(&device->coredev.rdma_net, cur_net); 1617 } 1618 1619 ret2 = enable_device_and_get(device); 1620 if (ret2) { 1621 /* 1622 * This shouldn't really happen, but if it does, let the user 1623 * retry at later point. So don't disable the device. 1624 */ 1625 dev_warn(&device->dev, 1626 "%s: Couldn't re-enable device after namespace change\n", 1627 __func__); 1628 } 1629 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1630 1631 ib_device_put(device); 1632 out: 1633 mutex_unlock(&device->unregistration_lock); 1634 if (ret) 1635 return ret; 1636 return ret2; 1637 } 1638 1639 int ib_device_set_netns_put(struct sk_buff *skb, 1640 struct ib_device *dev, u32 ns_fd) 1641 { 1642 struct net *net; 1643 int ret; 1644 1645 net = get_net_ns_by_fd(ns_fd); 1646 if (IS_ERR(net)) { 1647 ret = PTR_ERR(net); 1648 goto net_err; 1649 } 1650 1651 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1652 ret = -EPERM; 1653 goto ns_err; 1654 } 1655 1656 /* 1657 * Currently supported only for those providers which support 1658 * disassociation and don't do port specific sysfs init. Once a 1659 * port_cleanup infrastructure is implemented, this limitation will be 1660 * removed. 1661 */ 1662 if (!dev->ops.disassociate_ucontext || dev->ops.init_port || 1663 ib_devices_shared_netns) { 1664 ret = -EOPNOTSUPP; 1665 goto ns_err; 1666 } 1667 1668 get_device(&dev->dev); 1669 ib_device_put(dev); 1670 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1671 put_device(&dev->dev); 1672 1673 put_net(net); 1674 return ret; 1675 1676 ns_err: 1677 put_net(net); 1678 net_err: 1679 ib_device_put(dev); 1680 return ret; 1681 } 1682 1683 static struct pernet_operations rdma_dev_net_ops = { 1684 .init = rdma_dev_init_net, 1685 .exit = rdma_dev_exit_net, 1686 .id = &rdma_dev_net_id, 1687 .size = sizeof(struct rdma_dev_net), 1688 }; 1689 1690 static int assign_client_id(struct ib_client *client) 1691 { 1692 int ret; 1693 1694 down_write(&clients_rwsem); 1695 /* 1696 * The add/remove callbacks must be called in FIFO/LIFO order. To 1697 * achieve this we assign client_ids so they are sorted in 1698 * registration order. 1699 */ 1700 client->client_id = highest_client_id; 1701 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1702 if (ret) 1703 goto out; 1704 1705 highest_client_id++; 1706 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1707 1708 out: 1709 up_write(&clients_rwsem); 1710 return ret; 1711 } 1712 1713 static void remove_client_id(struct ib_client *client) 1714 { 1715 down_write(&clients_rwsem); 1716 xa_erase(&clients, client->client_id); 1717 for (; highest_client_id; highest_client_id--) 1718 if (xa_load(&clients, highest_client_id - 1)) 1719 break; 1720 up_write(&clients_rwsem); 1721 } 1722 1723 /** 1724 * ib_register_client - Register an IB client 1725 * @client:Client to register 1726 * 1727 * Upper level users of the IB drivers can use ib_register_client() to 1728 * register callbacks for IB device addition and removal. When an IB 1729 * device is added, each registered client's add method will be called 1730 * (in the order the clients were registered), and when a device is 1731 * removed, each client's remove method will be called (in the reverse 1732 * order that clients were registered). In addition, when 1733 * ib_register_client() is called, the client will receive an add 1734 * callback for all devices already registered. 1735 */ 1736 int ib_register_client(struct ib_client *client) 1737 { 1738 struct ib_device *device; 1739 unsigned long index; 1740 int ret; 1741 1742 refcount_set(&client->uses, 1); 1743 init_completion(&client->uses_zero); 1744 ret = assign_client_id(client); 1745 if (ret) 1746 return ret; 1747 1748 down_read(&devices_rwsem); 1749 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1750 ret = add_client_context(device, client); 1751 if (ret) { 1752 up_read(&devices_rwsem); 1753 ib_unregister_client(client); 1754 return ret; 1755 } 1756 } 1757 up_read(&devices_rwsem); 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(ib_register_client); 1761 1762 /** 1763 * ib_unregister_client - Unregister an IB client 1764 * @client:Client to unregister 1765 * 1766 * Upper level users use ib_unregister_client() to remove their client 1767 * registration. When ib_unregister_client() is called, the client 1768 * will receive a remove callback for each IB device still registered. 1769 * 1770 * This is a full fence, once it returns no client callbacks will be called, 1771 * or are running in another thread. 1772 */ 1773 void ib_unregister_client(struct ib_client *client) 1774 { 1775 struct ib_device *device; 1776 unsigned long index; 1777 1778 down_write(&clients_rwsem); 1779 ib_client_put(client); 1780 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1781 up_write(&clients_rwsem); 1782 1783 /* We do not want to have locks while calling client->remove() */ 1784 rcu_read_lock(); 1785 xa_for_each (&devices, index, device) { 1786 if (!ib_device_try_get(device)) 1787 continue; 1788 rcu_read_unlock(); 1789 1790 remove_client_context(device, client->client_id); 1791 1792 ib_device_put(device); 1793 rcu_read_lock(); 1794 } 1795 rcu_read_unlock(); 1796 1797 /* 1798 * remove_client_context() is not a fence, it can return even though a 1799 * removal is ongoing. Wait until all removals are completed. 1800 */ 1801 wait_for_completion(&client->uses_zero); 1802 remove_client_id(client); 1803 } 1804 EXPORT_SYMBOL(ib_unregister_client); 1805 1806 static int __ib_get_global_client_nl_info(const char *client_name, 1807 struct ib_client_nl_info *res) 1808 { 1809 struct ib_client *client; 1810 unsigned long index; 1811 int ret = -ENOENT; 1812 1813 down_read(&clients_rwsem); 1814 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1815 if (strcmp(client->name, client_name) != 0) 1816 continue; 1817 if (!client->get_global_nl_info) { 1818 ret = -EOPNOTSUPP; 1819 break; 1820 } 1821 ret = client->get_global_nl_info(res); 1822 if (WARN_ON(ret == -ENOENT)) 1823 ret = -EINVAL; 1824 if (!ret && res->cdev) 1825 get_device(res->cdev); 1826 break; 1827 } 1828 up_read(&clients_rwsem); 1829 return ret; 1830 } 1831 1832 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1833 const char *client_name, 1834 struct ib_client_nl_info *res) 1835 { 1836 unsigned long index; 1837 void *client_data; 1838 int ret = -ENOENT; 1839 1840 down_read(&ibdev->client_data_rwsem); 1841 xan_for_each_marked (&ibdev->client_data, index, client_data, 1842 CLIENT_DATA_REGISTERED) { 1843 struct ib_client *client = xa_load(&clients, index); 1844 1845 if (!client || strcmp(client->name, client_name) != 0) 1846 continue; 1847 if (!client->get_nl_info) { 1848 ret = -EOPNOTSUPP; 1849 break; 1850 } 1851 ret = client->get_nl_info(ibdev, client_data, res); 1852 if (WARN_ON(ret == -ENOENT)) 1853 ret = -EINVAL; 1854 1855 /* 1856 * The cdev is guaranteed valid as long as we are inside the 1857 * client_data_rwsem as remove_one can't be called. Keep it 1858 * valid for the caller. 1859 */ 1860 if (!ret && res->cdev) 1861 get_device(res->cdev); 1862 break; 1863 } 1864 up_read(&ibdev->client_data_rwsem); 1865 1866 return ret; 1867 } 1868 1869 /** 1870 * ib_get_client_nl_info - Fetch the nl_info from a client 1871 * @device - IB device 1872 * @client_name - Name of the client 1873 * @res - Result of the query 1874 */ 1875 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1876 struct ib_client_nl_info *res) 1877 { 1878 int ret; 1879 1880 if (ibdev) 1881 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1882 else 1883 ret = __ib_get_global_client_nl_info(client_name, res); 1884 #ifdef CONFIG_MODULES 1885 if (ret == -ENOENT) { 1886 request_module("rdma-client-%s", client_name); 1887 if (ibdev) 1888 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1889 else 1890 ret = __ib_get_global_client_nl_info(client_name, res); 1891 } 1892 #endif 1893 if (ret) { 1894 if (ret == -ENOENT) 1895 return -EOPNOTSUPP; 1896 return ret; 1897 } 1898 1899 if (WARN_ON(!res->cdev)) 1900 return -EINVAL; 1901 return 0; 1902 } 1903 1904 /** 1905 * ib_set_client_data - Set IB client context 1906 * @device:Device to set context for 1907 * @client:Client to set context for 1908 * @data:Context to set 1909 * 1910 * ib_set_client_data() sets client context data that can be retrieved with 1911 * ib_get_client_data(). This can only be called while the client is 1912 * registered to the device, once the ib_client remove() callback returns this 1913 * cannot be called. 1914 */ 1915 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1916 void *data) 1917 { 1918 void *rc; 1919 1920 if (WARN_ON(IS_ERR(data))) 1921 data = NULL; 1922 1923 rc = xa_store(&device->client_data, client->client_id, data, 1924 GFP_KERNEL); 1925 WARN_ON(xa_is_err(rc)); 1926 } 1927 EXPORT_SYMBOL(ib_set_client_data); 1928 1929 /** 1930 * ib_register_event_handler - Register an IB event handler 1931 * @event_handler:Handler to register 1932 * 1933 * ib_register_event_handler() registers an event handler that will be 1934 * called back when asynchronous IB events occur (as defined in 1935 * chapter 11 of the InfiniBand Architecture Specification). This 1936 * callback occurs in workqueue context. 1937 */ 1938 void ib_register_event_handler(struct ib_event_handler *event_handler) 1939 { 1940 down_write(&event_handler->device->event_handler_rwsem); 1941 list_add_tail(&event_handler->list, 1942 &event_handler->device->event_handler_list); 1943 up_write(&event_handler->device->event_handler_rwsem); 1944 } 1945 EXPORT_SYMBOL(ib_register_event_handler); 1946 1947 /** 1948 * ib_unregister_event_handler - Unregister an event handler 1949 * @event_handler:Handler to unregister 1950 * 1951 * Unregister an event handler registered with 1952 * ib_register_event_handler(). 1953 */ 1954 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 1955 { 1956 down_write(&event_handler->device->event_handler_rwsem); 1957 list_del(&event_handler->list); 1958 up_write(&event_handler->device->event_handler_rwsem); 1959 } 1960 EXPORT_SYMBOL(ib_unregister_event_handler); 1961 1962 void ib_dispatch_event_clients(struct ib_event *event) 1963 { 1964 struct ib_event_handler *handler; 1965 1966 down_read(&event->device->event_handler_rwsem); 1967 1968 list_for_each_entry(handler, &event->device->event_handler_list, list) 1969 handler->handler(handler, event); 1970 1971 up_read(&event->device->event_handler_rwsem); 1972 } 1973 1974 static int iw_query_port(struct ib_device *device, 1975 u8 port_num, 1976 struct ib_port_attr *port_attr) 1977 { 1978 struct in_device *inetdev; 1979 struct net_device *netdev; 1980 1981 memset(port_attr, 0, sizeof(*port_attr)); 1982 1983 netdev = ib_device_get_netdev(device, port_num); 1984 if (!netdev) 1985 return -ENODEV; 1986 1987 port_attr->max_mtu = IB_MTU_4096; 1988 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 1989 1990 if (!netif_carrier_ok(netdev)) { 1991 port_attr->state = IB_PORT_DOWN; 1992 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 1993 } else { 1994 rcu_read_lock(); 1995 inetdev = __in_dev_get_rcu(netdev); 1996 1997 if (inetdev && inetdev->ifa_list) { 1998 port_attr->state = IB_PORT_ACTIVE; 1999 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2000 } else { 2001 port_attr->state = IB_PORT_INIT; 2002 port_attr->phys_state = 2003 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2004 } 2005 2006 rcu_read_unlock(); 2007 } 2008 2009 dev_put(netdev); 2010 return device->ops.query_port(device, port_num, port_attr); 2011 } 2012 2013 static int __ib_query_port(struct ib_device *device, 2014 u8 port_num, 2015 struct ib_port_attr *port_attr) 2016 { 2017 union ib_gid gid = {}; 2018 int err; 2019 2020 memset(port_attr, 0, sizeof(*port_attr)); 2021 2022 err = device->ops.query_port(device, port_num, port_attr); 2023 if (err || port_attr->subnet_prefix) 2024 return err; 2025 2026 if (rdma_port_get_link_layer(device, port_num) != 2027 IB_LINK_LAYER_INFINIBAND) 2028 return 0; 2029 2030 err = device->ops.query_gid(device, port_num, 0, &gid); 2031 if (err) 2032 return err; 2033 2034 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 2035 return 0; 2036 } 2037 2038 /** 2039 * ib_query_port - Query IB port attributes 2040 * @device:Device to query 2041 * @port_num:Port number to query 2042 * @port_attr:Port attributes 2043 * 2044 * ib_query_port() returns the attributes of a port through the 2045 * @port_attr pointer. 2046 */ 2047 int ib_query_port(struct ib_device *device, 2048 u8 port_num, 2049 struct ib_port_attr *port_attr) 2050 { 2051 if (!rdma_is_port_valid(device, port_num)) 2052 return -EINVAL; 2053 2054 if (rdma_protocol_iwarp(device, port_num)) 2055 return iw_query_port(device, port_num, port_attr); 2056 else 2057 return __ib_query_port(device, port_num, port_attr); 2058 } 2059 EXPORT_SYMBOL(ib_query_port); 2060 2061 static void add_ndev_hash(struct ib_port_data *pdata) 2062 { 2063 unsigned long flags; 2064 2065 might_sleep(); 2066 2067 spin_lock_irqsave(&ndev_hash_lock, flags); 2068 if (hash_hashed(&pdata->ndev_hash_link)) { 2069 hash_del_rcu(&pdata->ndev_hash_link); 2070 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2071 /* 2072 * We cannot do hash_add_rcu after a hash_del_rcu until the 2073 * grace period 2074 */ 2075 synchronize_rcu(); 2076 spin_lock_irqsave(&ndev_hash_lock, flags); 2077 } 2078 if (pdata->netdev) 2079 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2080 (uintptr_t)pdata->netdev); 2081 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2082 } 2083 2084 /** 2085 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2086 * @ib_dev: Device to modify 2087 * @ndev: net_device to affiliate, may be NULL 2088 * @port: IB port the net_device is connected to 2089 * 2090 * Drivers should use this to link the ib_device to a netdev so the netdev 2091 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2092 * affiliated with any port. 2093 * 2094 * The caller must ensure that the given ndev is not unregistered or 2095 * unregistering, and that either the ib_device is unregistered or 2096 * ib_device_set_netdev() is called with NULL when the ndev sends a 2097 * NETDEV_UNREGISTER event. 2098 */ 2099 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2100 unsigned int port) 2101 { 2102 struct net_device *old_ndev; 2103 struct ib_port_data *pdata; 2104 unsigned long flags; 2105 int ret; 2106 2107 /* 2108 * Drivers wish to call this before ib_register_driver, so we have to 2109 * setup the port data early. 2110 */ 2111 ret = alloc_port_data(ib_dev); 2112 if (ret) 2113 return ret; 2114 2115 if (!rdma_is_port_valid(ib_dev, port)) 2116 return -EINVAL; 2117 2118 pdata = &ib_dev->port_data[port]; 2119 spin_lock_irqsave(&pdata->netdev_lock, flags); 2120 old_ndev = rcu_dereference_protected( 2121 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2122 if (old_ndev == ndev) { 2123 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2124 return 0; 2125 } 2126 2127 if (ndev) 2128 dev_hold(ndev); 2129 rcu_assign_pointer(pdata->netdev, ndev); 2130 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2131 2132 add_ndev_hash(pdata); 2133 if (old_ndev) 2134 dev_put(old_ndev); 2135 2136 return 0; 2137 } 2138 EXPORT_SYMBOL(ib_device_set_netdev); 2139 2140 static void free_netdevs(struct ib_device *ib_dev) 2141 { 2142 unsigned long flags; 2143 unsigned int port; 2144 2145 if (!ib_dev->port_data) 2146 return; 2147 2148 rdma_for_each_port (ib_dev, port) { 2149 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2150 struct net_device *ndev; 2151 2152 spin_lock_irqsave(&pdata->netdev_lock, flags); 2153 ndev = rcu_dereference_protected( 2154 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2155 if (ndev) { 2156 spin_lock(&ndev_hash_lock); 2157 hash_del_rcu(&pdata->ndev_hash_link); 2158 spin_unlock(&ndev_hash_lock); 2159 2160 /* 2161 * If this is the last dev_put there is still a 2162 * synchronize_rcu before the netdev is kfreed, so we 2163 * can continue to rely on unlocked pointer 2164 * comparisons after the put 2165 */ 2166 rcu_assign_pointer(pdata->netdev, NULL); 2167 dev_put(ndev); 2168 } 2169 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2170 } 2171 } 2172 2173 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2174 unsigned int port) 2175 { 2176 struct ib_port_data *pdata; 2177 struct net_device *res; 2178 2179 if (!rdma_is_port_valid(ib_dev, port)) 2180 return NULL; 2181 2182 pdata = &ib_dev->port_data[port]; 2183 2184 /* 2185 * New drivers should use ib_device_set_netdev() not the legacy 2186 * get_netdev(). 2187 */ 2188 if (ib_dev->ops.get_netdev) 2189 res = ib_dev->ops.get_netdev(ib_dev, port); 2190 else { 2191 spin_lock(&pdata->netdev_lock); 2192 res = rcu_dereference_protected( 2193 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2194 if (res) 2195 dev_hold(res); 2196 spin_unlock(&pdata->netdev_lock); 2197 } 2198 2199 /* 2200 * If we are starting to unregister expedite things by preventing 2201 * propagation of an unregistering netdev. 2202 */ 2203 if (res && res->reg_state != NETREG_REGISTERED) { 2204 dev_put(res); 2205 return NULL; 2206 } 2207 2208 return res; 2209 } 2210 2211 /** 2212 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2213 * @ndev: netdev to locate 2214 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2215 * 2216 * Find and hold an ib_device that is associated with a netdev via 2217 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2218 * returned pointer. 2219 */ 2220 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2221 enum rdma_driver_id driver_id) 2222 { 2223 struct ib_device *res = NULL; 2224 struct ib_port_data *cur; 2225 2226 rcu_read_lock(); 2227 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2228 (uintptr_t)ndev) { 2229 if (rcu_access_pointer(cur->netdev) == ndev && 2230 (driver_id == RDMA_DRIVER_UNKNOWN || 2231 cur->ib_dev->ops.driver_id == driver_id) && 2232 ib_device_try_get(cur->ib_dev)) { 2233 res = cur->ib_dev; 2234 break; 2235 } 2236 } 2237 rcu_read_unlock(); 2238 2239 return res; 2240 } 2241 EXPORT_SYMBOL(ib_device_get_by_netdev); 2242 2243 /** 2244 * ib_enum_roce_netdev - enumerate all RoCE ports 2245 * @ib_dev : IB device we want to query 2246 * @filter: Should we call the callback? 2247 * @filter_cookie: Cookie passed to filter 2248 * @cb: Callback to call for each found RoCE ports 2249 * @cookie: Cookie passed back to the callback 2250 * 2251 * Enumerates all of the physical RoCE ports of ib_dev 2252 * which are related to netdevice and calls callback() on each 2253 * device for which filter() function returns non zero. 2254 */ 2255 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2256 roce_netdev_filter filter, 2257 void *filter_cookie, 2258 roce_netdev_callback cb, 2259 void *cookie) 2260 { 2261 unsigned int port; 2262 2263 rdma_for_each_port (ib_dev, port) 2264 if (rdma_protocol_roce(ib_dev, port)) { 2265 struct net_device *idev = 2266 ib_device_get_netdev(ib_dev, port); 2267 2268 if (filter(ib_dev, port, idev, filter_cookie)) 2269 cb(ib_dev, port, idev, cookie); 2270 2271 if (idev) 2272 dev_put(idev); 2273 } 2274 } 2275 2276 /** 2277 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2278 * @filter: Should we call the callback? 2279 * @filter_cookie: Cookie passed to filter 2280 * @cb: Callback to call for each found RoCE ports 2281 * @cookie: Cookie passed back to the callback 2282 * 2283 * Enumerates all RoCE devices' physical ports which are related 2284 * to netdevices and calls callback() on each device for which 2285 * filter() function returns non zero. 2286 */ 2287 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2288 void *filter_cookie, 2289 roce_netdev_callback cb, 2290 void *cookie) 2291 { 2292 struct ib_device *dev; 2293 unsigned long index; 2294 2295 down_read(&devices_rwsem); 2296 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2297 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2298 up_read(&devices_rwsem); 2299 } 2300 2301 /** 2302 * ib_enum_all_devs - enumerate all ib_devices 2303 * @cb: Callback to call for each found ib_device 2304 * 2305 * Enumerates all ib_devices and calls callback() on each device. 2306 */ 2307 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2308 struct netlink_callback *cb) 2309 { 2310 unsigned long index; 2311 struct ib_device *dev; 2312 unsigned int idx = 0; 2313 int ret = 0; 2314 2315 down_read(&devices_rwsem); 2316 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2317 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2318 continue; 2319 2320 ret = nldev_cb(dev, skb, cb, idx); 2321 if (ret) 2322 break; 2323 idx++; 2324 } 2325 up_read(&devices_rwsem); 2326 return ret; 2327 } 2328 2329 /** 2330 * ib_query_pkey - Get P_Key table entry 2331 * @device:Device to query 2332 * @port_num:Port number to query 2333 * @index:P_Key table index to query 2334 * @pkey:Returned P_Key 2335 * 2336 * ib_query_pkey() fetches the specified P_Key table entry. 2337 */ 2338 int ib_query_pkey(struct ib_device *device, 2339 u8 port_num, u16 index, u16 *pkey) 2340 { 2341 if (!rdma_is_port_valid(device, port_num)) 2342 return -EINVAL; 2343 2344 return device->ops.query_pkey(device, port_num, index, pkey); 2345 } 2346 EXPORT_SYMBOL(ib_query_pkey); 2347 2348 /** 2349 * ib_modify_device - Change IB device attributes 2350 * @device:Device to modify 2351 * @device_modify_mask:Mask of attributes to change 2352 * @device_modify:New attribute values 2353 * 2354 * ib_modify_device() changes a device's attributes as specified by 2355 * the @device_modify_mask and @device_modify structure. 2356 */ 2357 int ib_modify_device(struct ib_device *device, 2358 int device_modify_mask, 2359 struct ib_device_modify *device_modify) 2360 { 2361 if (!device->ops.modify_device) 2362 return -EOPNOTSUPP; 2363 2364 return device->ops.modify_device(device, device_modify_mask, 2365 device_modify); 2366 } 2367 EXPORT_SYMBOL(ib_modify_device); 2368 2369 /** 2370 * ib_modify_port - Modifies the attributes for the specified port. 2371 * @device: The device to modify. 2372 * @port_num: The number of the port to modify. 2373 * @port_modify_mask: Mask used to specify which attributes of the port 2374 * to change. 2375 * @port_modify: New attribute values for the port. 2376 * 2377 * ib_modify_port() changes a port's attributes as specified by the 2378 * @port_modify_mask and @port_modify structure. 2379 */ 2380 int ib_modify_port(struct ib_device *device, 2381 u8 port_num, int port_modify_mask, 2382 struct ib_port_modify *port_modify) 2383 { 2384 int rc; 2385 2386 if (!rdma_is_port_valid(device, port_num)) 2387 return -EINVAL; 2388 2389 if (device->ops.modify_port) 2390 rc = device->ops.modify_port(device, port_num, 2391 port_modify_mask, 2392 port_modify); 2393 else if (rdma_protocol_roce(device, port_num) && 2394 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2395 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2396 rc = 0; 2397 else 2398 rc = -EOPNOTSUPP; 2399 return rc; 2400 } 2401 EXPORT_SYMBOL(ib_modify_port); 2402 2403 /** 2404 * ib_find_gid - Returns the port number and GID table index where 2405 * a specified GID value occurs. Its searches only for IB link layer. 2406 * @device: The device to query. 2407 * @gid: The GID value to search for. 2408 * @port_num: The port number of the device where the GID value was found. 2409 * @index: The index into the GID table where the GID was found. This 2410 * parameter may be NULL. 2411 */ 2412 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2413 u8 *port_num, u16 *index) 2414 { 2415 union ib_gid tmp_gid; 2416 unsigned int port; 2417 int ret, i; 2418 2419 rdma_for_each_port (device, port) { 2420 if (!rdma_protocol_ib(device, port)) 2421 continue; 2422 2423 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2424 ++i) { 2425 ret = rdma_query_gid(device, port, i, &tmp_gid); 2426 if (ret) 2427 return ret; 2428 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2429 *port_num = port; 2430 if (index) 2431 *index = i; 2432 return 0; 2433 } 2434 } 2435 } 2436 2437 return -ENOENT; 2438 } 2439 EXPORT_SYMBOL(ib_find_gid); 2440 2441 /** 2442 * ib_find_pkey - Returns the PKey table index where a specified 2443 * PKey value occurs. 2444 * @device: The device to query. 2445 * @port_num: The port number of the device to search for the PKey. 2446 * @pkey: The PKey value to search for. 2447 * @index: The index into the PKey table where the PKey was found. 2448 */ 2449 int ib_find_pkey(struct ib_device *device, 2450 u8 port_num, u16 pkey, u16 *index) 2451 { 2452 int ret, i; 2453 u16 tmp_pkey; 2454 int partial_ix = -1; 2455 2456 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2457 ++i) { 2458 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2459 if (ret) 2460 return ret; 2461 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2462 /* if there is full-member pkey take it.*/ 2463 if (tmp_pkey & 0x8000) { 2464 *index = i; 2465 return 0; 2466 } 2467 if (partial_ix < 0) 2468 partial_ix = i; 2469 } 2470 } 2471 2472 /*no full-member, if exists take the limited*/ 2473 if (partial_ix >= 0) { 2474 *index = partial_ix; 2475 return 0; 2476 } 2477 return -ENOENT; 2478 } 2479 EXPORT_SYMBOL(ib_find_pkey); 2480 2481 /** 2482 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2483 * for a received CM request 2484 * @dev: An RDMA device on which the request has been received. 2485 * @port: Port number on the RDMA device. 2486 * @pkey: The Pkey the request came on. 2487 * @gid: A GID that the net_dev uses to communicate. 2488 * @addr: Contains the IP address that the request specified as its 2489 * destination. 2490 * 2491 */ 2492 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2493 u8 port, 2494 u16 pkey, 2495 const union ib_gid *gid, 2496 const struct sockaddr *addr) 2497 { 2498 struct net_device *net_dev = NULL; 2499 unsigned long index; 2500 void *client_data; 2501 2502 if (!rdma_protocol_ib(dev, port)) 2503 return NULL; 2504 2505 /* 2506 * Holding the read side guarantees that the client will not become 2507 * unregistered while we are calling get_net_dev_by_params() 2508 */ 2509 down_read(&dev->client_data_rwsem); 2510 xan_for_each_marked (&dev->client_data, index, client_data, 2511 CLIENT_DATA_REGISTERED) { 2512 struct ib_client *client = xa_load(&clients, index); 2513 2514 if (!client || !client->get_net_dev_by_params) 2515 continue; 2516 2517 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2518 addr, client_data); 2519 if (net_dev) 2520 break; 2521 } 2522 up_read(&dev->client_data_rwsem); 2523 2524 return net_dev; 2525 } 2526 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2527 2528 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2529 { 2530 struct ib_device_ops *dev_ops = &dev->ops; 2531 #define SET_DEVICE_OP(ptr, name) \ 2532 do { \ 2533 if (ops->name) \ 2534 if (!((ptr)->name)) \ 2535 (ptr)->name = ops->name; \ 2536 } while (0) 2537 2538 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2539 2540 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2541 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2542 dev_ops->driver_id != ops->driver_id); 2543 dev_ops->driver_id = ops->driver_id; 2544 } 2545 if (ops->owner) { 2546 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2547 dev_ops->owner = ops->owner; 2548 } 2549 if (ops->uverbs_abi_ver) 2550 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2551 2552 dev_ops->uverbs_no_driver_id_binding |= 2553 ops->uverbs_no_driver_id_binding; 2554 2555 SET_DEVICE_OP(dev_ops, add_gid); 2556 SET_DEVICE_OP(dev_ops, advise_mr); 2557 SET_DEVICE_OP(dev_ops, alloc_dm); 2558 SET_DEVICE_OP(dev_ops, alloc_fmr); 2559 SET_DEVICE_OP(dev_ops, alloc_hw_stats); 2560 SET_DEVICE_OP(dev_ops, alloc_mr); 2561 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2562 SET_DEVICE_OP(dev_ops, alloc_mw); 2563 SET_DEVICE_OP(dev_ops, alloc_pd); 2564 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2565 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2566 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2567 SET_DEVICE_OP(dev_ops, attach_mcast); 2568 SET_DEVICE_OP(dev_ops, check_mr_status); 2569 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2570 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2571 SET_DEVICE_OP(dev_ops, counter_dealloc); 2572 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2573 SET_DEVICE_OP(dev_ops, counter_update_stats); 2574 SET_DEVICE_OP(dev_ops, create_ah); 2575 SET_DEVICE_OP(dev_ops, create_counters); 2576 SET_DEVICE_OP(dev_ops, create_cq); 2577 SET_DEVICE_OP(dev_ops, create_flow); 2578 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 2579 SET_DEVICE_OP(dev_ops, create_qp); 2580 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2581 SET_DEVICE_OP(dev_ops, create_srq); 2582 SET_DEVICE_OP(dev_ops, create_wq); 2583 SET_DEVICE_OP(dev_ops, dealloc_dm); 2584 SET_DEVICE_OP(dev_ops, dealloc_driver); 2585 SET_DEVICE_OP(dev_ops, dealloc_fmr); 2586 SET_DEVICE_OP(dev_ops, dealloc_mw); 2587 SET_DEVICE_OP(dev_ops, dealloc_pd); 2588 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2589 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2590 SET_DEVICE_OP(dev_ops, del_gid); 2591 SET_DEVICE_OP(dev_ops, dereg_mr); 2592 SET_DEVICE_OP(dev_ops, destroy_ah); 2593 SET_DEVICE_OP(dev_ops, destroy_counters); 2594 SET_DEVICE_OP(dev_ops, destroy_cq); 2595 SET_DEVICE_OP(dev_ops, destroy_flow); 2596 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2597 SET_DEVICE_OP(dev_ops, destroy_qp); 2598 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2599 SET_DEVICE_OP(dev_ops, destroy_srq); 2600 SET_DEVICE_OP(dev_ops, destroy_wq); 2601 SET_DEVICE_OP(dev_ops, detach_mcast); 2602 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2603 SET_DEVICE_OP(dev_ops, drain_rq); 2604 SET_DEVICE_OP(dev_ops, drain_sq); 2605 SET_DEVICE_OP(dev_ops, enable_driver); 2606 SET_DEVICE_OP(dev_ops, fill_res_entry); 2607 SET_DEVICE_OP(dev_ops, fill_stat_entry); 2608 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2609 SET_DEVICE_OP(dev_ops, get_dma_mr); 2610 SET_DEVICE_OP(dev_ops, get_hw_stats); 2611 SET_DEVICE_OP(dev_ops, get_link_layer); 2612 SET_DEVICE_OP(dev_ops, get_netdev); 2613 SET_DEVICE_OP(dev_ops, get_port_immutable); 2614 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2615 SET_DEVICE_OP(dev_ops, get_vf_config); 2616 SET_DEVICE_OP(dev_ops, get_vf_guid); 2617 SET_DEVICE_OP(dev_ops, get_vf_stats); 2618 SET_DEVICE_OP(dev_ops, init_port); 2619 SET_DEVICE_OP(dev_ops, iw_accept); 2620 SET_DEVICE_OP(dev_ops, iw_add_ref); 2621 SET_DEVICE_OP(dev_ops, iw_connect); 2622 SET_DEVICE_OP(dev_ops, iw_create_listen); 2623 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2624 SET_DEVICE_OP(dev_ops, iw_get_qp); 2625 SET_DEVICE_OP(dev_ops, iw_reject); 2626 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2627 SET_DEVICE_OP(dev_ops, map_mr_sg); 2628 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2629 SET_DEVICE_OP(dev_ops, map_phys_fmr); 2630 SET_DEVICE_OP(dev_ops, mmap); 2631 SET_DEVICE_OP(dev_ops, mmap_free); 2632 SET_DEVICE_OP(dev_ops, modify_ah); 2633 SET_DEVICE_OP(dev_ops, modify_cq); 2634 SET_DEVICE_OP(dev_ops, modify_device); 2635 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 2636 SET_DEVICE_OP(dev_ops, modify_port); 2637 SET_DEVICE_OP(dev_ops, modify_qp); 2638 SET_DEVICE_OP(dev_ops, modify_srq); 2639 SET_DEVICE_OP(dev_ops, modify_wq); 2640 SET_DEVICE_OP(dev_ops, peek_cq); 2641 SET_DEVICE_OP(dev_ops, poll_cq); 2642 SET_DEVICE_OP(dev_ops, post_recv); 2643 SET_DEVICE_OP(dev_ops, post_send); 2644 SET_DEVICE_OP(dev_ops, post_srq_recv); 2645 SET_DEVICE_OP(dev_ops, process_mad); 2646 SET_DEVICE_OP(dev_ops, query_ah); 2647 SET_DEVICE_OP(dev_ops, query_device); 2648 SET_DEVICE_OP(dev_ops, query_gid); 2649 SET_DEVICE_OP(dev_ops, query_pkey); 2650 SET_DEVICE_OP(dev_ops, query_port); 2651 SET_DEVICE_OP(dev_ops, query_qp); 2652 SET_DEVICE_OP(dev_ops, query_srq); 2653 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2654 SET_DEVICE_OP(dev_ops, read_counters); 2655 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2656 SET_DEVICE_OP(dev_ops, reg_user_mr); 2657 SET_DEVICE_OP(dev_ops, req_ncomp_notif); 2658 SET_DEVICE_OP(dev_ops, req_notify_cq); 2659 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2660 SET_DEVICE_OP(dev_ops, resize_cq); 2661 SET_DEVICE_OP(dev_ops, set_vf_guid); 2662 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2663 SET_DEVICE_OP(dev_ops, unmap_fmr); 2664 2665 SET_OBJ_SIZE(dev_ops, ib_ah); 2666 SET_OBJ_SIZE(dev_ops, ib_cq); 2667 SET_OBJ_SIZE(dev_ops, ib_pd); 2668 SET_OBJ_SIZE(dev_ops, ib_srq); 2669 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2670 } 2671 EXPORT_SYMBOL(ib_set_device_ops); 2672 2673 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2674 [RDMA_NL_LS_OP_RESOLVE] = { 2675 .doit = ib_nl_handle_resolve_resp, 2676 .flags = RDMA_NL_ADMIN_PERM, 2677 }, 2678 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2679 .doit = ib_nl_handle_set_timeout, 2680 .flags = RDMA_NL_ADMIN_PERM, 2681 }, 2682 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2683 .doit = ib_nl_handle_ip_res_resp, 2684 .flags = RDMA_NL_ADMIN_PERM, 2685 }, 2686 }; 2687 2688 static int __init ib_core_init(void) 2689 { 2690 int ret; 2691 2692 ib_wq = alloc_workqueue("infiniband", 0, 0); 2693 if (!ib_wq) 2694 return -ENOMEM; 2695 2696 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2697 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2698 if (!ib_comp_wq) { 2699 ret = -ENOMEM; 2700 goto err; 2701 } 2702 2703 ib_comp_unbound_wq = 2704 alloc_workqueue("ib-comp-unb-wq", 2705 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2706 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2707 if (!ib_comp_unbound_wq) { 2708 ret = -ENOMEM; 2709 goto err_comp; 2710 } 2711 2712 ret = class_register(&ib_class); 2713 if (ret) { 2714 pr_warn("Couldn't create InfiniBand device class\n"); 2715 goto err_comp_unbound; 2716 } 2717 2718 rdma_nl_init(); 2719 2720 ret = addr_init(); 2721 if (ret) { 2722 pr_warn("Could't init IB address resolution\n"); 2723 goto err_ibnl; 2724 } 2725 2726 ret = ib_mad_init(); 2727 if (ret) { 2728 pr_warn("Couldn't init IB MAD\n"); 2729 goto err_addr; 2730 } 2731 2732 ret = ib_sa_init(); 2733 if (ret) { 2734 pr_warn("Couldn't init SA\n"); 2735 goto err_mad; 2736 } 2737 2738 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2739 if (ret) { 2740 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2741 goto err_sa; 2742 } 2743 2744 ret = register_pernet_device(&rdma_dev_net_ops); 2745 if (ret) { 2746 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2747 goto err_compat; 2748 } 2749 2750 nldev_init(); 2751 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2752 roce_gid_mgmt_init(); 2753 2754 return 0; 2755 2756 err_compat: 2757 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2758 err_sa: 2759 ib_sa_cleanup(); 2760 err_mad: 2761 ib_mad_cleanup(); 2762 err_addr: 2763 addr_cleanup(); 2764 err_ibnl: 2765 class_unregister(&ib_class); 2766 err_comp_unbound: 2767 destroy_workqueue(ib_comp_unbound_wq); 2768 err_comp: 2769 destroy_workqueue(ib_comp_wq); 2770 err: 2771 destroy_workqueue(ib_wq); 2772 return ret; 2773 } 2774 2775 static void __exit ib_core_cleanup(void) 2776 { 2777 roce_gid_mgmt_cleanup(); 2778 nldev_exit(); 2779 rdma_nl_unregister(RDMA_NL_LS); 2780 unregister_pernet_device(&rdma_dev_net_ops); 2781 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2782 ib_sa_cleanup(); 2783 ib_mad_cleanup(); 2784 addr_cleanup(); 2785 rdma_nl_exit(); 2786 class_unregister(&ib_class); 2787 destroy_workqueue(ib_comp_unbound_wq); 2788 destroy_workqueue(ib_comp_wq); 2789 /* Make sure that any pending umem accounting work is done. */ 2790 destroy_workqueue(ib_wq); 2791 flush_workqueue(system_unbound_wq); 2792 WARN_ON(!xa_empty(&clients)); 2793 WARN_ON(!xa_empty(&devices)); 2794 } 2795 2796 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 2797 2798 /* ib core relies on netdev stack to first register net_ns_type_operations 2799 * ns kobject type before ib_core initialization. 2800 */ 2801 fs_initcall(ib_core_init); 2802 module_exit(ib_core_cleanup); 2803