1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 62 /* 63 * Each of the three rwsem locks (devices, clients, client_data) protects the 64 * xarray of the same name. Specifically it allows the caller to assert that 65 * the MARK will/will not be changing under the lock, and for devices and 66 * clients, that the value in the xarray is still a valid pointer. Change of 67 * the MARK is linked to the object state, so holding the lock and testing the 68 * MARK also asserts that the contained object is in a certain state. 69 * 70 * This is used to build a two stage register/unregister flow where objects 71 * can continue to be in the xarray even though they are still in progress to 72 * register/unregister. 73 * 74 * The xarray itself provides additional locking, and restartable iteration, 75 * which is also relied on. 76 * 77 * Locks should not be nested, with the exception of client_data, which is 78 * allowed to nest under the read side of the other two locks. 79 * 80 * The devices_rwsem also protects the device name list, any change or 81 * assignment of device name must also hold the write side to guarantee unique 82 * names. 83 */ 84 85 /* 86 * devices contains devices that have had their names assigned. The 87 * devices may not be registered. Users that care about the registration 88 * status need to call ib_device_try_get() on the device to ensure it is 89 * registered, and keep it registered, for the required duration. 90 * 91 */ 92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 93 static DECLARE_RWSEM(devices_rwsem); 94 #define DEVICE_REGISTERED XA_MARK_1 95 96 static u32 highest_client_id; 97 #define CLIENT_REGISTERED XA_MARK_1 98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 99 static DECLARE_RWSEM(clients_rwsem); 100 101 static void ib_client_put(struct ib_client *client) 102 { 103 if (refcount_dec_and_test(&client->uses)) 104 complete(&client->uses_zero); 105 } 106 107 /* 108 * If client_data is registered then the corresponding client must also still 109 * be registered. 110 */ 111 #define CLIENT_DATA_REGISTERED XA_MARK_1 112 113 unsigned int rdma_dev_net_id; 114 115 /* 116 * A list of net namespaces is maintained in an xarray. This is necessary 117 * because we can't get the locking right using the existing net ns list. We 118 * would require a init_net callback after the list is updated. 119 */ 120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 121 /* 122 * rwsem to protect accessing the rdma_nets xarray entries. 123 */ 124 static DECLARE_RWSEM(rdma_nets_rwsem); 125 126 bool ib_devices_shared_netns = true; 127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 128 MODULE_PARM_DESC(netns_mode, 129 "Share device among net namespaces; default=1 (shared)"); 130 /** 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 132 * from a specified net namespace or not. 133 * @dev: Pointer to rdma device which needs to be checked 134 * @net: Pointer to net namesapce for which access to be checked 135 * 136 * When the rdma device is in shared mode, it ignores the net namespace. 137 * When the rdma device is exclusive to a net namespace, rdma device net 138 * namespace is checked against the specified one. 139 */ 140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 141 { 142 return (ib_devices_shared_netns || 143 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 144 } 145 EXPORT_SYMBOL(rdma_dev_access_netns); 146 147 /* 148 * xarray has this behavior where it won't iterate over NULL values stored in 149 * allocated arrays. So we need our own iterator to see all values stored in 150 * the array. This does the same thing as xa_for_each except that it also 151 * returns NULL valued entries if the array is allocating. Simplified to only 152 * work on simple xarrays. 153 */ 154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 155 xa_mark_t filter) 156 { 157 XA_STATE(xas, xa, *indexp); 158 void *entry; 159 160 rcu_read_lock(); 161 do { 162 entry = xas_find_marked(&xas, ULONG_MAX, filter); 163 if (xa_is_zero(entry)) 164 break; 165 } while (xas_retry(&xas, entry)); 166 rcu_read_unlock(); 167 168 if (entry) { 169 *indexp = xas.xa_index; 170 if (xa_is_zero(entry)) 171 return NULL; 172 return entry; 173 } 174 return XA_ERROR(-ENOENT); 175 } 176 #define xan_for_each_marked(xa, index, entry, filter) \ 177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 178 !xa_is_err(entry); \ 179 (index)++, entry = xan_find_marked(xa, &(index), filter)) 180 181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 182 static DEFINE_SPINLOCK(ndev_hash_lock); 183 static DECLARE_HASHTABLE(ndev_hash, 5); 184 185 static void free_netdevs(struct ib_device *ib_dev); 186 static void ib_unregister_work(struct work_struct *work); 187 static void __ib_unregister_device(struct ib_device *device); 188 static int ib_security_change(struct notifier_block *nb, unsigned long event, 189 void *lsm_data); 190 static void ib_policy_change_task(struct work_struct *work); 191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 192 193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 194 struct va_format *vaf) 195 { 196 if (ibdev && ibdev->dev.parent) 197 dev_printk_emit(level[1] - '0', 198 ibdev->dev.parent, 199 "%s %s %s: %pV", 200 dev_driver_string(ibdev->dev.parent), 201 dev_name(ibdev->dev.parent), 202 dev_name(&ibdev->dev), 203 vaf); 204 else if (ibdev) 205 printk("%s%s: %pV", 206 level, dev_name(&ibdev->dev), vaf); 207 else 208 printk("%s(NULL ib_device): %pV", level, vaf); 209 } 210 211 void ibdev_printk(const char *level, const struct ib_device *ibdev, 212 const char *format, ...) 213 { 214 struct va_format vaf; 215 va_list args; 216 217 va_start(args, format); 218 219 vaf.fmt = format; 220 vaf.va = &args; 221 222 __ibdev_printk(level, ibdev, &vaf); 223 224 va_end(args); 225 } 226 EXPORT_SYMBOL(ibdev_printk); 227 228 #define define_ibdev_printk_level(func, level) \ 229 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 230 { \ 231 struct va_format vaf; \ 232 va_list args; \ 233 \ 234 va_start(args, fmt); \ 235 \ 236 vaf.fmt = fmt; \ 237 vaf.va = &args; \ 238 \ 239 __ibdev_printk(level, ibdev, &vaf); \ 240 \ 241 va_end(args); \ 242 } \ 243 EXPORT_SYMBOL(func); 244 245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 248 define_ibdev_printk_level(ibdev_err, KERN_ERR); 249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 251 define_ibdev_printk_level(ibdev_info, KERN_INFO); 252 253 static struct notifier_block ibdev_lsm_nb = { 254 .notifier_call = ib_security_change, 255 }; 256 257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 258 struct net *net); 259 260 /* Pointer to the RCU head at the start of the ib_port_data array */ 261 struct ib_port_data_rcu { 262 struct rcu_head rcu_head; 263 struct ib_port_data pdata[]; 264 }; 265 266 static void ib_device_check_mandatory(struct ib_device *device) 267 { 268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 269 static const struct { 270 size_t offset; 271 char *name; 272 } mandatory_table[] = { 273 IB_MANDATORY_FUNC(query_device), 274 IB_MANDATORY_FUNC(query_port), 275 IB_MANDATORY_FUNC(query_pkey), 276 IB_MANDATORY_FUNC(alloc_pd), 277 IB_MANDATORY_FUNC(dealloc_pd), 278 IB_MANDATORY_FUNC(create_qp), 279 IB_MANDATORY_FUNC(modify_qp), 280 IB_MANDATORY_FUNC(destroy_qp), 281 IB_MANDATORY_FUNC(post_send), 282 IB_MANDATORY_FUNC(post_recv), 283 IB_MANDATORY_FUNC(create_cq), 284 IB_MANDATORY_FUNC(destroy_cq), 285 IB_MANDATORY_FUNC(poll_cq), 286 IB_MANDATORY_FUNC(req_notify_cq), 287 IB_MANDATORY_FUNC(get_dma_mr), 288 IB_MANDATORY_FUNC(dereg_mr), 289 IB_MANDATORY_FUNC(get_port_immutable) 290 }; 291 int i; 292 293 device->kverbs_provider = true; 294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 295 if (!*(void **) ((void *) &device->ops + 296 mandatory_table[i].offset)) { 297 device->kverbs_provider = false; 298 break; 299 } 300 } 301 } 302 303 /* 304 * Caller must perform ib_device_put() to return the device reference count 305 * when ib_device_get_by_index() returns valid device pointer. 306 */ 307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 308 { 309 struct ib_device *device; 310 311 down_read(&devices_rwsem); 312 device = xa_load(&devices, index); 313 if (device) { 314 if (!rdma_dev_access_netns(device, net)) { 315 device = NULL; 316 goto out; 317 } 318 319 if (!ib_device_try_get(device)) 320 device = NULL; 321 } 322 out: 323 up_read(&devices_rwsem); 324 return device; 325 } 326 327 /** 328 * ib_device_put - Release IB device reference 329 * @device: device whose reference to be released 330 * 331 * ib_device_put() releases reference to the IB device to allow it to be 332 * unregistered and eventually free. 333 */ 334 void ib_device_put(struct ib_device *device) 335 { 336 if (refcount_dec_and_test(&device->refcount)) 337 complete(&device->unreg_completion); 338 } 339 EXPORT_SYMBOL(ib_device_put); 340 341 static struct ib_device *__ib_device_get_by_name(const char *name) 342 { 343 struct ib_device *device; 344 unsigned long index; 345 346 xa_for_each (&devices, index, device) 347 if (!strcmp(name, dev_name(&device->dev))) 348 return device; 349 350 return NULL; 351 } 352 353 /** 354 * ib_device_get_by_name - Find an IB device by name 355 * @name: The name to look for 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 357 * 358 * Find and hold an ib_device by its name. The caller must call 359 * ib_device_put() on the returned pointer. 360 */ 361 struct ib_device *ib_device_get_by_name(const char *name, 362 enum rdma_driver_id driver_id) 363 { 364 struct ib_device *device; 365 366 down_read(&devices_rwsem); 367 device = __ib_device_get_by_name(name); 368 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 369 device->ops.driver_id != driver_id) 370 device = NULL; 371 372 if (device) { 373 if (!ib_device_try_get(device)) 374 device = NULL; 375 } 376 up_read(&devices_rwsem); 377 return device; 378 } 379 EXPORT_SYMBOL(ib_device_get_by_name); 380 381 static int rename_compat_devs(struct ib_device *device) 382 { 383 struct ib_core_device *cdev; 384 unsigned long index; 385 int ret = 0; 386 387 mutex_lock(&device->compat_devs_mutex); 388 xa_for_each (&device->compat_devs, index, cdev) { 389 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 390 if (ret) { 391 dev_warn(&cdev->dev, 392 "Fail to rename compatdev to new name %s\n", 393 dev_name(&device->dev)); 394 break; 395 } 396 } 397 mutex_unlock(&device->compat_devs_mutex); 398 return ret; 399 } 400 401 int ib_device_rename(struct ib_device *ibdev, const char *name) 402 { 403 unsigned long index; 404 void *client_data; 405 int ret; 406 407 down_write(&devices_rwsem); 408 if (!strcmp(name, dev_name(&ibdev->dev))) { 409 up_write(&devices_rwsem); 410 return 0; 411 } 412 413 if (__ib_device_get_by_name(name)) { 414 up_write(&devices_rwsem); 415 return -EEXIST; 416 } 417 418 ret = device_rename(&ibdev->dev, name); 419 if (ret) { 420 up_write(&devices_rwsem); 421 return ret; 422 } 423 424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 425 ret = rename_compat_devs(ibdev); 426 427 downgrade_write(&devices_rwsem); 428 down_read(&ibdev->client_data_rwsem); 429 xan_for_each_marked(&ibdev->client_data, index, client_data, 430 CLIENT_DATA_REGISTERED) { 431 struct ib_client *client = xa_load(&clients, index); 432 433 if (!client || !client->rename) 434 continue; 435 436 client->rename(ibdev, client_data); 437 } 438 up_read(&ibdev->client_data_rwsem); 439 up_read(&devices_rwsem); 440 return 0; 441 } 442 443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 444 { 445 if (use_dim > 1) 446 return -EINVAL; 447 ibdev->use_cq_dim = use_dim; 448 449 return 0; 450 } 451 452 static int alloc_name(struct ib_device *ibdev, const char *name) 453 { 454 struct ib_device *device; 455 unsigned long index; 456 struct ida inuse; 457 int rc; 458 int i; 459 460 lockdep_assert_held_write(&devices_rwsem); 461 ida_init(&inuse); 462 xa_for_each (&devices, index, device) { 463 char buf[IB_DEVICE_NAME_MAX]; 464 465 if (sscanf(dev_name(&device->dev), name, &i) != 1) 466 continue; 467 if (i < 0 || i >= INT_MAX) 468 continue; 469 snprintf(buf, sizeof buf, name, i); 470 if (strcmp(buf, dev_name(&device->dev)) != 0) 471 continue; 472 473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 474 if (rc < 0) 475 goto out; 476 } 477 478 rc = ida_alloc(&inuse, GFP_KERNEL); 479 if (rc < 0) 480 goto out; 481 482 rc = dev_set_name(&ibdev->dev, name, rc); 483 out: 484 ida_destroy(&inuse); 485 return rc; 486 } 487 488 static void ib_device_release(struct device *device) 489 { 490 struct ib_device *dev = container_of(device, struct ib_device, dev); 491 492 free_netdevs(dev); 493 WARN_ON(refcount_read(&dev->refcount)); 494 if (dev->port_data) { 495 ib_cache_release_one(dev); 496 ib_security_release_port_pkey_list(dev); 497 rdma_counter_release(dev); 498 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 499 pdata[0]), 500 rcu_head); 501 } 502 503 mutex_destroy(&dev->unregistration_lock); 504 mutex_destroy(&dev->compat_devs_mutex); 505 506 xa_destroy(&dev->compat_devs); 507 xa_destroy(&dev->client_data); 508 kfree_rcu(dev, rcu_head); 509 } 510 511 static int ib_device_uevent(struct device *device, 512 struct kobj_uevent_env *env) 513 { 514 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 515 return -ENOMEM; 516 517 /* 518 * It would be nice to pass the node GUID with the event... 519 */ 520 521 return 0; 522 } 523 524 static const void *net_namespace(struct device *d) 525 { 526 struct ib_core_device *coredev = 527 container_of(d, struct ib_core_device, dev); 528 529 return read_pnet(&coredev->rdma_net); 530 } 531 532 static struct class ib_class = { 533 .name = "infiniband", 534 .dev_release = ib_device_release, 535 .dev_uevent = ib_device_uevent, 536 .ns_type = &net_ns_type_operations, 537 .namespace = net_namespace, 538 }; 539 540 static void rdma_init_coredev(struct ib_core_device *coredev, 541 struct ib_device *dev, struct net *net) 542 { 543 /* This BUILD_BUG_ON is intended to catch layout change 544 * of union of ib_core_device and device. 545 * dev must be the first element as ib_core and providers 546 * driver uses it. Adding anything in ib_core_device before 547 * device will break this assumption. 548 */ 549 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 550 offsetof(struct ib_device, dev)); 551 552 coredev->dev.class = &ib_class; 553 coredev->dev.groups = dev->groups; 554 device_initialize(&coredev->dev); 555 coredev->owner = dev; 556 INIT_LIST_HEAD(&coredev->port_list); 557 write_pnet(&coredev->rdma_net, net); 558 } 559 560 /** 561 * _ib_alloc_device - allocate an IB device struct 562 * @size:size of structure to allocate 563 * 564 * Low-level drivers should use ib_alloc_device() to allocate &struct 565 * ib_device. @size is the size of the structure to be allocated, 566 * including any private data used by the low-level driver. 567 * ib_dealloc_device() must be used to free structures allocated with 568 * ib_alloc_device(). 569 */ 570 struct ib_device *_ib_alloc_device(size_t size) 571 { 572 struct ib_device *device; 573 574 if (WARN_ON(size < sizeof(struct ib_device))) 575 return NULL; 576 577 device = kzalloc(size, GFP_KERNEL); 578 if (!device) 579 return NULL; 580 581 if (rdma_restrack_init(device)) { 582 kfree(device); 583 return NULL; 584 } 585 586 device->groups[0] = &ib_dev_attr_group; 587 rdma_init_coredev(&device->coredev, device, &init_net); 588 589 INIT_LIST_HEAD(&device->event_handler_list); 590 spin_lock_init(&device->qp_open_list_lock); 591 init_rwsem(&device->event_handler_rwsem); 592 mutex_init(&device->unregistration_lock); 593 /* 594 * client_data needs to be alloc because we don't want our mark to be 595 * destroyed if the user stores NULL in the client data. 596 */ 597 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 598 init_rwsem(&device->client_data_rwsem); 599 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 600 mutex_init(&device->compat_devs_mutex); 601 init_completion(&device->unreg_completion); 602 INIT_WORK(&device->unregistration_work, ib_unregister_work); 603 604 return device; 605 } 606 EXPORT_SYMBOL(_ib_alloc_device); 607 608 /** 609 * ib_dealloc_device - free an IB device struct 610 * @device:structure to free 611 * 612 * Free a structure allocated with ib_alloc_device(). 613 */ 614 void ib_dealloc_device(struct ib_device *device) 615 { 616 if (device->ops.dealloc_driver) 617 device->ops.dealloc_driver(device); 618 619 /* 620 * ib_unregister_driver() requires all devices to remain in the xarray 621 * while their ops are callable. The last op we call is dealloc_driver 622 * above. This is needed to create a fence on op callbacks prior to 623 * allowing the driver module to unload. 624 */ 625 down_write(&devices_rwsem); 626 if (xa_load(&devices, device->index) == device) 627 xa_erase(&devices, device->index); 628 up_write(&devices_rwsem); 629 630 /* Expedite releasing netdev references */ 631 free_netdevs(device); 632 633 WARN_ON(!xa_empty(&device->compat_devs)); 634 WARN_ON(!xa_empty(&device->client_data)); 635 WARN_ON(refcount_read(&device->refcount)); 636 rdma_restrack_clean(device); 637 /* Balances with device_initialize */ 638 put_device(&device->dev); 639 } 640 EXPORT_SYMBOL(ib_dealloc_device); 641 642 /* 643 * add_client_context() and remove_client_context() must be safe against 644 * parallel calls on the same device - registration/unregistration of both the 645 * device and client can be occurring in parallel. 646 * 647 * The routines need to be a fence, any caller must not return until the add 648 * or remove is fully completed. 649 */ 650 static int add_client_context(struct ib_device *device, 651 struct ib_client *client) 652 { 653 int ret = 0; 654 655 if (!device->kverbs_provider && !client->no_kverbs_req) 656 return 0; 657 658 down_write(&device->client_data_rwsem); 659 /* 660 * So long as the client is registered hold both the client and device 661 * unregistration locks. 662 */ 663 if (!refcount_inc_not_zero(&client->uses)) 664 goto out_unlock; 665 refcount_inc(&device->refcount); 666 667 /* 668 * Another caller to add_client_context got here first and has already 669 * completely initialized context. 670 */ 671 if (xa_get_mark(&device->client_data, client->client_id, 672 CLIENT_DATA_REGISTERED)) 673 goto out; 674 675 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 676 GFP_KERNEL)); 677 if (ret) 678 goto out; 679 downgrade_write(&device->client_data_rwsem); 680 if (client->add) 681 client->add(device); 682 683 /* Readers shall not see a client until add has been completed */ 684 xa_set_mark(&device->client_data, client->client_id, 685 CLIENT_DATA_REGISTERED); 686 up_read(&device->client_data_rwsem); 687 return 0; 688 689 out: 690 ib_device_put(device); 691 ib_client_put(client); 692 out_unlock: 693 up_write(&device->client_data_rwsem); 694 return ret; 695 } 696 697 static void remove_client_context(struct ib_device *device, 698 unsigned int client_id) 699 { 700 struct ib_client *client; 701 void *client_data; 702 703 down_write(&device->client_data_rwsem); 704 if (!xa_get_mark(&device->client_data, client_id, 705 CLIENT_DATA_REGISTERED)) { 706 up_write(&device->client_data_rwsem); 707 return; 708 } 709 client_data = xa_load(&device->client_data, client_id); 710 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 711 client = xa_load(&clients, client_id); 712 up_write(&device->client_data_rwsem); 713 714 /* 715 * Notice we cannot be holding any exclusive locks when calling the 716 * remove callback as the remove callback can recurse back into any 717 * public functions in this module and thus try for any locks those 718 * functions take. 719 * 720 * For this reason clients and drivers should not call the 721 * unregistration functions will holdling any locks. 722 */ 723 if (client->remove) 724 client->remove(device, client_data); 725 726 xa_erase(&device->client_data, client_id); 727 ib_device_put(device); 728 ib_client_put(client); 729 } 730 731 static int alloc_port_data(struct ib_device *device) 732 { 733 struct ib_port_data_rcu *pdata_rcu; 734 unsigned int port; 735 736 if (device->port_data) 737 return 0; 738 739 /* This can only be called once the physical port range is defined */ 740 if (WARN_ON(!device->phys_port_cnt)) 741 return -EINVAL; 742 743 /* 744 * device->port_data is indexed directly by the port number to make 745 * access to this data as efficient as possible. 746 * 747 * Therefore port_data is declared as a 1 based array with potential 748 * empty slots at the beginning. 749 */ 750 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 751 rdma_end_port(device) + 1), 752 GFP_KERNEL); 753 if (!pdata_rcu) 754 return -ENOMEM; 755 /* 756 * The rcu_head is put in front of the port data array and the stored 757 * pointer is adjusted since we never need to see that member until 758 * kfree_rcu. 759 */ 760 device->port_data = pdata_rcu->pdata; 761 762 rdma_for_each_port (device, port) { 763 struct ib_port_data *pdata = &device->port_data[port]; 764 765 pdata->ib_dev = device; 766 spin_lock_init(&pdata->pkey_list_lock); 767 INIT_LIST_HEAD(&pdata->pkey_list); 768 spin_lock_init(&pdata->netdev_lock); 769 INIT_HLIST_NODE(&pdata->ndev_hash_link); 770 } 771 return 0; 772 } 773 774 static int verify_immutable(const struct ib_device *dev, u8 port) 775 { 776 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 777 rdma_max_mad_size(dev, port) != 0); 778 } 779 780 static int setup_port_data(struct ib_device *device) 781 { 782 unsigned int port; 783 int ret; 784 785 ret = alloc_port_data(device); 786 if (ret) 787 return ret; 788 789 rdma_for_each_port (device, port) { 790 struct ib_port_data *pdata = &device->port_data[port]; 791 792 ret = device->ops.get_port_immutable(device, port, 793 &pdata->immutable); 794 if (ret) 795 return ret; 796 797 if (verify_immutable(device, port)) 798 return -EINVAL; 799 } 800 return 0; 801 } 802 803 void ib_get_device_fw_str(struct ib_device *dev, char *str) 804 { 805 if (dev->ops.get_dev_fw_str) 806 dev->ops.get_dev_fw_str(dev, str); 807 else 808 str[0] = '\0'; 809 } 810 EXPORT_SYMBOL(ib_get_device_fw_str); 811 812 static void ib_policy_change_task(struct work_struct *work) 813 { 814 struct ib_device *dev; 815 unsigned long index; 816 817 down_read(&devices_rwsem); 818 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 819 unsigned int i; 820 821 rdma_for_each_port (dev, i) { 822 u64 sp; 823 int ret = ib_get_cached_subnet_prefix(dev, 824 i, 825 &sp); 826 827 WARN_ONCE(ret, 828 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 829 ret); 830 if (!ret) 831 ib_security_cache_change(dev, i, sp); 832 } 833 } 834 up_read(&devices_rwsem); 835 } 836 837 static int ib_security_change(struct notifier_block *nb, unsigned long event, 838 void *lsm_data) 839 { 840 if (event != LSM_POLICY_CHANGE) 841 return NOTIFY_DONE; 842 843 schedule_work(&ib_policy_change_work); 844 ib_mad_agent_security_change(); 845 846 return NOTIFY_OK; 847 } 848 849 static void compatdev_release(struct device *dev) 850 { 851 struct ib_core_device *cdev = 852 container_of(dev, struct ib_core_device, dev); 853 854 kfree(cdev); 855 } 856 857 static int add_one_compat_dev(struct ib_device *device, 858 struct rdma_dev_net *rnet) 859 { 860 struct ib_core_device *cdev; 861 int ret; 862 863 lockdep_assert_held(&rdma_nets_rwsem); 864 if (!ib_devices_shared_netns) 865 return 0; 866 867 /* 868 * Create and add compat device in all namespaces other than where it 869 * is currently bound to. 870 */ 871 if (net_eq(read_pnet(&rnet->net), 872 read_pnet(&device->coredev.rdma_net))) 873 return 0; 874 875 /* 876 * The first of init_net() or ib_register_device() to take the 877 * compat_devs_mutex wins and gets to add the device. Others will wait 878 * for completion here. 879 */ 880 mutex_lock(&device->compat_devs_mutex); 881 cdev = xa_load(&device->compat_devs, rnet->id); 882 if (cdev) { 883 ret = 0; 884 goto done; 885 } 886 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 887 if (ret) 888 goto done; 889 890 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 891 if (!cdev) { 892 ret = -ENOMEM; 893 goto cdev_err; 894 } 895 896 cdev->dev.parent = device->dev.parent; 897 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 898 cdev->dev.release = compatdev_release; 899 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 900 if (ret) 901 goto add_err; 902 903 ret = device_add(&cdev->dev); 904 if (ret) 905 goto add_err; 906 ret = ib_setup_port_attrs(cdev); 907 if (ret) 908 goto port_err; 909 910 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 911 cdev, GFP_KERNEL)); 912 if (ret) 913 goto insert_err; 914 915 mutex_unlock(&device->compat_devs_mutex); 916 return 0; 917 918 insert_err: 919 ib_free_port_attrs(cdev); 920 port_err: 921 device_del(&cdev->dev); 922 add_err: 923 put_device(&cdev->dev); 924 cdev_err: 925 xa_release(&device->compat_devs, rnet->id); 926 done: 927 mutex_unlock(&device->compat_devs_mutex); 928 return ret; 929 } 930 931 static void remove_one_compat_dev(struct ib_device *device, u32 id) 932 { 933 struct ib_core_device *cdev; 934 935 mutex_lock(&device->compat_devs_mutex); 936 cdev = xa_erase(&device->compat_devs, id); 937 mutex_unlock(&device->compat_devs_mutex); 938 if (cdev) { 939 ib_free_port_attrs(cdev); 940 device_del(&cdev->dev); 941 put_device(&cdev->dev); 942 } 943 } 944 945 static void remove_compat_devs(struct ib_device *device) 946 { 947 struct ib_core_device *cdev; 948 unsigned long index; 949 950 xa_for_each (&device->compat_devs, index, cdev) 951 remove_one_compat_dev(device, index); 952 } 953 954 static int add_compat_devs(struct ib_device *device) 955 { 956 struct rdma_dev_net *rnet; 957 unsigned long index; 958 int ret = 0; 959 960 lockdep_assert_held(&devices_rwsem); 961 962 down_read(&rdma_nets_rwsem); 963 xa_for_each (&rdma_nets, index, rnet) { 964 ret = add_one_compat_dev(device, rnet); 965 if (ret) 966 break; 967 } 968 up_read(&rdma_nets_rwsem); 969 return ret; 970 } 971 972 static void remove_all_compat_devs(void) 973 { 974 struct ib_compat_device *cdev; 975 struct ib_device *dev; 976 unsigned long index; 977 978 down_read(&devices_rwsem); 979 xa_for_each (&devices, index, dev) { 980 unsigned long c_index = 0; 981 982 /* Hold nets_rwsem so that any other thread modifying this 983 * system param can sync with this thread. 984 */ 985 down_read(&rdma_nets_rwsem); 986 xa_for_each (&dev->compat_devs, c_index, cdev) 987 remove_one_compat_dev(dev, c_index); 988 up_read(&rdma_nets_rwsem); 989 } 990 up_read(&devices_rwsem); 991 } 992 993 static int add_all_compat_devs(void) 994 { 995 struct rdma_dev_net *rnet; 996 struct ib_device *dev; 997 unsigned long index; 998 int ret = 0; 999 1000 down_read(&devices_rwsem); 1001 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1002 unsigned long net_index = 0; 1003 1004 /* Hold nets_rwsem so that any other thread modifying this 1005 * system param can sync with this thread. 1006 */ 1007 down_read(&rdma_nets_rwsem); 1008 xa_for_each (&rdma_nets, net_index, rnet) { 1009 ret = add_one_compat_dev(dev, rnet); 1010 if (ret) 1011 break; 1012 } 1013 up_read(&rdma_nets_rwsem); 1014 } 1015 up_read(&devices_rwsem); 1016 if (ret) 1017 remove_all_compat_devs(); 1018 return ret; 1019 } 1020 1021 int rdma_compatdev_set(u8 enable) 1022 { 1023 struct rdma_dev_net *rnet; 1024 unsigned long index; 1025 int ret = 0; 1026 1027 down_write(&rdma_nets_rwsem); 1028 if (ib_devices_shared_netns == enable) { 1029 up_write(&rdma_nets_rwsem); 1030 return 0; 1031 } 1032 1033 /* enable/disable of compat devices is not supported 1034 * when more than default init_net exists. 1035 */ 1036 xa_for_each (&rdma_nets, index, rnet) { 1037 ret++; 1038 break; 1039 } 1040 if (!ret) 1041 ib_devices_shared_netns = enable; 1042 up_write(&rdma_nets_rwsem); 1043 if (ret) 1044 return -EBUSY; 1045 1046 if (enable) 1047 ret = add_all_compat_devs(); 1048 else 1049 remove_all_compat_devs(); 1050 return ret; 1051 } 1052 1053 static void rdma_dev_exit_net(struct net *net) 1054 { 1055 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1056 struct ib_device *dev; 1057 unsigned long index; 1058 int ret; 1059 1060 down_write(&rdma_nets_rwsem); 1061 /* 1062 * Prevent the ID from being re-used and hide the id from xa_for_each. 1063 */ 1064 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1065 WARN_ON(ret); 1066 up_write(&rdma_nets_rwsem); 1067 1068 down_read(&devices_rwsem); 1069 xa_for_each (&devices, index, dev) { 1070 get_device(&dev->dev); 1071 /* 1072 * Release the devices_rwsem so that pontentially blocking 1073 * device_del, doesn't hold the devices_rwsem for too long. 1074 */ 1075 up_read(&devices_rwsem); 1076 1077 remove_one_compat_dev(dev, rnet->id); 1078 1079 /* 1080 * If the real device is in the NS then move it back to init. 1081 */ 1082 rdma_dev_change_netns(dev, net, &init_net); 1083 1084 put_device(&dev->dev); 1085 down_read(&devices_rwsem); 1086 } 1087 up_read(&devices_rwsem); 1088 1089 rdma_nl_net_exit(rnet); 1090 xa_erase(&rdma_nets, rnet->id); 1091 } 1092 1093 static __net_init int rdma_dev_init_net(struct net *net) 1094 { 1095 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1096 unsigned long index; 1097 struct ib_device *dev; 1098 int ret; 1099 1100 write_pnet(&rnet->net, net); 1101 1102 ret = rdma_nl_net_init(rnet); 1103 if (ret) 1104 return ret; 1105 1106 /* No need to create any compat devices in default init_net. */ 1107 if (net_eq(net, &init_net)) 1108 return 0; 1109 1110 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1111 if (ret) { 1112 rdma_nl_net_exit(rnet); 1113 return ret; 1114 } 1115 1116 down_read(&devices_rwsem); 1117 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1118 /* Hold nets_rwsem so that netlink command cannot change 1119 * system configuration for device sharing mode. 1120 */ 1121 down_read(&rdma_nets_rwsem); 1122 ret = add_one_compat_dev(dev, rnet); 1123 up_read(&rdma_nets_rwsem); 1124 if (ret) 1125 break; 1126 } 1127 up_read(&devices_rwsem); 1128 1129 if (ret) 1130 rdma_dev_exit_net(net); 1131 1132 return ret; 1133 } 1134 1135 /* 1136 * Assign the unique string device name and the unique device index. This is 1137 * undone by ib_dealloc_device. 1138 */ 1139 static int assign_name(struct ib_device *device, const char *name) 1140 { 1141 static u32 last_id; 1142 int ret; 1143 1144 down_write(&devices_rwsem); 1145 /* Assign a unique name to the device */ 1146 if (strchr(name, '%')) 1147 ret = alloc_name(device, name); 1148 else 1149 ret = dev_set_name(&device->dev, name); 1150 if (ret) 1151 goto out; 1152 1153 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1154 ret = -ENFILE; 1155 goto out; 1156 } 1157 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1158 1159 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1160 &last_id, GFP_KERNEL); 1161 if (ret > 0) 1162 ret = 0; 1163 1164 out: 1165 up_write(&devices_rwsem); 1166 return ret; 1167 } 1168 1169 static void setup_dma_device(struct ib_device *device) 1170 { 1171 struct device *parent = device->dev.parent; 1172 1173 WARN_ON_ONCE(device->dma_device); 1174 if (device->dev.dma_ops) { 1175 /* 1176 * The caller provided custom DMA operations. Copy the 1177 * DMA-related fields that are used by e.g. dma_alloc_coherent() 1178 * into device->dev. 1179 */ 1180 device->dma_device = &device->dev; 1181 if (!device->dev.dma_mask) { 1182 if (parent) 1183 device->dev.dma_mask = parent->dma_mask; 1184 else 1185 WARN_ON_ONCE(true); 1186 } 1187 if (!device->dev.coherent_dma_mask) { 1188 if (parent) 1189 device->dev.coherent_dma_mask = 1190 parent->coherent_dma_mask; 1191 else 1192 WARN_ON_ONCE(true); 1193 } 1194 } else { 1195 /* 1196 * The caller did not provide custom DMA operations. Use the 1197 * DMA mapping operations of the parent device. 1198 */ 1199 WARN_ON_ONCE(!parent); 1200 device->dma_device = parent; 1201 } 1202 1203 if (!device->dev.dma_parms) { 1204 if (parent) { 1205 /* 1206 * The caller did not provide DMA parameters, so 1207 * 'parent' probably represents a PCI device. The PCI 1208 * core sets the maximum segment size to 64 1209 * KB. Increase this parameter to 2 GB. 1210 */ 1211 device->dev.dma_parms = parent->dma_parms; 1212 dma_set_max_seg_size(device->dma_device, SZ_2G); 1213 } else { 1214 WARN_ON_ONCE(true); 1215 } 1216 } 1217 } 1218 1219 /* 1220 * setup_device() allocates memory and sets up data that requires calling the 1221 * device ops, this is the only reason these actions are not done during 1222 * ib_alloc_device. It is undone by ib_dealloc_device(). 1223 */ 1224 static int setup_device(struct ib_device *device) 1225 { 1226 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1227 int ret; 1228 1229 setup_dma_device(device); 1230 ib_device_check_mandatory(device); 1231 1232 ret = setup_port_data(device); 1233 if (ret) { 1234 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1235 return ret; 1236 } 1237 1238 memset(&device->attrs, 0, sizeof(device->attrs)); 1239 ret = device->ops.query_device(device, &device->attrs, &uhw); 1240 if (ret) { 1241 dev_warn(&device->dev, 1242 "Couldn't query the device attributes\n"); 1243 return ret; 1244 } 1245 1246 return 0; 1247 } 1248 1249 static void disable_device(struct ib_device *device) 1250 { 1251 u32 cid; 1252 1253 WARN_ON(!refcount_read(&device->refcount)); 1254 1255 down_write(&devices_rwsem); 1256 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1257 up_write(&devices_rwsem); 1258 1259 /* 1260 * Remove clients in LIFO order, see assign_client_id. This could be 1261 * more efficient if xarray learns to reverse iterate. Since no new 1262 * clients can be added to this ib_device past this point we only need 1263 * the maximum possible client_id value here. 1264 */ 1265 down_read(&clients_rwsem); 1266 cid = highest_client_id; 1267 up_read(&clients_rwsem); 1268 while (cid) { 1269 cid--; 1270 remove_client_context(device, cid); 1271 } 1272 1273 /* Pairs with refcount_set in enable_device */ 1274 ib_device_put(device); 1275 wait_for_completion(&device->unreg_completion); 1276 1277 /* 1278 * compat devices must be removed after device refcount drops to zero. 1279 * Otherwise init_net() may add more compatdevs after removing compat 1280 * devices and before device is disabled. 1281 */ 1282 remove_compat_devs(device); 1283 } 1284 1285 /* 1286 * An enabled device is visible to all clients and to all the public facing 1287 * APIs that return a device pointer. This always returns with a new get, even 1288 * if it fails. 1289 */ 1290 static int enable_device_and_get(struct ib_device *device) 1291 { 1292 struct ib_client *client; 1293 unsigned long index; 1294 int ret = 0; 1295 1296 /* 1297 * One ref belongs to the xa and the other belongs to this 1298 * thread. This is needed to guard against parallel unregistration. 1299 */ 1300 refcount_set(&device->refcount, 2); 1301 down_write(&devices_rwsem); 1302 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1303 1304 /* 1305 * By using downgrade_write() we ensure that no other thread can clear 1306 * DEVICE_REGISTERED while we are completing the client setup. 1307 */ 1308 downgrade_write(&devices_rwsem); 1309 1310 if (device->ops.enable_driver) { 1311 ret = device->ops.enable_driver(device); 1312 if (ret) 1313 goto out; 1314 } 1315 1316 down_read(&clients_rwsem); 1317 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1318 ret = add_client_context(device, client); 1319 if (ret) 1320 break; 1321 } 1322 up_read(&clients_rwsem); 1323 if (!ret) 1324 ret = add_compat_devs(device); 1325 out: 1326 up_read(&devices_rwsem); 1327 return ret; 1328 } 1329 1330 /** 1331 * ib_register_device - Register an IB device with IB core 1332 * @device: Device to register 1333 * @name: unique string device name. This may include a '%' which will 1334 * cause a unique index to be added to the passed device name. 1335 * 1336 * Low-level drivers use ib_register_device() to register their 1337 * devices with the IB core. All registered clients will receive a 1338 * callback for each device that is added. @device must be allocated 1339 * with ib_alloc_device(). 1340 * 1341 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1342 * asynchronously then the device pointer may become freed as soon as this 1343 * function returns. 1344 */ 1345 int ib_register_device(struct ib_device *device, const char *name) 1346 { 1347 int ret; 1348 1349 ret = assign_name(device, name); 1350 if (ret) 1351 return ret; 1352 1353 ret = setup_device(device); 1354 if (ret) 1355 return ret; 1356 1357 ret = ib_cache_setup_one(device); 1358 if (ret) { 1359 dev_warn(&device->dev, 1360 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1361 return ret; 1362 } 1363 1364 ib_device_register_rdmacg(device); 1365 1366 rdma_counter_init(device); 1367 1368 /* 1369 * Ensure that ADD uevent is not fired because it 1370 * is too early amd device is not initialized yet. 1371 */ 1372 dev_set_uevent_suppress(&device->dev, true); 1373 ret = device_add(&device->dev); 1374 if (ret) 1375 goto cg_cleanup; 1376 1377 ret = ib_device_register_sysfs(device); 1378 if (ret) { 1379 dev_warn(&device->dev, 1380 "Couldn't register device with driver model\n"); 1381 goto dev_cleanup; 1382 } 1383 1384 ret = enable_device_and_get(device); 1385 dev_set_uevent_suppress(&device->dev, false); 1386 /* Mark for userspace that device is ready */ 1387 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1388 if (ret) { 1389 void (*dealloc_fn)(struct ib_device *); 1390 1391 /* 1392 * If we hit this error flow then we don't want to 1393 * automatically dealloc the device since the caller is 1394 * expected to call ib_dealloc_device() after 1395 * ib_register_device() fails. This is tricky due to the 1396 * possibility for a parallel unregistration along with this 1397 * error flow. Since we have a refcount here we know any 1398 * parallel flow is stopped in disable_device and will see the 1399 * NULL pointers, causing the responsibility to 1400 * ib_dealloc_device() to revert back to this thread. 1401 */ 1402 dealloc_fn = device->ops.dealloc_driver; 1403 device->ops.dealloc_driver = NULL; 1404 ib_device_put(device); 1405 __ib_unregister_device(device); 1406 device->ops.dealloc_driver = dealloc_fn; 1407 return ret; 1408 } 1409 ib_device_put(device); 1410 1411 return 0; 1412 1413 dev_cleanup: 1414 device_del(&device->dev); 1415 cg_cleanup: 1416 dev_set_uevent_suppress(&device->dev, false); 1417 ib_device_unregister_rdmacg(device); 1418 ib_cache_cleanup_one(device); 1419 return ret; 1420 } 1421 EXPORT_SYMBOL(ib_register_device); 1422 1423 /* Callers must hold a get on the device. */ 1424 static void __ib_unregister_device(struct ib_device *ib_dev) 1425 { 1426 /* 1427 * We have a registration lock so that all the calls to unregister are 1428 * fully fenced, once any unregister returns the device is truely 1429 * unregistered even if multiple callers are unregistering it at the 1430 * same time. This also interacts with the registration flow and 1431 * provides sane semantics if register and unregister are racing. 1432 */ 1433 mutex_lock(&ib_dev->unregistration_lock); 1434 if (!refcount_read(&ib_dev->refcount)) 1435 goto out; 1436 1437 disable_device(ib_dev); 1438 1439 /* Expedite removing unregistered pointers from the hash table */ 1440 free_netdevs(ib_dev); 1441 1442 ib_device_unregister_sysfs(ib_dev); 1443 device_del(&ib_dev->dev); 1444 ib_device_unregister_rdmacg(ib_dev); 1445 ib_cache_cleanup_one(ib_dev); 1446 1447 /* 1448 * Drivers using the new flow may not call ib_dealloc_device except 1449 * in error unwind prior to registration success. 1450 */ 1451 if (ib_dev->ops.dealloc_driver) { 1452 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1453 ib_dealloc_device(ib_dev); 1454 } 1455 out: 1456 mutex_unlock(&ib_dev->unregistration_lock); 1457 } 1458 1459 /** 1460 * ib_unregister_device - Unregister an IB device 1461 * @ib_dev: The device to unregister 1462 * 1463 * Unregister an IB device. All clients will receive a remove callback. 1464 * 1465 * Callers should call this routine only once, and protect against races with 1466 * registration. Typically it should only be called as part of a remove 1467 * callback in an implementation of driver core's struct device_driver and 1468 * related. 1469 * 1470 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1471 * this function. 1472 */ 1473 void ib_unregister_device(struct ib_device *ib_dev) 1474 { 1475 get_device(&ib_dev->dev); 1476 __ib_unregister_device(ib_dev); 1477 put_device(&ib_dev->dev); 1478 } 1479 EXPORT_SYMBOL(ib_unregister_device); 1480 1481 /** 1482 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1483 * @ib_dev: The device to unregister 1484 * 1485 * This is the same as ib_unregister_device(), except it includes an internal 1486 * ib_device_put() that should match a 'get' obtained by the caller. 1487 * 1488 * It is safe to call this routine concurrently from multiple threads while 1489 * holding the 'get'. When the function returns the device is fully 1490 * unregistered. 1491 * 1492 * Drivers using this flow MUST use the driver_unregister callback to clean up 1493 * their resources associated with the device and dealloc it. 1494 */ 1495 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1496 { 1497 WARN_ON(!ib_dev->ops.dealloc_driver); 1498 get_device(&ib_dev->dev); 1499 ib_device_put(ib_dev); 1500 __ib_unregister_device(ib_dev); 1501 put_device(&ib_dev->dev); 1502 } 1503 EXPORT_SYMBOL(ib_unregister_device_and_put); 1504 1505 /** 1506 * ib_unregister_driver - Unregister all IB devices for a driver 1507 * @driver_id: The driver to unregister 1508 * 1509 * This implements a fence for device unregistration. It only returns once all 1510 * devices associated with the driver_id have fully completed their 1511 * unregistration and returned from ib_unregister_device*(). 1512 * 1513 * If device's are not yet unregistered it goes ahead and starts unregistering 1514 * them. 1515 * 1516 * This does not block creation of new devices with the given driver_id, that 1517 * is the responsibility of the caller. 1518 */ 1519 void ib_unregister_driver(enum rdma_driver_id driver_id) 1520 { 1521 struct ib_device *ib_dev; 1522 unsigned long index; 1523 1524 down_read(&devices_rwsem); 1525 xa_for_each (&devices, index, ib_dev) { 1526 if (ib_dev->ops.driver_id != driver_id) 1527 continue; 1528 1529 get_device(&ib_dev->dev); 1530 up_read(&devices_rwsem); 1531 1532 WARN_ON(!ib_dev->ops.dealloc_driver); 1533 __ib_unregister_device(ib_dev); 1534 1535 put_device(&ib_dev->dev); 1536 down_read(&devices_rwsem); 1537 } 1538 up_read(&devices_rwsem); 1539 } 1540 EXPORT_SYMBOL(ib_unregister_driver); 1541 1542 static void ib_unregister_work(struct work_struct *work) 1543 { 1544 struct ib_device *ib_dev = 1545 container_of(work, struct ib_device, unregistration_work); 1546 1547 __ib_unregister_device(ib_dev); 1548 put_device(&ib_dev->dev); 1549 } 1550 1551 /** 1552 * ib_unregister_device_queued - Unregister a device using a work queue 1553 * @ib_dev: The device to unregister 1554 * 1555 * This schedules an asynchronous unregistration using a WQ for the device. A 1556 * driver should use this to avoid holding locks while doing unregistration, 1557 * such as holding the RTNL lock. 1558 * 1559 * Drivers using this API must use ib_unregister_driver before module unload 1560 * to ensure that all scheduled unregistrations have completed. 1561 */ 1562 void ib_unregister_device_queued(struct ib_device *ib_dev) 1563 { 1564 WARN_ON(!refcount_read(&ib_dev->refcount)); 1565 WARN_ON(!ib_dev->ops.dealloc_driver); 1566 get_device(&ib_dev->dev); 1567 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) 1568 put_device(&ib_dev->dev); 1569 } 1570 EXPORT_SYMBOL(ib_unregister_device_queued); 1571 1572 /* 1573 * The caller must pass in a device that has the kref held and the refcount 1574 * released. If the device is in cur_net and still registered then it is moved 1575 * into net. 1576 */ 1577 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1578 struct net *net) 1579 { 1580 int ret2 = -EINVAL; 1581 int ret; 1582 1583 mutex_lock(&device->unregistration_lock); 1584 1585 /* 1586 * If a device not under ib_device_get() or if the unregistration_lock 1587 * is not held, the namespace can be changed, or it can be unregistered. 1588 * Check again under the lock. 1589 */ 1590 if (refcount_read(&device->refcount) == 0 || 1591 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1592 ret = -ENODEV; 1593 goto out; 1594 } 1595 1596 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1597 disable_device(device); 1598 1599 /* 1600 * At this point no one can be using the device, so it is safe to 1601 * change the namespace. 1602 */ 1603 write_pnet(&device->coredev.rdma_net, net); 1604 1605 down_read(&devices_rwsem); 1606 /* 1607 * Currently rdma devices are system wide unique. So the device name 1608 * is guaranteed free in the new namespace. Publish the new namespace 1609 * at the sysfs level. 1610 */ 1611 ret = device_rename(&device->dev, dev_name(&device->dev)); 1612 up_read(&devices_rwsem); 1613 if (ret) { 1614 dev_warn(&device->dev, 1615 "%s: Couldn't rename device after namespace change\n", 1616 __func__); 1617 /* Try and put things back and re-enable the device */ 1618 write_pnet(&device->coredev.rdma_net, cur_net); 1619 } 1620 1621 ret2 = enable_device_and_get(device); 1622 if (ret2) { 1623 /* 1624 * This shouldn't really happen, but if it does, let the user 1625 * retry at later point. So don't disable the device. 1626 */ 1627 dev_warn(&device->dev, 1628 "%s: Couldn't re-enable device after namespace change\n", 1629 __func__); 1630 } 1631 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1632 1633 ib_device_put(device); 1634 out: 1635 mutex_unlock(&device->unregistration_lock); 1636 if (ret) 1637 return ret; 1638 return ret2; 1639 } 1640 1641 int ib_device_set_netns_put(struct sk_buff *skb, 1642 struct ib_device *dev, u32 ns_fd) 1643 { 1644 struct net *net; 1645 int ret; 1646 1647 net = get_net_ns_by_fd(ns_fd); 1648 if (IS_ERR(net)) { 1649 ret = PTR_ERR(net); 1650 goto net_err; 1651 } 1652 1653 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1654 ret = -EPERM; 1655 goto ns_err; 1656 } 1657 1658 /* 1659 * Currently supported only for those providers which support 1660 * disassociation and don't do port specific sysfs init. Once a 1661 * port_cleanup infrastructure is implemented, this limitation will be 1662 * removed. 1663 */ 1664 if (!dev->ops.disassociate_ucontext || dev->ops.init_port || 1665 ib_devices_shared_netns) { 1666 ret = -EOPNOTSUPP; 1667 goto ns_err; 1668 } 1669 1670 get_device(&dev->dev); 1671 ib_device_put(dev); 1672 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1673 put_device(&dev->dev); 1674 1675 put_net(net); 1676 return ret; 1677 1678 ns_err: 1679 put_net(net); 1680 net_err: 1681 ib_device_put(dev); 1682 return ret; 1683 } 1684 1685 static struct pernet_operations rdma_dev_net_ops = { 1686 .init = rdma_dev_init_net, 1687 .exit = rdma_dev_exit_net, 1688 .id = &rdma_dev_net_id, 1689 .size = sizeof(struct rdma_dev_net), 1690 }; 1691 1692 static int assign_client_id(struct ib_client *client) 1693 { 1694 int ret; 1695 1696 down_write(&clients_rwsem); 1697 /* 1698 * The add/remove callbacks must be called in FIFO/LIFO order. To 1699 * achieve this we assign client_ids so they are sorted in 1700 * registration order. 1701 */ 1702 client->client_id = highest_client_id; 1703 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1704 if (ret) 1705 goto out; 1706 1707 highest_client_id++; 1708 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1709 1710 out: 1711 up_write(&clients_rwsem); 1712 return ret; 1713 } 1714 1715 static void remove_client_id(struct ib_client *client) 1716 { 1717 down_write(&clients_rwsem); 1718 xa_erase(&clients, client->client_id); 1719 for (; highest_client_id; highest_client_id--) 1720 if (xa_load(&clients, highest_client_id - 1)) 1721 break; 1722 up_write(&clients_rwsem); 1723 } 1724 1725 /** 1726 * ib_register_client - Register an IB client 1727 * @client:Client to register 1728 * 1729 * Upper level users of the IB drivers can use ib_register_client() to 1730 * register callbacks for IB device addition and removal. When an IB 1731 * device is added, each registered client's add method will be called 1732 * (in the order the clients were registered), and when a device is 1733 * removed, each client's remove method will be called (in the reverse 1734 * order that clients were registered). In addition, when 1735 * ib_register_client() is called, the client will receive an add 1736 * callback for all devices already registered. 1737 */ 1738 int ib_register_client(struct ib_client *client) 1739 { 1740 struct ib_device *device; 1741 unsigned long index; 1742 int ret; 1743 1744 refcount_set(&client->uses, 1); 1745 init_completion(&client->uses_zero); 1746 ret = assign_client_id(client); 1747 if (ret) 1748 return ret; 1749 1750 down_read(&devices_rwsem); 1751 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1752 ret = add_client_context(device, client); 1753 if (ret) { 1754 up_read(&devices_rwsem); 1755 ib_unregister_client(client); 1756 return ret; 1757 } 1758 } 1759 up_read(&devices_rwsem); 1760 return 0; 1761 } 1762 EXPORT_SYMBOL(ib_register_client); 1763 1764 /** 1765 * ib_unregister_client - Unregister an IB client 1766 * @client:Client to unregister 1767 * 1768 * Upper level users use ib_unregister_client() to remove their client 1769 * registration. When ib_unregister_client() is called, the client 1770 * will receive a remove callback for each IB device still registered. 1771 * 1772 * This is a full fence, once it returns no client callbacks will be called, 1773 * or are running in another thread. 1774 */ 1775 void ib_unregister_client(struct ib_client *client) 1776 { 1777 struct ib_device *device; 1778 unsigned long index; 1779 1780 down_write(&clients_rwsem); 1781 ib_client_put(client); 1782 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1783 up_write(&clients_rwsem); 1784 1785 /* We do not want to have locks while calling client->remove() */ 1786 rcu_read_lock(); 1787 xa_for_each (&devices, index, device) { 1788 if (!ib_device_try_get(device)) 1789 continue; 1790 rcu_read_unlock(); 1791 1792 remove_client_context(device, client->client_id); 1793 1794 ib_device_put(device); 1795 rcu_read_lock(); 1796 } 1797 rcu_read_unlock(); 1798 1799 /* 1800 * remove_client_context() is not a fence, it can return even though a 1801 * removal is ongoing. Wait until all removals are completed. 1802 */ 1803 wait_for_completion(&client->uses_zero); 1804 remove_client_id(client); 1805 } 1806 EXPORT_SYMBOL(ib_unregister_client); 1807 1808 static int __ib_get_global_client_nl_info(const char *client_name, 1809 struct ib_client_nl_info *res) 1810 { 1811 struct ib_client *client; 1812 unsigned long index; 1813 int ret = -ENOENT; 1814 1815 down_read(&clients_rwsem); 1816 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1817 if (strcmp(client->name, client_name) != 0) 1818 continue; 1819 if (!client->get_global_nl_info) { 1820 ret = -EOPNOTSUPP; 1821 break; 1822 } 1823 ret = client->get_global_nl_info(res); 1824 if (WARN_ON(ret == -ENOENT)) 1825 ret = -EINVAL; 1826 if (!ret && res->cdev) 1827 get_device(res->cdev); 1828 break; 1829 } 1830 up_read(&clients_rwsem); 1831 return ret; 1832 } 1833 1834 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1835 const char *client_name, 1836 struct ib_client_nl_info *res) 1837 { 1838 unsigned long index; 1839 void *client_data; 1840 int ret = -ENOENT; 1841 1842 down_read(&ibdev->client_data_rwsem); 1843 xan_for_each_marked (&ibdev->client_data, index, client_data, 1844 CLIENT_DATA_REGISTERED) { 1845 struct ib_client *client = xa_load(&clients, index); 1846 1847 if (!client || strcmp(client->name, client_name) != 0) 1848 continue; 1849 if (!client->get_nl_info) { 1850 ret = -EOPNOTSUPP; 1851 break; 1852 } 1853 ret = client->get_nl_info(ibdev, client_data, res); 1854 if (WARN_ON(ret == -ENOENT)) 1855 ret = -EINVAL; 1856 1857 /* 1858 * The cdev is guaranteed valid as long as we are inside the 1859 * client_data_rwsem as remove_one can't be called. Keep it 1860 * valid for the caller. 1861 */ 1862 if (!ret && res->cdev) 1863 get_device(res->cdev); 1864 break; 1865 } 1866 up_read(&ibdev->client_data_rwsem); 1867 1868 return ret; 1869 } 1870 1871 /** 1872 * ib_get_client_nl_info - Fetch the nl_info from a client 1873 * @device - IB device 1874 * @client_name - Name of the client 1875 * @res - Result of the query 1876 */ 1877 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1878 struct ib_client_nl_info *res) 1879 { 1880 int ret; 1881 1882 if (ibdev) 1883 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1884 else 1885 ret = __ib_get_global_client_nl_info(client_name, res); 1886 #ifdef CONFIG_MODULES 1887 if (ret == -ENOENT) { 1888 request_module("rdma-client-%s", client_name); 1889 if (ibdev) 1890 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1891 else 1892 ret = __ib_get_global_client_nl_info(client_name, res); 1893 } 1894 #endif 1895 if (ret) { 1896 if (ret == -ENOENT) 1897 return -EOPNOTSUPP; 1898 return ret; 1899 } 1900 1901 if (WARN_ON(!res->cdev)) 1902 return -EINVAL; 1903 return 0; 1904 } 1905 1906 /** 1907 * ib_set_client_data - Set IB client context 1908 * @device:Device to set context for 1909 * @client:Client to set context for 1910 * @data:Context to set 1911 * 1912 * ib_set_client_data() sets client context data that can be retrieved with 1913 * ib_get_client_data(). This can only be called while the client is 1914 * registered to the device, once the ib_client remove() callback returns this 1915 * cannot be called. 1916 */ 1917 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1918 void *data) 1919 { 1920 void *rc; 1921 1922 if (WARN_ON(IS_ERR(data))) 1923 data = NULL; 1924 1925 rc = xa_store(&device->client_data, client->client_id, data, 1926 GFP_KERNEL); 1927 WARN_ON(xa_is_err(rc)); 1928 } 1929 EXPORT_SYMBOL(ib_set_client_data); 1930 1931 /** 1932 * ib_register_event_handler - Register an IB event handler 1933 * @event_handler:Handler to register 1934 * 1935 * ib_register_event_handler() registers an event handler that will be 1936 * called back when asynchronous IB events occur (as defined in 1937 * chapter 11 of the InfiniBand Architecture Specification). This 1938 * callback occurs in workqueue context. 1939 */ 1940 void ib_register_event_handler(struct ib_event_handler *event_handler) 1941 { 1942 down_write(&event_handler->device->event_handler_rwsem); 1943 list_add_tail(&event_handler->list, 1944 &event_handler->device->event_handler_list); 1945 up_write(&event_handler->device->event_handler_rwsem); 1946 } 1947 EXPORT_SYMBOL(ib_register_event_handler); 1948 1949 /** 1950 * ib_unregister_event_handler - Unregister an event handler 1951 * @event_handler:Handler to unregister 1952 * 1953 * Unregister an event handler registered with 1954 * ib_register_event_handler(). 1955 */ 1956 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 1957 { 1958 down_write(&event_handler->device->event_handler_rwsem); 1959 list_del(&event_handler->list); 1960 up_write(&event_handler->device->event_handler_rwsem); 1961 } 1962 EXPORT_SYMBOL(ib_unregister_event_handler); 1963 1964 void ib_dispatch_event_clients(struct ib_event *event) 1965 { 1966 struct ib_event_handler *handler; 1967 1968 down_read(&event->device->event_handler_rwsem); 1969 1970 list_for_each_entry(handler, &event->device->event_handler_list, list) 1971 handler->handler(handler, event); 1972 1973 up_read(&event->device->event_handler_rwsem); 1974 } 1975 1976 static int iw_query_port(struct ib_device *device, 1977 u8 port_num, 1978 struct ib_port_attr *port_attr) 1979 { 1980 struct in_device *inetdev; 1981 struct net_device *netdev; 1982 1983 memset(port_attr, 0, sizeof(*port_attr)); 1984 1985 netdev = ib_device_get_netdev(device, port_num); 1986 if (!netdev) 1987 return -ENODEV; 1988 1989 port_attr->max_mtu = IB_MTU_4096; 1990 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 1991 1992 if (!netif_carrier_ok(netdev)) { 1993 port_attr->state = IB_PORT_DOWN; 1994 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 1995 } else { 1996 rcu_read_lock(); 1997 inetdev = __in_dev_get_rcu(netdev); 1998 1999 if (inetdev && inetdev->ifa_list) { 2000 port_attr->state = IB_PORT_ACTIVE; 2001 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2002 } else { 2003 port_attr->state = IB_PORT_INIT; 2004 port_attr->phys_state = 2005 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2006 } 2007 2008 rcu_read_unlock(); 2009 } 2010 2011 dev_put(netdev); 2012 return device->ops.query_port(device, port_num, port_attr); 2013 } 2014 2015 static int __ib_query_port(struct ib_device *device, 2016 u8 port_num, 2017 struct ib_port_attr *port_attr) 2018 { 2019 union ib_gid gid = {}; 2020 int err; 2021 2022 memset(port_attr, 0, sizeof(*port_attr)); 2023 2024 err = device->ops.query_port(device, port_num, port_attr); 2025 if (err || port_attr->subnet_prefix) 2026 return err; 2027 2028 if (rdma_port_get_link_layer(device, port_num) != 2029 IB_LINK_LAYER_INFINIBAND) 2030 return 0; 2031 2032 err = device->ops.query_gid(device, port_num, 0, &gid); 2033 if (err) 2034 return err; 2035 2036 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 2037 return 0; 2038 } 2039 2040 /** 2041 * ib_query_port - Query IB port attributes 2042 * @device:Device to query 2043 * @port_num:Port number to query 2044 * @port_attr:Port attributes 2045 * 2046 * ib_query_port() returns the attributes of a port through the 2047 * @port_attr pointer. 2048 */ 2049 int ib_query_port(struct ib_device *device, 2050 u8 port_num, 2051 struct ib_port_attr *port_attr) 2052 { 2053 if (!rdma_is_port_valid(device, port_num)) 2054 return -EINVAL; 2055 2056 if (rdma_protocol_iwarp(device, port_num)) 2057 return iw_query_port(device, port_num, port_attr); 2058 else 2059 return __ib_query_port(device, port_num, port_attr); 2060 } 2061 EXPORT_SYMBOL(ib_query_port); 2062 2063 static void add_ndev_hash(struct ib_port_data *pdata) 2064 { 2065 unsigned long flags; 2066 2067 might_sleep(); 2068 2069 spin_lock_irqsave(&ndev_hash_lock, flags); 2070 if (hash_hashed(&pdata->ndev_hash_link)) { 2071 hash_del_rcu(&pdata->ndev_hash_link); 2072 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2073 /* 2074 * We cannot do hash_add_rcu after a hash_del_rcu until the 2075 * grace period 2076 */ 2077 synchronize_rcu(); 2078 spin_lock_irqsave(&ndev_hash_lock, flags); 2079 } 2080 if (pdata->netdev) 2081 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2082 (uintptr_t)pdata->netdev); 2083 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2084 } 2085 2086 /** 2087 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2088 * @ib_dev: Device to modify 2089 * @ndev: net_device to affiliate, may be NULL 2090 * @port: IB port the net_device is connected to 2091 * 2092 * Drivers should use this to link the ib_device to a netdev so the netdev 2093 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2094 * affiliated with any port. 2095 * 2096 * The caller must ensure that the given ndev is not unregistered or 2097 * unregistering, and that either the ib_device is unregistered or 2098 * ib_device_set_netdev() is called with NULL when the ndev sends a 2099 * NETDEV_UNREGISTER event. 2100 */ 2101 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2102 unsigned int port) 2103 { 2104 struct net_device *old_ndev; 2105 struct ib_port_data *pdata; 2106 unsigned long flags; 2107 int ret; 2108 2109 /* 2110 * Drivers wish to call this before ib_register_driver, so we have to 2111 * setup the port data early. 2112 */ 2113 ret = alloc_port_data(ib_dev); 2114 if (ret) 2115 return ret; 2116 2117 if (!rdma_is_port_valid(ib_dev, port)) 2118 return -EINVAL; 2119 2120 pdata = &ib_dev->port_data[port]; 2121 spin_lock_irqsave(&pdata->netdev_lock, flags); 2122 old_ndev = rcu_dereference_protected( 2123 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2124 if (old_ndev == ndev) { 2125 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2126 return 0; 2127 } 2128 2129 if (ndev) 2130 dev_hold(ndev); 2131 rcu_assign_pointer(pdata->netdev, ndev); 2132 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2133 2134 add_ndev_hash(pdata); 2135 if (old_ndev) 2136 dev_put(old_ndev); 2137 2138 return 0; 2139 } 2140 EXPORT_SYMBOL(ib_device_set_netdev); 2141 2142 static void free_netdevs(struct ib_device *ib_dev) 2143 { 2144 unsigned long flags; 2145 unsigned int port; 2146 2147 if (!ib_dev->port_data) 2148 return; 2149 2150 rdma_for_each_port (ib_dev, port) { 2151 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2152 struct net_device *ndev; 2153 2154 spin_lock_irqsave(&pdata->netdev_lock, flags); 2155 ndev = rcu_dereference_protected( 2156 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2157 if (ndev) { 2158 spin_lock(&ndev_hash_lock); 2159 hash_del_rcu(&pdata->ndev_hash_link); 2160 spin_unlock(&ndev_hash_lock); 2161 2162 /* 2163 * If this is the last dev_put there is still a 2164 * synchronize_rcu before the netdev is kfreed, so we 2165 * can continue to rely on unlocked pointer 2166 * comparisons after the put 2167 */ 2168 rcu_assign_pointer(pdata->netdev, NULL); 2169 dev_put(ndev); 2170 } 2171 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2172 } 2173 } 2174 2175 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2176 unsigned int port) 2177 { 2178 struct ib_port_data *pdata; 2179 struct net_device *res; 2180 2181 if (!rdma_is_port_valid(ib_dev, port)) 2182 return NULL; 2183 2184 pdata = &ib_dev->port_data[port]; 2185 2186 /* 2187 * New drivers should use ib_device_set_netdev() not the legacy 2188 * get_netdev(). 2189 */ 2190 if (ib_dev->ops.get_netdev) 2191 res = ib_dev->ops.get_netdev(ib_dev, port); 2192 else { 2193 spin_lock(&pdata->netdev_lock); 2194 res = rcu_dereference_protected( 2195 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2196 if (res) 2197 dev_hold(res); 2198 spin_unlock(&pdata->netdev_lock); 2199 } 2200 2201 /* 2202 * If we are starting to unregister expedite things by preventing 2203 * propagation of an unregistering netdev. 2204 */ 2205 if (res && res->reg_state != NETREG_REGISTERED) { 2206 dev_put(res); 2207 return NULL; 2208 } 2209 2210 return res; 2211 } 2212 2213 /** 2214 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2215 * @ndev: netdev to locate 2216 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2217 * 2218 * Find and hold an ib_device that is associated with a netdev via 2219 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2220 * returned pointer. 2221 */ 2222 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2223 enum rdma_driver_id driver_id) 2224 { 2225 struct ib_device *res = NULL; 2226 struct ib_port_data *cur; 2227 2228 rcu_read_lock(); 2229 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2230 (uintptr_t)ndev) { 2231 if (rcu_access_pointer(cur->netdev) == ndev && 2232 (driver_id == RDMA_DRIVER_UNKNOWN || 2233 cur->ib_dev->ops.driver_id == driver_id) && 2234 ib_device_try_get(cur->ib_dev)) { 2235 res = cur->ib_dev; 2236 break; 2237 } 2238 } 2239 rcu_read_unlock(); 2240 2241 return res; 2242 } 2243 EXPORT_SYMBOL(ib_device_get_by_netdev); 2244 2245 /** 2246 * ib_enum_roce_netdev - enumerate all RoCE ports 2247 * @ib_dev : IB device we want to query 2248 * @filter: Should we call the callback? 2249 * @filter_cookie: Cookie passed to filter 2250 * @cb: Callback to call for each found RoCE ports 2251 * @cookie: Cookie passed back to the callback 2252 * 2253 * Enumerates all of the physical RoCE ports of ib_dev 2254 * which are related to netdevice and calls callback() on each 2255 * device for which filter() function returns non zero. 2256 */ 2257 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2258 roce_netdev_filter filter, 2259 void *filter_cookie, 2260 roce_netdev_callback cb, 2261 void *cookie) 2262 { 2263 unsigned int port; 2264 2265 rdma_for_each_port (ib_dev, port) 2266 if (rdma_protocol_roce(ib_dev, port)) { 2267 struct net_device *idev = 2268 ib_device_get_netdev(ib_dev, port); 2269 2270 if (filter(ib_dev, port, idev, filter_cookie)) 2271 cb(ib_dev, port, idev, cookie); 2272 2273 if (idev) 2274 dev_put(idev); 2275 } 2276 } 2277 2278 /** 2279 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2280 * @filter: Should we call the callback? 2281 * @filter_cookie: Cookie passed to filter 2282 * @cb: Callback to call for each found RoCE ports 2283 * @cookie: Cookie passed back to the callback 2284 * 2285 * Enumerates all RoCE devices' physical ports which are related 2286 * to netdevices and calls callback() on each device for which 2287 * filter() function returns non zero. 2288 */ 2289 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2290 void *filter_cookie, 2291 roce_netdev_callback cb, 2292 void *cookie) 2293 { 2294 struct ib_device *dev; 2295 unsigned long index; 2296 2297 down_read(&devices_rwsem); 2298 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2299 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2300 up_read(&devices_rwsem); 2301 } 2302 2303 /** 2304 * ib_enum_all_devs - enumerate all ib_devices 2305 * @cb: Callback to call for each found ib_device 2306 * 2307 * Enumerates all ib_devices and calls callback() on each device. 2308 */ 2309 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2310 struct netlink_callback *cb) 2311 { 2312 unsigned long index; 2313 struct ib_device *dev; 2314 unsigned int idx = 0; 2315 int ret = 0; 2316 2317 down_read(&devices_rwsem); 2318 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2319 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2320 continue; 2321 2322 ret = nldev_cb(dev, skb, cb, idx); 2323 if (ret) 2324 break; 2325 idx++; 2326 } 2327 up_read(&devices_rwsem); 2328 return ret; 2329 } 2330 2331 /** 2332 * ib_query_pkey - Get P_Key table entry 2333 * @device:Device to query 2334 * @port_num:Port number to query 2335 * @index:P_Key table index to query 2336 * @pkey:Returned P_Key 2337 * 2338 * ib_query_pkey() fetches the specified P_Key table entry. 2339 */ 2340 int ib_query_pkey(struct ib_device *device, 2341 u8 port_num, u16 index, u16 *pkey) 2342 { 2343 if (!rdma_is_port_valid(device, port_num)) 2344 return -EINVAL; 2345 2346 return device->ops.query_pkey(device, port_num, index, pkey); 2347 } 2348 EXPORT_SYMBOL(ib_query_pkey); 2349 2350 /** 2351 * ib_modify_device - Change IB device attributes 2352 * @device:Device to modify 2353 * @device_modify_mask:Mask of attributes to change 2354 * @device_modify:New attribute values 2355 * 2356 * ib_modify_device() changes a device's attributes as specified by 2357 * the @device_modify_mask and @device_modify structure. 2358 */ 2359 int ib_modify_device(struct ib_device *device, 2360 int device_modify_mask, 2361 struct ib_device_modify *device_modify) 2362 { 2363 if (!device->ops.modify_device) 2364 return -EOPNOTSUPP; 2365 2366 return device->ops.modify_device(device, device_modify_mask, 2367 device_modify); 2368 } 2369 EXPORT_SYMBOL(ib_modify_device); 2370 2371 /** 2372 * ib_modify_port - Modifies the attributes for the specified port. 2373 * @device: The device to modify. 2374 * @port_num: The number of the port to modify. 2375 * @port_modify_mask: Mask used to specify which attributes of the port 2376 * to change. 2377 * @port_modify: New attribute values for the port. 2378 * 2379 * ib_modify_port() changes a port's attributes as specified by the 2380 * @port_modify_mask and @port_modify structure. 2381 */ 2382 int ib_modify_port(struct ib_device *device, 2383 u8 port_num, int port_modify_mask, 2384 struct ib_port_modify *port_modify) 2385 { 2386 int rc; 2387 2388 if (!rdma_is_port_valid(device, port_num)) 2389 return -EINVAL; 2390 2391 if (device->ops.modify_port) 2392 rc = device->ops.modify_port(device, port_num, 2393 port_modify_mask, 2394 port_modify); 2395 else if (rdma_protocol_roce(device, port_num) && 2396 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2397 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2398 rc = 0; 2399 else 2400 rc = -EOPNOTSUPP; 2401 return rc; 2402 } 2403 EXPORT_SYMBOL(ib_modify_port); 2404 2405 /** 2406 * ib_find_gid - Returns the port number and GID table index where 2407 * a specified GID value occurs. Its searches only for IB link layer. 2408 * @device: The device to query. 2409 * @gid: The GID value to search for. 2410 * @port_num: The port number of the device where the GID value was found. 2411 * @index: The index into the GID table where the GID was found. This 2412 * parameter may be NULL. 2413 */ 2414 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2415 u8 *port_num, u16 *index) 2416 { 2417 union ib_gid tmp_gid; 2418 unsigned int port; 2419 int ret, i; 2420 2421 rdma_for_each_port (device, port) { 2422 if (!rdma_protocol_ib(device, port)) 2423 continue; 2424 2425 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2426 ++i) { 2427 ret = rdma_query_gid(device, port, i, &tmp_gid); 2428 if (ret) 2429 return ret; 2430 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2431 *port_num = port; 2432 if (index) 2433 *index = i; 2434 return 0; 2435 } 2436 } 2437 } 2438 2439 return -ENOENT; 2440 } 2441 EXPORT_SYMBOL(ib_find_gid); 2442 2443 /** 2444 * ib_find_pkey - Returns the PKey table index where a specified 2445 * PKey value occurs. 2446 * @device: The device to query. 2447 * @port_num: The port number of the device to search for the PKey. 2448 * @pkey: The PKey value to search for. 2449 * @index: The index into the PKey table where the PKey was found. 2450 */ 2451 int ib_find_pkey(struct ib_device *device, 2452 u8 port_num, u16 pkey, u16 *index) 2453 { 2454 int ret, i; 2455 u16 tmp_pkey; 2456 int partial_ix = -1; 2457 2458 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2459 ++i) { 2460 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2461 if (ret) 2462 return ret; 2463 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2464 /* if there is full-member pkey take it.*/ 2465 if (tmp_pkey & 0x8000) { 2466 *index = i; 2467 return 0; 2468 } 2469 if (partial_ix < 0) 2470 partial_ix = i; 2471 } 2472 } 2473 2474 /*no full-member, if exists take the limited*/ 2475 if (partial_ix >= 0) { 2476 *index = partial_ix; 2477 return 0; 2478 } 2479 return -ENOENT; 2480 } 2481 EXPORT_SYMBOL(ib_find_pkey); 2482 2483 /** 2484 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2485 * for a received CM request 2486 * @dev: An RDMA device on which the request has been received. 2487 * @port: Port number on the RDMA device. 2488 * @pkey: The Pkey the request came on. 2489 * @gid: A GID that the net_dev uses to communicate. 2490 * @addr: Contains the IP address that the request specified as its 2491 * destination. 2492 * 2493 */ 2494 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2495 u8 port, 2496 u16 pkey, 2497 const union ib_gid *gid, 2498 const struct sockaddr *addr) 2499 { 2500 struct net_device *net_dev = NULL; 2501 unsigned long index; 2502 void *client_data; 2503 2504 if (!rdma_protocol_ib(dev, port)) 2505 return NULL; 2506 2507 /* 2508 * Holding the read side guarantees that the client will not become 2509 * unregistered while we are calling get_net_dev_by_params() 2510 */ 2511 down_read(&dev->client_data_rwsem); 2512 xan_for_each_marked (&dev->client_data, index, client_data, 2513 CLIENT_DATA_REGISTERED) { 2514 struct ib_client *client = xa_load(&clients, index); 2515 2516 if (!client || !client->get_net_dev_by_params) 2517 continue; 2518 2519 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2520 addr, client_data); 2521 if (net_dev) 2522 break; 2523 } 2524 up_read(&dev->client_data_rwsem); 2525 2526 return net_dev; 2527 } 2528 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2529 2530 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2531 { 2532 struct ib_device_ops *dev_ops = &dev->ops; 2533 #define SET_DEVICE_OP(ptr, name) \ 2534 do { \ 2535 if (ops->name) \ 2536 if (!((ptr)->name)) \ 2537 (ptr)->name = ops->name; \ 2538 } while (0) 2539 2540 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2541 2542 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2543 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2544 dev_ops->driver_id != ops->driver_id); 2545 dev_ops->driver_id = ops->driver_id; 2546 } 2547 if (ops->owner) { 2548 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2549 dev_ops->owner = ops->owner; 2550 } 2551 if (ops->uverbs_abi_ver) 2552 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2553 2554 dev_ops->uverbs_no_driver_id_binding |= 2555 ops->uverbs_no_driver_id_binding; 2556 2557 SET_DEVICE_OP(dev_ops, add_gid); 2558 SET_DEVICE_OP(dev_ops, advise_mr); 2559 SET_DEVICE_OP(dev_ops, alloc_dm); 2560 SET_DEVICE_OP(dev_ops, alloc_fmr); 2561 SET_DEVICE_OP(dev_ops, alloc_hw_stats); 2562 SET_DEVICE_OP(dev_ops, alloc_mr); 2563 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2564 SET_DEVICE_OP(dev_ops, alloc_mw); 2565 SET_DEVICE_OP(dev_ops, alloc_pd); 2566 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2567 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2568 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2569 SET_DEVICE_OP(dev_ops, attach_mcast); 2570 SET_DEVICE_OP(dev_ops, check_mr_status); 2571 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2572 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2573 SET_DEVICE_OP(dev_ops, counter_dealloc); 2574 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2575 SET_DEVICE_OP(dev_ops, counter_update_stats); 2576 SET_DEVICE_OP(dev_ops, create_ah); 2577 SET_DEVICE_OP(dev_ops, create_counters); 2578 SET_DEVICE_OP(dev_ops, create_cq); 2579 SET_DEVICE_OP(dev_ops, create_flow); 2580 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 2581 SET_DEVICE_OP(dev_ops, create_qp); 2582 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2583 SET_DEVICE_OP(dev_ops, create_srq); 2584 SET_DEVICE_OP(dev_ops, create_wq); 2585 SET_DEVICE_OP(dev_ops, dealloc_dm); 2586 SET_DEVICE_OP(dev_ops, dealloc_driver); 2587 SET_DEVICE_OP(dev_ops, dealloc_fmr); 2588 SET_DEVICE_OP(dev_ops, dealloc_mw); 2589 SET_DEVICE_OP(dev_ops, dealloc_pd); 2590 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2591 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2592 SET_DEVICE_OP(dev_ops, del_gid); 2593 SET_DEVICE_OP(dev_ops, dereg_mr); 2594 SET_DEVICE_OP(dev_ops, destroy_ah); 2595 SET_DEVICE_OP(dev_ops, destroy_counters); 2596 SET_DEVICE_OP(dev_ops, destroy_cq); 2597 SET_DEVICE_OP(dev_ops, destroy_flow); 2598 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2599 SET_DEVICE_OP(dev_ops, destroy_qp); 2600 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2601 SET_DEVICE_OP(dev_ops, destroy_srq); 2602 SET_DEVICE_OP(dev_ops, destroy_wq); 2603 SET_DEVICE_OP(dev_ops, detach_mcast); 2604 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2605 SET_DEVICE_OP(dev_ops, drain_rq); 2606 SET_DEVICE_OP(dev_ops, drain_sq); 2607 SET_DEVICE_OP(dev_ops, enable_driver); 2608 SET_DEVICE_OP(dev_ops, fill_res_entry); 2609 SET_DEVICE_OP(dev_ops, fill_stat_entry); 2610 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2611 SET_DEVICE_OP(dev_ops, get_dma_mr); 2612 SET_DEVICE_OP(dev_ops, get_hw_stats); 2613 SET_DEVICE_OP(dev_ops, get_link_layer); 2614 SET_DEVICE_OP(dev_ops, get_netdev); 2615 SET_DEVICE_OP(dev_ops, get_port_immutable); 2616 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2617 SET_DEVICE_OP(dev_ops, get_vf_config); 2618 SET_DEVICE_OP(dev_ops, get_vf_guid); 2619 SET_DEVICE_OP(dev_ops, get_vf_stats); 2620 SET_DEVICE_OP(dev_ops, init_port); 2621 SET_DEVICE_OP(dev_ops, iw_accept); 2622 SET_DEVICE_OP(dev_ops, iw_add_ref); 2623 SET_DEVICE_OP(dev_ops, iw_connect); 2624 SET_DEVICE_OP(dev_ops, iw_create_listen); 2625 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2626 SET_DEVICE_OP(dev_ops, iw_get_qp); 2627 SET_DEVICE_OP(dev_ops, iw_reject); 2628 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2629 SET_DEVICE_OP(dev_ops, map_mr_sg); 2630 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2631 SET_DEVICE_OP(dev_ops, map_phys_fmr); 2632 SET_DEVICE_OP(dev_ops, mmap); 2633 SET_DEVICE_OP(dev_ops, mmap_free); 2634 SET_DEVICE_OP(dev_ops, modify_ah); 2635 SET_DEVICE_OP(dev_ops, modify_cq); 2636 SET_DEVICE_OP(dev_ops, modify_device); 2637 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 2638 SET_DEVICE_OP(dev_ops, modify_port); 2639 SET_DEVICE_OP(dev_ops, modify_qp); 2640 SET_DEVICE_OP(dev_ops, modify_srq); 2641 SET_DEVICE_OP(dev_ops, modify_wq); 2642 SET_DEVICE_OP(dev_ops, peek_cq); 2643 SET_DEVICE_OP(dev_ops, poll_cq); 2644 SET_DEVICE_OP(dev_ops, post_recv); 2645 SET_DEVICE_OP(dev_ops, post_send); 2646 SET_DEVICE_OP(dev_ops, post_srq_recv); 2647 SET_DEVICE_OP(dev_ops, process_mad); 2648 SET_DEVICE_OP(dev_ops, query_ah); 2649 SET_DEVICE_OP(dev_ops, query_device); 2650 SET_DEVICE_OP(dev_ops, query_gid); 2651 SET_DEVICE_OP(dev_ops, query_pkey); 2652 SET_DEVICE_OP(dev_ops, query_port); 2653 SET_DEVICE_OP(dev_ops, query_qp); 2654 SET_DEVICE_OP(dev_ops, query_srq); 2655 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2656 SET_DEVICE_OP(dev_ops, read_counters); 2657 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2658 SET_DEVICE_OP(dev_ops, reg_user_mr); 2659 SET_DEVICE_OP(dev_ops, req_ncomp_notif); 2660 SET_DEVICE_OP(dev_ops, req_notify_cq); 2661 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2662 SET_DEVICE_OP(dev_ops, resize_cq); 2663 SET_DEVICE_OP(dev_ops, set_vf_guid); 2664 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2665 SET_DEVICE_OP(dev_ops, unmap_fmr); 2666 2667 SET_OBJ_SIZE(dev_ops, ib_ah); 2668 SET_OBJ_SIZE(dev_ops, ib_cq); 2669 SET_OBJ_SIZE(dev_ops, ib_pd); 2670 SET_OBJ_SIZE(dev_ops, ib_srq); 2671 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2672 } 2673 EXPORT_SYMBOL(ib_set_device_ops); 2674 2675 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2676 [RDMA_NL_LS_OP_RESOLVE] = { 2677 .doit = ib_nl_handle_resolve_resp, 2678 .flags = RDMA_NL_ADMIN_PERM, 2679 }, 2680 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2681 .doit = ib_nl_handle_set_timeout, 2682 .flags = RDMA_NL_ADMIN_PERM, 2683 }, 2684 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2685 .doit = ib_nl_handle_ip_res_resp, 2686 .flags = RDMA_NL_ADMIN_PERM, 2687 }, 2688 }; 2689 2690 static int __init ib_core_init(void) 2691 { 2692 int ret; 2693 2694 ib_wq = alloc_workqueue("infiniband", 0, 0); 2695 if (!ib_wq) 2696 return -ENOMEM; 2697 2698 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2699 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2700 if (!ib_comp_wq) { 2701 ret = -ENOMEM; 2702 goto err; 2703 } 2704 2705 ib_comp_unbound_wq = 2706 alloc_workqueue("ib-comp-unb-wq", 2707 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2708 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2709 if (!ib_comp_unbound_wq) { 2710 ret = -ENOMEM; 2711 goto err_comp; 2712 } 2713 2714 ret = class_register(&ib_class); 2715 if (ret) { 2716 pr_warn("Couldn't create InfiniBand device class\n"); 2717 goto err_comp_unbound; 2718 } 2719 2720 rdma_nl_init(); 2721 2722 ret = addr_init(); 2723 if (ret) { 2724 pr_warn("Could't init IB address resolution\n"); 2725 goto err_ibnl; 2726 } 2727 2728 ret = ib_mad_init(); 2729 if (ret) { 2730 pr_warn("Couldn't init IB MAD\n"); 2731 goto err_addr; 2732 } 2733 2734 ret = ib_sa_init(); 2735 if (ret) { 2736 pr_warn("Couldn't init SA\n"); 2737 goto err_mad; 2738 } 2739 2740 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2741 if (ret) { 2742 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2743 goto err_sa; 2744 } 2745 2746 ret = register_pernet_device(&rdma_dev_net_ops); 2747 if (ret) { 2748 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2749 goto err_compat; 2750 } 2751 2752 nldev_init(); 2753 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2754 roce_gid_mgmt_init(); 2755 2756 return 0; 2757 2758 err_compat: 2759 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2760 err_sa: 2761 ib_sa_cleanup(); 2762 err_mad: 2763 ib_mad_cleanup(); 2764 err_addr: 2765 addr_cleanup(); 2766 err_ibnl: 2767 class_unregister(&ib_class); 2768 err_comp_unbound: 2769 destroy_workqueue(ib_comp_unbound_wq); 2770 err_comp: 2771 destroy_workqueue(ib_comp_wq); 2772 err: 2773 destroy_workqueue(ib_wq); 2774 return ret; 2775 } 2776 2777 static void __exit ib_core_cleanup(void) 2778 { 2779 roce_gid_mgmt_cleanup(); 2780 nldev_exit(); 2781 rdma_nl_unregister(RDMA_NL_LS); 2782 unregister_pernet_device(&rdma_dev_net_ops); 2783 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2784 ib_sa_cleanup(); 2785 ib_mad_cleanup(); 2786 addr_cleanup(); 2787 rdma_nl_exit(); 2788 class_unregister(&ib_class); 2789 destroy_workqueue(ib_comp_unbound_wq); 2790 destroy_workqueue(ib_comp_wq); 2791 /* Make sure that any pending umem accounting work is done. */ 2792 destroy_workqueue(ib_wq); 2793 flush_workqueue(system_unbound_wq); 2794 WARN_ON(!xa_empty(&clients)); 2795 WARN_ON(!xa_empty(&devices)); 2796 } 2797 2798 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 2799 2800 /* ib core relies on netdev stack to first register net_ns_type_operations 2801 * ns kobject type before ib_core initialization. 2802 */ 2803 fs_initcall(ib_core_init); 2804 module_exit(ib_core_cleanup); 2805