xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 5b4cb650)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/mutex.h>
41 #include <linux/netdevice.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <rdma/rdma_netlink.h>
45 #include <rdma/ib_addr.h>
46 #include <rdma/ib_cache.h>
47 
48 #include "core_priv.h"
49 
50 MODULE_AUTHOR("Roland Dreier");
51 MODULE_DESCRIPTION("core kernel InfiniBand API");
52 MODULE_LICENSE("Dual BSD/GPL");
53 
54 struct ib_client_data {
55 	struct list_head  list;
56 	struct ib_client *client;
57 	void *            data;
58 	/* The device or client is going down. Do not call client or device
59 	 * callbacks other than remove(). */
60 	bool		  going_down;
61 };
62 
63 struct workqueue_struct *ib_comp_wq;
64 struct workqueue_struct *ib_comp_unbound_wq;
65 struct workqueue_struct *ib_wq;
66 EXPORT_SYMBOL_GPL(ib_wq);
67 
68 /* The device_list and client_list contain devices and clients after their
69  * registration has completed, and the devices and clients are removed
70  * during unregistration. */
71 static LIST_HEAD(device_list);
72 static LIST_HEAD(client_list);
73 
74 /*
75  * device_mutex and lists_rwsem protect access to both device_list and
76  * client_list.  device_mutex protects writer access by device and client
77  * registration / de-registration.  lists_rwsem protects reader access to
78  * these lists.  Iterators of these lists must lock it for read, while updates
79  * to the lists must be done with a write lock. A special case is when the
80  * device_mutex is locked. In this case locking the lists for read access is
81  * not necessary as the device_mutex implies it.
82  *
83  * lists_rwsem also protects access to the client data list.
84  */
85 static DEFINE_MUTEX(device_mutex);
86 static DECLARE_RWSEM(lists_rwsem);
87 
88 static int ib_security_change(struct notifier_block *nb, unsigned long event,
89 			      void *lsm_data);
90 static void ib_policy_change_task(struct work_struct *work);
91 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
92 
93 static struct notifier_block ibdev_lsm_nb = {
94 	.notifier_call = ib_security_change,
95 };
96 
97 static int ib_device_check_mandatory(struct ib_device *device)
98 {
99 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
100 	static const struct {
101 		size_t offset;
102 		char  *name;
103 	} mandatory_table[] = {
104 		IB_MANDATORY_FUNC(query_device),
105 		IB_MANDATORY_FUNC(query_port),
106 		IB_MANDATORY_FUNC(query_pkey),
107 		IB_MANDATORY_FUNC(alloc_pd),
108 		IB_MANDATORY_FUNC(dealloc_pd),
109 		IB_MANDATORY_FUNC(create_qp),
110 		IB_MANDATORY_FUNC(modify_qp),
111 		IB_MANDATORY_FUNC(destroy_qp),
112 		IB_MANDATORY_FUNC(post_send),
113 		IB_MANDATORY_FUNC(post_recv),
114 		IB_MANDATORY_FUNC(create_cq),
115 		IB_MANDATORY_FUNC(destroy_cq),
116 		IB_MANDATORY_FUNC(poll_cq),
117 		IB_MANDATORY_FUNC(req_notify_cq),
118 		IB_MANDATORY_FUNC(get_dma_mr),
119 		IB_MANDATORY_FUNC(dereg_mr),
120 		IB_MANDATORY_FUNC(get_port_immutable)
121 	};
122 	int i;
123 
124 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
125 		if (!*(void **) ((void *) &device->ops +
126 				 mandatory_table[i].offset)) {
127 			dev_warn(&device->dev,
128 				 "Device is missing mandatory function %s\n",
129 				 mandatory_table[i].name);
130 			return -EINVAL;
131 		}
132 	}
133 
134 	return 0;
135 }
136 
137 static struct ib_device *__ib_device_get_by_index(u32 index)
138 {
139 	struct ib_device *device;
140 
141 	list_for_each_entry(device, &device_list, core_list)
142 		if (device->index == index)
143 			return device;
144 
145 	return NULL;
146 }
147 
148 /*
149  * Caller must perform ib_device_put() to return the device reference count
150  * when ib_device_get_by_index() returns valid device pointer.
151  */
152 struct ib_device *ib_device_get_by_index(u32 index)
153 {
154 	struct ib_device *device;
155 
156 	down_read(&lists_rwsem);
157 	device = __ib_device_get_by_index(index);
158 	if (device) {
159 		/* Do not return a device if unregistration has started. */
160 		if (!refcount_inc_not_zero(&device->refcount))
161 			device = NULL;
162 	}
163 	up_read(&lists_rwsem);
164 	return device;
165 }
166 
167 void ib_device_put(struct ib_device *device)
168 {
169 	if (refcount_dec_and_test(&device->refcount))
170 		complete(&device->unreg_completion);
171 }
172 
173 static struct ib_device *__ib_device_get_by_name(const char *name)
174 {
175 	struct ib_device *device;
176 
177 	list_for_each_entry(device, &device_list, core_list)
178 		if (!strcmp(name, dev_name(&device->dev)))
179 			return device;
180 
181 	return NULL;
182 }
183 
184 int ib_device_rename(struct ib_device *ibdev, const char *name)
185 {
186 	struct ib_device *device;
187 	int ret = 0;
188 
189 	if (!strcmp(name, dev_name(&ibdev->dev)))
190 		return ret;
191 
192 	mutex_lock(&device_mutex);
193 	list_for_each_entry(device, &device_list, core_list) {
194 		if (!strcmp(name, dev_name(&device->dev))) {
195 			ret = -EEXIST;
196 			goto out;
197 		}
198 	}
199 
200 	ret = device_rename(&ibdev->dev, name);
201 	if (ret)
202 		goto out;
203 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
204 out:
205 	mutex_unlock(&device_mutex);
206 	return ret;
207 }
208 
209 static int alloc_name(struct ib_device *ibdev, const char *name)
210 {
211 	unsigned long *inuse;
212 	struct ib_device *device;
213 	int i;
214 
215 	inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL);
216 	if (!inuse)
217 		return -ENOMEM;
218 
219 	list_for_each_entry(device, &device_list, core_list) {
220 		char buf[IB_DEVICE_NAME_MAX];
221 
222 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
223 			continue;
224 		if (i < 0 || i >= PAGE_SIZE * 8)
225 			continue;
226 		snprintf(buf, sizeof buf, name, i);
227 		if (!strcmp(buf, dev_name(&device->dev)))
228 			set_bit(i, inuse);
229 	}
230 
231 	i = find_first_zero_bit(inuse, PAGE_SIZE * 8);
232 	free_page((unsigned long) inuse);
233 
234 	return dev_set_name(&ibdev->dev, name, i);
235 }
236 
237 static void ib_device_release(struct device *device)
238 {
239 	struct ib_device *dev = container_of(device, struct ib_device, dev);
240 
241 	WARN_ON(dev->reg_state == IB_DEV_REGISTERED);
242 	if (dev->reg_state == IB_DEV_UNREGISTERED) {
243 		/*
244 		 * In IB_DEV_UNINITIALIZED state, cache or port table
245 		 * is not even created. Free cache and port table only when
246 		 * device reaches UNREGISTERED state.
247 		 */
248 		ib_cache_release_one(dev);
249 		kfree(dev->port_immutable);
250 	}
251 	kfree(dev);
252 }
253 
254 static int ib_device_uevent(struct device *device,
255 			    struct kobj_uevent_env *env)
256 {
257 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
258 		return -ENOMEM;
259 
260 	/*
261 	 * It would be nice to pass the node GUID with the event...
262 	 */
263 
264 	return 0;
265 }
266 
267 static struct class ib_class = {
268 	.name    = "infiniband",
269 	.dev_release = ib_device_release,
270 	.dev_uevent = ib_device_uevent,
271 };
272 
273 /**
274  * ib_alloc_device - allocate an IB device struct
275  * @size:size of structure to allocate
276  *
277  * Low-level drivers should use ib_alloc_device() to allocate &struct
278  * ib_device.  @size is the size of the structure to be allocated,
279  * including any private data used by the low-level driver.
280  * ib_dealloc_device() must be used to free structures allocated with
281  * ib_alloc_device().
282  */
283 struct ib_device *ib_alloc_device(size_t size)
284 {
285 	struct ib_device *device;
286 
287 	if (WARN_ON(size < sizeof(struct ib_device)))
288 		return NULL;
289 
290 	device = kzalloc(size, GFP_KERNEL);
291 	if (!device)
292 		return NULL;
293 
294 	rdma_restrack_init(&device->res);
295 
296 	device->dev.class = &ib_class;
297 	device_initialize(&device->dev);
298 
299 	dev_set_drvdata(&device->dev, device);
300 
301 	INIT_LIST_HEAD(&device->event_handler_list);
302 	spin_lock_init(&device->event_handler_lock);
303 	rwlock_init(&device->client_data_lock);
304 	INIT_LIST_HEAD(&device->client_data_list);
305 	INIT_LIST_HEAD(&device->port_list);
306 	refcount_set(&device->refcount, 1);
307 	init_completion(&device->unreg_completion);
308 
309 	return device;
310 }
311 EXPORT_SYMBOL(ib_alloc_device);
312 
313 /**
314  * ib_dealloc_device - free an IB device struct
315  * @device:structure to free
316  *
317  * Free a structure allocated with ib_alloc_device().
318  */
319 void ib_dealloc_device(struct ib_device *device)
320 {
321 	WARN_ON(!list_empty(&device->client_data_list));
322 	WARN_ON(device->reg_state != IB_DEV_UNREGISTERED &&
323 		device->reg_state != IB_DEV_UNINITIALIZED);
324 	rdma_restrack_clean(&device->res);
325 	put_device(&device->dev);
326 }
327 EXPORT_SYMBOL(ib_dealloc_device);
328 
329 static int add_client_context(struct ib_device *device, struct ib_client *client)
330 {
331 	struct ib_client_data *context;
332 
333 	context = kmalloc(sizeof(*context), GFP_KERNEL);
334 	if (!context)
335 		return -ENOMEM;
336 
337 	context->client = client;
338 	context->data   = NULL;
339 	context->going_down = false;
340 
341 	down_write(&lists_rwsem);
342 	write_lock_irq(&device->client_data_lock);
343 	list_add(&context->list, &device->client_data_list);
344 	write_unlock_irq(&device->client_data_lock);
345 	up_write(&lists_rwsem);
346 
347 	return 0;
348 }
349 
350 static int verify_immutable(const struct ib_device *dev, u8 port)
351 {
352 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
353 			    rdma_max_mad_size(dev, port) != 0);
354 }
355 
356 static int read_port_immutable(struct ib_device *device)
357 {
358 	int ret;
359 	u8 start_port = rdma_start_port(device);
360 	u8 end_port = rdma_end_port(device);
361 	u8 port;
362 
363 	/**
364 	 * device->port_immutable is indexed directly by the port number to make
365 	 * access to this data as efficient as possible.
366 	 *
367 	 * Therefore port_immutable is declared as a 1 based array with
368 	 * potential empty slots at the beginning.
369 	 */
370 	device->port_immutable = kcalloc(end_port + 1,
371 					 sizeof(*device->port_immutable),
372 					 GFP_KERNEL);
373 	if (!device->port_immutable)
374 		return -ENOMEM;
375 
376 	for (port = start_port; port <= end_port; ++port) {
377 		ret = device->ops.get_port_immutable(
378 			device, port, &device->port_immutable[port]);
379 		if (ret)
380 			return ret;
381 
382 		if (verify_immutable(device, port))
383 			return -EINVAL;
384 	}
385 	return 0;
386 }
387 
388 void ib_get_device_fw_str(struct ib_device *dev, char *str)
389 {
390 	if (dev->ops.get_dev_fw_str)
391 		dev->ops.get_dev_fw_str(dev, str);
392 	else
393 		str[0] = '\0';
394 }
395 EXPORT_SYMBOL(ib_get_device_fw_str);
396 
397 static int setup_port_pkey_list(struct ib_device *device)
398 {
399 	int i;
400 
401 	/**
402 	 * device->port_pkey_list is indexed directly by the port number,
403 	 * Therefore it is declared as a 1 based array with potential empty
404 	 * slots at the beginning.
405 	 */
406 	device->port_pkey_list = kcalloc(rdma_end_port(device) + 1,
407 					 sizeof(*device->port_pkey_list),
408 					 GFP_KERNEL);
409 
410 	if (!device->port_pkey_list)
411 		return -ENOMEM;
412 
413 	for (i = 0; i < (rdma_end_port(device) + 1); i++) {
414 		spin_lock_init(&device->port_pkey_list[i].list_lock);
415 		INIT_LIST_HEAD(&device->port_pkey_list[i].pkey_list);
416 	}
417 
418 	return 0;
419 }
420 
421 static void ib_policy_change_task(struct work_struct *work)
422 {
423 	struct ib_device *dev;
424 
425 	down_read(&lists_rwsem);
426 	list_for_each_entry(dev, &device_list, core_list) {
427 		int i;
428 
429 		for (i = rdma_start_port(dev); i <= rdma_end_port(dev); i++) {
430 			u64 sp;
431 			int ret = ib_get_cached_subnet_prefix(dev,
432 							      i,
433 							      &sp);
434 
435 			WARN_ONCE(ret,
436 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
437 				  ret);
438 			if (!ret)
439 				ib_security_cache_change(dev, i, sp);
440 		}
441 	}
442 	up_read(&lists_rwsem);
443 }
444 
445 static int ib_security_change(struct notifier_block *nb, unsigned long event,
446 			      void *lsm_data)
447 {
448 	if (event != LSM_POLICY_CHANGE)
449 		return NOTIFY_DONE;
450 
451 	schedule_work(&ib_policy_change_work);
452 
453 	return NOTIFY_OK;
454 }
455 
456 /**
457  *	__dev_new_index	-	allocate an device index
458  *
459  *	Returns a suitable unique value for a new device interface
460  *	number.  It assumes that there are less than 2^32-1 ib devices
461  *	will be present in the system.
462  */
463 static u32 __dev_new_index(void)
464 {
465 	/*
466 	 * The device index to allow stable naming.
467 	 * Similar to struct net -> ifindex.
468 	 */
469 	static u32 index;
470 
471 	for (;;) {
472 		if (!(++index))
473 			index = 1;
474 
475 		if (!__ib_device_get_by_index(index))
476 			return index;
477 	}
478 }
479 
480 static void setup_dma_device(struct ib_device *device)
481 {
482 	struct device *parent = device->dev.parent;
483 
484 	WARN_ON_ONCE(device->dma_device);
485 	if (device->dev.dma_ops) {
486 		/*
487 		 * The caller provided custom DMA operations. Copy the
488 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
489 		 * into device->dev.
490 		 */
491 		device->dma_device = &device->dev;
492 		if (!device->dev.dma_mask) {
493 			if (parent)
494 				device->dev.dma_mask = parent->dma_mask;
495 			else
496 				WARN_ON_ONCE(true);
497 		}
498 		if (!device->dev.coherent_dma_mask) {
499 			if (parent)
500 				device->dev.coherent_dma_mask =
501 					parent->coherent_dma_mask;
502 			else
503 				WARN_ON_ONCE(true);
504 		}
505 	} else {
506 		/*
507 		 * The caller did not provide custom DMA operations. Use the
508 		 * DMA mapping operations of the parent device.
509 		 */
510 		WARN_ON_ONCE(!parent);
511 		device->dma_device = parent;
512 	}
513 }
514 
515 static void cleanup_device(struct ib_device *device)
516 {
517 	ib_cache_cleanup_one(device);
518 	ib_cache_release_one(device);
519 	kfree(device->port_pkey_list);
520 	kfree(device->port_immutable);
521 }
522 
523 static int setup_device(struct ib_device *device)
524 {
525 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
526 	int ret;
527 
528 	ret = ib_device_check_mandatory(device);
529 	if (ret)
530 		return ret;
531 
532 	ret = read_port_immutable(device);
533 	if (ret) {
534 		dev_warn(&device->dev,
535 			 "Couldn't create per port immutable data\n");
536 		return ret;
537 	}
538 
539 	memset(&device->attrs, 0, sizeof(device->attrs));
540 	ret = device->ops.query_device(device, &device->attrs, &uhw);
541 	if (ret) {
542 		dev_warn(&device->dev,
543 			 "Couldn't query the device attributes\n");
544 		goto port_cleanup;
545 	}
546 
547 	ret = setup_port_pkey_list(device);
548 	if (ret) {
549 		dev_warn(&device->dev, "Couldn't create per port_pkey_list\n");
550 		goto port_cleanup;
551 	}
552 
553 	ret = ib_cache_setup_one(device);
554 	if (ret) {
555 		dev_warn(&device->dev,
556 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
557 		goto pkey_cleanup;
558 	}
559 	return 0;
560 
561 pkey_cleanup:
562 	kfree(device->port_pkey_list);
563 port_cleanup:
564 	kfree(device->port_immutable);
565 	return ret;
566 }
567 
568 /**
569  * ib_register_device - Register an IB device with IB core
570  * @device:Device to register
571  *
572  * Low-level drivers use ib_register_device() to register their
573  * devices with the IB core.  All registered clients will receive a
574  * callback for each device that is added. @device must be allocated
575  * with ib_alloc_device().
576  */
577 int ib_register_device(struct ib_device *device, const char *name,
578 		       int (*port_callback)(struct ib_device *, u8,
579 					    struct kobject *))
580 {
581 	int ret;
582 	struct ib_client *client;
583 
584 	setup_dma_device(device);
585 
586 	mutex_lock(&device_mutex);
587 
588 	if (strchr(name, '%')) {
589 		ret = alloc_name(device, name);
590 		if (ret)
591 			goto out;
592 	} else {
593 		ret = dev_set_name(&device->dev, name);
594 		if (ret)
595 			goto out;
596 	}
597 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
598 		ret = -ENFILE;
599 		goto out;
600 	}
601 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
602 
603 	ret = setup_device(device);
604 	if (ret)
605 		goto out;
606 
607 	device->index = __dev_new_index();
608 
609 	ret = ib_device_register_rdmacg(device);
610 	if (ret) {
611 		dev_warn(&device->dev,
612 			 "Couldn't register device with rdma cgroup\n");
613 		goto dev_cleanup;
614 	}
615 
616 	ret = ib_device_register_sysfs(device, port_callback);
617 	if (ret) {
618 		dev_warn(&device->dev,
619 			 "Couldn't register device with driver model\n");
620 		goto cg_cleanup;
621 	}
622 
623 	device->reg_state = IB_DEV_REGISTERED;
624 
625 	list_for_each_entry(client, &client_list, list)
626 		if (!add_client_context(device, client) && client->add)
627 			client->add(device);
628 
629 	down_write(&lists_rwsem);
630 	list_add_tail(&device->core_list, &device_list);
631 	up_write(&lists_rwsem);
632 	mutex_unlock(&device_mutex);
633 	return 0;
634 
635 cg_cleanup:
636 	ib_device_unregister_rdmacg(device);
637 dev_cleanup:
638 	cleanup_device(device);
639 out:
640 	mutex_unlock(&device_mutex);
641 	return ret;
642 }
643 EXPORT_SYMBOL(ib_register_device);
644 
645 /**
646  * ib_unregister_device - Unregister an IB device
647  * @device:Device to unregister
648  *
649  * Unregister an IB device.  All clients will receive a remove callback.
650  */
651 void ib_unregister_device(struct ib_device *device)
652 {
653 	struct ib_client_data *context, *tmp;
654 	unsigned long flags;
655 
656 	/*
657 	 * Wait for all netlink command callers to finish working on the
658 	 * device.
659 	 */
660 	ib_device_put(device);
661 	wait_for_completion(&device->unreg_completion);
662 
663 	mutex_lock(&device_mutex);
664 
665 	down_write(&lists_rwsem);
666 	list_del(&device->core_list);
667 	write_lock_irq(&device->client_data_lock);
668 	list_for_each_entry(context, &device->client_data_list, list)
669 		context->going_down = true;
670 	write_unlock_irq(&device->client_data_lock);
671 	downgrade_write(&lists_rwsem);
672 
673 	list_for_each_entry(context, &device->client_data_list, list) {
674 		if (context->client->remove)
675 			context->client->remove(device, context->data);
676 	}
677 	up_read(&lists_rwsem);
678 
679 	ib_device_unregister_sysfs(device);
680 	ib_device_unregister_rdmacg(device);
681 
682 	mutex_unlock(&device_mutex);
683 
684 	ib_cache_cleanup_one(device);
685 
686 	ib_security_destroy_port_pkey_list(device);
687 	kfree(device->port_pkey_list);
688 
689 	down_write(&lists_rwsem);
690 	write_lock_irqsave(&device->client_data_lock, flags);
691 	list_for_each_entry_safe(context, tmp, &device->client_data_list,
692 				 list) {
693 		list_del(&context->list);
694 		kfree(context);
695 	}
696 	write_unlock_irqrestore(&device->client_data_lock, flags);
697 	up_write(&lists_rwsem);
698 
699 	device->reg_state = IB_DEV_UNREGISTERED;
700 }
701 EXPORT_SYMBOL(ib_unregister_device);
702 
703 /**
704  * ib_register_client - Register an IB client
705  * @client:Client to register
706  *
707  * Upper level users of the IB drivers can use ib_register_client() to
708  * register callbacks for IB device addition and removal.  When an IB
709  * device is added, each registered client's add method will be called
710  * (in the order the clients were registered), and when a device is
711  * removed, each client's remove method will be called (in the reverse
712  * order that clients were registered).  In addition, when
713  * ib_register_client() is called, the client will receive an add
714  * callback for all devices already registered.
715  */
716 int ib_register_client(struct ib_client *client)
717 {
718 	struct ib_device *device;
719 
720 	mutex_lock(&device_mutex);
721 
722 	list_for_each_entry(device, &device_list, core_list)
723 		if (!add_client_context(device, client) && client->add)
724 			client->add(device);
725 
726 	down_write(&lists_rwsem);
727 	list_add_tail(&client->list, &client_list);
728 	up_write(&lists_rwsem);
729 
730 	mutex_unlock(&device_mutex);
731 
732 	return 0;
733 }
734 EXPORT_SYMBOL(ib_register_client);
735 
736 /**
737  * ib_unregister_client - Unregister an IB client
738  * @client:Client to unregister
739  *
740  * Upper level users use ib_unregister_client() to remove their client
741  * registration.  When ib_unregister_client() is called, the client
742  * will receive a remove callback for each IB device still registered.
743  */
744 void ib_unregister_client(struct ib_client *client)
745 {
746 	struct ib_client_data *context;
747 	struct ib_device *device;
748 
749 	mutex_lock(&device_mutex);
750 
751 	down_write(&lists_rwsem);
752 	list_del(&client->list);
753 	up_write(&lists_rwsem);
754 
755 	list_for_each_entry(device, &device_list, core_list) {
756 		struct ib_client_data *found_context = NULL;
757 
758 		down_write(&lists_rwsem);
759 		write_lock_irq(&device->client_data_lock);
760 		list_for_each_entry(context, &device->client_data_list, list)
761 			if (context->client == client) {
762 				context->going_down = true;
763 				found_context = context;
764 				break;
765 			}
766 		write_unlock_irq(&device->client_data_lock);
767 		up_write(&lists_rwsem);
768 
769 		if (client->remove)
770 			client->remove(device, found_context ?
771 					       found_context->data : NULL);
772 
773 		if (!found_context) {
774 			dev_warn(&device->dev,
775 				 "No client context found for %s\n",
776 				 client->name);
777 			continue;
778 		}
779 
780 		down_write(&lists_rwsem);
781 		write_lock_irq(&device->client_data_lock);
782 		list_del(&found_context->list);
783 		write_unlock_irq(&device->client_data_lock);
784 		up_write(&lists_rwsem);
785 		kfree(found_context);
786 	}
787 
788 	mutex_unlock(&device_mutex);
789 }
790 EXPORT_SYMBOL(ib_unregister_client);
791 
792 /**
793  * ib_get_client_data - Get IB client context
794  * @device:Device to get context for
795  * @client:Client to get context for
796  *
797  * ib_get_client_data() returns client context set with
798  * ib_set_client_data().
799  */
800 void *ib_get_client_data(struct ib_device *device, struct ib_client *client)
801 {
802 	struct ib_client_data *context;
803 	void *ret = NULL;
804 	unsigned long flags;
805 
806 	read_lock_irqsave(&device->client_data_lock, flags);
807 	list_for_each_entry(context, &device->client_data_list, list)
808 		if (context->client == client) {
809 			ret = context->data;
810 			break;
811 		}
812 	read_unlock_irqrestore(&device->client_data_lock, flags);
813 
814 	return ret;
815 }
816 EXPORT_SYMBOL(ib_get_client_data);
817 
818 /**
819  * ib_set_client_data - Set IB client context
820  * @device:Device to set context for
821  * @client:Client to set context for
822  * @data:Context to set
823  *
824  * ib_set_client_data() sets client context that can be retrieved with
825  * ib_get_client_data().
826  */
827 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
828 			void *data)
829 {
830 	struct ib_client_data *context;
831 	unsigned long flags;
832 
833 	write_lock_irqsave(&device->client_data_lock, flags);
834 	list_for_each_entry(context, &device->client_data_list, list)
835 		if (context->client == client) {
836 			context->data = data;
837 			goto out;
838 		}
839 
840 	dev_warn(&device->dev, "No client context found for %s\n",
841 		 client->name);
842 
843 out:
844 	write_unlock_irqrestore(&device->client_data_lock, flags);
845 }
846 EXPORT_SYMBOL(ib_set_client_data);
847 
848 /**
849  * ib_register_event_handler - Register an IB event handler
850  * @event_handler:Handler to register
851  *
852  * ib_register_event_handler() registers an event handler that will be
853  * called back when asynchronous IB events occur (as defined in
854  * chapter 11 of the InfiniBand Architecture Specification).  This
855  * callback may occur in interrupt context.
856  */
857 void ib_register_event_handler(struct ib_event_handler *event_handler)
858 {
859 	unsigned long flags;
860 
861 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
862 	list_add_tail(&event_handler->list,
863 		      &event_handler->device->event_handler_list);
864 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
865 }
866 EXPORT_SYMBOL(ib_register_event_handler);
867 
868 /**
869  * ib_unregister_event_handler - Unregister an event handler
870  * @event_handler:Handler to unregister
871  *
872  * Unregister an event handler registered with
873  * ib_register_event_handler().
874  */
875 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
876 {
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
880 	list_del(&event_handler->list);
881 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
882 }
883 EXPORT_SYMBOL(ib_unregister_event_handler);
884 
885 /**
886  * ib_dispatch_event - Dispatch an asynchronous event
887  * @event:Event to dispatch
888  *
889  * Low-level drivers must call ib_dispatch_event() to dispatch the
890  * event to all registered event handlers when an asynchronous event
891  * occurs.
892  */
893 void ib_dispatch_event(struct ib_event *event)
894 {
895 	unsigned long flags;
896 	struct ib_event_handler *handler;
897 
898 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
899 
900 	list_for_each_entry(handler, &event->device->event_handler_list, list)
901 		handler->handler(handler, event);
902 
903 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
904 }
905 EXPORT_SYMBOL(ib_dispatch_event);
906 
907 /**
908  * ib_query_port - Query IB port attributes
909  * @device:Device to query
910  * @port_num:Port number to query
911  * @port_attr:Port attributes
912  *
913  * ib_query_port() returns the attributes of a port through the
914  * @port_attr pointer.
915  */
916 int ib_query_port(struct ib_device *device,
917 		  u8 port_num,
918 		  struct ib_port_attr *port_attr)
919 {
920 	union ib_gid gid;
921 	int err;
922 
923 	if (!rdma_is_port_valid(device, port_num))
924 		return -EINVAL;
925 
926 	memset(port_attr, 0, sizeof(*port_attr));
927 	err = device->ops.query_port(device, port_num, port_attr);
928 	if (err || port_attr->subnet_prefix)
929 		return err;
930 
931 	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
932 		return 0;
933 
934 	err = device->ops.query_gid(device, port_num, 0, &gid);
935 	if (err)
936 		return err;
937 
938 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
939 	return 0;
940 }
941 EXPORT_SYMBOL(ib_query_port);
942 
943 /**
944  * ib_enum_roce_netdev - enumerate all RoCE ports
945  * @ib_dev : IB device we want to query
946  * @filter: Should we call the callback?
947  * @filter_cookie: Cookie passed to filter
948  * @cb: Callback to call for each found RoCE ports
949  * @cookie: Cookie passed back to the callback
950  *
951  * Enumerates all of the physical RoCE ports of ib_dev
952  * which are related to netdevice and calls callback() on each
953  * device for which filter() function returns non zero.
954  */
955 void ib_enum_roce_netdev(struct ib_device *ib_dev,
956 			 roce_netdev_filter filter,
957 			 void *filter_cookie,
958 			 roce_netdev_callback cb,
959 			 void *cookie)
960 {
961 	u8 port;
962 
963 	for (port = rdma_start_port(ib_dev); port <= rdma_end_port(ib_dev);
964 	     port++)
965 		if (rdma_protocol_roce(ib_dev, port)) {
966 			struct net_device *idev = NULL;
967 
968 			if (ib_dev->ops.get_netdev)
969 				idev = ib_dev->ops.get_netdev(ib_dev, port);
970 
971 			if (idev &&
972 			    idev->reg_state >= NETREG_UNREGISTERED) {
973 				dev_put(idev);
974 				idev = NULL;
975 			}
976 
977 			if (filter(ib_dev, port, idev, filter_cookie))
978 				cb(ib_dev, port, idev, cookie);
979 
980 			if (idev)
981 				dev_put(idev);
982 		}
983 }
984 
985 /**
986  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
987  * @filter: Should we call the callback?
988  * @filter_cookie: Cookie passed to filter
989  * @cb: Callback to call for each found RoCE ports
990  * @cookie: Cookie passed back to the callback
991  *
992  * Enumerates all RoCE devices' physical ports which are related
993  * to netdevices and calls callback() on each device for which
994  * filter() function returns non zero.
995  */
996 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
997 			      void *filter_cookie,
998 			      roce_netdev_callback cb,
999 			      void *cookie)
1000 {
1001 	struct ib_device *dev;
1002 
1003 	down_read(&lists_rwsem);
1004 	list_for_each_entry(dev, &device_list, core_list)
1005 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
1006 	up_read(&lists_rwsem);
1007 }
1008 
1009 /**
1010  * ib_enum_all_devs - enumerate all ib_devices
1011  * @cb: Callback to call for each found ib_device
1012  *
1013  * Enumerates all ib_devices and calls callback() on each device.
1014  */
1015 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
1016 		     struct netlink_callback *cb)
1017 {
1018 	struct ib_device *dev;
1019 	unsigned int idx = 0;
1020 	int ret = 0;
1021 
1022 	down_read(&lists_rwsem);
1023 	list_for_each_entry(dev, &device_list, core_list) {
1024 		ret = nldev_cb(dev, skb, cb, idx);
1025 		if (ret)
1026 			break;
1027 		idx++;
1028 	}
1029 
1030 	up_read(&lists_rwsem);
1031 	return ret;
1032 }
1033 
1034 /**
1035  * ib_query_pkey - Get P_Key table entry
1036  * @device:Device to query
1037  * @port_num:Port number to query
1038  * @index:P_Key table index to query
1039  * @pkey:Returned P_Key
1040  *
1041  * ib_query_pkey() fetches the specified P_Key table entry.
1042  */
1043 int ib_query_pkey(struct ib_device *device,
1044 		  u8 port_num, u16 index, u16 *pkey)
1045 {
1046 	if (!rdma_is_port_valid(device, port_num))
1047 		return -EINVAL;
1048 
1049 	return device->ops.query_pkey(device, port_num, index, pkey);
1050 }
1051 EXPORT_SYMBOL(ib_query_pkey);
1052 
1053 /**
1054  * ib_modify_device - Change IB device attributes
1055  * @device:Device to modify
1056  * @device_modify_mask:Mask of attributes to change
1057  * @device_modify:New attribute values
1058  *
1059  * ib_modify_device() changes a device's attributes as specified by
1060  * the @device_modify_mask and @device_modify structure.
1061  */
1062 int ib_modify_device(struct ib_device *device,
1063 		     int device_modify_mask,
1064 		     struct ib_device_modify *device_modify)
1065 {
1066 	if (!device->ops.modify_device)
1067 		return -ENOSYS;
1068 
1069 	return device->ops.modify_device(device, device_modify_mask,
1070 					 device_modify);
1071 }
1072 EXPORT_SYMBOL(ib_modify_device);
1073 
1074 /**
1075  * ib_modify_port - Modifies the attributes for the specified port.
1076  * @device: The device to modify.
1077  * @port_num: The number of the port to modify.
1078  * @port_modify_mask: Mask used to specify which attributes of the port
1079  *   to change.
1080  * @port_modify: New attribute values for the port.
1081  *
1082  * ib_modify_port() changes a port's attributes as specified by the
1083  * @port_modify_mask and @port_modify structure.
1084  */
1085 int ib_modify_port(struct ib_device *device,
1086 		   u8 port_num, int port_modify_mask,
1087 		   struct ib_port_modify *port_modify)
1088 {
1089 	int rc;
1090 
1091 	if (!rdma_is_port_valid(device, port_num))
1092 		return -EINVAL;
1093 
1094 	if (device->ops.modify_port)
1095 		rc = device->ops.modify_port(device, port_num,
1096 					     port_modify_mask,
1097 					     port_modify);
1098 	else
1099 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
1100 	return rc;
1101 }
1102 EXPORT_SYMBOL(ib_modify_port);
1103 
1104 /**
1105  * ib_find_gid - Returns the port number and GID table index where
1106  *   a specified GID value occurs. Its searches only for IB link layer.
1107  * @device: The device to query.
1108  * @gid: The GID value to search for.
1109  * @port_num: The port number of the device where the GID value was found.
1110  * @index: The index into the GID table where the GID was found.  This
1111  *   parameter may be NULL.
1112  */
1113 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1114 		u8 *port_num, u16 *index)
1115 {
1116 	union ib_gid tmp_gid;
1117 	int ret, port, i;
1118 
1119 	for (port = rdma_start_port(device); port <= rdma_end_port(device); ++port) {
1120 		if (!rdma_protocol_ib(device, port))
1121 			continue;
1122 
1123 		for (i = 0; i < device->port_immutable[port].gid_tbl_len; ++i) {
1124 			ret = rdma_query_gid(device, port, i, &tmp_gid);
1125 			if (ret)
1126 				return ret;
1127 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
1128 				*port_num = port;
1129 				if (index)
1130 					*index = i;
1131 				return 0;
1132 			}
1133 		}
1134 	}
1135 
1136 	return -ENOENT;
1137 }
1138 EXPORT_SYMBOL(ib_find_gid);
1139 
1140 /**
1141  * ib_find_pkey - Returns the PKey table index where a specified
1142  *   PKey value occurs.
1143  * @device: The device to query.
1144  * @port_num: The port number of the device to search for the PKey.
1145  * @pkey: The PKey value to search for.
1146  * @index: The index into the PKey table where the PKey was found.
1147  */
1148 int ib_find_pkey(struct ib_device *device,
1149 		 u8 port_num, u16 pkey, u16 *index)
1150 {
1151 	int ret, i;
1152 	u16 tmp_pkey;
1153 	int partial_ix = -1;
1154 
1155 	for (i = 0; i < device->port_immutable[port_num].pkey_tbl_len; ++i) {
1156 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
1157 		if (ret)
1158 			return ret;
1159 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
1160 			/* if there is full-member pkey take it.*/
1161 			if (tmp_pkey & 0x8000) {
1162 				*index = i;
1163 				return 0;
1164 			}
1165 			if (partial_ix < 0)
1166 				partial_ix = i;
1167 		}
1168 	}
1169 
1170 	/*no full-member, if exists take the limited*/
1171 	if (partial_ix >= 0) {
1172 		*index = partial_ix;
1173 		return 0;
1174 	}
1175 	return -ENOENT;
1176 }
1177 EXPORT_SYMBOL(ib_find_pkey);
1178 
1179 /**
1180  * ib_get_net_dev_by_params() - Return the appropriate net_dev
1181  * for a received CM request
1182  * @dev:	An RDMA device on which the request has been received.
1183  * @port:	Port number on the RDMA device.
1184  * @pkey:	The Pkey the request came on.
1185  * @gid:	A GID that the net_dev uses to communicate.
1186  * @addr:	Contains the IP address that the request specified as its
1187  *		destination.
1188  */
1189 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
1190 					    u8 port,
1191 					    u16 pkey,
1192 					    const union ib_gid *gid,
1193 					    const struct sockaddr *addr)
1194 {
1195 	struct net_device *net_dev = NULL;
1196 	struct ib_client_data *context;
1197 
1198 	if (!rdma_protocol_ib(dev, port))
1199 		return NULL;
1200 
1201 	down_read(&lists_rwsem);
1202 
1203 	list_for_each_entry(context, &dev->client_data_list, list) {
1204 		struct ib_client *client = context->client;
1205 
1206 		if (context->going_down)
1207 			continue;
1208 
1209 		if (client->get_net_dev_by_params) {
1210 			net_dev = client->get_net_dev_by_params(dev, port, pkey,
1211 								gid, addr,
1212 								context->data);
1213 			if (net_dev)
1214 				break;
1215 		}
1216 	}
1217 
1218 	up_read(&lists_rwsem);
1219 
1220 	return net_dev;
1221 }
1222 EXPORT_SYMBOL(ib_get_net_dev_by_params);
1223 
1224 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
1225 {
1226 	struct ib_device_ops *dev_ops = &dev->ops;
1227 #define SET_DEVICE_OP(ptr, name)                                               \
1228 	do {                                                                   \
1229 		if (ops->name)                                                 \
1230 			if (!((ptr)->name))				       \
1231 				(ptr)->name = ops->name;                       \
1232 	} while (0)
1233 
1234 	SET_DEVICE_OP(dev_ops, add_gid);
1235 	SET_DEVICE_OP(dev_ops, alloc_dm);
1236 	SET_DEVICE_OP(dev_ops, alloc_fmr);
1237 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
1238 	SET_DEVICE_OP(dev_ops, alloc_mr);
1239 	SET_DEVICE_OP(dev_ops, alloc_mw);
1240 	SET_DEVICE_OP(dev_ops, alloc_pd);
1241 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
1242 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
1243 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
1244 	SET_DEVICE_OP(dev_ops, attach_mcast);
1245 	SET_DEVICE_OP(dev_ops, check_mr_status);
1246 	SET_DEVICE_OP(dev_ops, create_ah);
1247 	SET_DEVICE_OP(dev_ops, create_counters);
1248 	SET_DEVICE_OP(dev_ops, create_cq);
1249 	SET_DEVICE_OP(dev_ops, create_flow);
1250 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
1251 	SET_DEVICE_OP(dev_ops, create_qp);
1252 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
1253 	SET_DEVICE_OP(dev_ops, create_srq);
1254 	SET_DEVICE_OP(dev_ops, create_wq);
1255 	SET_DEVICE_OP(dev_ops, dealloc_dm);
1256 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
1257 	SET_DEVICE_OP(dev_ops, dealloc_mw);
1258 	SET_DEVICE_OP(dev_ops, dealloc_pd);
1259 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
1260 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
1261 	SET_DEVICE_OP(dev_ops, del_gid);
1262 	SET_DEVICE_OP(dev_ops, dereg_mr);
1263 	SET_DEVICE_OP(dev_ops, destroy_ah);
1264 	SET_DEVICE_OP(dev_ops, destroy_counters);
1265 	SET_DEVICE_OP(dev_ops, destroy_cq);
1266 	SET_DEVICE_OP(dev_ops, destroy_flow);
1267 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
1268 	SET_DEVICE_OP(dev_ops, destroy_qp);
1269 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
1270 	SET_DEVICE_OP(dev_ops, destroy_srq);
1271 	SET_DEVICE_OP(dev_ops, destroy_wq);
1272 	SET_DEVICE_OP(dev_ops, detach_mcast);
1273 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
1274 	SET_DEVICE_OP(dev_ops, drain_rq);
1275 	SET_DEVICE_OP(dev_ops, drain_sq);
1276 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
1277 	SET_DEVICE_OP(dev_ops, get_dma_mr);
1278 	SET_DEVICE_OP(dev_ops, get_hw_stats);
1279 	SET_DEVICE_OP(dev_ops, get_link_layer);
1280 	SET_DEVICE_OP(dev_ops, get_netdev);
1281 	SET_DEVICE_OP(dev_ops, get_port_immutable);
1282 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
1283 	SET_DEVICE_OP(dev_ops, get_vf_config);
1284 	SET_DEVICE_OP(dev_ops, get_vf_stats);
1285 	SET_DEVICE_OP(dev_ops, map_mr_sg);
1286 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
1287 	SET_DEVICE_OP(dev_ops, mmap);
1288 	SET_DEVICE_OP(dev_ops, modify_ah);
1289 	SET_DEVICE_OP(dev_ops, modify_cq);
1290 	SET_DEVICE_OP(dev_ops, modify_device);
1291 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
1292 	SET_DEVICE_OP(dev_ops, modify_port);
1293 	SET_DEVICE_OP(dev_ops, modify_qp);
1294 	SET_DEVICE_OP(dev_ops, modify_srq);
1295 	SET_DEVICE_OP(dev_ops, modify_wq);
1296 	SET_DEVICE_OP(dev_ops, peek_cq);
1297 	SET_DEVICE_OP(dev_ops, poll_cq);
1298 	SET_DEVICE_OP(dev_ops, post_recv);
1299 	SET_DEVICE_OP(dev_ops, post_send);
1300 	SET_DEVICE_OP(dev_ops, post_srq_recv);
1301 	SET_DEVICE_OP(dev_ops, process_mad);
1302 	SET_DEVICE_OP(dev_ops, query_ah);
1303 	SET_DEVICE_OP(dev_ops, query_device);
1304 	SET_DEVICE_OP(dev_ops, query_gid);
1305 	SET_DEVICE_OP(dev_ops, query_pkey);
1306 	SET_DEVICE_OP(dev_ops, query_port);
1307 	SET_DEVICE_OP(dev_ops, query_qp);
1308 	SET_DEVICE_OP(dev_ops, query_srq);
1309 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
1310 	SET_DEVICE_OP(dev_ops, read_counters);
1311 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
1312 	SET_DEVICE_OP(dev_ops, reg_user_mr);
1313 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
1314 	SET_DEVICE_OP(dev_ops, req_notify_cq);
1315 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
1316 	SET_DEVICE_OP(dev_ops, resize_cq);
1317 	SET_DEVICE_OP(dev_ops, set_vf_guid);
1318 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
1319 	SET_DEVICE_OP(dev_ops, unmap_fmr);
1320 }
1321 EXPORT_SYMBOL(ib_set_device_ops);
1322 
1323 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
1324 	[RDMA_NL_LS_OP_RESOLVE] = {
1325 		.doit = ib_nl_handle_resolve_resp,
1326 		.flags = RDMA_NL_ADMIN_PERM,
1327 	},
1328 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
1329 		.doit = ib_nl_handle_set_timeout,
1330 		.flags = RDMA_NL_ADMIN_PERM,
1331 	},
1332 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
1333 		.doit = ib_nl_handle_ip_res_resp,
1334 		.flags = RDMA_NL_ADMIN_PERM,
1335 	},
1336 };
1337 
1338 static int __init ib_core_init(void)
1339 {
1340 	int ret;
1341 
1342 	ib_wq = alloc_workqueue("infiniband", 0, 0);
1343 	if (!ib_wq)
1344 		return -ENOMEM;
1345 
1346 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
1347 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
1348 	if (!ib_comp_wq) {
1349 		ret = -ENOMEM;
1350 		goto err;
1351 	}
1352 
1353 	ib_comp_unbound_wq =
1354 		alloc_workqueue("ib-comp-unb-wq",
1355 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
1356 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
1357 	if (!ib_comp_unbound_wq) {
1358 		ret = -ENOMEM;
1359 		goto err_comp;
1360 	}
1361 
1362 	ret = class_register(&ib_class);
1363 	if (ret) {
1364 		pr_warn("Couldn't create InfiniBand device class\n");
1365 		goto err_comp_unbound;
1366 	}
1367 
1368 	ret = rdma_nl_init();
1369 	if (ret) {
1370 		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
1371 		goto err_sysfs;
1372 	}
1373 
1374 	ret = addr_init();
1375 	if (ret) {
1376 		pr_warn("Could't init IB address resolution\n");
1377 		goto err_ibnl;
1378 	}
1379 
1380 	ret = ib_mad_init();
1381 	if (ret) {
1382 		pr_warn("Couldn't init IB MAD\n");
1383 		goto err_addr;
1384 	}
1385 
1386 	ret = ib_sa_init();
1387 	if (ret) {
1388 		pr_warn("Couldn't init SA\n");
1389 		goto err_mad;
1390 	}
1391 
1392 	ret = register_lsm_notifier(&ibdev_lsm_nb);
1393 	if (ret) {
1394 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
1395 		goto err_sa;
1396 	}
1397 
1398 	nldev_init();
1399 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
1400 	roce_gid_mgmt_init();
1401 
1402 	return 0;
1403 
1404 err_sa:
1405 	ib_sa_cleanup();
1406 err_mad:
1407 	ib_mad_cleanup();
1408 err_addr:
1409 	addr_cleanup();
1410 err_ibnl:
1411 	rdma_nl_exit();
1412 err_sysfs:
1413 	class_unregister(&ib_class);
1414 err_comp_unbound:
1415 	destroy_workqueue(ib_comp_unbound_wq);
1416 err_comp:
1417 	destroy_workqueue(ib_comp_wq);
1418 err:
1419 	destroy_workqueue(ib_wq);
1420 	return ret;
1421 }
1422 
1423 static void __exit ib_core_cleanup(void)
1424 {
1425 	roce_gid_mgmt_cleanup();
1426 	nldev_exit();
1427 	rdma_nl_unregister(RDMA_NL_LS);
1428 	unregister_lsm_notifier(&ibdev_lsm_nb);
1429 	ib_sa_cleanup();
1430 	ib_mad_cleanup();
1431 	addr_cleanup();
1432 	rdma_nl_exit();
1433 	class_unregister(&ib_class);
1434 	destroy_workqueue(ib_comp_unbound_wq);
1435 	destroy_workqueue(ib_comp_wq);
1436 	/* Make sure that any pending umem accounting work is done. */
1437 	destroy_workqueue(ib_wq);
1438 }
1439 
1440 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
1441 
1442 subsys_initcall(ib_core_init);
1443 module_exit(ib_core_cleanup);
1444