xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 4c5a116a)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(query_pkey),
276 		IB_MANDATORY_FUNC(alloc_pd),
277 		IB_MANDATORY_FUNC(dealloc_pd),
278 		IB_MANDATORY_FUNC(create_qp),
279 		IB_MANDATORY_FUNC(modify_qp),
280 		IB_MANDATORY_FUNC(destroy_qp),
281 		IB_MANDATORY_FUNC(post_send),
282 		IB_MANDATORY_FUNC(post_recv),
283 		IB_MANDATORY_FUNC(create_cq),
284 		IB_MANDATORY_FUNC(destroy_cq),
285 		IB_MANDATORY_FUNC(poll_cq),
286 		IB_MANDATORY_FUNC(req_notify_cq),
287 		IB_MANDATORY_FUNC(get_dma_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 
574 	if (WARN_ON(size < sizeof(struct ib_device)))
575 		return NULL;
576 
577 	device = kzalloc(size, GFP_KERNEL);
578 	if (!device)
579 		return NULL;
580 
581 	if (rdma_restrack_init(device)) {
582 		kfree(device);
583 		return NULL;
584 	}
585 
586 	device->groups[0] = &ib_dev_attr_group;
587 	rdma_init_coredev(&device->coredev, device, &init_net);
588 
589 	INIT_LIST_HEAD(&device->event_handler_list);
590 	spin_lock_init(&device->qp_open_list_lock);
591 	init_rwsem(&device->event_handler_rwsem);
592 	mutex_init(&device->unregistration_lock);
593 	/*
594 	 * client_data needs to be alloc because we don't want our mark to be
595 	 * destroyed if the user stores NULL in the client data.
596 	 */
597 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
598 	init_rwsem(&device->client_data_rwsem);
599 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
600 	mutex_init(&device->compat_devs_mutex);
601 	init_completion(&device->unreg_completion);
602 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
603 
604 	return device;
605 }
606 EXPORT_SYMBOL(_ib_alloc_device);
607 
608 /**
609  * ib_dealloc_device - free an IB device struct
610  * @device:structure to free
611  *
612  * Free a structure allocated with ib_alloc_device().
613  */
614 void ib_dealloc_device(struct ib_device *device)
615 {
616 	if (device->ops.dealloc_driver)
617 		device->ops.dealloc_driver(device);
618 
619 	/*
620 	 * ib_unregister_driver() requires all devices to remain in the xarray
621 	 * while their ops are callable. The last op we call is dealloc_driver
622 	 * above.  This is needed to create a fence on op callbacks prior to
623 	 * allowing the driver module to unload.
624 	 */
625 	down_write(&devices_rwsem);
626 	if (xa_load(&devices, device->index) == device)
627 		xa_erase(&devices, device->index);
628 	up_write(&devices_rwsem);
629 
630 	/* Expedite releasing netdev references */
631 	free_netdevs(device);
632 
633 	WARN_ON(!xa_empty(&device->compat_devs));
634 	WARN_ON(!xa_empty(&device->client_data));
635 	WARN_ON(refcount_read(&device->refcount));
636 	rdma_restrack_clean(device);
637 	/* Balances with device_initialize */
638 	put_device(&device->dev);
639 }
640 EXPORT_SYMBOL(ib_dealloc_device);
641 
642 /*
643  * add_client_context() and remove_client_context() must be safe against
644  * parallel calls on the same device - registration/unregistration of both the
645  * device and client can be occurring in parallel.
646  *
647  * The routines need to be a fence, any caller must not return until the add
648  * or remove is fully completed.
649  */
650 static int add_client_context(struct ib_device *device,
651 			      struct ib_client *client)
652 {
653 	int ret = 0;
654 
655 	if (!device->kverbs_provider && !client->no_kverbs_req)
656 		return 0;
657 
658 	down_write(&device->client_data_rwsem);
659 	/*
660 	 * So long as the client is registered hold both the client and device
661 	 * unregistration locks.
662 	 */
663 	if (!refcount_inc_not_zero(&client->uses))
664 		goto out_unlock;
665 	refcount_inc(&device->refcount);
666 
667 	/*
668 	 * Another caller to add_client_context got here first and has already
669 	 * completely initialized context.
670 	 */
671 	if (xa_get_mark(&device->client_data, client->client_id,
672 		    CLIENT_DATA_REGISTERED))
673 		goto out;
674 
675 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
676 			      GFP_KERNEL));
677 	if (ret)
678 		goto out;
679 	downgrade_write(&device->client_data_rwsem);
680 	if (client->add) {
681 		if (client->add(device)) {
682 			/*
683 			 * If a client fails to add then the error code is
684 			 * ignored, but we won't call any more ops on this
685 			 * client.
686 			 */
687 			xa_erase(&device->client_data, client->client_id);
688 			up_read(&device->client_data_rwsem);
689 			ib_device_put(device);
690 			ib_client_put(client);
691 			return 0;
692 		}
693 	}
694 
695 	/* Readers shall not see a client until add has been completed */
696 	xa_set_mark(&device->client_data, client->client_id,
697 		    CLIENT_DATA_REGISTERED);
698 	up_read(&device->client_data_rwsem);
699 	return 0;
700 
701 out:
702 	ib_device_put(device);
703 	ib_client_put(client);
704 out_unlock:
705 	up_write(&device->client_data_rwsem);
706 	return ret;
707 }
708 
709 static void remove_client_context(struct ib_device *device,
710 				  unsigned int client_id)
711 {
712 	struct ib_client *client;
713 	void *client_data;
714 
715 	down_write(&device->client_data_rwsem);
716 	if (!xa_get_mark(&device->client_data, client_id,
717 			 CLIENT_DATA_REGISTERED)) {
718 		up_write(&device->client_data_rwsem);
719 		return;
720 	}
721 	client_data = xa_load(&device->client_data, client_id);
722 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
723 	client = xa_load(&clients, client_id);
724 	up_write(&device->client_data_rwsem);
725 
726 	/*
727 	 * Notice we cannot be holding any exclusive locks when calling the
728 	 * remove callback as the remove callback can recurse back into any
729 	 * public functions in this module and thus try for any locks those
730 	 * functions take.
731 	 *
732 	 * For this reason clients and drivers should not call the
733 	 * unregistration functions will holdling any locks.
734 	 */
735 	if (client->remove)
736 		client->remove(device, client_data);
737 
738 	xa_erase(&device->client_data, client_id);
739 	ib_device_put(device);
740 	ib_client_put(client);
741 }
742 
743 static int alloc_port_data(struct ib_device *device)
744 {
745 	struct ib_port_data_rcu *pdata_rcu;
746 	unsigned int port;
747 
748 	if (device->port_data)
749 		return 0;
750 
751 	/* This can only be called once the physical port range is defined */
752 	if (WARN_ON(!device->phys_port_cnt))
753 		return -EINVAL;
754 
755 	/*
756 	 * device->port_data is indexed directly by the port number to make
757 	 * access to this data as efficient as possible.
758 	 *
759 	 * Therefore port_data is declared as a 1 based array with potential
760 	 * empty slots at the beginning.
761 	 */
762 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
763 					rdma_end_port(device) + 1),
764 			    GFP_KERNEL);
765 	if (!pdata_rcu)
766 		return -ENOMEM;
767 	/*
768 	 * The rcu_head is put in front of the port data array and the stored
769 	 * pointer is adjusted since we never need to see that member until
770 	 * kfree_rcu.
771 	 */
772 	device->port_data = pdata_rcu->pdata;
773 
774 	rdma_for_each_port (device, port) {
775 		struct ib_port_data *pdata = &device->port_data[port];
776 
777 		pdata->ib_dev = device;
778 		spin_lock_init(&pdata->pkey_list_lock);
779 		INIT_LIST_HEAD(&pdata->pkey_list);
780 		spin_lock_init(&pdata->netdev_lock);
781 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
782 	}
783 	return 0;
784 }
785 
786 static int verify_immutable(const struct ib_device *dev, u8 port)
787 {
788 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
789 			    rdma_max_mad_size(dev, port) != 0);
790 }
791 
792 static int setup_port_data(struct ib_device *device)
793 {
794 	unsigned int port;
795 	int ret;
796 
797 	ret = alloc_port_data(device);
798 	if (ret)
799 		return ret;
800 
801 	rdma_for_each_port (device, port) {
802 		struct ib_port_data *pdata = &device->port_data[port];
803 
804 		ret = device->ops.get_port_immutable(device, port,
805 						     &pdata->immutable);
806 		if (ret)
807 			return ret;
808 
809 		if (verify_immutable(device, port))
810 			return -EINVAL;
811 	}
812 	return 0;
813 }
814 
815 void ib_get_device_fw_str(struct ib_device *dev, char *str)
816 {
817 	if (dev->ops.get_dev_fw_str)
818 		dev->ops.get_dev_fw_str(dev, str);
819 	else
820 		str[0] = '\0';
821 }
822 EXPORT_SYMBOL(ib_get_device_fw_str);
823 
824 static void ib_policy_change_task(struct work_struct *work)
825 {
826 	struct ib_device *dev;
827 	unsigned long index;
828 
829 	down_read(&devices_rwsem);
830 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
831 		unsigned int i;
832 
833 		rdma_for_each_port (dev, i) {
834 			u64 sp;
835 			int ret = ib_get_cached_subnet_prefix(dev,
836 							      i,
837 							      &sp);
838 
839 			WARN_ONCE(ret,
840 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
841 				  ret);
842 			if (!ret)
843 				ib_security_cache_change(dev, i, sp);
844 		}
845 	}
846 	up_read(&devices_rwsem);
847 }
848 
849 static int ib_security_change(struct notifier_block *nb, unsigned long event,
850 			      void *lsm_data)
851 {
852 	if (event != LSM_POLICY_CHANGE)
853 		return NOTIFY_DONE;
854 
855 	schedule_work(&ib_policy_change_work);
856 	ib_mad_agent_security_change();
857 
858 	return NOTIFY_OK;
859 }
860 
861 static void compatdev_release(struct device *dev)
862 {
863 	struct ib_core_device *cdev =
864 		container_of(dev, struct ib_core_device, dev);
865 
866 	kfree(cdev);
867 }
868 
869 static int add_one_compat_dev(struct ib_device *device,
870 			      struct rdma_dev_net *rnet)
871 {
872 	struct ib_core_device *cdev;
873 	int ret;
874 
875 	lockdep_assert_held(&rdma_nets_rwsem);
876 	if (!ib_devices_shared_netns)
877 		return 0;
878 
879 	/*
880 	 * Create and add compat device in all namespaces other than where it
881 	 * is currently bound to.
882 	 */
883 	if (net_eq(read_pnet(&rnet->net),
884 		   read_pnet(&device->coredev.rdma_net)))
885 		return 0;
886 
887 	/*
888 	 * The first of init_net() or ib_register_device() to take the
889 	 * compat_devs_mutex wins and gets to add the device. Others will wait
890 	 * for completion here.
891 	 */
892 	mutex_lock(&device->compat_devs_mutex);
893 	cdev = xa_load(&device->compat_devs, rnet->id);
894 	if (cdev) {
895 		ret = 0;
896 		goto done;
897 	}
898 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
899 	if (ret)
900 		goto done;
901 
902 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
903 	if (!cdev) {
904 		ret = -ENOMEM;
905 		goto cdev_err;
906 	}
907 
908 	cdev->dev.parent = device->dev.parent;
909 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
910 	cdev->dev.release = compatdev_release;
911 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
912 	if (ret)
913 		goto add_err;
914 
915 	ret = device_add(&cdev->dev);
916 	if (ret)
917 		goto add_err;
918 	ret = ib_setup_port_attrs(cdev);
919 	if (ret)
920 		goto port_err;
921 
922 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
923 			      cdev, GFP_KERNEL));
924 	if (ret)
925 		goto insert_err;
926 
927 	mutex_unlock(&device->compat_devs_mutex);
928 	return 0;
929 
930 insert_err:
931 	ib_free_port_attrs(cdev);
932 port_err:
933 	device_del(&cdev->dev);
934 add_err:
935 	put_device(&cdev->dev);
936 cdev_err:
937 	xa_release(&device->compat_devs, rnet->id);
938 done:
939 	mutex_unlock(&device->compat_devs_mutex);
940 	return ret;
941 }
942 
943 static void remove_one_compat_dev(struct ib_device *device, u32 id)
944 {
945 	struct ib_core_device *cdev;
946 
947 	mutex_lock(&device->compat_devs_mutex);
948 	cdev = xa_erase(&device->compat_devs, id);
949 	mutex_unlock(&device->compat_devs_mutex);
950 	if (cdev) {
951 		ib_free_port_attrs(cdev);
952 		device_del(&cdev->dev);
953 		put_device(&cdev->dev);
954 	}
955 }
956 
957 static void remove_compat_devs(struct ib_device *device)
958 {
959 	struct ib_core_device *cdev;
960 	unsigned long index;
961 
962 	xa_for_each (&device->compat_devs, index, cdev)
963 		remove_one_compat_dev(device, index);
964 }
965 
966 static int add_compat_devs(struct ib_device *device)
967 {
968 	struct rdma_dev_net *rnet;
969 	unsigned long index;
970 	int ret = 0;
971 
972 	lockdep_assert_held(&devices_rwsem);
973 
974 	down_read(&rdma_nets_rwsem);
975 	xa_for_each (&rdma_nets, index, rnet) {
976 		ret = add_one_compat_dev(device, rnet);
977 		if (ret)
978 			break;
979 	}
980 	up_read(&rdma_nets_rwsem);
981 	return ret;
982 }
983 
984 static void remove_all_compat_devs(void)
985 {
986 	struct ib_compat_device *cdev;
987 	struct ib_device *dev;
988 	unsigned long index;
989 
990 	down_read(&devices_rwsem);
991 	xa_for_each (&devices, index, dev) {
992 		unsigned long c_index = 0;
993 
994 		/* Hold nets_rwsem so that any other thread modifying this
995 		 * system param can sync with this thread.
996 		 */
997 		down_read(&rdma_nets_rwsem);
998 		xa_for_each (&dev->compat_devs, c_index, cdev)
999 			remove_one_compat_dev(dev, c_index);
1000 		up_read(&rdma_nets_rwsem);
1001 	}
1002 	up_read(&devices_rwsem);
1003 }
1004 
1005 static int add_all_compat_devs(void)
1006 {
1007 	struct rdma_dev_net *rnet;
1008 	struct ib_device *dev;
1009 	unsigned long index;
1010 	int ret = 0;
1011 
1012 	down_read(&devices_rwsem);
1013 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1014 		unsigned long net_index = 0;
1015 
1016 		/* Hold nets_rwsem so that any other thread modifying this
1017 		 * system param can sync with this thread.
1018 		 */
1019 		down_read(&rdma_nets_rwsem);
1020 		xa_for_each (&rdma_nets, net_index, rnet) {
1021 			ret = add_one_compat_dev(dev, rnet);
1022 			if (ret)
1023 				break;
1024 		}
1025 		up_read(&rdma_nets_rwsem);
1026 	}
1027 	up_read(&devices_rwsem);
1028 	if (ret)
1029 		remove_all_compat_devs();
1030 	return ret;
1031 }
1032 
1033 int rdma_compatdev_set(u8 enable)
1034 {
1035 	struct rdma_dev_net *rnet;
1036 	unsigned long index;
1037 	int ret = 0;
1038 
1039 	down_write(&rdma_nets_rwsem);
1040 	if (ib_devices_shared_netns == enable) {
1041 		up_write(&rdma_nets_rwsem);
1042 		return 0;
1043 	}
1044 
1045 	/* enable/disable of compat devices is not supported
1046 	 * when more than default init_net exists.
1047 	 */
1048 	xa_for_each (&rdma_nets, index, rnet) {
1049 		ret++;
1050 		break;
1051 	}
1052 	if (!ret)
1053 		ib_devices_shared_netns = enable;
1054 	up_write(&rdma_nets_rwsem);
1055 	if (ret)
1056 		return -EBUSY;
1057 
1058 	if (enable)
1059 		ret = add_all_compat_devs();
1060 	else
1061 		remove_all_compat_devs();
1062 	return ret;
1063 }
1064 
1065 static void rdma_dev_exit_net(struct net *net)
1066 {
1067 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1068 	struct ib_device *dev;
1069 	unsigned long index;
1070 	int ret;
1071 
1072 	down_write(&rdma_nets_rwsem);
1073 	/*
1074 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1075 	 */
1076 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1077 	WARN_ON(ret);
1078 	up_write(&rdma_nets_rwsem);
1079 
1080 	down_read(&devices_rwsem);
1081 	xa_for_each (&devices, index, dev) {
1082 		get_device(&dev->dev);
1083 		/*
1084 		 * Release the devices_rwsem so that pontentially blocking
1085 		 * device_del, doesn't hold the devices_rwsem for too long.
1086 		 */
1087 		up_read(&devices_rwsem);
1088 
1089 		remove_one_compat_dev(dev, rnet->id);
1090 
1091 		/*
1092 		 * If the real device is in the NS then move it back to init.
1093 		 */
1094 		rdma_dev_change_netns(dev, net, &init_net);
1095 
1096 		put_device(&dev->dev);
1097 		down_read(&devices_rwsem);
1098 	}
1099 	up_read(&devices_rwsem);
1100 
1101 	rdma_nl_net_exit(rnet);
1102 	xa_erase(&rdma_nets, rnet->id);
1103 }
1104 
1105 static __net_init int rdma_dev_init_net(struct net *net)
1106 {
1107 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1108 	unsigned long index;
1109 	struct ib_device *dev;
1110 	int ret;
1111 
1112 	write_pnet(&rnet->net, net);
1113 
1114 	ret = rdma_nl_net_init(rnet);
1115 	if (ret)
1116 		return ret;
1117 
1118 	/* No need to create any compat devices in default init_net. */
1119 	if (net_eq(net, &init_net))
1120 		return 0;
1121 
1122 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1123 	if (ret) {
1124 		rdma_nl_net_exit(rnet);
1125 		return ret;
1126 	}
1127 
1128 	down_read(&devices_rwsem);
1129 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1130 		/* Hold nets_rwsem so that netlink command cannot change
1131 		 * system configuration for device sharing mode.
1132 		 */
1133 		down_read(&rdma_nets_rwsem);
1134 		ret = add_one_compat_dev(dev, rnet);
1135 		up_read(&rdma_nets_rwsem);
1136 		if (ret)
1137 			break;
1138 	}
1139 	up_read(&devices_rwsem);
1140 
1141 	if (ret)
1142 		rdma_dev_exit_net(net);
1143 
1144 	return ret;
1145 }
1146 
1147 /*
1148  * Assign the unique string device name and the unique device index. This is
1149  * undone by ib_dealloc_device.
1150  */
1151 static int assign_name(struct ib_device *device, const char *name)
1152 {
1153 	static u32 last_id;
1154 	int ret;
1155 
1156 	down_write(&devices_rwsem);
1157 	/* Assign a unique name to the device */
1158 	if (strchr(name, '%'))
1159 		ret = alloc_name(device, name);
1160 	else
1161 		ret = dev_set_name(&device->dev, name);
1162 	if (ret)
1163 		goto out;
1164 
1165 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1166 		ret = -ENFILE;
1167 		goto out;
1168 	}
1169 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1170 
1171 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1172 			&last_id, GFP_KERNEL);
1173 	if (ret > 0)
1174 		ret = 0;
1175 
1176 out:
1177 	up_write(&devices_rwsem);
1178 	return ret;
1179 }
1180 
1181 static void setup_dma_device(struct ib_device *device)
1182 {
1183 	struct device *parent = device->dev.parent;
1184 
1185 	WARN_ON_ONCE(device->dma_device);
1186 
1187 #ifdef CONFIG_DMA_OPS
1188 	if (device->dev.dma_ops) {
1189 		/*
1190 		 * The caller provided custom DMA operations. Copy the
1191 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1192 		 * into device->dev.
1193 		 */
1194 		device->dma_device = &device->dev;
1195 		if (!device->dev.dma_mask) {
1196 			if (parent)
1197 				device->dev.dma_mask = parent->dma_mask;
1198 			else
1199 				WARN_ON_ONCE(true);
1200 		}
1201 		if (!device->dev.coherent_dma_mask) {
1202 			if (parent)
1203 				device->dev.coherent_dma_mask =
1204 					parent->coherent_dma_mask;
1205 			else
1206 				WARN_ON_ONCE(true);
1207 		}
1208 	} else
1209 #endif /* CONFIG_DMA_OPS */
1210 	{
1211 		/*
1212 		 * The caller did not provide custom DMA operations. Use the
1213 		 * DMA mapping operations of the parent device.
1214 		 */
1215 		WARN_ON_ONCE(!parent);
1216 		device->dma_device = parent;
1217 	}
1218 
1219 	if (!device->dev.dma_parms) {
1220 		if (parent) {
1221 			/*
1222 			 * The caller did not provide DMA parameters, so
1223 			 * 'parent' probably represents a PCI device. The PCI
1224 			 * core sets the maximum segment size to 64
1225 			 * KB. Increase this parameter to 2 GB.
1226 			 */
1227 			device->dev.dma_parms = parent->dma_parms;
1228 			dma_set_max_seg_size(device->dma_device, SZ_2G);
1229 		} else {
1230 			WARN_ON_ONCE(true);
1231 		}
1232 	}
1233 }
1234 
1235 /*
1236  * setup_device() allocates memory and sets up data that requires calling the
1237  * device ops, this is the only reason these actions are not done during
1238  * ib_alloc_device. It is undone by ib_dealloc_device().
1239  */
1240 static int setup_device(struct ib_device *device)
1241 {
1242 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1243 	int ret;
1244 
1245 	setup_dma_device(device);
1246 	ib_device_check_mandatory(device);
1247 
1248 	ret = setup_port_data(device);
1249 	if (ret) {
1250 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1251 		return ret;
1252 	}
1253 
1254 	memset(&device->attrs, 0, sizeof(device->attrs));
1255 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1256 	if (ret) {
1257 		dev_warn(&device->dev,
1258 			 "Couldn't query the device attributes\n");
1259 		return ret;
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 static void disable_device(struct ib_device *device)
1266 {
1267 	u32 cid;
1268 
1269 	WARN_ON(!refcount_read(&device->refcount));
1270 
1271 	down_write(&devices_rwsem);
1272 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1273 	up_write(&devices_rwsem);
1274 
1275 	/*
1276 	 * Remove clients in LIFO order, see assign_client_id. This could be
1277 	 * more efficient if xarray learns to reverse iterate. Since no new
1278 	 * clients can be added to this ib_device past this point we only need
1279 	 * the maximum possible client_id value here.
1280 	 */
1281 	down_read(&clients_rwsem);
1282 	cid = highest_client_id;
1283 	up_read(&clients_rwsem);
1284 	while (cid) {
1285 		cid--;
1286 		remove_client_context(device, cid);
1287 	}
1288 
1289 	/* Pairs with refcount_set in enable_device */
1290 	ib_device_put(device);
1291 	wait_for_completion(&device->unreg_completion);
1292 
1293 	/*
1294 	 * compat devices must be removed after device refcount drops to zero.
1295 	 * Otherwise init_net() may add more compatdevs after removing compat
1296 	 * devices and before device is disabled.
1297 	 */
1298 	remove_compat_devs(device);
1299 }
1300 
1301 /*
1302  * An enabled device is visible to all clients and to all the public facing
1303  * APIs that return a device pointer. This always returns with a new get, even
1304  * if it fails.
1305  */
1306 static int enable_device_and_get(struct ib_device *device)
1307 {
1308 	struct ib_client *client;
1309 	unsigned long index;
1310 	int ret = 0;
1311 
1312 	/*
1313 	 * One ref belongs to the xa and the other belongs to this
1314 	 * thread. This is needed to guard against parallel unregistration.
1315 	 */
1316 	refcount_set(&device->refcount, 2);
1317 	down_write(&devices_rwsem);
1318 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1319 
1320 	/*
1321 	 * By using downgrade_write() we ensure that no other thread can clear
1322 	 * DEVICE_REGISTERED while we are completing the client setup.
1323 	 */
1324 	downgrade_write(&devices_rwsem);
1325 
1326 	if (device->ops.enable_driver) {
1327 		ret = device->ops.enable_driver(device);
1328 		if (ret)
1329 			goto out;
1330 	}
1331 
1332 	down_read(&clients_rwsem);
1333 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1334 		ret = add_client_context(device, client);
1335 		if (ret)
1336 			break;
1337 	}
1338 	up_read(&clients_rwsem);
1339 	if (!ret)
1340 		ret = add_compat_devs(device);
1341 out:
1342 	up_read(&devices_rwsem);
1343 	return ret;
1344 }
1345 
1346 /**
1347  * ib_register_device - Register an IB device with IB core
1348  * @device: Device to register
1349  * @name: unique string device name. This may include a '%' which will
1350  * cause a unique index to be added to the passed device name.
1351  *
1352  * Low-level drivers use ib_register_device() to register their
1353  * devices with the IB core.  All registered clients will receive a
1354  * callback for each device that is added. @device must be allocated
1355  * with ib_alloc_device().
1356  *
1357  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1358  * asynchronously then the device pointer may become freed as soon as this
1359  * function returns.
1360  */
1361 int ib_register_device(struct ib_device *device, const char *name)
1362 {
1363 	int ret;
1364 
1365 	ret = assign_name(device, name);
1366 	if (ret)
1367 		return ret;
1368 
1369 	ret = setup_device(device);
1370 	if (ret)
1371 		return ret;
1372 
1373 	ret = ib_cache_setup_one(device);
1374 	if (ret) {
1375 		dev_warn(&device->dev,
1376 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1377 		return ret;
1378 	}
1379 
1380 	ib_device_register_rdmacg(device);
1381 
1382 	rdma_counter_init(device);
1383 
1384 	/*
1385 	 * Ensure that ADD uevent is not fired because it
1386 	 * is too early amd device is not initialized yet.
1387 	 */
1388 	dev_set_uevent_suppress(&device->dev, true);
1389 	ret = device_add(&device->dev);
1390 	if (ret)
1391 		goto cg_cleanup;
1392 
1393 	ret = ib_device_register_sysfs(device);
1394 	if (ret) {
1395 		dev_warn(&device->dev,
1396 			 "Couldn't register device with driver model\n");
1397 		goto dev_cleanup;
1398 	}
1399 
1400 	ib_cq_pool_init(device);
1401 	ret = enable_device_and_get(device);
1402 	dev_set_uevent_suppress(&device->dev, false);
1403 	/* Mark for userspace that device is ready */
1404 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1405 	if (ret) {
1406 		void (*dealloc_fn)(struct ib_device *);
1407 
1408 		/*
1409 		 * If we hit this error flow then we don't want to
1410 		 * automatically dealloc the device since the caller is
1411 		 * expected to call ib_dealloc_device() after
1412 		 * ib_register_device() fails. This is tricky due to the
1413 		 * possibility for a parallel unregistration along with this
1414 		 * error flow. Since we have a refcount here we know any
1415 		 * parallel flow is stopped in disable_device and will see the
1416 		 * NULL pointers, causing the responsibility to
1417 		 * ib_dealloc_device() to revert back to this thread.
1418 		 */
1419 		dealloc_fn = device->ops.dealloc_driver;
1420 		device->ops.dealloc_driver = NULL;
1421 		ib_device_put(device);
1422 		__ib_unregister_device(device);
1423 		device->ops.dealloc_driver = dealloc_fn;
1424 		return ret;
1425 	}
1426 	ib_device_put(device);
1427 
1428 	return 0;
1429 
1430 dev_cleanup:
1431 	device_del(&device->dev);
1432 cg_cleanup:
1433 	dev_set_uevent_suppress(&device->dev, false);
1434 	ib_device_unregister_rdmacg(device);
1435 	ib_cache_cleanup_one(device);
1436 	return ret;
1437 }
1438 EXPORT_SYMBOL(ib_register_device);
1439 
1440 /* Callers must hold a get on the device. */
1441 static void __ib_unregister_device(struct ib_device *ib_dev)
1442 {
1443 	/*
1444 	 * We have a registration lock so that all the calls to unregister are
1445 	 * fully fenced, once any unregister returns the device is truely
1446 	 * unregistered even if multiple callers are unregistering it at the
1447 	 * same time. This also interacts with the registration flow and
1448 	 * provides sane semantics if register and unregister are racing.
1449 	 */
1450 	mutex_lock(&ib_dev->unregistration_lock);
1451 	if (!refcount_read(&ib_dev->refcount))
1452 		goto out;
1453 
1454 	disable_device(ib_dev);
1455 	ib_cq_pool_destroy(ib_dev);
1456 
1457 	/* Expedite removing unregistered pointers from the hash table */
1458 	free_netdevs(ib_dev);
1459 
1460 	ib_device_unregister_sysfs(ib_dev);
1461 	device_del(&ib_dev->dev);
1462 	ib_device_unregister_rdmacg(ib_dev);
1463 	ib_cache_cleanup_one(ib_dev);
1464 
1465 	/*
1466 	 * Drivers using the new flow may not call ib_dealloc_device except
1467 	 * in error unwind prior to registration success.
1468 	 */
1469 	if (ib_dev->ops.dealloc_driver) {
1470 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1471 		ib_dealloc_device(ib_dev);
1472 	}
1473 out:
1474 	mutex_unlock(&ib_dev->unregistration_lock);
1475 }
1476 
1477 /**
1478  * ib_unregister_device - Unregister an IB device
1479  * @ib_dev: The device to unregister
1480  *
1481  * Unregister an IB device.  All clients will receive a remove callback.
1482  *
1483  * Callers should call this routine only once, and protect against races with
1484  * registration. Typically it should only be called as part of a remove
1485  * callback in an implementation of driver core's struct device_driver and
1486  * related.
1487  *
1488  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1489  * this function.
1490  */
1491 void ib_unregister_device(struct ib_device *ib_dev)
1492 {
1493 	get_device(&ib_dev->dev);
1494 	__ib_unregister_device(ib_dev);
1495 	put_device(&ib_dev->dev);
1496 }
1497 EXPORT_SYMBOL(ib_unregister_device);
1498 
1499 /**
1500  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1501  * @ib_dev: The device to unregister
1502  *
1503  * This is the same as ib_unregister_device(), except it includes an internal
1504  * ib_device_put() that should match a 'get' obtained by the caller.
1505  *
1506  * It is safe to call this routine concurrently from multiple threads while
1507  * holding the 'get'. When the function returns the device is fully
1508  * unregistered.
1509  *
1510  * Drivers using this flow MUST use the driver_unregister callback to clean up
1511  * their resources associated with the device and dealloc it.
1512  */
1513 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1514 {
1515 	WARN_ON(!ib_dev->ops.dealloc_driver);
1516 	get_device(&ib_dev->dev);
1517 	ib_device_put(ib_dev);
1518 	__ib_unregister_device(ib_dev);
1519 	put_device(&ib_dev->dev);
1520 }
1521 EXPORT_SYMBOL(ib_unregister_device_and_put);
1522 
1523 /**
1524  * ib_unregister_driver - Unregister all IB devices for a driver
1525  * @driver_id: The driver to unregister
1526  *
1527  * This implements a fence for device unregistration. It only returns once all
1528  * devices associated with the driver_id have fully completed their
1529  * unregistration and returned from ib_unregister_device*().
1530  *
1531  * If device's are not yet unregistered it goes ahead and starts unregistering
1532  * them.
1533  *
1534  * This does not block creation of new devices with the given driver_id, that
1535  * is the responsibility of the caller.
1536  */
1537 void ib_unregister_driver(enum rdma_driver_id driver_id)
1538 {
1539 	struct ib_device *ib_dev;
1540 	unsigned long index;
1541 
1542 	down_read(&devices_rwsem);
1543 	xa_for_each (&devices, index, ib_dev) {
1544 		if (ib_dev->ops.driver_id != driver_id)
1545 			continue;
1546 
1547 		get_device(&ib_dev->dev);
1548 		up_read(&devices_rwsem);
1549 
1550 		WARN_ON(!ib_dev->ops.dealloc_driver);
1551 		__ib_unregister_device(ib_dev);
1552 
1553 		put_device(&ib_dev->dev);
1554 		down_read(&devices_rwsem);
1555 	}
1556 	up_read(&devices_rwsem);
1557 }
1558 EXPORT_SYMBOL(ib_unregister_driver);
1559 
1560 static void ib_unregister_work(struct work_struct *work)
1561 {
1562 	struct ib_device *ib_dev =
1563 		container_of(work, struct ib_device, unregistration_work);
1564 
1565 	__ib_unregister_device(ib_dev);
1566 	put_device(&ib_dev->dev);
1567 }
1568 
1569 /**
1570  * ib_unregister_device_queued - Unregister a device using a work queue
1571  * @ib_dev: The device to unregister
1572  *
1573  * This schedules an asynchronous unregistration using a WQ for the device. A
1574  * driver should use this to avoid holding locks while doing unregistration,
1575  * such as holding the RTNL lock.
1576  *
1577  * Drivers using this API must use ib_unregister_driver before module unload
1578  * to ensure that all scheduled unregistrations have completed.
1579  */
1580 void ib_unregister_device_queued(struct ib_device *ib_dev)
1581 {
1582 	WARN_ON(!refcount_read(&ib_dev->refcount));
1583 	WARN_ON(!ib_dev->ops.dealloc_driver);
1584 	get_device(&ib_dev->dev);
1585 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1586 		put_device(&ib_dev->dev);
1587 }
1588 EXPORT_SYMBOL(ib_unregister_device_queued);
1589 
1590 /*
1591  * The caller must pass in a device that has the kref held and the refcount
1592  * released. If the device is in cur_net and still registered then it is moved
1593  * into net.
1594  */
1595 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1596 				 struct net *net)
1597 {
1598 	int ret2 = -EINVAL;
1599 	int ret;
1600 
1601 	mutex_lock(&device->unregistration_lock);
1602 
1603 	/*
1604 	 * If a device not under ib_device_get() or if the unregistration_lock
1605 	 * is not held, the namespace can be changed, or it can be unregistered.
1606 	 * Check again under the lock.
1607 	 */
1608 	if (refcount_read(&device->refcount) == 0 ||
1609 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1610 		ret = -ENODEV;
1611 		goto out;
1612 	}
1613 
1614 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1615 	disable_device(device);
1616 
1617 	/*
1618 	 * At this point no one can be using the device, so it is safe to
1619 	 * change the namespace.
1620 	 */
1621 	write_pnet(&device->coredev.rdma_net, net);
1622 
1623 	down_read(&devices_rwsem);
1624 	/*
1625 	 * Currently rdma devices are system wide unique. So the device name
1626 	 * is guaranteed free in the new namespace. Publish the new namespace
1627 	 * at the sysfs level.
1628 	 */
1629 	ret = device_rename(&device->dev, dev_name(&device->dev));
1630 	up_read(&devices_rwsem);
1631 	if (ret) {
1632 		dev_warn(&device->dev,
1633 			 "%s: Couldn't rename device after namespace change\n",
1634 			 __func__);
1635 		/* Try and put things back and re-enable the device */
1636 		write_pnet(&device->coredev.rdma_net, cur_net);
1637 	}
1638 
1639 	ret2 = enable_device_and_get(device);
1640 	if (ret2) {
1641 		/*
1642 		 * This shouldn't really happen, but if it does, let the user
1643 		 * retry at later point. So don't disable the device.
1644 		 */
1645 		dev_warn(&device->dev,
1646 			 "%s: Couldn't re-enable device after namespace change\n",
1647 			 __func__);
1648 	}
1649 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1650 
1651 	ib_device_put(device);
1652 out:
1653 	mutex_unlock(&device->unregistration_lock);
1654 	if (ret)
1655 		return ret;
1656 	return ret2;
1657 }
1658 
1659 int ib_device_set_netns_put(struct sk_buff *skb,
1660 			    struct ib_device *dev, u32 ns_fd)
1661 {
1662 	struct net *net;
1663 	int ret;
1664 
1665 	net = get_net_ns_by_fd(ns_fd);
1666 	if (IS_ERR(net)) {
1667 		ret = PTR_ERR(net);
1668 		goto net_err;
1669 	}
1670 
1671 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1672 		ret = -EPERM;
1673 		goto ns_err;
1674 	}
1675 
1676 	/*
1677 	 * Currently supported only for those providers which support
1678 	 * disassociation and don't do port specific sysfs init. Once a
1679 	 * port_cleanup infrastructure is implemented, this limitation will be
1680 	 * removed.
1681 	 */
1682 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1683 	    ib_devices_shared_netns) {
1684 		ret = -EOPNOTSUPP;
1685 		goto ns_err;
1686 	}
1687 
1688 	get_device(&dev->dev);
1689 	ib_device_put(dev);
1690 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1691 	put_device(&dev->dev);
1692 
1693 	put_net(net);
1694 	return ret;
1695 
1696 ns_err:
1697 	put_net(net);
1698 net_err:
1699 	ib_device_put(dev);
1700 	return ret;
1701 }
1702 
1703 static struct pernet_operations rdma_dev_net_ops = {
1704 	.init = rdma_dev_init_net,
1705 	.exit = rdma_dev_exit_net,
1706 	.id = &rdma_dev_net_id,
1707 	.size = sizeof(struct rdma_dev_net),
1708 };
1709 
1710 static int assign_client_id(struct ib_client *client)
1711 {
1712 	int ret;
1713 
1714 	down_write(&clients_rwsem);
1715 	/*
1716 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1717 	 * achieve this we assign client_ids so they are sorted in
1718 	 * registration order.
1719 	 */
1720 	client->client_id = highest_client_id;
1721 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1722 	if (ret)
1723 		goto out;
1724 
1725 	highest_client_id++;
1726 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1727 
1728 out:
1729 	up_write(&clients_rwsem);
1730 	return ret;
1731 }
1732 
1733 static void remove_client_id(struct ib_client *client)
1734 {
1735 	down_write(&clients_rwsem);
1736 	xa_erase(&clients, client->client_id);
1737 	for (; highest_client_id; highest_client_id--)
1738 		if (xa_load(&clients, highest_client_id - 1))
1739 			break;
1740 	up_write(&clients_rwsem);
1741 }
1742 
1743 /**
1744  * ib_register_client - Register an IB client
1745  * @client:Client to register
1746  *
1747  * Upper level users of the IB drivers can use ib_register_client() to
1748  * register callbacks for IB device addition and removal.  When an IB
1749  * device is added, each registered client's add method will be called
1750  * (in the order the clients were registered), and when a device is
1751  * removed, each client's remove method will be called (in the reverse
1752  * order that clients were registered).  In addition, when
1753  * ib_register_client() is called, the client will receive an add
1754  * callback for all devices already registered.
1755  */
1756 int ib_register_client(struct ib_client *client)
1757 {
1758 	struct ib_device *device;
1759 	unsigned long index;
1760 	int ret;
1761 
1762 	refcount_set(&client->uses, 1);
1763 	init_completion(&client->uses_zero);
1764 	ret = assign_client_id(client);
1765 	if (ret)
1766 		return ret;
1767 
1768 	down_read(&devices_rwsem);
1769 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1770 		ret = add_client_context(device, client);
1771 		if (ret) {
1772 			up_read(&devices_rwsem);
1773 			ib_unregister_client(client);
1774 			return ret;
1775 		}
1776 	}
1777 	up_read(&devices_rwsem);
1778 	return 0;
1779 }
1780 EXPORT_SYMBOL(ib_register_client);
1781 
1782 /**
1783  * ib_unregister_client - Unregister an IB client
1784  * @client:Client to unregister
1785  *
1786  * Upper level users use ib_unregister_client() to remove their client
1787  * registration.  When ib_unregister_client() is called, the client
1788  * will receive a remove callback for each IB device still registered.
1789  *
1790  * This is a full fence, once it returns no client callbacks will be called,
1791  * or are running in another thread.
1792  */
1793 void ib_unregister_client(struct ib_client *client)
1794 {
1795 	struct ib_device *device;
1796 	unsigned long index;
1797 
1798 	down_write(&clients_rwsem);
1799 	ib_client_put(client);
1800 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1801 	up_write(&clients_rwsem);
1802 
1803 	/* We do not want to have locks while calling client->remove() */
1804 	rcu_read_lock();
1805 	xa_for_each (&devices, index, device) {
1806 		if (!ib_device_try_get(device))
1807 			continue;
1808 		rcu_read_unlock();
1809 
1810 		remove_client_context(device, client->client_id);
1811 
1812 		ib_device_put(device);
1813 		rcu_read_lock();
1814 	}
1815 	rcu_read_unlock();
1816 
1817 	/*
1818 	 * remove_client_context() is not a fence, it can return even though a
1819 	 * removal is ongoing. Wait until all removals are completed.
1820 	 */
1821 	wait_for_completion(&client->uses_zero);
1822 	remove_client_id(client);
1823 }
1824 EXPORT_SYMBOL(ib_unregister_client);
1825 
1826 static int __ib_get_global_client_nl_info(const char *client_name,
1827 					  struct ib_client_nl_info *res)
1828 {
1829 	struct ib_client *client;
1830 	unsigned long index;
1831 	int ret = -ENOENT;
1832 
1833 	down_read(&clients_rwsem);
1834 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1835 		if (strcmp(client->name, client_name) != 0)
1836 			continue;
1837 		if (!client->get_global_nl_info) {
1838 			ret = -EOPNOTSUPP;
1839 			break;
1840 		}
1841 		ret = client->get_global_nl_info(res);
1842 		if (WARN_ON(ret == -ENOENT))
1843 			ret = -EINVAL;
1844 		if (!ret && res->cdev)
1845 			get_device(res->cdev);
1846 		break;
1847 	}
1848 	up_read(&clients_rwsem);
1849 	return ret;
1850 }
1851 
1852 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1853 				   const char *client_name,
1854 				   struct ib_client_nl_info *res)
1855 {
1856 	unsigned long index;
1857 	void *client_data;
1858 	int ret = -ENOENT;
1859 
1860 	down_read(&ibdev->client_data_rwsem);
1861 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1862 			     CLIENT_DATA_REGISTERED) {
1863 		struct ib_client *client = xa_load(&clients, index);
1864 
1865 		if (!client || strcmp(client->name, client_name) != 0)
1866 			continue;
1867 		if (!client->get_nl_info) {
1868 			ret = -EOPNOTSUPP;
1869 			break;
1870 		}
1871 		ret = client->get_nl_info(ibdev, client_data, res);
1872 		if (WARN_ON(ret == -ENOENT))
1873 			ret = -EINVAL;
1874 
1875 		/*
1876 		 * The cdev is guaranteed valid as long as we are inside the
1877 		 * client_data_rwsem as remove_one can't be called. Keep it
1878 		 * valid for the caller.
1879 		 */
1880 		if (!ret && res->cdev)
1881 			get_device(res->cdev);
1882 		break;
1883 	}
1884 	up_read(&ibdev->client_data_rwsem);
1885 
1886 	return ret;
1887 }
1888 
1889 /**
1890  * ib_get_client_nl_info - Fetch the nl_info from a client
1891  * @device - IB device
1892  * @client_name - Name of the client
1893  * @res - Result of the query
1894  */
1895 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1896 			  struct ib_client_nl_info *res)
1897 {
1898 	int ret;
1899 
1900 	if (ibdev)
1901 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1902 	else
1903 		ret = __ib_get_global_client_nl_info(client_name, res);
1904 #ifdef CONFIG_MODULES
1905 	if (ret == -ENOENT) {
1906 		request_module("rdma-client-%s", client_name);
1907 		if (ibdev)
1908 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1909 		else
1910 			ret = __ib_get_global_client_nl_info(client_name, res);
1911 	}
1912 #endif
1913 	if (ret) {
1914 		if (ret == -ENOENT)
1915 			return -EOPNOTSUPP;
1916 		return ret;
1917 	}
1918 
1919 	if (WARN_ON(!res->cdev))
1920 		return -EINVAL;
1921 	return 0;
1922 }
1923 
1924 /**
1925  * ib_set_client_data - Set IB client context
1926  * @device:Device to set context for
1927  * @client:Client to set context for
1928  * @data:Context to set
1929  *
1930  * ib_set_client_data() sets client context data that can be retrieved with
1931  * ib_get_client_data(). This can only be called while the client is
1932  * registered to the device, once the ib_client remove() callback returns this
1933  * cannot be called.
1934  */
1935 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1936 			void *data)
1937 {
1938 	void *rc;
1939 
1940 	if (WARN_ON(IS_ERR(data)))
1941 		data = NULL;
1942 
1943 	rc = xa_store(&device->client_data, client->client_id, data,
1944 		      GFP_KERNEL);
1945 	WARN_ON(xa_is_err(rc));
1946 }
1947 EXPORT_SYMBOL(ib_set_client_data);
1948 
1949 /**
1950  * ib_register_event_handler - Register an IB event handler
1951  * @event_handler:Handler to register
1952  *
1953  * ib_register_event_handler() registers an event handler that will be
1954  * called back when asynchronous IB events occur (as defined in
1955  * chapter 11 of the InfiniBand Architecture Specification). This
1956  * callback occurs in workqueue context.
1957  */
1958 void ib_register_event_handler(struct ib_event_handler *event_handler)
1959 {
1960 	down_write(&event_handler->device->event_handler_rwsem);
1961 	list_add_tail(&event_handler->list,
1962 		      &event_handler->device->event_handler_list);
1963 	up_write(&event_handler->device->event_handler_rwsem);
1964 }
1965 EXPORT_SYMBOL(ib_register_event_handler);
1966 
1967 /**
1968  * ib_unregister_event_handler - Unregister an event handler
1969  * @event_handler:Handler to unregister
1970  *
1971  * Unregister an event handler registered with
1972  * ib_register_event_handler().
1973  */
1974 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1975 {
1976 	down_write(&event_handler->device->event_handler_rwsem);
1977 	list_del(&event_handler->list);
1978 	up_write(&event_handler->device->event_handler_rwsem);
1979 }
1980 EXPORT_SYMBOL(ib_unregister_event_handler);
1981 
1982 void ib_dispatch_event_clients(struct ib_event *event)
1983 {
1984 	struct ib_event_handler *handler;
1985 
1986 	down_read(&event->device->event_handler_rwsem);
1987 
1988 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1989 		handler->handler(handler, event);
1990 
1991 	up_read(&event->device->event_handler_rwsem);
1992 }
1993 
1994 static int iw_query_port(struct ib_device *device,
1995 			   u8 port_num,
1996 			   struct ib_port_attr *port_attr)
1997 {
1998 	struct in_device *inetdev;
1999 	struct net_device *netdev;
2000 
2001 	memset(port_attr, 0, sizeof(*port_attr));
2002 
2003 	netdev = ib_device_get_netdev(device, port_num);
2004 	if (!netdev)
2005 		return -ENODEV;
2006 
2007 	port_attr->max_mtu = IB_MTU_4096;
2008 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2009 
2010 	if (!netif_carrier_ok(netdev)) {
2011 		port_attr->state = IB_PORT_DOWN;
2012 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2013 	} else {
2014 		rcu_read_lock();
2015 		inetdev = __in_dev_get_rcu(netdev);
2016 
2017 		if (inetdev && inetdev->ifa_list) {
2018 			port_attr->state = IB_PORT_ACTIVE;
2019 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2020 		} else {
2021 			port_attr->state = IB_PORT_INIT;
2022 			port_attr->phys_state =
2023 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2024 		}
2025 
2026 		rcu_read_unlock();
2027 	}
2028 
2029 	dev_put(netdev);
2030 	return device->ops.query_port(device, port_num, port_attr);
2031 }
2032 
2033 static int __ib_query_port(struct ib_device *device,
2034 			   u8 port_num,
2035 			   struct ib_port_attr *port_attr)
2036 {
2037 	union ib_gid gid = {};
2038 	int err;
2039 
2040 	memset(port_attr, 0, sizeof(*port_attr));
2041 
2042 	err = device->ops.query_port(device, port_num, port_attr);
2043 	if (err || port_attr->subnet_prefix)
2044 		return err;
2045 
2046 	if (rdma_port_get_link_layer(device, port_num) !=
2047 	    IB_LINK_LAYER_INFINIBAND)
2048 		return 0;
2049 
2050 	err = device->ops.query_gid(device, port_num, 0, &gid);
2051 	if (err)
2052 		return err;
2053 
2054 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2055 	return 0;
2056 }
2057 
2058 /**
2059  * ib_query_port - Query IB port attributes
2060  * @device:Device to query
2061  * @port_num:Port number to query
2062  * @port_attr:Port attributes
2063  *
2064  * ib_query_port() returns the attributes of a port through the
2065  * @port_attr pointer.
2066  */
2067 int ib_query_port(struct ib_device *device,
2068 		  u8 port_num,
2069 		  struct ib_port_attr *port_attr)
2070 {
2071 	if (!rdma_is_port_valid(device, port_num))
2072 		return -EINVAL;
2073 
2074 	if (rdma_protocol_iwarp(device, port_num))
2075 		return iw_query_port(device, port_num, port_attr);
2076 	else
2077 		return __ib_query_port(device, port_num, port_attr);
2078 }
2079 EXPORT_SYMBOL(ib_query_port);
2080 
2081 static void add_ndev_hash(struct ib_port_data *pdata)
2082 {
2083 	unsigned long flags;
2084 
2085 	might_sleep();
2086 
2087 	spin_lock_irqsave(&ndev_hash_lock, flags);
2088 	if (hash_hashed(&pdata->ndev_hash_link)) {
2089 		hash_del_rcu(&pdata->ndev_hash_link);
2090 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2091 		/*
2092 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2093 		 * grace period
2094 		 */
2095 		synchronize_rcu();
2096 		spin_lock_irqsave(&ndev_hash_lock, flags);
2097 	}
2098 	if (pdata->netdev)
2099 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2100 			     (uintptr_t)pdata->netdev);
2101 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2102 }
2103 
2104 /**
2105  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2106  * @ib_dev: Device to modify
2107  * @ndev: net_device to affiliate, may be NULL
2108  * @port: IB port the net_device is connected to
2109  *
2110  * Drivers should use this to link the ib_device to a netdev so the netdev
2111  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2112  * affiliated with any port.
2113  *
2114  * The caller must ensure that the given ndev is not unregistered or
2115  * unregistering, and that either the ib_device is unregistered or
2116  * ib_device_set_netdev() is called with NULL when the ndev sends a
2117  * NETDEV_UNREGISTER event.
2118  */
2119 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2120 			 unsigned int port)
2121 {
2122 	struct net_device *old_ndev;
2123 	struct ib_port_data *pdata;
2124 	unsigned long flags;
2125 	int ret;
2126 
2127 	/*
2128 	 * Drivers wish to call this before ib_register_driver, so we have to
2129 	 * setup the port data early.
2130 	 */
2131 	ret = alloc_port_data(ib_dev);
2132 	if (ret)
2133 		return ret;
2134 
2135 	if (!rdma_is_port_valid(ib_dev, port))
2136 		return -EINVAL;
2137 
2138 	pdata = &ib_dev->port_data[port];
2139 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2140 	old_ndev = rcu_dereference_protected(
2141 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2142 	if (old_ndev == ndev) {
2143 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2144 		return 0;
2145 	}
2146 
2147 	if (ndev)
2148 		dev_hold(ndev);
2149 	rcu_assign_pointer(pdata->netdev, ndev);
2150 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2151 
2152 	add_ndev_hash(pdata);
2153 	if (old_ndev)
2154 		dev_put(old_ndev);
2155 
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(ib_device_set_netdev);
2159 
2160 static void free_netdevs(struct ib_device *ib_dev)
2161 {
2162 	unsigned long flags;
2163 	unsigned int port;
2164 
2165 	if (!ib_dev->port_data)
2166 		return;
2167 
2168 	rdma_for_each_port (ib_dev, port) {
2169 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2170 		struct net_device *ndev;
2171 
2172 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2173 		ndev = rcu_dereference_protected(
2174 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2175 		if (ndev) {
2176 			spin_lock(&ndev_hash_lock);
2177 			hash_del_rcu(&pdata->ndev_hash_link);
2178 			spin_unlock(&ndev_hash_lock);
2179 
2180 			/*
2181 			 * If this is the last dev_put there is still a
2182 			 * synchronize_rcu before the netdev is kfreed, so we
2183 			 * can continue to rely on unlocked pointer
2184 			 * comparisons after the put
2185 			 */
2186 			rcu_assign_pointer(pdata->netdev, NULL);
2187 			dev_put(ndev);
2188 		}
2189 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2190 	}
2191 }
2192 
2193 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2194 					unsigned int port)
2195 {
2196 	struct ib_port_data *pdata;
2197 	struct net_device *res;
2198 
2199 	if (!rdma_is_port_valid(ib_dev, port))
2200 		return NULL;
2201 
2202 	pdata = &ib_dev->port_data[port];
2203 
2204 	/*
2205 	 * New drivers should use ib_device_set_netdev() not the legacy
2206 	 * get_netdev().
2207 	 */
2208 	if (ib_dev->ops.get_netdev)
2209 		res = ib_dev->ops.get_netdev(ib_dev, port);
2210 	else {
2211 		spin_lock(&pdata->netdev_lock);
2212 		res = rcu_dereference_protected(
2213 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2214 		if (res)
2215 			dev_hold(res);
2216 		spin_unlock(&pdata->netdev_lock);
2217 	}
2218 
2219 	/*
2220 	 * If we are starting to unregister expedite things by preventing
2221 	 * propagation of an unregistering netdev.
2222 	 */
2223 	if (res && res->reg_state != NETREG_REGISTERED) {
2224 		dev_put(res);
2225 		return NULL;
2226 	}
2227 
2228 	return res;
2229 }
2230 
2231 /**
2232  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2233  * @ndev: netdev to locate
2234  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2235  *
2236  * Find and hold an ib_device that is associated with a netdev via
2237  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2238  * returned pointer.
2239  */
2240 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2241 					  enum rdma_driver_id driver_id)
2242 {
2243 	struct ib_device *res = NULL;
2244 	struct ib_port_data *cur;
2245 
2246 	rcu_read_lock();
2247 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2248 				    (uintptr_t)ndev) {
2249 		if (rcu_access_pointer(cur->netdev) == ndev &&
2250 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2251 		     cur->ib_dev->ops.driver_id == driver_id) &&
2252 		    ib_device_try_get(cur->ib_dev)) {
2253 			res = cur->ib_dev;
2254 			break;
2255 		}
2256 	}
2257 	rcu_read_unlock();
2258 
2259 	return res;
2260 }
2261 EXPORT_SYMBOL(ib_device_get_by_netdev);
2262 
2263 /**
2264  * ib_enum_roce_netdev - enumerate all RoCE ports
2265  * @ib_dev : IB device we want to query
2266  * @filter: Should we call the callback?
2267  * @filter_cookie: Cookie passed to filter
2268  * @cb: Callback to call for each found RoCE ports
2269  * @cookie: Cookie passed back to the callback
2270  *
2271  * Enumerates all of the physical RoCE ports of ib_dev
2272  * which are related to netdevice and calls callback() on each
2273  * device for which filter() function returns non zero.
2274  */
2275 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2276 			 roce_netdev_filter filter,
2277 			 void *filter_cookie,
2278 			 roce_netdev_callback cb,
2279 			 void *cookie)
2280 {
2281 	unsigned int port;
2282 
2283 	rdma_for_each_port (ib_dev, port)
2284 		if (rdma_protocol_roce(ib_dev, port)) {
2285 			struct net_device *idev =
2286 				ib_device_get_netdev(ib_dev, port);
2287 
2288 			if (filter(ib_dev, port, idev, filter_cookie))
2289 				cb(ib_dev, port, idev, cookie);
2290 
2291 			if (idev)
2292 				dev_put(idev);
2293 		}
2294 }
2295 
2296 /**
2297  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2298  * @filter: Should we call the callback?
2299  * @filter_cookie: Cookie passed to filter
2300  * @cb: Callback to call for each found RoCE ports
2301  * @cookie: Cookie passed back to the callback
2302  *
2303  * Enumerates all RoCE devices' physical ports which are related
2304  * to netdevices and calls callback() on each device for which
2305  * filter() function returns non zero.
2306  */
2307 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2308 			      void *filter_cookie,
2309 			      roce_netdev_callback cb,
2310 			      void *cookie)
2311 {
2312 	struct ib_device *dev;
2313 	unsigned long index;
2314 
2315 	down_read(&devices_rwsem);
2316 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2317 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2318 	up_read(&devices_rwsem);
2319 }
2320 
2321 /**
2322  * ib_enum_all_devs - enumerate all ib_devices
2323  * @cb: Callback to call for each found ib_device
2324  *
2325  * Enumerates all ib_devices and calls callback() on each device.
2326  */
2327 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2328 		     struct netlink_callback *cb)
2329 {
2330 	unsigned long index;
2331 	struct ib_device *dev;
2332 	unsigned int idx = 0;
2333 	int ret = 0;
2334 
2335 	down_read(&devices_rwsem);
2336 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2337 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2338 			continue;
2339 
2340 		ret = nldev_cb(dev, skb, cb, idx);
2341 		if (ret)
2342 			break;
2343 		idx++;
2344 	}
2345 	up_read(&devices_rwsem);
2346 	return ret;
2347 }
2348 
2349 /**
2350  * ib_query_pkey - Get P_Key table entry
2351  * @device:Device to query
2352  * @port_num:Port number to query
2353  * @index:P_Key table index to query
2354  * @pkey:Returned P_Key
2355  *
2356  * ib_query_pkey() fetches the specified P_Key table entry.
2357  */
2358 int ib_query_pkey(struct ib_device *device,
2359 		  u8 port_num, u16 index, u16 *pkey)
2360 {
2361 	if (!rdma_is_port_valid(device, port_num))
2362 		return -EINVAL;
2363 
2364 	return device->ops.query_pkey(device, port_num, index, pkey);
2365 }
2366 EXPORT_SYMBOL(ib_query_pkey);
2367 
2368 /**
2369  * ib_modify_device - Change IB device attributes
2370  * @device:Device to modify
2371  * @device_modify_mask:Mask of attributes to change
2372  * @device_modify:New attribute values
2373  *
2374  * ib_modify_device() changes a device's attributes as specified by
2375  * the @device_modify_mask and @device_modify structure.
2376  */
2377 int ib_modify_device(struct ib_device *device,
2378 		     int device_modify_mask,
2379 		     struct ib_device_modify *device_modify)
2380 {
2381 	if (!device->ops.modify_device)
2382 		return -EOPNOTSUPP;
2383 
2384 	return device->ops.modify_device(device, device_modify_mask,
2385 					 device_modify);
2386 }
2387 EXPORT_SYMBOL(ib_modify_device);
2388 
2389 /**
2390  * ib_modify_port - Modifies the attributes for the specified port.
2391  * @device: The device to modify.
2392  * @port_num: The number of the port to modify.
2393  * @port_modify_mask: Mask used to specify which attributes of the port
2394  *   to change.
2395  * @port_modify: New attribute values for the port.
2396  *
2397  * ib_modify_port() changes a port's attributes as specified by the
2398  * @port_modify_mask and @port_modify structure.
2399  */
2400 int ib_modify_port(struct ib_device *device,
2401 		   u8 port_num, int port_modify_mask,
2402 		   struct ib_port_modify *port_modify)
2403 {
2404 	int rc;
2405 
2406 	if (!rdma_is_port_valid(device, port_num))
2407 		return -EINVAL;
2408 
2409 	if (device->ops.modify_port)
2410 		rc = device->ops.modify_port(device, port_num,
2411 					     port_modify_mask,
2412 					     port_modify);
2413 	else if (rdma_protocol_roce(device, port_num) &&
2414 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2415 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2416 		rc = 0;
2417 	else
2418 		rc = -EOPNOTSUPP;
2419 	return rc;
2420 }
2421 EXPORT_SYMBOL(ib_modify_port);
2422 
2423 /**
2424  * ib_find_gid - Returns the port number and GID table index where
2425  *   a specified GID value occurs. Its searches only for IB link layer.
2426  * @device: The device to query.
2427  * @gid: The GID value to search for.
2428  * @port_num: The port number of the device where the GID value was found.
2429  * @index: The index into the GID table where the GID was found.  This
2430  *   parameter may be NULL.
2431  */
2432 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2433 		u8 *port_num, u16 *index)
2434 {
2435 	union ib_gid tmp_gid;
2436 	unsigned int port;
2437 	int ret, i;
2438 
2439 	rdma_for_each_port (device, port) {
2440 		if (!rdma_protocol_ib(device, port))
2441 			continue;
2442 
2443 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2444 		     ++i) {
2445 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2446 			if (ret)
2447 				return ret;
2448 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2449 				*port_num = port;
2450 				if (index)
2451 					*index = i;
2452 				return 0;
2453 			}
2454 		}
2455 	}
2456 
2457 	return -ENOENT;
2458 }
2459 EXPORT_SYMBOL(ib_find_gid);
2460 
2461 /**
2462  * ib_find_pkey - Returns the PKey table index where a specified
2463  *   PKey value occurs.
2464  * @device: The device to query.
2465  * @port_num: The port number of the device to search for the PKey.
2466  * @pkey: The PKey value to search for.
2467  * @index: The index into the PKey table where the PKey was found.
2468  */
2469 int ib_find_pkey(struct ib_device *device,
2470 		 u8 port_num, u16 pkey, u16 *index)
2471 {
2472 	int ret, i;
2473 	u16 tmp_pkey;
2474 	int partial_ix = -1;
2475 
2476 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2477 	     ++i) {
2478 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2479 		if (ret)
2480 			return ret;
2481 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2482 			/* if there is full-member pkey take it.*/
2483 			if (tmp_pkey & 0x8000) {
2484 				*index = i;
2485 				return 0;
2486 			}
2487 			if (partial_ix < 0)
2488 				partial_ix = i;
2489 		}
2490 	}
2491 
2492 	/*no full-member, if exists take the limited*/
2493 	if (partial_ix >= 0) {
2494 		*index = partial_ix;
2495 		return 0;
2496 	}
2497 	return -ENOENT;
2498 }
2499 EXPORT_SYMBOL(ib_find_pkey);
2500 
2501 /**
2502  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2503  * for a received CM request
2504  * @dev:	An RDMA device on which the request has been received.
2505  * @port:	Port number on the RDMA device.
2506  * @pkey:	The Pkey the request came on.
2507  * @gid:	A GID that the net_dev uses to communicate.
2508  * @addr:	Contains the IP address that the request specified as its
2509  *		destination.
2510  *
2511  */
2512 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2513 					    u8 port,
2514 					    u16 pkey,
2515 					    const union ib_gid *gid,
2516 					    const struct sockaddr *addr)
2517 {
2518 	struct net_device *net_dev = NULL;
2519 	unsigned long index;
2520 	void *client_data;
2521 
2522 	if (!rdma_protocol_ib(dev, port))
2523 		return NULL;
2524 
2525 	/*
2526 	 * Holding the read side guarantees that the client will not become
2527 	 * unregistered while we are calling get_net_dev_by_params()
2528 	 */
2529 	down_read(&dev->client_data_rwsem);
2530 	xan_for_each_marked (&dev->client_data, index, client_data,
2531 			     CLIENT_DATA_REGISTERED) {
2532 		struct ib_client *client = xa_load(&clients, index);
2533 
2534 		if (!client || !client->get_net_dev_by_params)
2535 			continue;
2536 
2537 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2538 							addr, client_data);
2539 		if (net_dev)
2540 			break;
2541 	}
2542 	up_read(&dev->client_data_rwsem);
2543 
2544 	return net_dev;
2545 }
2546 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2547 
2548 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2549 {
2550 	struct ib_device_ops *dev_ops = &dev->ops;
2551 #define SET_DEVICE_OP(ptr, name)                                               \
2552 	do {                                                                   \
2553 		if (ops->name)                                                 \
2554 			if (!((ptr)->name))				       \
2555 				(ptr)->name = ops->name;                       \
2556 	} while (0)
2557 
2558 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2559 
2560 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2561 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2562 			dev_ops->driver_id != ops->driver_id);
2563 		dev_ops->driver_id = ops->driver_id;
2564 	}
2565 	if (ops->owner) {
2566 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2567 		dev_ops->owner = ops->owner;
2568 	}
2569 	if (ops->uverbs_abi_ver)
2570 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2571 
2572 	dev_ops->uverbs_no_driver_id_binding |=
2573 		ops->uverbs_no_driver_id_binding;
2574 
2575 	SET_DEVICE_OP(dev_ops, add_gid);
2576 	SET_DEVICE_OP(dev_ops, advise_mr);
2577 	SET_DEVICE_OP(dev_ops, alloc_dm);
2578 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2579 	SET_DEVICE_OP(dev_ops, alloc_mr);
2580 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2581 	SET_DEVICE_OP(dev_ops, alloc_mw);
2582 	SET_DEVICE_OP(dev_ops, alloc_pd);
2583 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2584 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2585 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2586 	SET_DEVICE_OP(dev_ops, attach_mcast);
2587 	SET_DEVICE_OP(dev_ops, check_mr_status);
2588 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2589 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2590 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2591 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2592 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2593 	SET_DEVICE_OP(dev_ops, create_ah);
2594 	SET_DEVICE_OP(dev_ops, create_counters);
2595 	SET_DEVICE_OP(dev_ops, create_cq);
2596 	SET_DEVICE_OP(dev_ops, create_flow);
2597 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2598 	SET_DEVICE_OP(dev_ops, create_qp);
2599 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2600 	SET_DEVICE_OP(dev_ops, create_srq);
2601 	SET_DEVICE_OP(dev_ops, create_wq);
2602 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2603 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2604 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2605 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2606 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2607 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2608 	SET_DEVICE_OP(dev_ops, del_gid);
2609 	SET_DEVICE_OP(dev_ops, dereg_mr);
2610 	SET_DEVICE_OP(dev_ops, destroy_ah);
2611 	SET_DEVICE_OP(dev_ops, destroy_counters);
2612 	SET_DEVICE_OP(dev_ops, destroy_cq);
2613 	SET_DEVICE_OP(dev_ops, destroy_flow);
2614 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2615 	SET_DEVICE_OP(dev_ops, destroy_qp);
2616 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2617 	SET_DEVICE_OP(dev_ops, destroy_srq);
2618 	SET_DEVICE_OP(dev_ops, destroy_wq);
2619 	SET_DEVICE_OP(dev_ops, detach_mcast);
2620 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2621 	SET_DEVICE_OP(dev_ops, drain_rq);
2622 	SET_DEVICE_OP(dev_ops, drain_sq);
2623 	SET_DEVICE_OP(dev_ops, enable_driver);
2624 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2625 	SET_DEVICE_OP(dev_ops, fill_stat_entry);
2626 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2627 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2628 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2629 	SET_DEVICE_OP(dev_ops, get_link_layer);
2630 	SET_DEVICE_OP(dev_ops, get_netdev);
2631 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2632 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2633 	SET_DEVICE_OP(dev_ops, get_vf_config);
2634 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2635 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2636 	SET_DEVICE_OP(dev_ops, init_port);
2637 	SET_DEVICE_OP(dev_ops, iw_accept);
2638 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2639 	SET_DEVICE_OP(dev_ops, iw_connect);
2640 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2641 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2642 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2643 	SET_DEVICE_OP(dev_ops, iw_reject);
2644 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2645 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2646 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2647 	SET_DEVICE_OP(dev_ops, mmap);
2648 	SET_DEVICE_OP(dev_ops, mmap_free);
2649 	SET_DEVICE_OP(dev_ops, modify_ah);
2650 	SET_DEVICE_OP(dev_ops, modify_cq);
2651 	SET_DEVICE_OP(dev_ops, modify_device);
2652 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2653 	SET_DEVICE_OP(dev_ops, modify_port);
2654 	SET_DEVICE_OP(dev_ops, modify_qp);
2655 	SET_DEVICE_OP(dev_ops, modify_srq);
2656 	SET_DEVICE_OP(dev_ops, modify_wq);
2657 	SET_DEVICE_OP(dev_ops, peek_cq);
2658 	SET_DEVICE_OP(dev_ops, poll_cq);
2659 	SET_DEVICE_OP(dev_ops, post_recv);
2660 	SET_DEVICE_OP(dev_ops, post_send);
2661 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2662 	SET_DEVICE_OP(dev_ops, process_mad);
2663 	SET_DEVICE_OP(dev_ops, query_ah);
2664 	SET_DEVICE_OP(dev_ops, query_device);
2665 	SET_DEVICE_OP(dev_ops, query_gid);
2666 	SET_DEVICE_OP(dev_ops, query_pkey);
2667 	SET_DEVICE_OP(dev_ops, query_port);
2668 	SET_DEVICE_OP(dev_ops, query_qp);
2669 	SET_DEVICE_OP(dev_ops, query_srq);
2670 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2671 	SET_DEVICE_OP(dev_ops, read_counters);
2672 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2673 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2674 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2675 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2676 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2677 	SET_DEVICE_OP(dev_ops, resize_cq);
2678 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2679 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2680 
2681 	SET_OBJ_SIZE(dev_ops, ib_ah);
2682 	SET_OBJ_SIZE(dev_ops, ib_cq);
2683 	SET_OBJ_SIZE(dev_ops, ib_pd);
2684 	SET_OBJ_SIZE(dev_ops, ib_srq);
2685 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2686 }
2687 EXPORT_SYMBOL(ib_set_device_ops);
2688 
2689 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2690 	[RDMA_NL_LS_OP_RESOLVE] = {
2691 		.doit = ib_nl_handle_resolve_resp,
2692 		.flags = RDMA_NL_ADMIN_PERM,
2693 	},
2694 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2695 		.doit = ib_nl_handle_set_timeout,
2696 		.flags = RDMA_NL_ADMIN_PERM,
2697 	},
2698 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2699 		.doit = ib_nl_handle_ip_res_resp,
2700 		.flags = RDMA_NL_ADMIN_PERM,
2701 	},
2702 };
2703 
2704 static int __init ib_core_init(void)
2705 {
2706 	int ret;
2707 
2708 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2709 	if (!ib_wq)
2710 		return -ENOMEM;
2711 
2712 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2713 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2714 	if (!ib_comp_wq) {
2715 		ret = -ENOMEM;
2716 		goto err;
2717 	}
2718 
2719 	ib_comp_unbound_wq =
2720 		alloc_workqueue("ib-comp-unb-wq",
2721 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2722 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2723 	if (!ib_comp_unbound_wq) {
2724 		ret = -ENOMEM;
2725 		goto err_comp;
2726 	}
2727 
2728 	ret = class_register(&ib_class);
2729 	if (ret) {
2730 		pr_warn("Couldn't create InfiniBand device class\n");
2731 		goto err_comp_unbound;
2732 	}
2733 
2734 	rdma_nl_init();
2735 
2736 	ret = addr_init();
2737 	if (ret) {
2738 		pr_warn("Could't init IB address resolution\n");
2739 		goto err_ibnl;
2740 	}
2741 
2742 	ret = ib_mad_init();
2743 	if (ret) {
2744 		pr_warn("Couldn't init IB MAD\n");
2745 		goto err_addr;
2746 	}
2747 
2748 	ret = ib_sa_init();
2749 	if (ret) {
2750 		pr_warn("Couldn't init SA\n");
2751 		goto err_mad;
2752 	}
2753 
2754 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2755 	if (ret) {
2756 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2757 		goto err_sa;
2758 	}
2759 
2760 	ret = register_pernet_device(&rdma_dev_net_ops);
2761 	if (ret) {
2762 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2763 		goto err_compat;
2764 	}
2765 
2766 	nldev_init();
2767 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2768 	roce_gid_mgmt_init();
2769 
2770 	return 0;
2771 
2772 err_compat:
2773 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2774 err_sa:
2775 	ib_sa_cleanup();
2776 err_mad:
2777 	ib_mad_cleanup();
2778 err_addr:
2779 	addr_cleanup();
2780 err_ibnl:
2781 	class_unregister(&ib_class);
2782 err_comp_unbound:
2783 	destroy_workqueue(ib_comp_unbound_wq);
2784 err_comp:
2785 	destroy_workqueue(ib_comp_wq);
2786 err:
2787 	destroy_workqueue(ib_wq);
2788 	return ret;
2789 }
2790 
2791 static void __exit ib_core_cleanup(void)
2792 {
2793 	roce_gid_mgmt_cleanup();
2794 	nldev_exit();
2795 	rdma_nl_unregister(RDMA_NL_LS);
2796 	unregister_pernet_device(&rdma_dev_net_ops);
2797 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2798 	ib_sa_cleanup();
2799 	ib_mad_cleanup();
2800 	addr_cleanup();
2801 	rdma_nl_exit();
2802 	class_unregister(&ib_class);
2803 	destroy_workqueue(ib_comp_unbound_wq);
2804 	destroy_workqueue(ib_comp_wq);
2805 	/* Make sure that any pending umem accounting work is done. */
2806 	destroy_workqueue(ib_wq);
2807 	flush_workqueue(system_unbound_wq);
2808 	WARN_ON(!xa_empty(&clients));
2809 	WARN_ON(!xa_empty(&devices));
2810 }
2811 
2812 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2813 
2814 /* ib core relies on netdev stack to first register net_ns_type_operations
2815  * ns kobject type before ib_core initialization.
2816  */
2817 fs_initcall(ib_core_init);
2818 module_exit(ib_core_cleanup);
2819