xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 35f752be)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(reg_user_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 	unsigned int i;
574 
575 	if (WARN_ON(size < sizeof(struct ib_device)))
576 		return NULL;
577 
578 	device = kzalloc(size, GFP_KERNEL);
579 	if (!device)
580 		return NULL;
581 
582 	if (rdma_restrack_init(device)) {
583 		kfree(device);
584 		return NULL;
585 	}
586 
587 	device->groups[0] = &ib_dev_attr_group;
588 	rdma_init_coredev(&device->coredev, device, &init_net);
589 
590 	INIT_LIST_HEAD(&device->event_handler_list);
591 	spin_lock_init(&device->qp_open_list_lock);
592 	init_rwsem(&device->event_handler_rwsem);
593 	mutex_init(&device->unregistration_lock);
594 	/*
595 	 * client_data needs to be alloc because we don't want our mark to be
596 	 * destroyed if the user stores NULL in the client data.
597 	 */
598 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
599 	init_rwsem(&device->client_data_rwsem);
600 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
601 	mutex_init(&device->compat_devs_mutex);
602 	init_completion(&device->unreg_completion);
603 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
604 
605 	spin_lock_init(&device->cq_pools_lock);
606 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
607 		INIT_LIST_HEAD(&device->cq_pools[i]);
608 
609 	device->uverbs_cmd_mask =
610 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
611 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
612 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
613 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
614 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
615 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
616 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
617 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
620 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
621 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
622 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
623 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
624 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
628 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
629 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
630 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
631 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
632 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
633 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
634 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
635 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
636 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
637 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
638 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
639 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
640 	return device;
641 }
642 EXPORT_SYMBOL(_ib_alloc_device);
643 
644 /**
645  * ib_dealloc_device - free an IB device struct
646  * @device:structure to free
647  *
648  * Free a structure allocated with ib_alloc_device().
649  */
650 void ib_dealloc_device(struct ib_device *device)
651 {
652 	if (device->ops.dealloc_driver)
653 		device->ops.dealloc_driver(device);
654 
655 	/*
656 	 * ib_unregister_driver() requires all devices to remain in the xarray
657 	 * while their ops are callable. The last op we call is dealloc_driver
658 	 * above.  This is needed to create a fence on op callbacks prior to
659 	 * allowing the driver module to unload.
660 	 */
661 	down_write(&devices_rwsem);
662 	if (xa_load(&devices, device->index) == device)
663 		xa_erase(&devices, device->index);
664 	up_write(&devices_rwsem);
665 
666 	/* Expedite releasing netdev references */
667 	free_netdevs(device);
668 
669 	WARN_ON(!xa_empty(&device->compat_devs));
670 	WARN_ON(!xa_empty(&device->client_data));
671 	WARN_ON(refcount_read(&device->refcount));
672 	rdma_restrack_clean(device);
673 	/* Balances with device_initialize */
674 	put_device(&device->dev);
675 }
676 EXPORT_SYMBOL(ib_dealloc_device);
677 
678 /*
679  * add_client_context() and remove_client_context() must be safe against
680  * parallel calls on the same device - registration/unregistration of both the
681  * device and client can be occurring in parallel.
682  *
683  * The routines need to be a fence, any caller must not return until the add
684  * or remove is fully completed.
685  */
686 static int add_client_context(struct ib_device *device,
687 			      struct ib_client *client)
688 {
689 	int ret = 0;
690 
691 	if (!device->kverbs_provider && !client->no_kverbs_req)
692 		return 0;
693 
694 	down_write(&device->client_data_rwsem);
695 	/*
696 	 * So long as the client is registered hold both the client and device
697 	 * unregistration locks.
698 	 */
699 	if (!refcount_inc_not_zero(&client->uses))
700 		goto out_unlock;
701 	refcount_inc(&device->refcount);
702 
703 	/*
704 	 * Another caller to add_client_context got here first and has already
705 	 * completely initialized context.
706 	 */
707 	if (xa_get_mark(&device->client_data, client->client_id,
708 		    CLIENT_DATA_REGISTERED))
709 		goto out;
710 
711 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
712 			      GFP_KERNEL));
713 	if (ret)
714 		goto out;
715 	downgrade_write(&device->client_data_rwsem);
716 	if (client->add) {
717 		if (client->add(device)) {
718 			/*
719 			 * If a client fails to add then the error code is
720 			 * ignored, but we won't call any more ops on this
721 			 * client.
722 			 */
723 			xa_erase(&device->client_data, client->client_id);
724 			up_read(&device->client_data_rwsem);
725 			ib_device_put(device);
726 			ib_client_put(client);
727 			return 0;
728 		}
729 	}
730 
731 	/* Readers shall not see a client until add has been completed */
732 	xa_set_mark(&device->client_data, client->client_id,
733 		    CLIENT_DATA_REGISTERED);
734 	up_read(&device->client_data_rwsem);
735 	return 0;
736 
737 out:
738 	ib_device_put(device);
739 	ib_client_put(client);
740 out_unlock:
741 	up_write(&device->client_data_rwsem);
742 	return ret;
743 }
744 
745 static void remove_client_context(struct ib_device *device,
746 				  unsigned int client_id)
747 {
748 	struct ib_client *client;
749 	void *client_data;
750 
751 	down_write(&device->client_data_rwsem);
752 	if (!xa_get_mark(&device->client_data, client_id,
753 			 CLIENT_DATA_REGISTERED)) {
754 		up_write(&device->client_data_rwsem);
755 		return;
756 	}
757 	client_data = xa_load(&device->client_data, client_id);
758 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
759 	client = xa_load(&clients, client_id);
760 	up_write(&device->client_data_rwsem);
761 
762 	/*
763 	 * Notice we cannot be holding any exclusive locks when calling the
764 	 * remove callback as the remove callback can recurse back into any
765 	 * public functions in this module and thus try for any locks those
766 	 * functions take.
767 	 *
768 	 * For this reason clients and drivers should not call the
769 	 * unregistration functions will holdling any locks.
770 	 */
771 	if (client->remove)
772 		client->remove(device, client_data);
773 
774 	xa_erase(&device->client_data, client_id);
775 	ib_device_put(device);
776 	ib_client_put(client);
777 }
778 
779 static int alloc_port_data(struct ib_device *device)
780 {
781 	struct ib_port_data_rcu *pdata_rcu;
782 	u32 port;
783 
784 	if (device->port_data)
785 		return 0;
786 
787 	/* This can only be called once the physical port range is defined */
788 	if (WARN_ON(!device->phys_port_cnt))
789 		return -EINVAL;
790 
791 	/* Reserve U32_MAX so the logic to go over all the ports is sane */
792 	if (WARN_ON(device->phys_port_cnt == U32_MAX))
793 		return -EINVAL;
794 
795 	/*
796 	 * device->port_data is indexed directly by the port number to make
797 	 * access to this data as efficient as possible.
798 	 *
799 	 * Therefore port_data is declared as a 1 based array with potential
800 	 * empty slots at the beginning.
801 	 */
802 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
803 					rdma_end_port(device) + 1),
804 			    GFP_KERNEL);
805 	if (!pdata_rcu)
806 		return -ENOMEM;
807 	/*
808 	 * The rcu_head is put in front of the port data array and the stored
809 	 * pointer is adjusted since we never need to see that member until
810 	 * kfree_rcu.
811 	 */
812 	device->port_data = pdata_rcu->pdata;
813 
814 	rdma_for_each_port (device, port) {
815 		struct ib_port_data *pdata = &device->port_data[port];
816 
817 		pdata->ib_dev = device;
818 		spin_lock_init(&pdata->pkey_list_lock);
819 		INIT_LIST_HEAD(&pdata->pkey_list);
820 		spin_lock_init(&pdata->netdev_lock);
821 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
822 	}
823 	return 0;
824 }
825 
826 static int verify_immutable(const struct ib_device *dev, u32 port)
827 {
828 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
829 			    rdma_max_mad_size(dev, port) != 0);
830 }
831 
832 static int setup_port_data(struct ib_device *device)
833 {
834 	u32 port;
835 	int ret;
836 
837 	ret = alloc_port_data(device);
838 	if (ret)
839 		return ret;
840 
841 	rdma_for_each_port (device, port) {
842 		struct ib_port_data *pdata = &device->port_data[port];
843 
844 		ret = device->ops.get_port_immutable(device, port,
845 						     &pdata->immutable);
846 		if (ret)
847 			return ret;
848 
849 		if (verify_immutable(device, port))
850 			return -EINVAL;
851 	}
852 	return 0;
853 }
854 
855 /**
856  * ib_port_immutable_read() - Read rdma port's immutable data
857  * @dev: IB device
858  * @port: port number whose immutable data to read. It starts with index 1 and
859  *        valid upto including rdma_end_port().
860  */
861 const struct ib_port_immutable*
862 ib_port_immutable_read(struct ib_device *dev, unsigned int port)
863 {
864 	WARN_ON(!rdma_is_port_valid(dev, port));
865 	return &dev->port_data[port].immutable;
866 }
867 EXPORT_SYMBOL(ib_port_immutable_read);
868 
869 void ib_get_device_fw_str(struct ib_device *dev, char *str)
870 {
871 	if (dev->ops.get_dev_fw_str)
872 		dev->ops.get_dev_fw_str(dev, str);
873 	else
874 		str[0] = '\0';
875 }
876 EXPORT_SYMBOL(ib_get_device_fw_str);
877 
878 static void ib_policy_change_task(struct work_struct *work)
879 {
880 	struct ib_device *dev;
881 	unsigned long index;
882 
883 	down_read(&devices_rwsem);
884 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
885 		unsigned int i;
886 
887 		rdma_for_each_port (dev, i) {
888 			u64 sp;
889 			int ret = ib_get_cached_subnet_prefix(dev,
890 							      i,
891 							      &sp);
892 
893 			WARN_ONCE(ret,
894 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
895 				  ret);
896 			if (!ret)
897 				ib_security_cache_change(dev, i, sp);
898 		}
899 	}
900 	up_read(&devices_rwsem);
901 }
902 
903 static int ib_security_change(struct notifier_block *nb, unsigned long event,
904 			      void *lsm_data)
905 {
906 	if (event != LSM_POLICY_CHANGE)
907 		return NOTIFY_DONE;
908 
909 	schedule_work(&ib_policy_change_work);
910 	ib_mad_agent_security_change();
911 
912 	return NOTIFY_OK;
913 }
914 
915 static void compatdev_release(struct device *dev)
916 {
917 	struct ib_core_device *cdev =
918 		container_of(dev, struct ib_core_device, dev);
919 
920 	kfree(cdev);
921 }
922 
923 static int add_one_compat_dev(struct ib_device *device,
924 			      struct rdma_dev_net *rnet)
925 {
926 	struct ib_core_device *cdev;
927 	int ret;
928 
929 	lockdep_assert_held(&rdma_nets_rwsem);
930 	if (!ib_devices_shared_netns)
931 		return 0;
932 
933 	/*
934 	 * Create and add compat device in all namespaces other than where it
935 	 * is currently bound to.
936 	 */
937 	if (net_eq(read_pnet(&rnet->net),
938 		   read_pnet(&device->coredev.rdma_net)))
939 		return 0;
940 
941 	/*
942 	 * The first of init_net() or ib_register_device() to take the
943 	 * compat_devs_mutex wins and gets to add the device. Others will wait
944 	 * for completion here.
945 	 */
946 	mutex_lock(&device->compat_devs_mutex);
947 	cdev = xa_load(&device->compat_devs, rnet->id);
948 	if (cdev) {
949 		ret = 0;
950 		goto done;
951 	}
952 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
953 	if (ret)
954 		goto done;
955 
956 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
957 	if (!cdev) {
958 		ret = -ENOMEM;
959 		goto cdev_err;
960 	}
961 
962 	cdev->dev.parent = device->dev.parent;
963 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
964 	cdev->dev.release = compatdev_release;
965 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
966 	if (ret)
967 		goto add_err;
968 
969 	ret = device_add(&cdev->dev);
970 	if (ret)
971 		goto add_err;
972 	ret = ib_setup_port_attrs(cdev);
973 	if (ret)
974 		goto port_err;
975 
976 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
977 			      cdev, GFP_KERNEL));
978 	if (ret)
979 		goto insert_err;
980 
981 	mutex_unlock(&device->compat_devs_mutex);
982 	return 0;
983 
984 insert_err:
985 	ib_free_port_attrs(cdev);
986 port_err:
987 	device_del(&cdev->dev);
988 add_err:
989 	put_device(&cdev->dev);
990 cdev_err:
991 	xa_release(&device->compat_devs, rnet->id);
992 done:
993 	mutex_unlock(&device->compat_devs_mutex);
994 	return ret;
995 }
996 
997 static void remove_one_compat_dev(struct ib_device *device, u32 id)
998 {
999 	struct ib_core_device *cdev;
1000 
1001 	mutex_lock(&device->compat_devs_mutex);
1002 	cdev = xa_erase(&device->compat_devs, id);
1003 	mutex_unlock(&device->compat_devs_mutex);
1004 	if (cdev) {
1005 		ib_free_port_attrs(cdev);
1006 		device_del(&cdev->dev);
1007 		put_device(&cdev->dev);
1008 	}
1009 }
1010 
1011 static void remove_compat_devs(struct ib_device *device)
1012 {
1013 	struct ib_core_device *cdev;
1014 	unsigned long index;
1015 
1016 	xa_for_each (&device->compat_devs, index, cdev)
1017 		remove_one_compat_dev(device, index);
1018 }
1019 
1020 static int add_compat_devs(struct ib_device *device)
1021 {
1022 	struct rdma_dev_net *rnet;
1023 	unsigned long index;
1024 	int ret = 0;
1025 
1026 	lockdep_assert_held(&devices_rwsem);
1027 
1028 	down_read(&rdma_nets_rwsem);
1029 	xa_for_each (&rdma_nets, index, rnet) {
1030 		ret = add_one_compat_dev(device, rnet);
1031 		if (ret)
1032 			break;
1033 	}
1034 	up_read(&rdma_nets_rwsem);
1035 	return ret;
1036 }
1037 
1038 static void remove_all_compat_devs(void)
1039 {
1040 	struct ib_compat_device *cdev;
1041 	struct ib_device *dev;
1042 	unsigned long index;
1043 
1044 	down_read(&devices_rwsem);
1045 	xa_for_each (&devices, index, dev) {
1046 		unsigned long c_index = 0;
1047 
1048 		/* Hold nets_rwsem so that any other thread modifying this
1049 		 * system param can sync with this thread.
1050 		 */
1051 		down_read(&rdma_nets_rwsem);
1052 		xa_for_each (&dev->compat_devs, c_index, cdev)
1053 			remove_one_compat_dev(dev, c_index);
1054 		up_read(&rdma_nets_rwsem);
1055 	}
1056 	up_read(&devices_rwsem);
1057 }
1058 
1059 static int add_all_compat_devs(void)
1060 {
1061 	struct rdma_dev_net *rnet;
1062 	struct ib_device *dev;
1063 	unsigned long index;
1064 	int ret = 0;
1065 
1066 	down_read(&devices_rwsem);
1067 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1068 		unsigned long net_index = 0;
1069 
1070 		/* Hold nets_rwsem so that any other thread modifying this
1071 		 * system param can sync with this thread.
1072 		 */
1073 		down_read(&rdma_nets_rwsem);
1074 		xa_for_each (&rdma_nets, net_index, rnet) {
1075 			ret = add_one_compat_dev(dev, rnet);
1076 			if (ret)
1077 				break;
1078 		}
1079 		up_read(&rdma_nets_rwsem);
1080 	}
1081 	up_read(&devices_rwsem);
1082 	if (ret)
1083 		remove_all_compat_devs();
1084 	return ret;
1085 }
1086 
1087 int rdma_compatdev_set(u8 enable)
1088 {
1089 	struct rdma_dev_net *rnet;
1090 	unsigned long index;
1091 	int ret = 0;
1092 
1093 	down_write(&rdma_nets_rwsem);
1094 	if (ib_devices_shared_netns == enable) {
1095 		up_write(&rdma_nets_rwsem);
1096 		return 0;
1097 	}
1098 
1099 	/* enable/disable of compat devices is not supported
1100 	 * when more than default init_net exists.
1101 	 */
1102 	xa_for_each (&rdma_nets, index, rnet) {
1103 		ret++;
1104 		break;
1105 	}
1106 	if (!ret)
1107 		ib_devices_shared_netns = enable;
1108 	up_write(&rdma_nets_rwsem);
1109 	if (ret)
1110 		return -EBUSY;
1111 
1112 	if (enable)
1113 		ret = add_all_compat_devs();
1114 	else
1115 		remove_all_compat_devs();
1116 	return ret;
1117 }
1118 
1119 static void rdma_dev_exit_net(struct net *net)
1120 {
1121 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1122 	struct ib_device *dev;
1123 	unsigned long index;
1124 	int ret;
1125 
1126 	down_write(&rdma_nets_rwsem);
1127 	/*
1128 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1129 	 */
1130 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1131 	WARN_ON(ret);
1132 	up_write(&rdma_nets_rwsem);
1133 
1134 	down_read(&devices_rwsem);
1135 	xa_for_each (&devices, index, dev) {
1136 		get_device(&dev->dev);
1137 		/*
1138 		 * Release the devices_rwsem so that pontentially blocking
1139 		 * device_del, doesn't hold the devices_rwsem for too long.
1140 		 */
1141 		up_read(&devices_rwsem);
1142 
1143 		remove_one_compat_dev(dev, rnet->id);
1144 
1145 		/*
1146 		 * If the real device is in the NS then move it back to init.
1147 		 */
1148 		rdma_dev_change_netns(dev, net, &init_net);
1149 
1150 		put_device(&dev->dev);
1151 		down_read(&devices_rwsem);
1152 	}
1153 	up_read(&devices_rwsem);
1154 
1155 	rdma_nl_net_exit(rnet);
1156 	xa_erase(&rdma_nets, rnet->id);
1157 }
1158 
1159 static __net_init int rdma_dev_init_net(struct net *net)
1160 {
1161 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1162 	unsigned long index;
1163 	struct ib_device *dev;
1164 	int ret;
1165 
1166 	write_pnet(&rnet->net, net);
1167 
1168 	ret = rdma_nl_net_init(rnet);
1169 	if (ret)
1170 		return ret;
1171 
1172 	/* No need to create any compat devices in default init_net. */
1173 	if (net_eq(net, &init_net))
1174 		return 0;
1175 
1176 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1177 	if (ret) {
1178 		rdma_nl_net_exit(rnet);
1179 		return ret;
1180 	}
1181 
1182 	down_read(&devices_rwsem);
1183 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1184 		/* Hold nets_rwsem so that netlink command cannot change
1185 		 * system configuration for device sharing mode.
1186 		 */
1187 		down_read(&rdma_nets_rwsem);
1188 		ret = add_one_compat_dev(dev, rnet);
1189 		up_read(&rdma_nets_rwsem);
1190 		if (ret)
1191 			break;
1192 	}
1193 	up_read(&devices_rwsem);
1194 
1195 	if (ret)
1196 		rdma_dev_exit_net(net);
1197 
1198 	return ret;
1199 }
1200 
1201 /*
1202  * Assign the unique string device name and the unique device index. This is
1203  * undone by ib_dealloc_device.
1204  */
1205 static int assign_name(struct ib_device *device, const char *name)
1206 {
1207 	static u32 last_id;
1208 	int ret;
1209 
1210 	down_write(&devices_rwsem);
1211 	/* Assign a unique name to the device */
1212 	if (strchr(name, '%'))
1213 		ret = alloc_name(device, name);
1214 	else
1215 		ret = dev_set_name(&device->dev, name);
1216 	if (ret)
1217 		goto out;
1218 
1219 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1220 		ret = -ENFILE;
1221 		goto out;
1222 	}
1223 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1224 
1225 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1226 			&last_id, GFP_KERNEL);
1227 	if (ret > 0)
1228 		ret = 0;
1229 
1230 out:
1231 	up_write(&devices_rwsem);
1232 	return ret;
1233 }
1234 
1235 /*
1236  * setup_device() allocates memory and sets up data that requires calling the
1237  * device ops, this is the only reason these actions are not done during
1238  * ib_alloc_device. It is undone by ib_dealloc_device().
1239  */
1240 static int setup_device(struct ib_device *device)
1241 {
1242 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1243 	int ret;
1244 
1245 	ib_device_check_mandatory(device);
1246 
1247 	ret = setup_port_data(device);
1248 	if (ret) {
1249 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1250 		return ret;
1251 	}
1252 
1253 	memset(&device->attrs, 0, sizeof(device->attrs));
1254 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1255 	if (ret) {
1256 		dev_warn(&device->dev,
1257 			 "Couldn't query the device attributes\n");
1258 		return ret;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 static void disable_device(struct ib_device *device)
1265 {
1266 	u32 cid;
1267 
1268 	WARN_ON(!refcount_read(&device->refcount));
1269 
1270 	down_write(&devices_rwsem);
1271 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1272 	up_write(&devices_rwsem);
1273 
1274 	/*
1275 	 * Remove clients in LIFO order, see assign_client_id. This could be
1276 	 * more efficient if xarray learns to reverse iterate. Since no new
1277 	 * clients can be added to this ib_device past this point we only need
1278 	 * the maximum possible client_id value here.
1279 	 */
1280 	down_read(&clients_rwsem);
1281 	cid = highest_client_id;
1282 	up_read(&clients_rwsem);
1283 	while (cid) {
1284 		cid--;
1285 		remove_client_context(device, cid);
1286 	}
1287 
1288 	ib_cq_pool_cleanup(device);
1289 
1290 	/* Pairs with refcount_set in enable_device */
1291 	ib_device_put(device);
1292 	wait_for_completion(&device->unreg_completion);
1293 
1294 	/*
1295 	 * compat devices must be removed after device refcount drops to zero.
1296 	 * Otherwise init_net() may add more compatdevs after removing compat
1297 	 * devices and before device is disabled.
1298 	 */
1299 	remove_compat_devs(device);
1300 }
1301 
1302 /*
1303  * An enabled device is visible to all clients and to all the public facing
1304  * APIs that return a device pointer. This always returns with a new get, even
1305  * if it fails.
1306  */
1307 static int enable_device_and_get(struct ib_device *device)
1308 {
1309 	struct ib_client *client;
1310 	unsigned long index;
1311 	int ret = 0;
1312 
1313 	/*
1314 	 * One ref belongs to the xa and the other belongs to this
1315 	 * thread. This is needed to guard against parallel unregistration.
1316 	 */
1317 	refcount_set(&device->refcount, 2);
1318 	down_write(&devices_rwsem);
1319 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1320 
1321 	/*
1322 	 * By using downgrade_write() we ensure that no other thread can clear
1323 	 * DEVICE_REGISTERED while we are completing the client setup.
1324 	 */
1325 	downgrade_write(&devices_rwsem);
1326 
1327 	if (device->ops.enable_driver) {
1328 		ret = device->ops.enable_driver(device);
1329 		if (ret)
1330 			goto out;
1331 	}
1332 
1333 	down_read(&clients_rwsem);
1334 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1335 		ret = add_client_context(device, client);
1336 		if (ret)
1337 			break;
1338 	}
1339 	up_read(&clients_rwsem);
1340 	if (!ret)
1341 		ret = add_compat_devs(device);
1342 out:
1343 	up_read(&devices_rwsem);
1344 	return ret;
1345 }
1346 
1347 static void prevent_dealloc_device(struct ib_device *ib_dev)
1348 {
1349 }
1350 
1351 /**
1352  * ib_register_device - Register an IB device with IB core
1353  * @device: Device to register
1354  * @name: unique string device name. This may include a '%' which will
1355  * 	  cause a unique index to be added to the passed device name.
1356  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1357  *	        device will be used. In this case the caller should fully
1358  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1359  *
1360  * Low-level drivers use ib_register_device() to register their
1361  * devices with the IB core.  All registered clients will receive a
1362  * callback for each device that is added. @device must be allocated
1363  * with ib_alloc_device().
1364  *
1365  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1366  * asynchronously then the device pointer may become freed as soon as this
1367  * function returns.
1368  */
1369 int ib_register_device(struct ib_device *device, const char *name,
1370 		       struct device *dma_device)
1371 {
1372 	int ret;
1373 
1374 	ret = assign_name(device, name);
1375 	if (ret)
1376 		return ret;
1377 
1378 	/*
1379 	 * If the caller does not provide a DMA capable device then the IB core
1380 	 * will set up ib_sge and scatterlist structures that stash the kernel
1381 	 * virtual address into the address field.
1382 	 */
1383 	WARN_ON(dma_device && !dma_device->dma_parms);
1384 	device->dma_device = dma_device;
1385 
1386 	ret = setup_device(device);
1387 	if (ret)
1388 		return ret;
1389 
1390 	ret = ib_cache_setup_one(device);
1391 	if (ret) {
1392 		dev_warn(&device->dev,
1393 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1394 		return ret;
1395 	}
1396 
1397 	ib_device_register_rdmacg(device);
1398 
1399 	rdma_counter_init(device);
1400 
1401 	/*
1402 	 * Ensure that ADD uevent is not fired because it
1403 	 * is too early amd device is not initialized yet.
1404 	 */
1405 	dev_set_uevent_suppress(&device->dev, true);
1406 	ret = device_add(&device->dev);
1407 	if (ret)
1408 		goto cg_cleanup;
1409 
1410 	ret = ib_device_register_sysfs(device);
1411 	if (ret) {
1412 		dev_warn(&device->dev,
1413 			 "Couldn't register device with driver model\n");
1414 		goto dev_cleanup;
1415 	}
1416 
1417 	ret = enable_device_and_get(device);
1418 	if (ret) {
1419 		void (*dealloc_fn)(struct ib_device *);
1420 
1421 		/*
1422 		 * If we hit this error flow then we don't want to
1423 		 * automatically dealloc the device since the caller is
1424 		 * expected to call ib_dealloc_device() after
1425 		 * ib_register_device() fails. This is tricky due to the
1426 		 * possibility for a parallel unregistration along with this
1427 		 * error flow. Since we have a refcount here we know any
1428 		 * parallel flow is stopped in disable_device and will see the
1429 		 * special dealloc_driver pointer, causing the responsibility to
1430 		 * ib_dealloc_device() to revert back to this thread.
1431 		 */
1432 		dealloc_fn = device->ops.dealloc_driver;
1433 		device->ops.dealloc_driver = prevent_dealloc_device;
1434 		ib_device_put(device);
1435 		__ib_unregister_device(device);
1436 		device->ops.dealloc_driver = dealloc_fn;
1437 		dev_set_uevent_suppress(&device->dev, false);
1438 		return ret;
1439 	}
1440 	dev_set_uevent_suppress(&device->dev, false);
1441 	/* Mark for userspace that device is ready */
1442 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1443 	ib_device_put(device);
1444 
1445 	return 0;
1446 
1447 dev_cleanup:
1448 	device_del(&device->dev);
1449 cg_cleanup:
1450 	dev_set_uevent_suppress(&device->dev, false);
1451 	ib_device_unregister_rdmacg(device);
1452 	ib_cache_cleanup_one(device);
1453 	return ret;
1454 }
1455 EXPORT_SYMBOL(ib_register_device);
1456 
1457 /* Callers must hold a get on the device. */
1458 static void __ib_unregister_device(struct ib_device *ib_dev)
1459 {
1460 	/*
1461 	 * We have a registration lock so that all the calls to unregister are
1462 	 * fully fenced, once any unregister returns the device is truely
1463 	 * unregistered even if multiple callers are unregistering it at the
1464 	 * same time. This also interacts with the registration flow and
1465 	 * provides sane semantics if register and unregister are racing.
1466 	 */
1467 	mutex_lock(&ib_dev->unregistration_lock);
1468 	if (!refcount_read(&ib_dev->refcount))
1469 		goto out;
1470 
1471 	disable_device(ib_dev);
1472 
1473 	/* Expedite removing unregistered pointers from the hash table */
1474 	free_netdevs(ib_dev);
1475 
1476 	ib_device_unregister_sysfs(ib_dev);
1477 	device_del(&ib_dev->dev);
1478 	ib_device_unregister_rdmacg(ib_dev);
1479 	ib_cache_cleanup_one(ib_dev);
1480 
1481 	/*
1482 	 * Drivers using the new flow may not call ib_dealloc_device except
1483 	 * in error unwind prior to registration success.
1484 	 */
1485 	if (ib_dev->ops.dealloc_driver &&
1486 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1487 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1488 		ib_dealloc_device(ib_dev);
1489 	}
1490 out:
1491 	mutex_unlock(&ib_dev->unregistration_lock);
1492 }
1493 
1494 /**
1495  * ib_unregister_device - Unregister an IB device
1496  * @ib_dev: The device to unregister
1497  *
1498  * Unregister an IB device.  All clients will receive a remove callback.
1499  *
1500  * Callers should call this routine only once, and protect against races with
1501  * registration. Typically it should only be called as part of a remove
1502  * callback in an implementation of driver core's struct device_driver and
1503  * related.
1504  *
1505  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1506  * this function.
1507  */
1508 void ib_unregister_device(struct ib_device *ib_dev)
1509 {
1510 	get_device(&ib_dev->dev);
1511 	__ib_unregister_device(ib_dev);
1512 	put_device(&ib_dev->dev);
1513 }
1514 EXPORT_SYMBOL(ib_unregister_device);
1515 
1516 /**
1517  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1518  * @ib_dev: The device to unregister
1519  *
1520  * This is the same as ib_unregister_device(), except it includes an internal
1521  * ib_device_put() that should match a 'get' obtained by the caller.
1522  *
1523  * It is safe to call this routine concurrently from multiple threads while
1524  * holding the 'get'. When the function returns the device is fully
1525  * unregistered.
1526  *
1527  * Drivers using this flow MUST use the driver_unregister callback to clean up
1528  * their resources associated with the device and dealloc it.
1529  */
1530 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1531 {
1532 	WARN_ON(!ib_dev->ops.dealloc_driver);
1533 	get_device(&ib_dev->dev);
1534 	ib_device_put(ib_dev);
1535 	__ib_unregister_device(ib_dev);
1536 	put_device(&ib_dev->dev);
1537 }
1538 EXPORT_SYMBOL(ib_unregister_device_and_put);
1539 
1540 /**
1541  * ib_unregister_driver - Unregister all IB devices for a driver
1542  * @driver_id: The driver to unregister
1543  *
1544  * This implements a fence for device unregistration. It only returns once all
1545  * devices associated with the driver_id have fully completed their
1546  * unregistration and returned from ib_unregister_device*().
1547  *
1548  * If device's are not yet unregistered it goes ahead and starts unregistering
1549  * them.
1550  *
1551  * This does not block creation of new devices with the given driver_id, that
1552  * is the responsibility of the caller.
1553  */
1554 void ib_unregister_driver(enum rdma_driver_id driver_id)
1555 {
1556 	struct ib_device *ib_dev;
1557 	unsigned long index;
1558 
1559 	down_read(&devices_rwsem);
1560 	xa_for_each (&devices, index, ib_dev) {
1561 		if (ib_dev->ops.driver_id != driver_id)
1562 			continue;
1563 
1564 		get_device(&ib_dev->dev);
1565 		up_read(&devices_rwsem);
1566 
1567 		WARN_ON(!ib_dev->ops.dealloc_driver);
1568 		__ib_unregister_device(ib_dev);
1569 
1570 		put_device(&ib_dev->dev);
1571 		down_read(&devices_rwsem);
1572 	}
1573 	up_read(&devices_rwsem);
1574 }
1575 EXPORT_SYMBOL(ib_unregister_driver);
1576 
1577 static void ib_unregister_work(struct work_struct *work)
1578 {
1579 	struct ib_device *ib_dev =
1580 		container_of(work, struct ib_device, unregistration_work);
1581 
1582 	__ib_unregister_device(ib_dev);
1583 	put_device(&ib_dev->dev);
1584 }
1585 
1586 /**
1587  * ib_unregister_device_queued - Unregister a device using a work queue
1588  * @ib_dev: The device to unregister
1589  *
1590  * This schedules an asynchronous unregistration using a WQ for the device. A
1591  * driver should use this to avoid holding locks while doing unregistration,
1592  * such as holding the RTNL lock.
1593  *
1594  * Drivers using this API must use ib_unregister_driver before module unload
1595  * to ensure that all scheduled unregistrations have completed.
1596  */
1597 void ib_unregister_device_queued(struct ib_device *ib_dev)
1598 {
1599 	WARN_ON(!refcount_read(&ib_dev->refcount));
1600 	WARN_ON(!ib_dev->ops.dealloc_driver);
1601 	get_device(&ib_dev->dev);
1602 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1603 		put_device(&ib_dev->dev);
1604 }
1605 EXPORT_SYMBOL(ib_unregister_device_queued);
1606 
1607 /*
1608  * The caller must pass in a device that has the kref held and the refcount
1609  * released. If the device is in cur_net and still registered then it is moved
1610  * into net.
1611  */
1612 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1613 				 struct net *net)
1614 {
1615 	int ret2 = -EINVAL;
1616 	int ret;
1617 
1618 	mutex_lock(&device->unregistration_lock);
1619 
1620 	/*
1621 	 * If a device not under ib_device_get() or if the unregistration_lock
1622 	 * is not held, the namespace can be changed, or it can be unregistered.
1623 	 * Check again under the lock.
1624 	 */
1625 	if (refcount_read(&device->refcount) == 0 ||
1626 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1627 		ret = -ENODEV;
1628 		goto out;
1629 	}
1630 
1631 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1632 	disable_device(device);
1633 
1634 	/*
1635 	 * At this point no one can be using the device, so it is safe to
1636 	 * change the namespace.
1637 	 */
1638 	write_pnet(&device->coredev.rdma_net, net);
1639 
1640 	down_read(&devices_rwsem);
1641 	/*
1642 	 * Currently rdma devices are system wide unique. So the device name
1643 	 * is guaranteed free in the new namespace. Publish the new namespace
1644 	 * at the sysfs level.
1645 	 */
1646 	ret = device_rename(&device->dev, dev_name(&device->dev));
1647 	up_read(&devices_rwsem);
1648 	if (ret) {
1649 		dev_warn(&device->dev,
1650 			 "%s: Couldn't rename device after namespace change\n",
1651 			 __func__);
1652 		/* Try and put things back and re-enable the device */
1653 		write_pnet(&device->coredev.rdma_net, cur_net);
1654 	}
1655 
1656 	ret2 = enable_device_and_get(device);
1657 	if (ret2) {
1658 		/*
1659 		 * This shouldn't really happen, but if it does, let the user
1660 		 * retry at later point. So don't disable the device.
1661 		 */
1662 		dev_warn(&device->dev,
1663 			 "%s: Couldn't re-enable device after namespace change\n",
1664 			 __func__);
1665 	}
1666 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1667 
1668 	ib_device_put(device);
1669 out:
1670 	mutex_unlock(&device->unregistration_lock);
1671 	if (ret)
1672 		return ret;
1673 	return ret2;
1674 }
1675 
1676 int ib_device_set_netns_put(struct sk_buff *skb,
1677 			    struct ib_device *dev, u32 ns_fd)
1678 {
1679 	struct net *net;
1680 	int ret;
1681 
1682 	net = get_net_ns_by_fd(ns_fd);
1683 	if (IS_ERR(net)) {
1684 		ret = PTR_ERR(net);
1685 		goto net_err;
1686 	}
1687 
1688 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1689 		ret = -EPERM;
1690 		goto ns_err;
1691 	}
1692 
1693 	/*
1694 	 * Currently supported only for those providers which support
1695 	 * disassociation and don't do port specific sysfs init. Once a
1696 	 * port_cleanup infrastructure is implemented, this limitation will be
1697 	 * removed.
1698 	 */
1699 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1700 	    ib_devices_shared_netns) {
1701 		ret = -EOPNOTSUPP;
1702 		goto ns_err;
1703 	}
1704 
1705 	get_device(&dev->dev);
1706 	ib_device_put(dev);
1707 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1708 	put_device(&dev->dev);
1709 
1710 	put_net(net);
1711 	return ret;
1712 
1713 ns_err:
1714 	put_net(net);
1715 net_err:
1716 	ib_device_put(dev);
1717 	return ret;
1718 }
1719 
1720 static struct pernet_operations rdma_dev_net_ops = {
1721 	.init = rdma_dev_init_net,
1722 	.exit = rdma_dev_exit_net,
1723 	.id = &rdma_dev_net_id,
1724 	.size = sizeof(struct rdma_dev_net),
1725 };
1726 
1727 static int assign_client_id(struct ib_client *client)
1728 {
1729 	int ret;
1730 
1731 	down_write(&clients_rwsem);
1732 	/*
1733 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1734 	 * achieve this we assign client_ids so they are sorted in
1735 	 * registration order.
1736 	 */
1737 	client->client_id = highest_client_id;
1738 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1739 	if (ret)
1740 		goto out;
1741 
1742 	highest_client_id++;
1743 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1744 
1745 out:
1746 	up_write(&clients_rwsem);
1747 	return ret;
1748 }
1749 
1750 static void remove_client_id(struct ib_client *client)
1751 {
1752 	down_write(&clients_rwsem);
1753 	xa_erase(&clients, client->client_id);
1754 	for (; highest_client_id; highest_client_id--)
1755 		if (xa_load(&clients, highest_client_id - 1))
1756 			break;
1757 	up_write(&clients_rwsem);
1758 }
1759 
1760 /**
1761  * ib_register_client - Register an IB client
1762  * @client:Client to register
1763  *
1764  * Upper level users of the IB drivers can use ib_register_client() to
1765  * register callbacks for IB device addition and removal.  When an IB
1766  * device is added, each registered client's add method will be called
1767  * (in the order the clients were registered), and when a device is
1768  * removed, each client's remove method will be called (in the reverse
1769  * order that clients were registered).  In addition, when
1770  * ib_register_client() is called, the client will receive an add
1771  * callback for all devices already registered.
1772  */
1773 int ib_register_client(struct ib_client *client)
1774 {
1775 	struct ib_device *device;
1776 	unsigned long index;
1777 	int ret;
1778 
1779 	refcount_set(&client->uses, 1);
1780 	init_completion(&client->uses_zero);
1781 	ret = assign_client_id(client);
1782 	if (ret)
1783 		return ret;
1784 
1785 	down_read(&devices_rwsem);
1786 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1787 		ret = add_client_context(device, client);
1788 		if (ret) {
1789 			up_read(&devices_rwsem);
1790 			ib_unregister_client(client);
1791 			return ret;
1792 		}
1793 	}
1794 	up_read(&devices_rwsem);
1795 	return 0;
1796 }
1797 EXPORT_SYMBOL(ib_register_client);
1798 
1799 /**
1800  * ib_unregister_client - Unregister an IB client
1801  * @client:Client to unregister
1802  *
1803  * Upper level users use ib_unregister_client() to remove their client
1804  * registration.  When ib_unregister_client() is called, the client
1805  * will receive a remove callback for each IB device still registered.
1806  *
1807  * This is a full fence, once it returns no client callbacks will be called,
1808  * or are running in another thread.
1809  */
1810 void ib_unregister_client(struct ib_client *client)
1811 {
1812 	struct ib_device *device;
1813 	unsigned long index;
1814 
1815 	down_write(&clients_rwsem);
1816 	ib_client_put(client);
1817 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1818 	up_write(&clients_rwsem);
1819 
1820 	/* We do not want to have locks while calling client->remove() */
1821 	rcu_read_lock();
1822 	xa_for_each (&devices, index, device) {
1823 		if (!ib_device_try_get(device))
1824 			continue;
1825 		rcu_read_unlock();
1826 
1827 		remove_client_context(device, client->client_id);
1828 
1829 		ib_device_put(device);
1830 		rcu_read_lock();
1831 	}
1832 	rcu_read_unlock();
1833 
1834 	/*
1835 	 * remove_client_context() is not a fence, it can return even though a
1836 	 * removal is ongoing. Wait until all removals are completed.
1837 	 */
1838 	wait_for_completion(&client->uses_zero);
1839 	remove_client_id(client);
1840 }
1841 EXPORT_SYMBOL(ib_unregister_client);
1842 
1843 static int __ib_get_global_client_nl_info(const char *client_name,
1844 					  struct ib_client_nl_info *res)
1845 {
1846 	struct ib_client *client;
1847 	unsigned long index;
1848 	int ret = -ENOENT;
1849 
1850 	down_read(&clients_rwsem);
1851 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1852 		if (strcmp(client->name, client_name) != 0)
1853 			continue;
1854 		if (!client->get_global_nl_info) {
1855 			ret = -EOPNOTSUPP;
1856 			break;
1857 		}
1858 		ret = client->get_global_nl_info(res);
1859 		if (WARN_ON(ret == -ENOENT))
1860 			ret = -EINVAL;
1861 		if (!ret && res->cdev)
1862 			get_device(res->cdev);
1863 		break;
1864 	}
1865 	up_read(&clients_rwsem);
1866 	return ret;
1867 }
1868 
1869 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1870 				   const char *client_name,
1871 				   struct ib_client_nl_info *res)
1872 {
1873 	unsigned long index;
1874 	void *client_data;
1875 	int ret = -ENOENT;
1876 
1877 	down_read(&ibdev->client_data_rwsem);
1878 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1879 			     CLIENT_DATA_REGISTERED) {
1880 		struct ib_client *client = xa_load(&clients, index);
1881 
1882 		if (!client || strcmp(client->name, client_name) != 0)
1883 			continue;
1884 		if (!client->get_nl_info) {
1885 			ret = -EOPNOTSUPP;
1886 			break;
1887 		}
1888 		ret = client->get_nl_info(ibdev, client_data, res);
1889 		if (WARN_ON(ret == -ENOENT))
1890 			ret = -EINVAL;
1891 
1892 		/*
1893 		 * The cdev is guaranteed valid as long as we are inside the
1894 		 * client_data_rwsem as remove_one can't be called. Keep it
1895 		 * valid for the caller.
1896 		 */
1897 		if (!ret && res->cdev)
1898 			get_device(res->cdev);
1899 		break;
1900 	}
1901 	up_read(&ibdev->client_data_rwsem);
1902 
1903 	return ret;
1904 }
1905 
1906 /**
1907  * ib_get_client_nl_info - Fetch the nl_info from a client
1908  * @ibdev: IB device
1909  * @client_name: Name of the client
1910  * @res: Result of the query
1911  */
1912 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1913 			  struct ib_client_nl_info *res)
1914 {
1915 	int ret;
1916 
1917 	if (ibdev)
1918 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1919 	else
1920 		ret = __ib_get_global_client_nl_info(client_name, res);
1921 #ifdef CONFIG_MODULES
1922 	if (ret == -ENOENT) {
1923 		request_module("rdma-client-%s", client_name);
1924 		if (ibdev)
1925 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1926 		else
1927 			ret = __ib_get_global_client_nl_info(client_name, res);
1928 	}
1929 #endif
1930 	if (ret) {
1931 		if (ret == -ENOENT)
1932 			return -EOPNOTSUPP;
1933 		return ret;
1934 	}
1935 
1936 	if (WARN_ON(!res->cdev))
1937 		return -EINVAL;
1938 	return 0;
1939 }
1940 
1941 /**
1942  * ib_set_client_data - Set IB client context
1943  * @device:Device to set context for
1944  * @client:Client to set context for
1945  * @data:Context to set
1946  *
1947  * ib_set_client_data() sets client context data that can be retrieved with
1948  * ib_get_client_data(). This can only be called while the client is
1949  * registered to the device, once the ib_client remove() callback returns this
1950  * cannot be called.
1951  */
1952 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1953 			void *data)
1954 {
1955 	void *rc;
1956 
1957 	if (WARN_ON(IS_ERR(data)))
1958 		data = NULL;
1959 
1960 	rc = xa_store(&device->client_data, client->client_id, data,
1961 		      GFP_KERNEL);
1962 	WARN_ON(xa_is_err(rc));
1963 }
1964 EXPORT_SYMBOL(ib_set_client_data);
1965 
1966 /**
1967  * ib_register_event_handler - Register an IB event handler
1968  * @event_handler:Handler to register
1969  *
1970  * ib_register_event_handler() registers an event handler that will be
1971  * called back when asynchronous IB events occur (as defined in
1972  * chapter 11 of the InfiniBand Architecture Specification). This
1973  * callback occurs in workqueue context.
1974  */
1975 void ib_register_event_handler(struct ib_event_handler *event_handler)
1976 {
1977 	down_write(&event_handler->device->event_handler_rwsem);
1978 	list_add_tail(&event_handler->list,
1979 		      &event_handler->device->event_handler_list);
1980 	up_write(&event_handler->device->event_handler_rwsem);
1981 }
1982 EXPORT_SYMBOL(ib_register_event_handler);
1983 
1984 /**
1985  * ib_unregister_event_handler - Unregister an event handler
1986  * @event_handler:Handler to unregister
1987  *
1988  * Unregister an event handler registered with
1989  * ib_register_event_handler().
1990  */
1991 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1992 {
1993 	down_write(&event_handler->device->event_handler_rwsem);
1994 	list_del(&event_handler->list);
1995 	up_write(&event_handler->device->event_handler_rwsem);
1996 }
1997 EXPORT_SYMBOL(ib_unregister_event_handler);
1998 
1999 void ib_dispatch_event_clients(struct ib_event *event)
2000 {
2001 	struct ib_event_handler *handler;
2002 
2003 	down_read(&event->device->event_handler_rwsem);
2004 
2005 	list_for_each_entry(handler, &event->device->event_handler_list, list)
2006 		handler->handler(handler, event);
2007 
2008 	up_read(&event->device->event_handler_rwsem);
2009 }
2010 
2011 static int iw_query_port(struct ib_device *device,
2012 			   u32 port_num,
2013 			   struct ib_port_attr *port_attr)
2014 {
2015 	struct in_device *inetdev;
2016 	struct net_device *netdev;
2017 
2018 	memset(port_attr, 0, sizeof(*port_attr));
2019 
2020 	netdev = ib_device_get_netdev(device, port_num);
2021 	if (!netdev)
2022 		return -ENODEV;
2023 
2024 	port_attr->max_mtu = IB_MTU_4096;
2025 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2026 
2027 	if (!netif_carrier_ok(netdev)) {
2028 		port_attr->state = IB_PORT_DOWN;
2029 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2030 	} else {
2031 		rcu_read_lock();
2032 		inetdev = __in_dev_get_rcu(netdev);
2033 
2034 		if (inetdev && inetdev->ifa_list) {
2035 			port_attr->state = IB_PORT_ACTIVE;
2036 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2037 		} else {
2038 			port_attr->state = IB_PORT_INIT;
2039 			port_attr->phys_state =
2040 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2041 		}
2042 
2043 		rcu_read_unlock();
2044 	}
2045 
2046 	dev_put(netdev);
2047 	return device->ops.query_port(device, port_num, port_attr);
2048 }
2049 
2050 static int __ib_query_port(struct ib_device *device,
2051 			   u32 port_num,
2052 			   struct ib_port_attr *port_attr)
2053 {
2054 	union ib_gid gid = {};
2055 	int err;
2056 
2057 	memset(port_attr, 0, sizeof(*port_attr));
2058 
2059 	err = device->ops.query_port(device, port_num, port_attr);
2060 	if (err || port_attr->subnet_prefix)
2061 		return err;
2062 
2063 	if (rdma_port_get_link_layer(device, port_num) !=
2064 	    IB_LINK_LAYER_INFINIBAND)
2065 		return 0;
2066 
2067 	err = device->ops.query_gid(device, port_num, 0, &gid);
2068 	if (err)
2069 		return err;
2070 
2071 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2072 	return 0;
2073 }
2074 
2075 /**
2076  * ib_query_port - Query IB port attributes
2077  * @device:Device to query
2078  * @port_num:Port number to query
2079  * @port_attr:Port attributes
2080  *
2081  * ib_query_port() returns the attributes of a port through the
2082  * @port_attr pointer.
2083  */
2084 int ib_query_port(struct ib_device *device,
2085 		  u32 port_num,
2086 		  struct ib_port_attr *port_attr)
2087 {
2088 	if (!rdma_is_port_valid(device, port_num))
2089 		return -EINVAL;
2090 
2091 	if (rdma_protocol_iwarp(device, port_num))
2092 		return iw_query_port(device, port_num, port_attr);
2093 	else
2094 		return __ib_query_port(device, port_num, port_attr);
2095 }
2096 EXPORT_SYMBOL(ib_query_port);
2097 
2098 static void add_ndev_hash(struct ib_port_data *pdata)
2099 {
2100 	unsigned long flags;
2101 
2102 	might_sleep();
2103 
2104 	spin_lock_irqsave(&ndev_hash_lock, flags);
2105 	if (hash_hashed(&pdata->ndev_hash_link)) {
2106 		hash_del_rcu(&pdata->ndev_hash_link);
2107 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2108 		/*
2109 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2110 		 * grace period
2111 		 */
2112 		synchronize_rcu();
2113 		spin_lock_irqsave(&ndev_hash_lock, flags);
2114 	}
2115 	if (pdata->netdev)
2116 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2117 			     (uintptr_t)pdata->netdev);
2118 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2119 }
2120 
2121 /**
2122  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2123  * @ib_dev: Device to modify
2124  * @ndev: net_device to affiliate, may be NULL
2125  * @port: IB port the net_device is connected to
2126  *
2127  * Drivers should use this to link the ib_device to a netdev so the netdev
2128  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2129  * affiliated with any port.
2130  *
2131  * The caller must ensure that the given ndev is not unregistered or
2132  * unregistering, and that either the ib_device is unregistered or
2133  * ib_device_set_netdev() is called with NULL when the ndev sends a
2134  * NETDEV_UNREGISTER event.
2135  */
2136 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2137 			 u32 port)
2138 {
2139 	struct net_device *old_ndev;
2140 	struct ib_port_data *pdata;
2141 	unsigned long flags;
2142 	int ret;
2143 
2144 	/*
2145 	 * Drivers wish to call this before ib_register_driver, so we have to
2146 	 * setup the port data early.
2147 	 */
2148 	ret = alloc_port_data(ib_dev);
2149 	if (ret)
2150 		return ret;
2151 
2152 	if (!rdma_is_port_valid(ib_dev, port))
2153 		return -EINVAL;
2154 
2155 	pdata = &ib_dev->port_data[port];
2156 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2157 	old_ndev = rcu_dereference_protected(
2158 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2159 	if (old_ndev == ndev) {
2160 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2161 		return 0;
2162 	}
2163 
2164 	if (ndev)
2165 		dev_hold(ndev);
2166 	rcu_assign_pointer(pdata->netdev, ndev);
2167 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2168 
2169 	add_ndev_hash(pdata);
2170 	if (old_ndev)
2171 		dev_put(old_ndev);
2172 
2173 	return 0;
2174 }
2175 EXPORT_SYMBOL(ib_device_set_netdev);
2176 
2177 static void free_netdevs(struct ib_device *ib_dev)
2178 {
2179 	unsigned long flags;
2180 	u32 port;
2181 
2182 	if (!ib_dev->port_data)
2183 		return;
2184 
2185 	rdma_for_each_port (ib_dev, port) {
2186 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2187 		struct net_device *ndev;
2188 
2189 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2190 		ndev = rcu_dereference_protected(
2191 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2192 		if (ndev) {
2193 			spin_lock(&ndev_hash_lock);
2194 			hash_del_rcu(&pdata->ndev_hash_link);
2195 			spin_unlock(&ndev_hash_lock);
2196 
2197 			/*
2198 			 * If this is the last dev_put there is still a
2199 			 * synchronize_rcu before the netdev is kfreed, so we
2200 			 * can continue to rely on unlocked pointer
2201 			 * comparisons after the put
2202 			 */
2203 			rcu_assign_pointer(pdata->netdev, NULL);
2204 			dev_put(ndev);
2205 		}
2206 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2207 	}
2208 }
2209 
2210 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2211 					u32 port)
2212 {
2213 	struct ib_port_data *pdata;
2214 	struct net_device *res;
2215 
2216 	if (!rdma_is_port_valid(ib_dev, port))
2217 		return NULL;
2218 
2219 	pdata = &ib_dev->port_data[port];
2220 
2221 	/*
2222 	 * New drivers should use ib_device_set_netdev() not the legacy
2223 	 * get_netdev().
2224 	 */
2225 	if (ib_dev->ops.get_netdev)
2226 		res = ib_dev->ops.get_netdev(ib_dev, port);
2227 	else {
2228 		spin_lock(&pdata->netdev_lock);
2229 		res = rcu_dereference_protected(
2230 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2231 		if (res)
2232 			dev_hold(res);
2233 		spin_unlock(&pdata->netdev_lock);
2234 	}
2235 
2236 	/*
2237 	 * If we are starting to unregister expedite things by preventing
2238 	 * propagation of an unregistering netdev.
2239 	 */
2240 	if (res && res->reg_state != NETREG_REGISTERED) {
2241 		dev_put(res);
2242 		return NULL;
2243 	}
2244 
2245 	return res;
2246 }
2247 
2248 /**
2249  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2250  * @ndev: netdev to locate
2251  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2252  *
2253  * Find and hold an ib_device that is associated with a netdev via
2254  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2255  * returned pointer.
2256  */
2257 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2258 					  enum rdma_driver_id driver_id)
2259 {
2260 	struct ib_device *res = NULL;
2261 	struct ib_port_data *cur;
2262 
2263 	rcu_read_lock();
2264 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2265 				    (uintptr_t)ndev) {
2266 		if (rcu_access_pointer(cur->netdev) == ndev &&
2267 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2268 		     cur->ib_dev->ops.driver_id == driver_id) &&
2269 		    ib_device_try_get(cur->ib_dev)) {
2270 			res = cur->ib_dev;
2271 			break;
2272 		}
2273 	}
2274 	rcu_read_unlock();
2275 
2276 	return res;
2277 }
2278 EXPORT_SYMBOL(ib_device_get_by_netdev);
2279 
2280 /**
2281  * ib_enum_roce_netdev - enumerate all RoCE ports
2282  * @ib_dev : IB device we want to query
2283  * @filter: Should we call the callback?
2284  * @filter_cookie: Cookie passed to filter
2285  * @cb: Callback to call for each found RoCE ports
2286  * @cookie: Cookie passed back to the callback
2287  *
2288  * Enumerates all of the physical RoCE ports of ib_dev
2289  * which are related to netdevice and calls callback() on each
2290  * device for which filter() function returns non zero.
2291  */
2292 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2293 			 roce_netdev_filter filter,
2294 			 void *filter_cookie,
2295 			 roce_netdev_callback cb,
2296 			 void *cookie)
2297 {
2298 	u32 port;
2299 
2300 	rdma_for_each_port (ib_dev, port)
2301 		if (rdma_protocol_roce(ib_dev, port)) {
2302 			struct net_device *idev =
2303 				ib_device_get_netdev(ib_dev, port);
2304 
2305 			if (filter(ib_dev, port, idev, filter_cookie))
2306 				cb(ib_dev, port, idev, cookie);
2307 
2308 			if (idev)
2309 				dev_put(idev);
2310 		}
2311 }
2312 
2313 /**
2314  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2315  * @filter: Should we call the callback?
2316  * @filter_cookie: Cookie passed to filter
2317  * @cb: Callback to call for each found RoCE ports
2318  * @cookie: Cookie passed back to the callback
2319  *
2320  * Enumerates all RoCE devices' physical ports which are related
2321  * to netdevices and calls callback() on each device for which
2322  * filter() function returns non zero.
2323  */
2324 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2325 			      void *filter_cookie,
2326 			      roce_netdev_callback cb,
2327 			      void *cookie)
2328 {
2329 	struct ib_device *dev;
2330 	unsigned long index;
2331 
2332 	down_read(&devices_rwsem);
2333 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2334 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2335 	up_read(&devices_rwsem);
2336 }
2337 
2338 /*
2339  * ib_enum_all_devs - enumerate all ib_devices
2340  * @cb: Callback to call for each found ib_device
2341  *
2342  * Enumerates all ib_devices and calls callback() on each device.
2343  */
2344 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2345 		     struct netlink_callback *cb)
2346 {
2347 	unsigned long index;
2348 	struct ib_device *dev;
2349 	unsigned int idx = 0;
2350 	int ret = 0;
2351 
2352 	down_read(&devices_rwsem);
2353 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2354 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2355 			continue;
2356 
2357 		ret = nldev_cb(dev, skb, cb, idx);
2358 		if (ret)
2359 			break;
2360 		idx++;
2361 	}
2362 	up_read(&devices_rwsem);
2363 	return ret;
2364 }
2365 
2366 /**
2367  * ib_query_pkey - Get P_Key table entry
2368  * @device:Device to query
2369  * @port_num:Port number to query
2370  * @index:P_Key table index to query
2371  * @pkey:Returned P_Key
2372  *
2373  * ib_query_pkey() fetches the specified P_Key table entry.
2374  */
2375 int ib_query_pkey(struct ib_device *device,
2376 		  u32 port_num, u16 index, u16 *pkey)
2377 {
2378 	if (!rdma_is_port_valid(device, port_num))
2379 		return -EINVAL;
2380 
2381 	if (!device->ops.query_pkey)
2382 		return -EOPNOTSUPP;
2383 
2384 	return device->ops.query_pkey(device, port_num, index, pkey);
2385 }
2386 EXPORT_SYMBOL(ib_query_pkey);
2387 
2388 /**
2389  * ib_modify_device - Change IB device attributes
2390  * @device:Device to modify
2391  * @device_modify_mask:Mask of attributes to change
2392  * @device_modify:New attribute values
2393  *
2394  * ib_modify_device() changes a device's attributes as specified by
2395  * the @device_modify_mask and @device_modify structure.
2396  */
2397 int ib_modify_device(struct ib_device *device,
2398 		     int device_modify_mask,
2399 		     struct ib_device_modify *device_modify)
2400 {
2401 	if (!device->ops.modify_device)
2402 		return -EOPNOTSUPP;
2403 
2404 	return device->ops.modify_device(device, device_modify_mask,
2405 					 device_modify);
2406 }
2407 EXPORT_SYMBOL(ib_modify_device);
2408 
2409 /**
2410  * ib_modify_port - Modifies the attributes for the specified port.
2411  * @device: The device to modify.
2412  * @port_num: The number of the port to modify.
2413  * @port_modify_mask: Mask used to specify which attributes of the port
2414  *   to change.
2415  * @port_modify: New attribute values for the port.
2416  *
2417  * ib_modify_port() changes a port's attributes as specified by the
2418  * @port_modify_mask and @port_modify structure.
2419  */
2420 int ib_modify_port(struct ib_device *device,
2421 		   u32 port_num, int port_modify_mask,
2422 		   struct ib_port_modify *port_modify)
2423 {
2424 	int rc;
2425 
2426 	if (!rdma_is_port_valid(device, port_num))
2427 		return -EINVAL;
2428 
2429 	if (device->ops.modify_port)
2430 		rc = device->ops.modify_port(device, port_num,
2431 					     port_modify_mask,
2432 					     port_modify);
2433 	else if (rdma_protocol_roce(device, port_num) &&
2434 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2435 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2436 		rc = 0;
2437 	else
2438 		rc = -EOPNOTSUPP;
2439 	return rc;
2440 }
2441 EXPORT_SYMBOL(ib_modify_port);
2442 
2443 /**
2444  * ib_find_gid - Returns the port number and GID table index where
2445  *   a specified GID value occurs. Its searches only for IB link layer.
2446  * @device: The device to query.
2447  * @gid: The GID value to search for.
2448  * @port_num: The port number of the device where the GID value was found.
2449  * @index: The index into the GID table where the GID was found.  This
2450  *   parameter may be NULL.
2451  */
2452 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2453 		u32 *port_num, u16 *index)
2454 {
2455 	union ib_gid tmp_gid;
2456 	u32 port;
2457 	int ret, i;
2458 
2459 	rdma_for_each_port (device, port) {
2460 		if (!rdma_protocol_ib(device, port))
2461 			continue;
2462 
2463 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2464 		     ++i) {
2465 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2466 			if (ret)
2467 				return ret;
2468 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2469 				*port_num = port;
2470 				if (index)
2471 					*index = i;
2472 				return 0;
2473 			}
2474 		}
2475 	}
2476 
2477 	return -ENOENT;
2478 }
2479 EXPORT_SYMBOL(ib_find_gid);
2480 
2481 /**
2482  * ib_find_pkey - Returns the PKey table index where a specified
2483  *   PKey value occurs.
2484  * @device: The device to query.
2485  * @port_num: The port number of the device to search for the PKey.
2486  * @pkey: The PKey value to search for.
2487  * @index: The index into the PKey table where the PKey was found.
2488  */
2489 int ib_find_pkey(struct ib_device *device,
2490 		 u32 port_num, u16 pkey, u16 *index)
2491 {
2492 	int ret, i;
2493 	u16 tmp_pkey;
2494 	int partial_ix = -1;
2495 
2496 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2497 	     ++i) {
2498 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2499 		if (ret)
2500 			return ret;
2501 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2502 			/* if there is full-member pkey take it.*/
2503 			if (tmp_pkey & 0x8000) {
2504 				*index = i;
2505 				return 0;
2506 			}
2507 			if (partial_ix < 0)
2508 				partial_ix = i;
2509 		}
2510 	}
2511 
2512 	/*no full-member, if exists take the limited*/
2513 	if (partial_ix >= 0) {
2514 		*index = partial_ix;
2515 		return 0;
2516 	}
2517 	return -ENOENT;
2518 }
2519 EXPORT_SYMBOL(ib_find_pkey);
2520 
2521 /**
2522  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2523  * for a received CM request
2524  * @dev:	An RDMA device on which the request has been received.
2525  * @port:	Port number on the RDMA device.
2526  * @pkey:	The Pkey the request came on.
2527  * @gid:	A GID that the net_dev uses to communicate.
2528  * @addr:	Contains the IP address that the request specified as its
2529  *		destination.
2530  *
2531  */
2532 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2533 					    u32 port,
2534 					    u16 pkey,
2535 					    const union ib_gid *gid,
2536 					    const struct sockaddr *addr)
2537 {
2538 	struct net_device *net_dev = NULL;
2539 	unsigned long index;
2540 	void *client_data;
2541 
2542 	if (!rdma_protocol_ib(dev, port))
2543 		return NULL;
2544 
2545 	/*
2546 	 * Holding the read side guarantees that the client will not become
2547 	 * unregistered while we are calling get_net_dev_by_params()
2548 	 */
2549 	down_read(&dev->client_data_rwsem);
2550 	xan_for_each_marked (&dev->client_data, index, client_data,
2551 			     CLIENT_DATA_REGISTERED) {
2552 		struct ib_client *client = xa_load(&clients, index);
2553 
2554 		if (!client || !client->get_net_dev_by_params)
2555 			continue;
2556 
2557 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2558 							addr, client_data);
2559 		if (net_dev)
2560 			break;
2561 	}
2562 	up_read(&dev->client_data_rwsem);
2563 
2564 	return net_dev;
2565 }
2566 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2567 
2568 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2569 {
2570 	struct ib_device_ops *dev_ops = &dev->ops;
2571 #define SET_DEVICE_OP(ptr, name)                                               \
2572 	do {                                                                   \
2573 		if (ops->name)                                                 \
2574 			if (!((ptr)->name))				       \
2575 				(ptr)->name = ops->name;                       \
2576 	} while (0)
2577 
2578 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2579 
2580 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2581 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2582 			dev_ops->driver_id != ops->driver_id);
2583 		dev_ops->driver_id = ops->driver_id;
2584 	}
2585 	if (ops->owner) {
2586 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2587 		dev_ops->owner = ops->owner;
2588 	}
2589 	if (ops->uverbs_abi_ver)
2590 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2591 
2592 	dev_ops->uverbs_no_driver_id_binding |=
2593 		ops->uverbs_no_driver_id_binding;
2594 
2595 	SET_DEVICE_OP(dev_ops, add_gid);
2596 	SET_DEVICE_OP(dev_ops, advise_mr);
2597 	SET_DEVICE_OP(dev_ops, alloc_dm);
2598 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2599 	SET_DEVICE_OP(dev_ops, alloc_mr);
2600 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2601 	SET_DEVICE_OP(dev_ops, alloc_mw);
2602 	SET_DEVICE_OP(dev_ops, alloc_pd);
2603 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2604 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2605 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2606 	SET_DEVICE_OP(dev_ops, attach_mcast);
2607 	SET_DEVICE_OP(dev_ops, check_mr_status);
2608 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2609 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2610 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2611 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2612 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2613 	SET_DEVICE_OP(dev_ops, create_ah);
2614 	SET_DEVICE_OP(dev_ops, create_counters);
2615 	SET_DEVICE_OP(dev_ops, create_cq);
2616 	SET_DEVICE_OP(dev_ops, create_flow);
2617 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2618 	SET_DEVICE_OP(dev_ops, create_qp);
2619 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2620 	SET_DEVICE_OP(dev_ops, create_srq);
2621 	SET_DEVICE_OP(dev_ops, create_user_ah);
2622 	SET_DEVICE_OP(dev_ops, create_wq);
2623 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2624 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2625 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2626 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2627 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2628 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2629 	SET_DEVICE_OP(dev_ops, del_gid);
2630 	SET_DEVICE_OP(dev_ops, dereg_mr);
2631 	SET_DEVICE_OP(dev_ops, destroy_ah);
2632 	SET_DEVICE_OP(dev_ops, destroy_counters);
2633 	SET_DEVICE_OP(dev_ops, destroy_cq);
2634 	SET_DEVICE_OP(dev_ops, destroy_flow);
2635 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2636 	SET_DEVICE_OP(dev_ops, destroy_qp);
2637 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2638 	SET_DEVICE_OP(dev_ops, destroy_srq);
2639 	SET_DEVICE_OP(dev_ops, destroy_wq);
2640 	SET_DEVICE_OP(dev_ops, detach_mcast);
2641 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2642 	SET_DEVICE_OP(dev_ops, drain_rq);
2643 	SET_DEVICE_OP(dev_ops, drain_sq);
2644 	SET_DEVICE_OP(dev_ops, enable_driver);
2645 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2646 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2647 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2648 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2649 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2650 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2651 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2652 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2653 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2654 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2655 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2656 	SET_DEVICE_OP(dev_ops, get_link_layer);
2657 	SET_DEVICE_OP(dev_ops, get_netdev);
2658 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2659 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2660 	SET_DEVICE_OP(dev_ops, get_vf_config);
2661 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2662 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2663 	SET_DEVICE_OP(dev_ops, init_port);
2664 	SET_DEVICE_OP(dev_ops, iw_accept);
2665 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2666 	SET_DEVICE_OP(dev_ops, iw_connect);
2667 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2668 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2669 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2670 	SET_DEVICE_OP(dev_ops, iw_reject);
2671 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2672 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2673 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2674 	SET_DEVICE_OP(dev_ops, mmap);
2675 	SET_DEVICE_OP(dev_ops, mmap_free);
2676 	SET_DEVICE_OP(dev_ops, modify_ah);
2677 	SET_DEVICE_OP(dev_ops, modify_cq);
2678 	SET_DEVICE_OP(dev_ops, modify_device);
2679 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2680 	SET_DEVICE_OP(dev_ops, modify_port);
2681 	SET_DEVICE_OP(dev_ops, modify_qp);
2682 	SET_DEVICE_OP(dev_ops, modify_srq);
2683 	SET_DEVICE_OP(dev_ops, modify_wq);
2684 	SET_DEVICE_OP(dev_ops, peek_cq);
2685 	SET_DEVICE_OP(dev_ops, poll_cq);
2686 	SET_DEVICE_OP(dev_ops, post_recv);
2687 	SET_DEVICE_OP(dev_ops, post_send);
2688 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2689 	SET_DEVICE_OP(dev_ops, process_mad);
2690 	SET_DEVICE_OP(dev_ops, query_ah);
2691 	SET_DEVICE_OP(dev_ops, query_device);
2692 	SET_DEVICE_OP(dev_ops, query_gid);
2693 	SET_DEVICE_OP(dev_ops, query_pkey);
2694 	SET_DEVICE_OP(dev_ops, query_port);
2695 	SET_DEVICE_OP(dev_ops, query_qp);
2696 	SET_DEVICE_OP(dev_ops, query_srq);
2697 	SET_DEVICE_OP(dev_ops, query_ucontext);
2698 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2699 	SET_DEVICE_OP(dev_ops, read_counters);
2700 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2701 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2702 	SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2703 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2704 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2705 	SET_DEVICE_OP(dev_ops, resize_cq);
2706 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2707 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2708 
2709 	SET_OBJ_SIZE(dev_ops, ib_ah);
2710 	SET_OBJ_SIZE(dev_ops, ib_counters);
2711 	SET_OBJ_SIZE(dev_ops, ib_cq);
2712 	SET_OBJ_SIZE(dev_ops, ib_mw);
2713 	SET_OBJ_SIZE(dev_ops, ib_pd);
2714 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2715 	SET_OBJ_SIZE(dev_ops, ib_srq);
2716 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2717 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2718 }
2719 EXPORT_SYMBOL(ib_set_device_ops);
2720 
2721 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2722 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2723 {
2724 	struct scatterlist *s;
2725 	int i;
2726 
2727 	for_each_sg(sg, s, nents, i) {
2728 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2729 		sg_dma_len(s) = s->length;
2730 	}
2731 	return nents;
2732 }
2733 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2734 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2735 
2736 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2737 	[RDMA_NL_LS_OP_RESOLVE] = {
2738 		.doit = ib_nl_handle_resolve_resp,
2739 		.flags = RDMA_NL_ADMIN_PERM,
2740 	},
2741 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2742 		.doit = ib_nl_handle_set_timeout,
2743 		.flags = RDMA_NL_ADMIN_PERM,
2744 	},
2745 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2746 		.doit = ib_nl_handle_ip_res_resp,
2747 		.flags = RDMA_NL_ADMIN_PERM,
2748 	},
2749 };
2750 
2751 static int __init ib_core_init(void)
2752 {
2753 	int ret;
2754 
2755 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2756 	if (!ib_wq)
2757 		return -ENOMEM;
2758 
2759 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2760 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2761 	if (!ib_comp_wq) {
2762 		ret = -ENOMEM;
2763 		goto err;
2764 	}
2765 
2766 	ib_comp_unbound_wq =
2767 		alloc_workqueue("ib-comp-unb-wq",
2768 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2769 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2770 	if (!ib_comp_unbound_wq) {
2771 		ret = -ENOMEM;
2772 		goto err_comp;
2773 	}
2774 
2775 	ret = class_register(&ib_class);
2776 	if (ret) {
2777 		pr_warn("Couldn't create InfiniBand device class\n");
2778 		goto err_comp_unbound;
2779 	}
2780 
2781 	rdma_nl_init();
2782 
2783 	ret = addr_init();
2784 	if (ret) {
2785 		pr_warn("Couldn't init IB address resolution\n");
2786 		goto err_ibnl;
2787 	}
2788 
2789 	ret = ib_mad_init();
2790 	if (ret) {
2791 		pr_warn("Couldn't init IB MAD\n");
2792 		goto err_addr;
2793 	}
2794 
2795 	ret = ib_sa_init();
2796 	if (ret) {
2797 		pr_warn("Couldn't init SA\n");
2798 		goto err_mad;
2799 	}
2800 
2801 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2802 	if (ret) {
2803 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2804 		goto err_sa;
2805 	}
2806 
2807 	ret = register_pernet_device(&rdma_dev_net_ops);
2808 	if (ret) {
2809 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2810 		goto err_compat;
2811 	}
2812 
2813 	nldev_init();
2814 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2815 	roce_gid_mgmt_init();
2816 
2817 	return 0;
2818 
2819 err_compat:
2820 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2821 err_sa:
2822 	ib_sa_cleanup();
2823 err_mad:
2824 	ib_mad_cleanup();
2825 err_addr:
2826 	addr_cleanup();
2827 err_ibnl:
2828 	class_unregister(&ib_class);
2829 err_comp_unbound:
2830 	destroy_workqueue(ib_comp_unbound_wq);
2831 err_comp:
2832 	destroy_workqueue(ib_comp_wq);
2833 err:
2834 	destroy_workqueue(ib_wq);
2835 	return ret;
2836 }
2837 
2838 static void __exit ib_core_cleanup(void)
2839 {
2840 	roce_gid_mgmt_cleanup();
2841 	nldev_exit();
2842 	rdma_nl_unregister(RDMA_NL_LS);
2843 	unregister_pernet_device(&rdma_dev_net_ops);
2844 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2845 	ib_sa_cleanup();
2846 	ib_mad_cleanup();
2847 	addr_cleanup();
2848 	rdma_nl_exit();
2849 	class_unregister(&ib_class);
2850 	destroy_workqueue(ib_comp_unbound_wq);
2851 	destroy_workqueue(ib_comp_wq);
2852 	/* Make sure that any pending umem accounting work is done. */
2853 	destroy_workqueue(ib_wq);
2854 	flush_workqueue(system_unbound_wq);
2855 	WARN_ON(!xa_empty(&clients));
2856 	WARN_ON(!xa_empty(&devices));
2857 }
2858 
2859 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2860 
2861 /* ib core relies on netdev stack to first register net_ns_type_operations
2862  * ns kobject type before ib_core initialization.
2863  */
2864 fs_initcall(ib_core_init);
2865 module_exit(ib_core_cleanup);
2866