xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(dereg_mr),
288 		IB_MANDATORY_FUNC(get_port_immutable)
289 	};
290 	int i;
291 
292 	device->kverbs_provider = true;
293 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
294 		if (!*(void **) ((void *) &device->ops +
295 				 mandatory_table[i].offset)) {
296 			device->kverbs_provider = false;
297 			break;
298 		}
299 	}
300 }
301 
302 /*
303  * Caller must perform ib_device_put() to return the device reference count
304  * when ib_device_get_by_index() returns valid device pointer.
305  */
306 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
307 {
308 	struct ib_device *device;
309 
310 	down_read(&devices_rwsem);
311 	device = xa_load(&devices, index);
312 	if (device) {
313 		if (!rdma_dev_access_netns(device, net)) {
314 			device = NULL;
315 			goto out;
316 		}
317 
318 		if (!ib_device_try_get(device))
319 			device = NULL;
320 	}
321 out:
322 	up_read(&devices_rwsem);
323 	return device;
324 }
325 
326 /**
327  * ib_device_put - Release IB device reference
328  * @device: device whose reference to be released
329  *
330  * ib_device_put() releases reference to the IB device to allow it to be
331  * unregistered and eventually free.
332  */
333 void ib_device_put(struct ib_device *device)
334 {
335 	if (refcount_dec_and_test(&device->refcount))
336 		complete(&device->unreg_completion);
337 }
338 EXPORT_SYMBOL(ib_device_put);
339 
340 static struct ib_device *__ib_device_get_by_name(const char *name)
341 {
342 	struct ib_device *device;
343 	unsigned long index;
344 
345 	xa_for_each (&devices, index, device)
346 		if (!strcmp(name, dev_name(&device->dev)))
347 			return device;
348 
349 	return NULL;
350 }
351 
352 /**
353  * ib_device_get_by_name - Find an IB device by name
354  * @name: The name to look for
355  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
356  *
357  * Find and hold an ib_device by its name. The caller must call
358  * ib_device_put() on the returned pointer.
359  */
360 struct ib_device *ib_device_get_by_name(const char *name,
361 					enum rdma_driver_id driver_id)
362 {
363 	struct ib_device *device;
364 
365 	down_read(&devices_rwsem);
366 	device = __ib_device_get_by_name(name);
367 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
368 	    device->ops.driver_id != driver_id)
369 		device = NULL;
370 
371 	if (device) {
372 		if (!ib_device_try_get(device))
373 			device = NULL;
374 	}
375 	up_read(&devices_rwsem);
376 	return device;
377 }
378 EXPORT_SYMBOL(ib_device_get_by_name);
379 
380 static int rename_compat_devs(struct ib_device *device)
381 {
382 	struct ib_core_device *cdev;
383 	unsigned long index;
384 	int ret = 0;
385 
386 	mutex_lock(&device->compat_devs_mutex);
387 	xa_for_each (&device->compat_devs, index, cdev) {
388 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
389 		if (ret) {
390 			dev_warn(&cdev->dev,
391 				 "Fail to rename compatdev to new name %s\n",
392 				 dev_name(&device->dev));
393 			break;
394 		}
395 	}
396 	mutex_unlock(&device->compat_devs_mutex);
397 	return ret;
398 }
399 
400 int ib_device_rename(struct ib_device *ibdev, const char *name)
401 {
402 	unsigned long index;
403 	void *client_data;
404 	int ret;
405 
406 	down_write(&devices_rwsem);
407 	if (!strcmp(name, dev_name(&ibdev->dev))) {
408 		up_write(&devices_rwsem);
409 		return 0;
410 	}
411 
412 	if (__ib_device_get_by_name(name)) {
413 		up_write(&devices_rwsem);
414 		return -EEXIST;
415 	}
416 
417 	ret = device_rename(&ibdev->dev, name);
418 	if (ret) {
419 		up_write(&devices_rwsem);
420 		return ret;
421 	}
422 
423 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
424 	ret = rename_compat_devs(ibdev);
425 
426 	downgrade_write(&devices_rwsem);
427 	down_read(&ibdev->client_data_rwsem);
428 	xan_for_each_marked(&ibdev->client_data, index, client_data,
429 			    CLIENT_DATA_REGISTERED) {
430 		struct ib_client *client = xa_load(&clients, index);
431 
432 		if (!client || !client->rename)
433 			continue;
434 
435 		client->rename(ibdev, client_data);
436 	}
437 	up_read(&ibdev->client_data_rwsem);
438 	up_read(&devices_rwsem);
439 	return 0;
440 }
441 
442 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
443 {
444 	if (use_dim > 1)
445 		return -EINVAL;
446 	ibdev->use_cq_dim = use_dim;
447 
448 	return 0;
449 }
450 
451 static int alloc_name(struct ib_device *ibdev, const char *name)
452 {
453 	struct ib_device *device;
454 	unsigned long index;
455 	struct ida inuse;
456 	int rc;
457 	int i;
458 
459 	lockdep_assert_held_write(&devices_rwsem);
460 	ida_init(&inuse);
461 	xa_for_each (&devices, index, device) {
462 		char buf[IB_DEVICE_NAME_MAX];
463 
464 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
465 			continue;
466 		if (i < 0 || i >= INT_MAX)
467 			continue;
468 		snprintf(buf, sizeof buf, name, i);
469 		if (strcmp(buf, dev_name(&device->dev)) != 0)
470 			continue;
471 
472 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
473 		if (rc < 0)
474 			goto out;
475 	}
476 
477 	rc = ida_alloc(&inuse, GFP_KERNEL);
478 	if (rc < 0)
479 		goto out;
480 
481 	rc = dev_set_name(&ibdev->dev, name, rc);
482 out:
483 	ida_destroy(&inuse);
484 	return rc;
485 }
486 
487 static void ib_device_release(struct device *device)
488 {
489 	struct ib_device *dev = container_of(device, struct ib_device, dev);
490 
491 	free_netdevs(dev);
492 	WARN_ON(refcount_read(&dev->refcount));
493 	if (dev->port_data) {
494 		ib_cache_release_one(dev);
495 		ib_security_release_port_pkey_list(dev);
496 		rdma_counter_release(dev);
497 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
498 				       pdata[0]),
499 			  rcu_head);
500 	}
501 
502 	mutex_destroy(&dev->unregistration_lock);
503 	mutex_destroy(&dev->compat_devs_mutex);
504 
505 	xa_destroy(&dev->compat_devs);
506 	xa_destroy(&dev->client_data);
507 	kfree_rcu(dev, rcu_head);
508 }
509 
510 static int ib_device_uevent(struct device *device,
511 			    struct kobj_uevent_env *env)
512 {
513 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
514 		return -ENOMEM;
515 
516 	/*
517 	 * It would be nice to pass the node GUID with the event...
518 	 */
519 
520 	return 0;
521 }
522 
523 static const void *net_namespace(struct device *d)
524 {
525 	struct ib_core_device *coredev =
526 			container_of(d, struct ib_core_device, dev);
527 
528 	return read_pnet(&coredev->rdma_net);
529 }
530 
531 static struct class ib_class = {
532 	.name    = "infiniband",
533 	.dev_release = ib_device_release,
534 	.dev_uevent = ib_device_uevent,
535 	.ns_type = &net_ns_type_operations,
536 	.namespace = net_namespace,
537 };
538 
539 static void rdma_init_coredev(struct ib_core_device *coredev,
540 			      struct ib_device *dev, struct net *net)
541 {
542 	/* This BUILD_BUG_ON is intended to catch layout change
543 	 * of union of ib_core_device and device.
544 	 * dev must be the first element as ib_core and providers
545 	 * driver uses it. Adding anything in ib_core_device before
546 	 * device will break this assumption.
547 	 */
548 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
549 		     offsetof(struct ib_device, dev));
550 
551 	coredev->dev.class = &ib_class;
552 	coredev->dev.groups = dev->groups;
553 	device_initialize(&coredev->dev);
554 	coredev->owner = dev;
555 	INIT_LIST_HEAD(&coredev->port_list);
556 	write_pnet(&coredev->rdma_net, net);
557 }
558 
559 /**
560  * _ib_alloc_device - allocate an IB device struct
561  * @size:size of structure to allocate
562  *
563  * Low-level drivers should use ib_alloc_device() to allocate &struct
564  * ib_device.  @size is the size of the structure to be allocated,
565  * including any private data used by the low-level driver.
566  * ib_dealloc_device() must be used to free structures allocated with
567  * ib_alloc_device().
568  */
569 struct ib_device *_ib_alloc_device(size_t size)
570 {
571 	struct ib_device *device;
572 
573 	if (WARN_ON(size < sizeof(struct ib_device)))
574 		return NULL;
575 
576 	device = kzalloc(size, GFP_KERNEL);
577 	if (!device)
578 		return NULL;
579 
580 	if (rdma_restrack_init(device)) {
581 		kfree(device);
582 		return NULL;
583 	}
584 
585 	device->groups[0] = &ib_dev_attr_group;
586 	rdma_init_coredev(&device->coredev, device, &init_net);
587 
588 	INIT_LIST_HEAD(&device->event_handler_list);
589 	spin_lock_init(&device->qp_open_list_lock);
590 	init_rwsem(&device->event_handler_rwsem);
591 	mutex_init(&device->unregistration_lock);
592 	/*
593 	 * client_data needs to be alloc because we don't want our mark to be
594 	 * destroyed if the user stores NULL in the client data.
595 	 */
596 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
597 	init_rwsem(&device->client_data_rwsem);
598 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
599 	mutex_init(&device->compat_devs_mutex);
600 	init_completion(&device->unreg_completion);
601 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
602 
603 	return device;
604 }
605 EXPORT_SYMBOL(_ib_alloc_device);
606 
607 /**
608  * ib_dealloc_device - free an IB device struct
609  * @device:structure to free
610  *
611  * Free a structure allocated with ib_alloc_device().
612  */
613 void ib_dealloc_device(struct ib_device *device)
614 {
615 	if (device->ops.dealloc_driver)
616 		device->ops.dealloc_driver(device);
617 
618 	/*
619 	 * ib_unregister_driver() requires all devices to remain in the xarray
620 	 * while their ops are callable. The last op we call is dealloc_driver
621 	 * above.  This is needed to create a fence on op callbacks prior to
622 	 * allowing the driver module to unload.
623 	 */
624 	down_write(&devices_rwsem);
625 	if (xa_load(&devices, device->index) == device)
626 		xa_erase(&devices, device->index);
627 	up_write(&devices_rwsem);
628 
629 	/* Expedite releasing netdev references */
630 	free_netdevs(device);
631 
632 	WARN_ON(!xa_empty(&device->compat_devs));
633 	WARN_ON(!xa_empty(&device->client_data));
634 	WARN_ON(refcount_read(&device->refcount));
635 	rdma_restrack_clean(device);
636 	/* Balances with device_initialize */
637 	put_device(&device->dev);
638 }
639 EXPORT_SYMBOL(ib_dealloc_device);
640 
641 /*
642  * add_client_context() and remove_client_context() must be safe against
643  * parallel calls on the same device - registration/unregistration of both the
644  * device and client can be occurring in parallel.
645  *
646  * The routines need to be a fence, any caller must not return until the add
647  * or remove is fully completed.
648  */
649 static int add_client_context(struct ib_device *device,
650 			      struct ib_client *client)
651 {
652 	int ret = 0;
653 
654 	if (!device->kverbs_provider && !client->no_kverbs_req)
655 		return 0;
656 
657 	down_write(&device->client_data_rwsem);
658 	/*
659 	 * So long as the client is registered hold both the client and device
660 	 * unregistration locks.
661 	 */
662 	if (!refcount_inc_not_zero(&client->uses))
663 		goto out_unlock;
664 	refcount_inc(&device->refcount);
665 
666 	/*
667 	 * Another caller to add_client_context got here first and has already
668 	 * completely initialized context.
669 	 */
670 	if (xa_get_mark(&device->client_data, client->client_id,
671 		    CLIENT_DATA_REGISTERED))
672 		goto out;
673 
674 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
675 			      GFP_KERNEL));
676 	if (ret)
677 		goto out;
678 	downgrade_write(&device->client_data_rwsem);
679 	if (client->add) {
680 		if (client->add(device)) {
681 			/*
682 			 * If a client fails to add then the error code is
683 			 * ignored, but we won't call any more ops on this
684 			 * client.
685 			 */
686 			xa_erase(&device->client_data, client->client_id);
687 			up_read(&device->client_data_rwsem);
688 			ib_device_put(device);
689 			ib_client_put(client);
690 			return 0;
691 		}
692 	}
693 
694 	/* Readers shall not see a client until add has been completed */
695 	xa_set_mark(&device->client_data, client->client_id,
696 		    CLIENT_DATA_REGISTERED);
697 	up_read(&device->client_data_rwsem);
698 	return 0;
699 
700 out:
701 	ib_device_put(device);
702 	ib_client_put(client);
703 out_unlock:
704 	up_write(&device->client_data_rwsem);
705 	return ret;
706 }
707 
708 static void remove_client_context(struct ib_device *device,
709 				  unsigned int client_id)
710 {
711 	struct ib_client *client;
712 	void *client_data;
713 
714 	down_write(&device->client_data_rwsem);
715 	if (!xa_get_mark(&device->client_data, client_id,
716 			 CLIENT_DATA_REGISTERED)) {
717 		up_write(&device->client_data_rwsem);
718 		return;
719 	}
720 	client_data = xa_load(&device->client_data, client_id);
721 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
722 	client = xa_load(&clients, client_id);
723 	up_write(&device->client_data_rwsem);
724 
725 	/*
726 	 * Notice we cannot be holding any exclusive locks when calling the
727 	 * remove callback as the remove callback can recurse back into any
728 	 * public functions in this module and thus try for any locks those
729 	 * functions take.
730 	 *
731 	 * For this reason clients and drivers should not call the
732 	 * unregistration functions will holdling any locks.
733 	 */
734 	if (client->remove)
735 		client->remove(device, client_data);
736 
737 	xa_erase(&device->client_data, client_id);
738 	ib_device_put(device);
739 	ib_client_put(client);
740 }
741 
742 static int alloc_port_data(struct ib_device *device)
743 {
744 	struct ib_port_data_rcu *pdata_rcu;
745 	unsigned int port;
746 
747 	if (device->port_data)
748 		return 0;
749 
750 	/* This can only be called once the physical port range is defined */
751 	if (WARN_ON(!device->phys_port_cnt))
752 		return -EINVAL;
753 
754 	/*
755 	 * device->port_data is indexed directly by the port number to make
756 	 * access to this data as efficient as possible.
757 	 *
758 	 * Therefore port_data is declared as a 1 based array with potential
759 	 * empty slots at the beginning.
760 	 */
761 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
762 					rdma_end_port(device) + 1),
763 			    GFP_KERNEL);
764 	if (!pdata_rcu)
765 		return -ENOMEM;
766 	/*
767 	 * The rcu_head is put in front of the port data array and the stored
768 	 * pointer is adjusted since we never need to see that member until
769 	 * kfree_rcu.
770 	 */
771 	device->port_data = pdata_rcu->pdata;
772 
773 	rdma_for_each_port (device, port) {
774 		struct ib_port_data *pdata = &device->port_data[port];
775 
776 		pdata->ib_dev = device;
777 		spin_lock_init(&pdata->pkey_list_lock);
778 		INIT_LIST_HEAD(&pdata->pkey_list);
779 		spin_lock_init(&pdata->netdev_lock);
780 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
781 	}
782 	return 0;
783 }
784 
785 static int verify_immutable(const struct ib_device *dev, u8 port)
786 {
787 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
788 			    rdma_max_mad_size(dev, port) != 0);
789 }
790 
791 static int setup_port_data(struct ib_device *device)
792 {
793 	unsigned int port;
794 	int ret;
795 
796 	ret = alloc_port_data(device);
797 	if (ret)
798 		return ret;
799 
800 	rdma_for_each_port (device, port) {
801 		struct ib_port_data *pdata = &device->port_data[port];
802 
803 		ret = device->ops.get_port_immutable(device, port,
804 						     &pdata->immutable);
805 		if (ret)
806 			return ret;
807 
808 		if (verify_immutable(device, port))
809 			return -EINVAL;
810 	}
811 	return 0;
812 }
813 
814 void ib_get_device_fw_str(struct ib_device *dev, char *str)
815 {
816 	if (dev->ops.get_dev_fw_str)
817 		dev->ops.get_dev_fw_str(dev, str);
818 	else
819 		str[0] = '\0';
820 }
821 EXPORT_SYMBOL(ib_get_device_fw_str);
822 
823 static void ib_policy_change_task(struct work_struct *work)
824 {
825 	struct ib_device *dev;
826 	unsigned long index;
827 
828 	down_read(&devices_rwsem);
829 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
830 		unsigned int i;
831 
832 		rdma_for_each_port (dev, i) {
833 			u64 sp;
834 			int ret = ib_get_cached_subnet_prefix(dev,
835 							      i,
836 							      &sp);
837 
838 			WARN_ONCE(ret,
839 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
840 				  ret);
841 			if (!ret)
842 				ib_security_cache_change(dev, i, sp);
843 		}
844 	}
845 	up_read(&devices_rwsem);
846 }
847 
848 static int ib_security_change(struct notifier_block *nb, unsigned long event,
849 			      void *lsm_data)
850 {
851 	if (event != LSM_POLICY_CHANGE)
852 		return NOTIFY_DONE;
853 
854 	schedule_work(&ib_policy_change_work);
855 	ib_mad_agent_security_change();
856 
857 	return NOTIFY_OK;
858 }
859 
860 static void compatdev_release(struct device *dev)
861 {
862 	struct ib_core_device *cdev =
863 		container_of(dev, struct ib_core_device, dev);
864 
865 	kfree(cdev);
866 }
867 
868 static int add_one_compat_dev(struct ib_device *device,
869 			      struct rdma_dev_net *rnet)
870 {
871 	struct ib_core_device *cdev;
872 	int ret;
873 
874 	lockdep_assert_held(&rdma_nets_rwsem);
875 	if (!ib_devices_shared_netns)
876 		return 0;
877 
878 	/*
879 	 * Create and add compat device in all namespaces other than where it
880 	 * is currently bound to.
881 	 */
882 	if (net_eq(read_pnet(&rnet->net),
883 		   read_pnet(&device->coredev.rdma_net)))
884 		return 0;
885 
886 	/*
887 	 * The first of init_net() or ib_register_device() to take the
888 	 * compat_devs_mutex wins and gets to add the device. Others will wait
889 	 * for completion here.
890 	 */
891 	mutex_lock(&device->compat_devs_mutex);
892 	cdev = xa_load(&device->compat_devs, rnet->id);
893 	if (cdev) {
894 		ret = 0;
895 		goto done;
896 	}
897 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
898 	if (ret)
899 		goto done;
900 
901 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
902 	if (!cdev) {
903 		ret = -ENOMEM;
904 		goto cdev_err;
905 	}
906 
907 	cdev->dev.parent = device->dev.parent;
908 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
909 	cdev->dev.release = compatdev_release;
910 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
911 	if (ret)
912 		goto add_err;
913 
914 	ret = device_add(&cdev->dev);
915 	if (ret)
916 		goto add_err;
917 	ret = ib_setup_port_attrs(cdev);
918 	if (ret)
919 		goto port_err;
920 
921 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
922 			      cdev, GFP_KERNEL));
923 	if (ret)
924 		goto insert_err;
925 
926 	mutex_unlock(&device->compat_devs_mutex);
927 	return 0;
928 
929 insert_err:
930 	ib_free_port_attrs(cdev);
931 port_err:
932 	device_del(&cdev->dev);
933 add_err:
934 	put_device(&cdev->dev);
935 cdev_err:
936 	xa_release(&device->compat_devs, rnet->id);
937 done:
938 	mutex_unlock(&device->compat_devs_mutex);
939 	return ret;
940 }
941 
942 static void remove_one_compat_dev(struct ib_device *device, u32 id)
943 {
944 	struct ib_core_device *cdev;
945 
946 	mutex_lock(&device->compat_devs_mutex);
947 	cdev = xa_erase(&device->compat_devs, id);
948 	mutex_unlock(&device->compat_devs_mutex);
949 	if (cdev) {
950 		ib_free_port_attrs(cdev);
951 		device_del(&cdev->dev);
952 		put_device(&cdev->dev);
953 	}
954 }
955 
956 static void remove_compat_devs(struct ib_device *device)
957 {
958 	struct ib_core_device *cdev;
959 	unsigned long index;
960 
961 	xa_for_each (&device->compat_devs, index, cdev)
962 		remove_one_compat_dev(device, index);
963 }
964 
965 static int add_compat_devs(struct ib_device *device)
966 {
967 	struct rdma_dev_net *rnet;
968 	unsigned long index;
969 	int ret = 0;
970 
971 	lockdep_assert_held(&devices_rwsem);
972 
973 	down_read(&rdma_nets_rwsem);
974 	xa_for_each (&rdma_nets, index, rnet) {
975 		ret = add_one_compat_dev(device, rnet);
976 		if (ret)
977 			break;
978 	}
979 	up_read(&rdma_nets_rwsem);
980 	return ret;
981 }
982 
983 static void remove_all_compat_devs(void)
984 {
985 	struct ib_compat_device *cdev;
986 	struct ib_device *dev;
987 	unsigned long index;
988 
989 	down_read(&devices_rwsem);
990 	xa_for_each (&devices, index, dev) {
991 		unsigned long c_index = 0;
992 
993 		/* Hold nets_rwsem so that any other thread modifying this
994 		 * system param can sync with this thread.
995 		 */
996 		down_read(&rdma_nets_rwsem);
997 		xa_for_each (&dev->compat_devs, c_index, cdev)
998 			remove_one_compat_dev(dev, c_index);
999 		up_read(&rdma_nets_rwsem);
1000 	}
1001 	up_read(&devices_rwsem);
1002 }
1003 
1004 static int add_all_compat_devs(void)
1005 {
1006 	struct rdma_dev_net *rnet;
1007 	struct ib_device *dev;
1008 	unsigned long index;
1009 	int ret = 0;
1010 
1011 	down_read(&devices_rwsem);
1012 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1013 		unsigned long net_index = 0;
1014 
1015 		/* Hold nets_rwsem so that any other thread modifying this
1016 		 * system param can sync with this thread.
1017 		 */
1018 		down_read(&rdma_nets_rwsem);
1019 		xa_for_each (&rdma_nets, net_index, rnet) {
1020 			ret = add_one_compat_dev(dev, rnet);
1021 			if (ret)
1022 				break;
1023 		}
1024 		up_read(&rdma_nets_rwsem);
1025 	}
1026 	up_read(&devices_rwsem);
1027 	if (ret)
1028 		remove_all_compat_devs();
1029 	return ret;
1030 }
1031 
1032 int rdma_compatdev_set(u8 enable)
1033 {
1034 	struct rdma_dev_net *rnet;
1035 	unsigned long index;
1036 	int ret = 0;
1037 
1038 	down_write(&rdma_nets_rwsem);
1039 	if (ib_devices_shared_netns == enable) {
1040 		up_write(&rdma_nets_rwsem);
1041 		return 0;
1042 	}
1043 
1044 	/* enable/disable of compat devices is not supported
1045 	 * when more than default init_net exists.
1046 	 */
1047 	xa_for_each (&rdma_nets, index, rnet) {
1048 		ret++;
1049 		break;
1050 	}
1051 	if (!ret)
1052 		ib_devices_shared_netns = enable;
1053 	up_write(&rdma_nets_rwsem);
1054 	if (ret)
1055 		return -EBUSY;
1056 
1057 	if (enable)
1058 		ret = add_all_compat_devs();
1059 	else
1060 		remove_all_compat_devs();
1061 	return ret;
1062 }
1063 
1064 static void rdma_dev_exit_net(struct net *net)
1065 {
1066 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1067 	struct ib_device *dev;
1068 	unsigned long index;
1069 	int ret;
1070 
1071 	down_write(&rdma_nets_rwsem);
1072 	/*
1073 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1074 	 */
1075 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1076 	WARN_ON(ret);
1077 	up_write(&rdma_nets_rwsem);
1078 
1079 	down_read(&devices_rwsem);
1080 	xa_for_each (&devices, index, dev) {
1081 		get_device(&dev->dev);
1082 		/*
1083 		 * Release the devices_rwsem so that pontentially blocking
1084 		 * device_del, doesn't hold the devices_rwsem for too long.
1085 		 */
1086 		up_read(&devices_rwsem);
1087 
1088 		remove_one_compat_dev(dev, rnet->id);
1089 
1090 		/*
1091 		 * If the real device is in the NS then move it back to init.
1092 		 */
1093 		rdma_dev_change_netns(dev, net, &init_net);
1094 
1095 		put_device(&dev->dev);
1096 		down_read(&devices_rwsem);
1097 	}
1098 	up_read(&devices_rwsem);
1099 
1100 	rdma_nl_net_exit(rnet);
1101 	xa_erase(&rdma_nets, rnet->id);
1102 }
1103 
1104 static __net_init int rdma_dev_init_net(struct net *net)
1105 {
1106 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1107 	unsigned long index;
1108 	struct ib_device *dev;
1109 	int ret;
1110 
1111 	write_pnet(&rnet->net, net);
1112 
1113 	ret = rdma_nl_net_init(rnet);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/* No need to create any compat devices in default init_net. */
1118 	if (net_eq(net, &init_net))
1119 		return 0;
1120 
1121 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1122 	if (ret) {
1123 		rdma_nl_net_exit(rnet);
1124 		return ret;
1125 	}
1126 
1127 	down_read(&devices_rwsem);
1128 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1129 		/* Hold nets_rwsem so that netlink command cannot change
1130 		 * system configuration for device sharing mode.
1131 		 */
1132 		down_read(&rdma_nets_rwsem);
1133 		ret = add_one_compat_dev(dev, rnet);
1134 		up_read(&rdma_nets_rwsem);
1135 		if (ret)
1136 			break;
1137 	}
1138 	up_read(&devices_rwsem);
1139 
1140 	if (ret)
1141 		rdma_dev_exit_net(net);
1142 
1143 	return ret;
1144 }
1145 
1146 /*
1147  * Assign the unique string device name and the unique device index. This is
1148  * undone by ib_dealloc_device.
1149  */
1150 static int assign_name(struct ib_device *device, const char *name)
1151 {
1152 	static u32 last_id;
1153 	int ret;
1154 
1155 	down_write(&devices_rwsem);
1156 	/* Assign a unique name to the device */
1157 	if (strchr(name, '%'))
1158 		ret = alloc_name(device, name);
1159 	else
1160 		ret = dev_set_name(&device->dev, name);
1161 	if (ret)
1162 		goto out;
1163 
1164 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1165 		ret = -ENFILE;
1166 		goto out;
1167 	}
1168 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1169 
1170 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1171 			&last_id, GFP_KERNEL);
1172 	if (ret > 0)
1173 		ret = 0;
1174 
1175 out:
1176 	up_write(&devices_rwsem);
1177 	return ret;
1178 }
1179 
1180 static void setup_dma_device(struct ib_device *device)
1181 {
1182 	struct device *parent = device->dev.parent;
1183 
1184 	WARN_ON_ONCE(device->dma_device);
1185 
1186 #ifdef CONFIG_DMA_OPS
1187 	if (device->dev.dma_ops) {
1188 		/*
1189 		 * The caller provided custom DMA operations. Copy the
1190 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1191 		 * into device->dev.
1192 		 */
1193 		device->dma_device = &device->dev;
1194 		if (!device->dev.dma_mask) {
1195 			if (parent)
1196 				device->dev.dma_mask = parent->dma_mask;
1197 			else
1198 				WARN_ON_ONCE(true);
1199 		}
1200 		if (!device->dev.coherent_dma_mask) {
1201 			if (parent)
1202 				device->dev.coherent_dma_mask =
1203 					parent->coherent_dma_mask;
1204 			else
1205 				WARN_ON_ONCE(true);
1206 		}
1207 	} else
1208 #endif /* CONFIG_DMA_OPS */
1209 	{
1210 		/*
1211 		 * The caller did not provide custom DMA operations. Use the
1212 		 * DMA mapping operations of the parent device.
1213 		 */
1214 		WARN_ON_ONCE(!parent);
1215 		device->dma_device = parent;
1216 	}
1217 
1218 	if (!device->dev.dma_parms) {
1219 		if (parent) {
1220 			/*
1221 			 * The caller did not provide DMA parameters, so
1222 			 * 'parent' probably represents a PCI device. The PCI
1223 			 * core sets the maximum segment size to 64
1224 			 * KB. Increase this parameter to 2 GB.
1225 			 */
1226 			device->dev.dma_parms = parent->dma_parms;
1227 			dma_set_max_seg_size(device->dma_device, SZ_2G);
1228 		} else {
1229 			WARN_ON_ONCE(true);
1230 		}
1231 	}
1232 }
1233 
1234 /*
1235  * setup_device() allocates memory and sets up data that requires calling the
1236  * device ops, this is the only reason these actions are not done during
1237  * ib_alloc_device. It is undone by ib_dealloc_device().
1238  */
1239 static int setup_device(struct ib_device *device)
1240 {
1241 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1242 	int ret;
1243 
1244 	setup_dma_device(device);
1245 	ib_device_check_mandatory(device);
1246 
1247 	ret = setup_port_data(device);
1248 	if (ret) {
1249 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1250 		return ret;
1251 	}
1252 
1253 	memset(&device->attrs, 0, sizeof(device->attrs));
1254 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1255 	if (ret) {
1256 		dev_warn(&device->dev,
1257 			 "Couldn't query the device attributes\n");
1258 		return ret;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static void disable_device(struct ib_device *device)
1265 {
1266 	u32 cid;
1267 
1268 	WARN_ON(!refcount_read(&device->refcount));
1269 
1270 	down_write(&devices_rwsem);
1271 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1272 	up_write(&devices_rwsem);
1273 
1274 	/*
1275 	 * Remove clients in LIFO order, see assign_client_id. This could be
1276 	 * more efficient if xarray learns to reverse iterate. Since no new
1277 	 * clients can be added to this ib_device past this point we only need
1278 	 * the maximum possible client_id value here.
1279 	 */
1280 	down_read(&clients_rwsem);
1281 	cid = highest_client_id;
1282 	up_read(&clients_rwsem);
1283 	while (cid) {
1284 		cid--;
1285 		remove_client_context(device, cid);
1286 	}
1287 
1288 	/* Pairs with refcount_set in enable_device */
1289 	ib_device_put(device);
1290 	wait_for_completion(&device->unreg_completion);
1291 
1292 	/*
1293 	 * compat devices must be removed after device refcount drops to zero.
1294 	 * Otherwise init_net() may add more compatdevs after removing compat
1295 	 * devices and before device is disabled.
1296 	 */
1297 	remove_compat_devs(device);
1298 }
1299 
1300 /*
1301  * An enabled device is visible to all clients and to all the public facing
1302  * APIs that return a device pointer. This always returns with a new get, even
1303  * if it fails.
1304  */
1305 static int enable_device_and_get(struct ib_device *device)
1306 {
1307 	struct ib_client *client;
1308 	unsigned long index;
1309 	int ret = 0;
1310 
1311 	/*
1312 	 * One ref belongs to the xa and the other belongs to this
1313 	 * thread. This is needed to guard against parallel unregistration.
1314 	 */
1315 	refcount_set(&device->refcount, 2);
1316 	down_write(&devices_rwsem);
1317 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1318 
1319 	/*
1320 	 * By using downgrade_write() we ensure that no other thread can clear
1321 	 * DEVICE_REGISTERED while we are completing the client setup.
1322 	 */
1323 	downgrade_write(&devices_rwsem);
1324 
1325 	if (device->ops.enable_driver) {
1326 		ret = device->ops.enable_driver(device);
1327 		if (ret)
1328 			goto out;
1329 	}
1330 
1331 	down_read(&clients_rwsem);
1332 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1333 		ret = add_client_context(device, client);
1334 		if (ret)
1335 			break;
1336 	}
1337 	up_read(&clients_rwsem);
1338 	if (!ret)
1339 		ret = add_compat_devs(device);
1340 out:
1341 	up_read(&devices_rwsem);
1342 	return ret;
1343 }
1344 
1345 static void prevent_dealloc_device(struct ib_device *ib_dev)
1346 {
1347 }
1348 
1349 /**
1350  * ib_register_device - Register an IB device with IB core
1351  * @device: Device to register
1352  * @name: unique string device name. This may include a '%' which will
1353  * cause a unique index to be added to the passed device name.
1354  *
1355  * Low-level drivers use ib_register_device() to register their
1356  * devices with the IB core.  All registered clients will receive a
1357  * callback for each device that is added. @device must be allocated
1358  * with ib_alloc_device().
1359  *
1360  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1361  * asynchronously then the device pointer may become freed as soon as this
1362  * function returns.
1363  */
1364 int ib_register_device(struct ib_device *device, const char *name)
1365 {
1366 	int ret;
1367 
1368 	ret = assign_name(device, name);
1369 	if (ret)
1370 		return ret;
1371 
1372 	ret = setup_device(device);
1373 	if (ret)
1374 		return ret;
1375 
1376 	ret = ib_cache_setup_one(device);
1377 	if (ret) {
1378 		dev_warn(&device->dev,
1379 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1380 		return ret;
1381 	}
1382 
1383 	ib_device_register_rdmacg(device);
1384 
1385 	rdma_counter_init(device);
1386 
1387 	/*
1388 	 * Ensure that ADD uevent is not fired because it
1389 	 * is too early amd device is not initialized yet.
1390 	 */
1391 	dev_set_uevent_suppress(&device->dev, true);
1392 	ret = device_add(&device->dev);
1393 	if (ret)
1394 		goto cg_cleanup;
1395 
1396 	ret = ib_device_register_sysfs(device);
1397 	if (ret) {
1398 		dev_warn(&device->dev,
1399 			 "Couldn't register device with driver model\n");
1400 		goto dev_cleanup;
1401 	}
1402 
1403 	ib_cq_pool_init(device);
1404 	ret = enable_device_and_get(device);
1405 	dev_set_uevent_suppress(&device->dev, false);
1406 	/* Mark for userspace that device is ready */
1407 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1408 	if (ret) {
1409 		void (*dealloc_fn)(struct ib_device *);
1410 
1411 		/*
1412 		 * If we hit this error flow then we don't want to
1413 		 * automatically dealloc the device since the caller is
1414 		 * expected to call ib_dealloc_device() after
1415 		 * ib_register_device() fails. This is tricky due to the
1416 		 * possibility for a parallel unregistration along with this
1417 		 * error flow. Since we have a refcount here we know any
1418 		 * parallel flow is stopped in disable_device and will see the
1419 		 * special dealloc_driver pointer, causing the responsibility to
1420 		 * ib_dealloc_device() to revert back to this thread.
1421 		 */
1422 		dealloc_fn = device->ops.dealloc_driver;
1423 		device->ops.dealloc_driver = prevent_dealloc_device;
1424 		ib_device_put(device);
1425 		__ib_unregister_device(device);
1426 		device->ops.dealloc_driver = dealloc_fn;
1427 		return ret;
1428 	}
1429 	ib_device_put(device);
1430 
1431 	return 0;
1432 
1433 dev_cleanup:
1434 	device_del(&device->dev);
1435 cg_cleanup:
1436 	dev_set_uevent_suppress(&device->dev, false);
1437 	ib_device_unregister_rdmacg(device);
1438 	ib_cache_cleanup_one(device);
1439 	return ret;
1440 }
1441 EXPORT_SYMBOL(ib_register_device);
1442 
1443 /* Callers must hold a get on the device. */
1444 static void __ib_unregister_device(struct ib_device *ib_dev)
1445 {
1446 	/*
1447 	 * We have a registration lock so that all the calls to unregister are
1448 	 * fully fenced, once any unregister returns the device is truely
1449 	 * unregistered even if multiple callers are unregistering it at the
1450 	 * same time. This also interacts with the registration flow and
1451 	 * provides sane semantics if register and unregister are racing.
1452 	 */
1453 	mutex_lock(&ib_dev->unregistration_lock);
1454 	if (!refcount_read(&ib_dev->refcount))
1455 		goto out;
1456 
1457 	disable_device(ib_dev);
1458 	ib_cq_pool_destroy(ib_dev);
1459 
1460 	/* Expedite removing unregistered pointers from the hash table */
1461 	free_netdevs(ib_dev);
1462 
1463 	ib_device_unregister_sysfs(ib_dev);
1464 	device_del(&ib_dev->dev);
1465 	ib_device_unregister_rdmacg(ib_dev);
1466 	ib_cache_cleanup_one(ib_dev);
1467 
1468 	/*
1469 	 * Drivers using the new flow may not call ib_dealloc_device except
1470 	 * in error unwind prior to registration success.
1471 	 */
1472 	if (ib_dev->ops.dealloc_driver &&
1473 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1474 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1475 		ib_dealloc_device(ib_dev);
1476 	}
1477 out:
1478 	mutex_unlock(&ib_dev->unregistration_lock);
1479 }
1480 
1481 /**
1482  * ib_unregister_device - Unregister an IB device
1483  * @ib_dev: The device to unregister
1484  *
1485  * Unregister an IB device.  All clients will receive a remove callback.
1486  *
1487  * Callers should call this routine only once, and protect against races with
1488  * registration. Typically it should only be called as part of a remove
1489  * callback in an implementation of driver core's struct device_driver and
1490  * related.
1491  *
1492  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1493  * this function.
1494  */
1495 void ib_unregister_device(struct ib_device *ib_dev)
1496 {
1497 	get_device(&ib_dev->dev);
1498 	__ib_unregister_device(ib_dev);
1499 	put_device(&ib_dev->dev);
1500 }
1501 EXPORT_SYMBOL(ib_unregister_device);
1502 
1503 /**
1504  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1505  * @ib_dev: The device to unregister
1506  *
1507  * This is the same as ib_unregister_device(), except it includes an internal
1508  * ib_device_put() that should match a 'get' obtained by the caller.
1509  *
1510  * It is safe to call this routine concurrently from multiple threads while
1511  * holding the 'get'. When the function returns the device is fully
1512  * unregistered.
1513  *
1514  * Drivers using this flow MUST use the driver_unregister callback to clean up
1515  * their resources associated with the device and dealloc it.
1516  */
1517 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1518 {
1519 	WARN_ON(!ib_dev->ops.dealloc_driver);
1520 	get_device(&ib_dev->dev);
1521 	ib_device_put(ib_dev);
1522 	__ib_unregister_device(ib_dev);
1523 	put_device(&ib_dev->dev);
1524 }
1525 EXPORT_SYMBOL(ib_unregister_device_and_put);
1526 
1527 /**
1528  * ib_unregister_driver - Unregister all IB devices for a driver
1529  * @driver_id: The driver to unregister
1530  *
1531  * This implements a fence for device unregistration. It only returns once all
1532  * devices associated with the driver_id have fully completed their
1533  * unregistration and returned from ib_unregister_device*().
1534  *
1535  * If device's are not yet unregistered it goes ahead and starts unregistering
1536  * them.
1537  *
1538  * This does not block creation of new devices with the given driver_id, that
1539  * is the responsibility of the caller.
1540  */
1541 void ib_unregister_driver(enum rdma_driver_id driver_id)
1542 {
1543 	struct ib_device *ib_dev;
1544 	unsigned long index;
1545 
1546 	down_read(&devices_rwsem);
1547 	xa_for_each (&devices, index, ib_dev) {
1548 		if (ib_dev->ops.driver_id != driver_id)
1549 			continue;
1550 
1551 		get_device(&ib_dev->dev);
1552 		up_read(&devices_rwsem);
1553 
1554 		WARN_ON(!ib_dev->ops.dealloc_driver);
1555 		__ib_unregister_device(ib_dev);
1556 
1557 		put_device(&ib_dev->dev);
1558 		down_read(&devices_rwsem);
1559 	}
1560 	up_read(&devices_rwsem);
1561 }
1562 EXPORT_SYMBOL(ib_unregister_driver);
1563 
1564 static void ib_unregister_work(struct work_struct *work)
1565 {
1566 	struct ib_device *ib_dev =
1567 		container_of(work, struct ib_device, unregistration_work);
1568 
1569 	__ib_unregister_device(ib_dev);
1570 	put_device(&ib_dev->dev);
1571 }
1572 
1573 /**
1574  * ib_unregister_device_queued - Unregister a device using a work queue
1575  * @ib_dev: The device to unregister
1576  *
1577  * This schedules an asynchronous unregistration using a WQ for the device. A
1578  * driver should use this to avoid holding locks while doing unregistration,
1579  * such as holding the RTNL lock.
1580  *
1581  * Drivers using this API must use ib_unregister_driver before module unload
1582  * to ensure that all scheduled unregistrations have completed.
1583  */
1584 void ib_unregister_device_queued(struct ib_device *ib_dev)
1585 {
1586 	WARN_ON(!refcount_read(&ib_dev->refcount));
1587 	WARN_ON(!ib_dev->ops.dealloc_driver);
1588 	get_device(&ib_dev->dev);
1589 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1590 		put_device(&ib_dev->dev);
1591 }
1592 EXPORT_SYMBOL(ib_unregister_device_queued);
1593 
1594 /*
1595  * The caller must pass in a device that has the kref held and the refcount
1596  * released. If the device is in cur_net and still registered then it is moved
1597  * into net.
1598  */
1599 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1600 				 struct net *net)
1601 {
1602 	int ret2 = -EINVAL;
1603 	int ret;
1604 
1605 	mutex_lock(&device->unregistration_lock);
1606 
1607 	/*
1608 	 * If a device not under ib_device_get() or if the unregistration_lock
1609 	 * is not held, the namespace can be changed, or it can be unregistered.
1610 	 * Check again under the lock.
1611 	 */
1612 	if (refcount_read(&device->refcount) == 0 ||
1613 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1614 		ret = -ENODEV;
1615 		goto out;
1616 	}
1617 
1618 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1619 	disable_device(device);
1620 
1621 	/*
1622 	 * At this point no one can be using the device, so it is safe to
1623 	 * change the namespace.
1624 	 */
1625 	write_pnet(&device->coredev.rdma_net, net);
1626 
1627 	down_read(&devices_rwsem);
1628 	/*
1629 	 * Currently rdma devices are system wide unique. So the device name
1630 	 * is guaranteed free in the new namespace. Publish the new namespace
1631 	 * at the sysfs level.
1632 	 */
1633 	ret = device_rename(&device->dev, dev_name(&device->dev));
1634 	up_read(&devices_rwsem);
1635 	if (ret) {
1636 		dev_warn(&device->dev,
1637 			 "%s: Couldn't rename device after namespace change\n",
1638 			 __func__);
1639 		/* Try and put things back and re-enable the device */
1640 		write_pnet(&device->coredev.rdma_net, cur_net);
1641 	}
1642 
1643 	ret2 = enable_device_and_get(device);
1644 	if (ret2) {
1645 		/*
1646 		 * This shouldn't really happen, but if it does, let the user
1647 		 * retry at later point. So don't disable the device.
1648 		 */
1649 		dev_warn(&device->dev,
1650 			 "%s: Couldn't re-enable device after namespace change\n",
1651 			 __func__);
1652 	}
1653 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1654 
1655 	ib_device_put(device);
1656 out:
1657 	mutex_unlock(&device->unregistration_lock);
1658 	if (ret)
1659 		return ret;
1660 	return ret2;
1661 }
1662 
1663 int ib_device_set_netns_put(struct sk_buff *skb,
1664 			    struct ib_device *dev, u32 ns_fd)
1665 {
1666 	struct net *net;
1667 	int ret;
1668 
1669 	net = get_net_ns_by_fd(ns_fd);
1670 	if (IS_ERR(net)) {
1671 		ret = PTR_ERR(net);
1672 		goto net_err;
1673 	}
1674 
1675 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1676 		ret = -EPERM;
1677 		goto ns_err;
1678 	}
1679 
1680 	/*
1681 	 * Currently supported only for those providers which support
1682 	 * disassociation and don't do port specific sysfs init. Once a
1683 	 * port_cleanup infrastructure is implemented, this limitation will be
1684 	 * removed.
1685 	 */
1686 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1687 	    ib_devices_shared_netns) {
1688 		ret = -EOPNOTSUPP;
1689 		goto ns_err;
1690 	}
1691 
1692 	get_device(&dev->dev);
1693 	ib_device_put(dev);
1694 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1695 	put_device(&dev->dev);
1696 
1697 	put_net(net);
1698 	return ret;
1699 
1700 ns_err:
1701 	put_net(net);
1702 net_err:
1703 	ib_device_put(dev);
1704 	return ret;
1705 }
1706 
1707 static struct pernet_operations rdma_dev_net_ops = {
1708 	.init = rdma_dev_init_net,
1709 	.exit = rdma_dev_exit_net,
1710 	.id = &rdma_dev_net_id,
1711 	.size = sizeof(struct rdma_dev_net),
1712 };
1713 
1714 static int assign_client_id(struct ib_client *client)
1715 {
1716 	int ret;
1717 
1718 	down_write(&clients_rwsem);
1719 	/*
1720 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1721 	 * achieve this we assign client_ids so they are sorted in
1722 	 * registration order.
1723 	 */
1724 	client->client_id = highest_client_id;
1725 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1726 	if (ret)
1727 		goto out;
1728 
1729 	highest_client_id++;
1730 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1731 
1732 out:
1733 	up_write(&clients_rwsem);
1734 	return ret;
1735 }
1736 
1737 static void remove_client_id(struct ib_client *client)
1738 {
1739 	down_write(&clients_rwsem);
1740 	xa_erase(&clients, client->client_id);
1741 	for (; highest_client_id; highest_client_id--)
1742 		if (xa_load(&clients, highest_client_id - 1))
1743 			break;
1744 	up_write(&clients_rwsem);
1745 }
1746 
1747 /**
1748  * ib_register_client - Register an IB client
1749  * @client:Client to register
1750  *
1751  * Upper level users of the IB drivers can use ib_register_client() to
1752  * register callbacks for IB device addition and removal.  When an IB
1753  * device is added, each registered client's add method will be called
1754  * (in the order the clients were registered), and when a device is
1755  * removed, each client's remove method will be called (in the reverse
1756  * order that clients were registered).  In addition, when
1757  * ib_register_client() is called, the client will receive an add
1758  * callback for all devices already registered.
1759  */
1760 int ib_register_client(struct ib_client *client)
1761 {
1762 	struct ib_device *device;
1763 	unsigned long index;
1764 	int ret;
1765 
1766 	refcount_set(&client->uses, 1);
1767 	init_completion(&client->uses_zero);
1768 	ret = assign_client_id(client);
1769 	if (ret)
1770 		return ret;
1771 
1772 	down_read(&devices_rwsem);
1773 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1774 		ret = add_client_context(device, client);
1775 		if (ret) {
1776 			up_read(&devices_rwsem);
1777 			ib_unregister_client(client);
1778 			return ret;
1779 		}
1780 	}
1781 	up_read(&devices_rwsem);
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL(ib_register_client);
1785 
1786 /**
1787  * ib_unregister_client - Unregister an IB client
1788  * @client:Client to unregister
1789  *
1790  * Upper level users use ib_unregister_client() to remove their client
1791  * registration.  When ib_unregister_client() is called, the client
1792  * will receive a remove callback for each IB device still registered.
1793  *
1794  * This is a full fence, once it returns no client callbacks will be called,
1795  * or are running in another thread.
1796  */
1797 void ib_unregister_client(struct ib_client *client)
1798 {
1799 	struct ib_device *device;
1800 	unsigned long index;
1801 
1802 	down_write(&clients_rwsem);
1803 	ib_client_put(client);
1804 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1805 	up_write(&clients_rwsem);
1806 
1807 	/* We do not want to have locks while calling client->remove() */
1808 	rcu_read_lock();
1809 	xa_for_each (&devices, index, device) {
1810 		if (!ib_device_try_get(device))
1811 			continue;
1812 		rcu_read_unlock();
1813 
1814 		remove_client_context(device, client->client_id);
1815 
1816 		ib_device_put(device);
1817 		rcu_read_lock();
1818 	}
1819 	rcu_read_unlock();
1820 
1821 	/*
1822 	 * remove_client_context() is not a fence, it can return even though a
1823 	 * removal is ongoing. Wait until all removals are completed.
1824 	 */
1825 	wait_for_completion(&client->uses_zero);
1826 	remove_client_id(client);
1827 }
1828 EXPORT_SYMBOL(ib_unregister_client);
1829 
1830 static int __ib_get_global_client_nl_info(const char *client_name,
1831 					  struct ib_client_nl_info *res)
1832 {
1833 	struct ib_client *client;
1834 	unsigned long index;
1835 	int ret = -ENOENT;
1836 
1837 	down_read(&clients_rwsem);
1838 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1839 		if (strcmp(client->name, client_name) != 0)
1840 			continue;
1841 		if (!client->get_global_nl_info) {
1842 			ret = -EOPNOTSUPP;
1843 			break;
1844 		}
1845 		ret = client->get_global_nl_info(res);
1846 		if (WARN_ON(ret == -ENOENT))
1847 			ret = -EINVAL;
1848 		if (!ret && res->cdev)
1849 			get_device(res->cdev);
1850 		break;
1851 	}
1852 	up_read(&clients_rwsem);
1853 	return ret;
1854 }
1855 
1856 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1857 				   const char *client_name,
1858 				   struct ib_client_nl_info *res)
1859 {
1860 	unsigned long index;
1861 	void *client_data;
1862 	int ret = -ENOENT;
1863 
1864 	down_read(&ibdev->client_data_rwsem);
1865 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1866 			     CLIENT_DATA_REGISTERED) {
1867 		struct ib_client *client = xa_load(&clients, index);
1868 
1869 		if (!client || strcmp(client->name, client_name) != 0)
1870 			continue;
1871 		if (!client->get_nl_info) {
1872 			ret = -EOPNOTSUPP;
1873 			break;
1874 		}
1875 		ret = client->get_nl_info(ibdev, client_data, res);
1876 		if (WARN_ON(ret == -ENOENT))
1877 			ret = -EINVAL;
1878 
1879 		/*
1880 		 * The cdev is guaranteed valid as long as we are inside the
1881 		 * client_data_rwsem as remove_one can't be called. Keep it
1882 		 * valid for the caller.
1883 		 */
1884 		if (!ret && res->cdev)
1885 			get_device(res->cdev);
1886 		break;
1887 	}
1888 	up_read(&ibdev->client_data_rwsem);
1889 
1890 	return ret;
1891 }
1892 
1893 /**
1894  * ib_get_client_nl_info - Fetch the nl_info from a client
1895  * @device - IB device
1896  * @client_name - Name of the client
1897  * @res - Result of the query
1898  */
1899 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1900 			  struct ib_client_nl_info *res)
1901 {
1902 	int ret;
1903 
1904 	if (ibdev)
1905 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1906 	else
1907 		ret = __ib_get_global_client_nl_info(client_name, res);
1908 #ifdef CONFIG_MODULES
1909 	if (ret == -ENOENT) {
1910 		request_module("rdma-client-%s", client_name);
1911 		if (ibdev)
1912 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1913 		else
1914 			ret = __ib_get_global_client_nl_info(client_name, res);
1915 	}
1916 #endif
1917 	if (ret) {
1918 		if (ret == -ENOENT)
1919 			return -EOPNOTSUPP;
1920 		return ret;
1921 	}
1922 
1923 	if (WARN_ON(!res->cdev))
1924 		return -EINVAL;
1925 	return 0;
1926 }
1927 
1928 /**
1929  * ib_set_client_data - Set IB client context
1930  * @device:Device to set context for
1931  * @client:Client to set context for
1932  * @data:Context to set
1933  *
1934  * ib_set_client_data() sets client context data that can be retrieved with
1935  * ib_get_client_data(). This can only be called while the client is
1936  * registered to the device, once the ib_client remove() callback returns this
1937  * cannot be called.
1938  */
1939 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1940 			void *data)
1941 {
1942 	void *rc;
1943 
1944 	if (WARN_ON(IS_ERR(data)))
1945 		data = NULL;
1946 
1947 	rc = xa_store(&device->client_data, client->client_id, data,
1948 		      GFP_KERNEL);
1949 	WARN_ON(xa_is_err(rc));
1950 }
1951 EXPORT_SYMBOL(ib_set_client_data);
1952 
1953 /**
1954  * ib_register_event_handler - Register an IB event handler
1955  * @event_handler:Handler to register
1956  *
1957  * ib_register_event_handler() registers an event handler that will be
1958  * called back when asynchronous IB events occur (as defined in
1959  * chapter 11 of the InfiniBand Architecture Specification). This
1960  * callback occurs in workqueue context.
1961  */
1962 void ib_register_event_handler(struct ib_event_handler *event_handler)
1963 {
1964 	down_write(&event_handler->device->event_handler_rwsem);
1965 	list_add_tail(&event_handler->list,
1966 		      &event_handler->device->event_handler_list);
1967 	up_write(&event_handler->device->event_handler_rwsem);
1968 }
1969 EXPORT_SYMBOL(ib_register_event_handler);
1970 
1971 /**
1972  * ib_unregister_event_handler - Unregister an event handler
1973  * @event_handler:Handler to unregister
1974  *
1975  * Unregister an event handler registered with
1976  * ib_register_event_handler().
1977  */
1978 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1979 {
1980 	down_write(&event_handler->device->event_handler_rwsem);
1981 	list_del(&event_handler->list);
1982 	up_write(&event_handler->device->event_handler_rwsem);
1983 }
1984 EXPORT_SYMBOL(ib_unregister_event_handler);
1985 
1986 void ib_dispatch_event_clients(struct ib_event *event)
1987 {
1988 	struct ib_event_handler *handler;
1989 
1990 	down_read(&event->device->event_handler_rwsem);
1991 
1992 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1993 		handler->handler(handler, event);
1994 
1995 	up_read(&event->device->event_handler_rwsem);
1996 }
1997 
1998 static int iw_query_port(struct ib_device *device,
1999 			   u8 port_num,
2000 			   struct ib_port_attr *port_attr)
2001 {
2002 	struct in_device *inetdev;
2003 	struct net_device *netdev;
2004 
2005 	memset(port_attr, 0, sizeof(*port_attr));
2006 
2007 	netdev = ib_device_get_netdev(device, port_num);
2008 	if (!netdev)
2009 		return -ENODEV;
2010 
2011 	port_attr->max_mtu = IB_MTU_4096;
2012 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2013 
2014 	if (!netif_carrier_ok(netdev)) {
2015 		port_attr->state = IB_PORT_DOWN;
2016 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2017 	} else {
2018 		rcu_read_lock();
2019 		inetdev = __in_dev_get_rcu(netdev);
2020 
2021 		if (inetdev && inetdev->ifa_list) {
2022 			port_attr->state = IB_PORT_ACTIVE;
2023 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2024 		} else {
2025 			port_attr->state = IB_PORT_INIT;
2026 			port_attr->phys_state =
2027 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2028 		}
2029 
2030 		rcu_read_unlock();
2031 	}
2032 
2033 	dev_put(netdev);
2034 	return device->ops.query_port(device, port_num, port_attr);
2035 }
2036 
2037 static int __ib_query_port(struct ib_device *device,
2038 			   u8 port_num,
2039 			   struct ib_port_attr *port_attr)
2040 {
2041 	union ib_gid gid = {};
2042 	int err;
2043 
2044 	memset(port_attr, 0, sizeof(*port_attr));
2045 
2046 	err = device->ops.query_port(device, port_num, port_attr);
2047 	if (err || port_attr->subnet_prefix)
2048 		return err;
2049 
2050 	if (rdma_port_get_link_layer(device, port_num) !=
2051 	    IB_LINK_LAYER_INFINIBAND)
2052 		return 0;
2053 
2054 	err = device->ops.query_gid(device, port_num, 0, &gid);
2055 	if (err)
2056 		return err;
2057 
2058 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2059 	return 0;
2060 }
2061 
2062 /**
2063  * ib_query_port - Query IB port attributes
2064  * @device:Device to query
2065  * @port_num:Port number to query
2066  * @port_attr:Port attributes
2067  *
2068  * ib_query_port() returns the attributes of a port through the
2069  * @port_attr pointer.
2070  */
2071 int ib_query_port(struct ib_device *device,
2072 		  u8 port_num,
2073 		  struct ib_port_attr *port_attr)
2074 {
2075 	if (!rdma_is_port_valid(device, port_num))
2076 		return -EINVAL;
2077 
2078 	if (rdma_protocol_iwarp(device, port_num))
2079 		return iw_query_port(device, port_num, port_attr);
2080 	else
2081 		return __ib_query_port(device, port_num, port_attr);
2082 }
2083 EXPORT_SYMBOL(ib_query_port);
2084 
2085 static void add_ndev_hash(struct ib_port_data *pdata)
2086 {
2087 	unsigned long flags;
2088 
2089 	might_sleep();
2090 
2091 	spin_lock_irqsave(&ndev_hash_lock, flags);
2092 	if (hash_hashed(&pdata->ndev_hash_link)) {
2093 		hash_del_rcu(&pdata->ndev_hash_link);
2094 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2095 		/*
2096 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2097 		 * grace period
2098 		 */
2099 		synchronize_rcu();
2100 		spin_lock_irqsave(&ndev_hash_lock, flags);
2101 	}
2102 	if (pdata->netdev)
2103 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2104 			     (uintptr_t)pdata->netdev);
2105 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2106 }
2107 
2108 /**
2109  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2110  * @ib_dev: Device to modify
2111  * @ndev: net_device to affiliate, may be NULL
2112  * @port: IB port the net_device is connected to
2113  *
2114  * Drivers should use this to link the ib_device to a netdev so the netdev
2115  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2116  * affiliated with any port.
2117  *
2118  * The caller must ensure that the given ndev is not unregistered or
2119  * unregistering, and that either the ib_device is unregistered or
2120  * ib_device_set_netdev() is called with NULL when the ndev sends a
2121  * NETDEV_UNREGISTER event.
2122  */
2123 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2124 			 unsigned int port)
2125 {
2126 	struct net_device *old_ndev;
2127 	struct ib_port_data *pdata;
2128 	unsigned long flags;
2129 	int ret;
2130 
2131 	/*
2132 	 * Drivers wish to call this before ib_register_driver, so we have to
2133 	 * setup the port data early.
2134 	 */
2135 	ret = alloc_port_data(ib_dev);
2136 	if (ret)
2137 		return ret;
2138 
2139 	if (!rdma_is_port_valid(ib_dev, port))
2140 		return -EINVAL;
2141 
2142 	pdata = &ib_dev->port_data[port];
2143 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2144 	old_ndev = rcu_dereference_protected(
2145 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2146 	if (old_ndev == ndev) {
2147 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2148 		return 0;
2149 	}
2150 
2151 	if (ndev)
2152 		dev_hold(ndev);
2153 	rcu_assign_pointer(pdata->netdev, ndev);
2154 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2155 
2156 	add_ndev_hash(pdata);
2157 	if (old_ndev)
2158 		dev_put(old_ndev);
2159 
2160 	return 0;
2161 }
2162 EXPORT_SYMBOL(ib_device_set_netdev);
2163 
2164 static void free_netdevs(struct ib_device *ib_dev)
2165 {
2166 	unsigned long flags;
2167 	unsigned int port;
2168 
2169 	if (!ib_dev->port_data)
2170 		return;
2171 
2172 	rdma_for_each_port (ib_dev, port) {
2173 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2174 		struct net_device *ndev;
2175 
2176 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2177 		ndev = rcu_dereference_protected(
2178 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2179 		if (ndev) {
2180 			spin_lock(&ndev_hash_lock);
2181 			hash_del_rcu(&pdata->ndev_hash_link);
2182 			spin_unlock(&ndev_hash_lock);
2183 
2184 			/*
2185 			 * If this is the last dev_put there is still a
2186 			 * synchronize_rcu before the netdev is kfreed, so we
2187 			 * can continue to rely on unlocked pointer
2188 			 * comparisons after the put
2189 			 */
2190 			rcu_assign_pointer(pdata->netdev, NULL);
2191 			dev_put(ndev);
2192 		}
2193 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2194 	}
2195 }
2196 
2197 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2198 					unsigned int port)
2199 {
2200 	struct ib_port_data *pdata;
2201 	struct net_device *res;
2202 
2203 	if (!rdma_is_port_valid(ib_dev, port))
2204 		return NULL;
2205 
2206 	pdata = &ib_dev->port_data[port];
2207 
2208 	/*
2209 	 * New drivers should use ib_device_set_netdev() not the legacy
2210 	 * get_netdev().
2211 	 */
2212 	if (ib_dev->ops.get_netdev)
2213 		res = ib_dev->ops.get_netdev(ib_dev, port);
2214 	else {
2215 		spin_lock(&pdata->netdev_lock);
2216 		res = rcu_dereference_protected(
2217 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2218 		if (res)
2219 			dev_hold(res);
2220 		spin_unlock(&pdata->netdev_lock);
2221 	}
2222 
2223 	/*
2224 	 * If we are starting to unregister expedite things by preventing
2225 	 * propagation of an unregistering netdev.
2226 	 */
2227 	if (res && res->reg_state != NETREG_REGISTERED) {
2228 		dev_put(res);
2229 		return NULL;
2230 	}
2231 
2232 	return res;
2233 }
2234 
2235 /**
2236  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2237  * @ndev: netdev to locate
2238  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2239  *
2240  * Find and hold an ib_device that is associated with a netdev via
2241  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2242  * returned pointer.
2243  */
2244 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2245 					  enum rdma_driver_id driver_id)
2246 {
2247 	struct ib_device *res = NULL;
2248 	struct ib_port_data *cur;
2249 
2250 	rcu_read_lock();
2251 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2252 				    (uintptr_t)ndev) {
2253 		if (rcu_access_pointer(cur->netdev) == ndev &&
2254 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2255 		     cur->ib_dev->ops.driver_id == driver_id) &&
2256 		    ib_device_try_get(cur->ib_dev)) {
2257 			res = cur->ib_dev;
2258 			break;
2259 		}
2260 	}
2261 	rcu_read_unlock();
2262 
2263 	return res;
2264 }
2265 EXPORT_SYMBOL(ib_device_get_by_netdev);
2266 
2267 /**
2268  * ib_enum_roce_netdev - enumerate all RoCE ports
2269  * @ib_dev : IB device we want to query
2270  * @filter: Should we call the callback?
2271  * @filter_cookie: Cookie passed to filter
2272  * @cb: Callback to call for each found RoCE ports
2273  * @cookie: Cookie passed back to the callback
2274  *
2275  * Enumerates all of the physical RoCE ports of ib_dev
2276  * which are related to netdevice and calls callback() on each
2277  * device for which filter() function returns non zero.
2278  */
2279 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2280 			 roce_netdev_filter filter,
2281 			 void *filter_cookie,
2282 			 roce_netdev_callback cb,
2283 			 void *cookie)
2284 {
2285 	unsigned int port;
2286 
2287 	rdma_for_each_port (ib_dev, port)
2288 		if (rdma_protocol_roce(ib_dev, port)) {
2289 			struct net_device *idev =
2290 				ib_device_get_netdev(ib_dev, port);
2291 
2292 			if (filter(ib_dev, port, idev, filter_cookie))
2293 				cb(ib_dev, port, idev, cookie);
2294 
2295 			if (idev)
2296 				dev_put(idev);
2297 		}
2298 }
2299 
2300 /**
2301  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2302  * @filter: Should we call the callback?
2303  * @filter_cookie: Cookie passed to filter
2304  * @cb: Callback to call for each found RoCE ports
2305  * @cookie: Cookie passed back to the callback
2306  *
2307  * Enumerates all RoCE devices' physical ports which are related
2308  * to netdevices and calls callback() on each device for which
2309  * filter() function returns non zero.
2310  */
2311 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2312 			      void *filter_cookie,
2313 			      roce_netdev_callback cb,
2314 			      void *cookie)
2315 {
2316 	struct ib_device *dev;
2317 	unsigned long index;
2318 
2319 	down_read(&devices_rwsem);
2320 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2321 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2322 	up_read(&devices_rwsem);
2323 }
2324 
2325 /**
2326  * ib_enum_all_devs - enumerate all ib_devices
2327  * @cb: Callback to call for each found ib_device
2328  *
2329  * Enumerates all ib_devices and calls callback() on each device.
2330  */
2331 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2332 		     struct netlink_callback *cb)
2333 {
2334 	unsigned long index;
2335 	struct ib_device *dev;
2336 	unsigned int idx = 0;
2337 	int ret = 0;
2338 
2339 	down_read(&devices_rwsem);
2340 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2341 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2342 			continue;
2343 
2344 		ret = nldev_cb(dev, skb, cb, idx);
2345 		if (ret)
2346 			break;
2347 		idx++;
2348 	}
2349 	up_read(&devices_rwsem);
2350 	return ret;
2351 }
2352 
2353 /**
2354  * ib_query_pkey - Get P_Key table entry
2355  * @device:Device to query
2356  * @port_num:Port number to query
2357  * @index:P_Key table index to query
2358  * @pkey:Returned P_Key
2359  *
2360  * ib_query_pkey() fetches the specified P_Key table entry.
2361  */
2362 int ib_query_pkey(struct ib_device *device,
2363 		  u8 port_num, u16 index, u16 *pkey)
2364 {
2365 	if (!rdma_is_port_valid(device, port_num))
2366 		return -EINVAL;
2367 
2368 	if (!device->ops.query_pkey)
2369 		return -EOPNOTSUPP;
2370 
2371 	return device->ops.query_pkey(device, port_num, index, pkey);
2372 }
2373 EXPORT_SYMBOL(ib_query_pkey);
2374 
2375 /**
2376  * ib_modify_device - Change IB device attributes
2377  * @device:Device to modify
2378  * @device_modify_mask:Mask of attributes to change
2379  * @device_modify:New attribute values
2380  *
2381  * ib_modify_device() changes a device's attributes as specified by
2382  * the @device_modify_mask and @device_modify structure.
2383  */
2384 int ib_modify_device(struct ib_device *device,
2385 		     int device_modify_mask,
2386 		     struct ib_device_modify *device_modify)
2387 {
2388 	if (!device->ops.modify_device)
2389 		return -EOPNOTSUPP;
2390 
2391 	return device->ops.modify_device(device, device_modify_mask,
2392 					 device_modify);
2393 }
2394 EXPORT_SYMBOL(ib_modify_device);
2395 
2396 /**
2397  * ib_modify_port - Modifies the attributes for the specified port.
2398  * @device: The device to modify.
2399  * @port_num: The number of the port to modify.
2400  * @port_modify_mask: Mask used to specify which attributes of the port
2401  *   to change.
2402  * @port_modify: New attribute values for the port.
2403  *
2404  * ib_modify_port() changes a port's attributes as specified by the
2405  * @port_modify_mask and @port_modify structure.
2406  */
2407 int ib_modify_port(struct ib_device *device,
2408 		   u8 port_num, int port_modify_mask,
2409 		   struct ib_port_modify *port_modify)
2410 {
2411 	int rc;
2412 
2413 	if (!rdma_is_port_valid(device, port_num))
2414 		return -EINVAL;
2415 
2416 	if (device->ops.modify_port)
2417 		rc = device->ops.modify_port(device, port_num,
2418 					     port_modify_mask,
2419 					     port_modify);
2420 	else if (rdma_protocol_roce(device, port_num) &&
2421 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2422 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2423 		rc = 0;
2424 	else
2425 		rc = -EOPNOTSUPP;
2426 	return rc;
2427 }
2428 EXPORT_SYMBOL(ib_modify_port);
2429 
2430 /**
2431  * ib_find_gid - Returns the port number and GID table index where
2432  *   a specified GID value occurs. Its searches only for IB link layer.
2433  * @device: The device to query.
2434  * @gid: The GID value to search for.
2435  * @port_num: The port number of the device where the GID value was found.
2436  * @index: The index into the GID table where the GID was found.  This
2437  *   parameter may be NULL.
2438  */
2439 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2440 		u8 *port_num, u16 *index)
2441 {
2442 	union ib_gid tmp_gid;
2443 	unsigned int port;
2444 	int ret, i;
2445 
2446 	rdma_for_each_port (device, port) {
2447 		if (!rdma_protocol_ib(device, port))
2448 			continue;
2449 
2450 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2451 		     ++i) {
2452 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2453 			if (ret)
2454 				return ret;
2455 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2456 				*port_num = port;
2457 				if (index)
2458 					*index = i;
2459 				return 0;
2460 			}
2461 		}
2462 	}
2463 
2464 	return -ENOENT;
2465 }
2466 EXPORT_SYMBOL(ib_find_gid);
2467 
2468 /**
2469  * ib_find_pkey - Returns the PKey table index where a specified
2470  *   PKey value occurs.
2471  * @device: The device to query.
2472  * @port_num: The port number of the device to search for the PKey.
2473  * @pkey: The PKey value to search for.
2474  * @index: The index into the PKey table where the PKey was found.
2475  */
2476 int ib_find_pkey(struct ib_device *device,
2477 		 u8 port_num, u16 pkey, u16 *index)
2478 {
2479 	int ret, i;
2480 	u16 tmp_pkey;
2481 	int partial_ix = -1;
2482 
2483 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2484 	     ++i) {
2485 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2486 		if (ret)
2487 			return ret;
2488 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2489 			/* if there is full-member pkey take it.*/
2490 			if (tmp_pkey & 0x8000) {
2491 				*index = i;
2492 				return 0;
2493 			}
2494 			if (partial_ix < 0)
2495 				partial_ix = i;
2496 		}
2497 	}
2498 
2499 	/*no full-member, if exists take the limited*/
2500 	if (partial_ix >= 0) {
2501 		*index = partial_ix;
2502 		return 0;
2503 	}
2504 	return -ENOENT;
2505 }
2506 EXPORT_SYMBOL(ib_find_pkey);
2507 
2508 /**
2509  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2510  * for a received CM request
2511  * @dev:	An RDMA device on which the request has been received.
2512  * @port:	Port number on the RDMA device.
2513  * @pkey:	The Pkey the request came on.
2514  * @gid:	A GID that the net_dev uses to communicate.
2515  * @addr:	Contains the IP address that the request specified as its
2516  *		destination.
2517  *
2518  */
2519 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2520 					    u8 port,
2521 					    u16 pkey,
2522 					    const union ib_gid *gid,
2523 					    const struct sockaddr *addr)
2524 {
2525 	struct net_device *net_dev = NULL;
2526 	unsigned long index;
2527 	void *client_data;
2528 
2529 	if (!rdma_protocol_ib(dev, port))
2530 		return NULL;
2531 
2532 	/*
2533 	 * Holding the read side guarantees that the client will not become
2534 	 * unregistered while we are calling get_net_dev_by_params()
2535 	 */
2536 	down_read(&dev->client_data_rwsem);
2537 	xan_for_each_marked (&dev->client_data, index, client_data,
2538 			     CLIENT_DATA_REGISTERED) {
2539 		struct ib_client *client = xa_load(&clients, index);
2540 
2541 		if (!client || !client->get_net_dev_by_params)
2542 			continue;
2543 
2544 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2545 							addr, client_data);
2546 		if (net_dev)
2547 			break;
2548 	}
2549 	up_read(&dev->client_data_rwsem);
2550 
2551 	return net_dev;
2552 }
2553 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2554 
2555 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2556 {
2557 	struct ib_device_ops *dev_ops = &dev->ops;
2558 #define SET_DEVICE_OP(ptr, name)                                               \
2559 	do {                                                                   \
2560 		if (ops->name)                                                 \
2561 			if (!((ptr)->name))				       \
2562 				(ptr)->name = ops->name;                       \
2563 	} while (0)
2564 
2565 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2566 
2567 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2568 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2569 			dev_ops->driver_id != ops->driver_id);
2570 		dev_ops->driver_id = ops->driver_id;
2571 	}
2572 	if (ops->owner) {
2573 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2574 		dev_ops->owner = ops->owner;
2575 	}
2576 	if (ops->uverbs_abi_ver)
2577 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2578 
2579 	dev_ops->uverbs_no_driver_id_binding |=
2580 		ops->uverbs_no_driver_id_binding;
2581 
2582 	SET_DEVICE_OP(dev_ops, add_gid);
2583 	SET_DEVICE_OP(dev_ops, advise_mr);
2584 	SET_DEVICE_OP(dev_ops, alloc_dm);
2585 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2586 	SET_DEVICE_OP(dev_ops, alloc_mr);
2587 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2588 	SET_DEVICE_OP(dev_ops, alloc_mw);
2589 	SET_DEVICE_OP(dev_ops, alloc_pd);
2590 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2591 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2592 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2593 	SET_DEVICE_OP(dev_ops, attach_mcast);
2594 	SET_DEVICE_OP(dev_ops, check_mr_status);
2595 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2596 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2597 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2598 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2599 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2600 	SET_DEVICE_OP(dev_ops, create_ah);
2601 	SET_DEVICE_OP(dev_ops, create_counters);
2602 	SET_DEVICE_OP(dev_ops, create_cq);
2603 	SET_DEVICE_OP(dev_ops, create_flow);
2604 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2605 	SET_DEVICE_OP(dev_ops, create_qp);
2606 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2607 	SET_DEVICE_OP(dev_ops, create_srq);
2608 	SET_DEVICE_OP(dev_ops, create_wq);
2609 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2610 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2611 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2612 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2613 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2614 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2615 	SET_DEVICE_OP(dev_ops, del_gid);
2616 	SET_DEVICE_OP(dev_ops, dereg_mr);
2617 	SET_DEVICE_OP(dev_ops, destroy_ah);
2618 	SET_DEVICE_OP(dev_ops, destroy_counters);
2619 	SET_DEVICE_OP(dev_ops, destroy_cq);
2620 	SET_DEVICE_OP(dev_ops, destroy_flow);
2621 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2622 	SET_DEVICE_OP(dev_ops, destroy_qp);
2623 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2624 	SET_DEVICE_OP(dev_ops, destroy_srq);
2625 	SET_DEVICE_OP(dev_ops, destroy_wq);
2626 	SET_DEVICE_OP(dev_ops, detach_mcast);
2627 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2628 	SET_DEVICE_OP(dev_ops, drain_rq);
2629 	SET_DEVICE_OP(dev_ops, drain_sq);
2630 	SET_DEVICE_OP(dev_ops, enable_driver);
2631 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2632 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2633 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2634 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2635 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2636 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2637 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2638 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2639 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2640 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2641 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2642 	SET_DEVICE_OP(dev_ops, get_link_layer);
2643 	SET_DEVICE_OP(dev_ops, get_netdev);
2644 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2645 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2646 	SET_DEVICE_OP(dev_ops, get_vf_config);
2647 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2648 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2649 	SET_DEVICE_OP(dev_ops, init_port);
2650 	SET_DEVICE_OP(dev_ops, iw_accept);
2651 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2652 	SET_DEVICE_OP(dev_ops, iw_connect);
2653 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2654 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2655 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2656 	SET_DEVICE_OP(dev_ops, iw_reject);
2657 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2658 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2659 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2660 	SET_DEVICE_OP(dev_ops, mmap);
2661 	SET_DEVICE_OP(dev_ops, mmap_free);
2662 	SET_DEVICE_OP(dev_ops, modify_ah);
2663 	SET_DEVICE_OP(dev_ops, modify_cq);
2664 	SET_DEVICE_OP(dev_ops, modify_device);
2665 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2666 	SET_DEVICE_OP(dev_ops, modify_port);
2667 	SET_DEVICE_OP(dev_ops, modify_qp);
2668 	SET_DEVICE_OP(dev_ops, modify_srq);
2669 	SET_DEVICE_OP(dev_ops, modify_wq);
2670 	SET_DEVICE_OP(dev_ops, peek_cq);
2671 	SET_DEVICE_OP(dev_ops, poll_cq);
2672 	SET_DEVICE_OP(dev_ops, post_recv);
2673 	SET_DEVICE_OP(dev_ops, post_send);
2674 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2675 	SET_DEVICE_OP(dev_ops, process_mad);
2676 	SET_DEVICE_OP(dev_ops, query_ah);
2677 	SET_DEVICE_OP(dev_ops, query_device);
2678 	SET_DEVICE_OP(dev_ops, query_gid);
2679 	SET_DEVICE_OP(dev_ops, query_pkey);
2680 	SET_DEVICE_OP(dev_ops, query_port);
2681 	SET_DEVICE_OP(dev_ops, query_qp);
2682 	SET_DEVICE_OP(dev_ops, query_srq);
2683 	SET_DEVICE_OP(dev_ops, query_ucontext);
2684 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2685 	SET_DEVICE_OP(dev_ops, read_counters);
2686 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2687 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2688 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2689 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2690 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2691 	SET_DEVICE_OP(dev_ops, resize_cq);
2692 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2693 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2694 
2695 	SET_OBJ_SIZE(dev_ops, ib_ah);
2696 	SET_OBJ_SIZE(dev_ops, ib_counters);
2697 	SET_OBJ_SIZE(dev_ops, ib_cq);
2698 	SET_OBJ_SIZE(dev_ops, ib_pd);
2699 	SET_OBJ_SIZE(dev_ops, ib_srq);
2700 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2701 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2702 }
2703 EXPORT_SYMBOL(ib_set_device_ops);
2704 
2705 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2706 	[RDMA_NL_LS_OP_RESOLVE] = {
2707 		.doit = ib_nl_handle_resolve_resp,
2708 		.flags = RDMA_NL_ADMIN_PERM,
2709 	},
2710 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2711 		.doit = ib_nl_handle_set_timeout,
2712 		.flags = RDMA_NL_ADMIN_PERM,
2713 	},
2714 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2715 		.doit = ib_nl_handle_ip_res_resp,
2716 		.flags = RDMA_NL_ADMIN_PERM,
2717 	},
2718 };
2719 
2720 static int __init ib_core_init(void)
2721 {
2722 	int ret;
2723 
2724 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2725 	if (!ib_wq)
2726 		return -ENOMEM;
2727 
2728 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2729 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2730 	if (!ib_comp_wq) {
2731 		ret = -ENOMEM;
2732 		goto err;
2733 	}
2734 
2735 	ib_comp_unbound_wq =
2736 		alloc_workqueue("ib-comp-unb-wq",
2737 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2738 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2739 	if (!ib_comp_unbound_wq) {
2740 		ret = -ENOMEM;
2741 		goto err_comp;
2742 	}
2743 
2744 	ret = class_register(&ib_class);
2745 	if (ret) {
2746 		pr_warn("Couldn't create InfiniBand device class\n");
2747 		goto err_comp_unbound;
2748 	}
2749 
2750 	rdma_nl_init();
2751 
2752 	ret = addr_init();
2753 	if (ret) {
2754 		pr_warn("Could't init IB address resolution\n");
2755 		goto err_ibnl;
2756 	}
2757 
2758 	ret = ib_mad_init();
2759 	if (ret) {
2760 		pr_warn("Couldn't init IB MAD\n");
2761 		goto err_addr;
2762 	}
2763 
2764 	ret = ib_sa_init();
2765 	if (ret) {
2766 		pr_warn("Couldn't init SA\n");
2767 		goto err_mad;
2768 	}
2769 
2770 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2771 	if (ret) {
2772 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2773 		goto err_sa;
2774 	}
2775 
2776 	ret = register_pernet_device(&rdma_dev_net_ops);
2777 	if (ret) {
2778 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2779 		goto err_compat;
2780 	}
2781 
2782 	nldev_init();
2783 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2784 	roce_gid_mgmt_init();
2785 
2786 	return 0;
2787 
2788 err_compat:
2789 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2790 err_sa:
2791 	ib_sa_cleanup();
2792 err_mad:
2793 	ib_mad_cleanup();
2794 err_addr:
2795 	addr_cleanup();
2796 err_ibnl:
2797 	class_unregister(&ib_class);
2798 err_comp_unbound:
2799 	destroy_workqueue(ib_comp_unbound_wq);
2800 err_comp:
2801 	destroy_workqueue(ib_comp_wq);
2802 err:
2803 	destroy_workqueue(ib_wq);
2804 	return ret;
2805 }
2806 
2807 static void __exit ib_core_cleanup(void)
2808 {
2809 	roce_gid_mgmt_cleanup();
2810 	nldev_exit();
2811 	rdma_nl_unregister(RDMA_NL_LS);
2812 	unregister_pernet_device(&rdma_dev_net_ops);
2813 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2814 	ib_sa_cleanup();
2815 	ib_mad_cleanup();
2816 	addr_cleanup();
2817 	rdma_nl_exit();
2818 	class_unregister(&ib_class);
2819 	destroy_workqueue(ib_comp_unbound_wq);
2820 	destroy_workqueue(ib_comp_wq);
2821 	/* Make sure that any pending umem accounting work is done. */
2822 	destroy_workqueue(ib_wq);
2823 	flush_workqueue(system_unbound_wq);
2824 	WARN_ON(!xa_empty(&clients));
2825 	WARN_ON(!xa_empty(&devices));
2826 }
2827 
2828 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2829 
2830 /* ib core relies on netdev stack to first register net_ns_type_operations
2831  * ns kobject type before ib_core initialization.
2832  */
2833 fs_initcall(ib_core_init);
2834 module_exit(ib_core_cleanup);
2835