xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 301a1613)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/hashtable.h>
45 #include <rdma/rdma_netlink.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/rdma_counter.h>
49 
50 #include "core_priv.h"
51 #include "restrack.h"
52 
53 MODULE_AUTHOR("Roland Dreier");
54 MODULE_DESCRIPTION("core kernel InfiniBand API");
55 MODULE_LICENSE("Dual BSD/GPL");
56 
57 struct workqueue_struct *ib_comp_wq;
58 struct workqueue_struct *ib_comp_unbound_wq;
59 struct workqueue_struct *ib_wq;
60 EXPORT_SYMBOL_GPL(ib_wq);
61 
62 /*
63  * Each of the three rwsem locks (devices, clients, client_data) protects the
64  * xarray of the same name. Specifically it allows the caller to assert that
65  * the MARK will/will not be changing under the lock, and for devices and
66  * clients, that the value in the xarray is still a valid pointer. Change of
67  * the MARK is linked to the object state, so holding the lock and testing the
68  * MARK also asserts that the contained object is in a certain state.
69  *
70  * This is used to build a two stage register/unregister flow where objects
71  * can continue to be in the xarray even though they are still in progress to
72  * register/unregister.
73  *
74  * The xarray itself provides additional locking, and restartable iteration,
75  * which is also relied on.
76  *
77  * Locks should not be nested, with the exception of client_data, which is
78  * allowed to nest under the read side of the other two locks.
79  *
80  * The devices_rwsem also protects the device name list, any change or
81  * assignment of device name must also hold the write side to guarantee unique
82  * names.
83  */
84 
85 /*
86  * devices contains devices that have had their names assigned. The
87  * devices may not be registered. Users that care about the registration
88  * status need to call ib_device_try_get() on the device to ensure it is
89  * registered, and keep it registered, for the required duration.
90  *
91  */
92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
93 static DECLARE_RWSEM(devices_rwsem);
94 #define DEVICE_REGISTERED XA_MARK_1
95 
96 static u32 highest_client_id;
97 #define CLIENT_REGISTERED XA_MARK_1
98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
99 static DECLARE_RWSEM(clients_rwsem);
100 
101 static void ib_client_put(struct ib_client *client)
102 {
103 	if (refcount_dec_and_test(&client->uses))
104 		complete(&client->uses_zero);
105 }
106 
107 /*
108  * If client_data is registered then the corresponding client must also still
109  * be registered.
110  */
111 #define CLIENT_DATA_REGISTERED XA_MARK_1
112 
113 unsigned int rdma_dev_net_id;
114 
115 /*
116  * A list of net namespaces is maintained in an xarray. This is necessary
117  * because we can't get the locking right using the existing net ns list. We
118  * would require a init_net callback after the list is updated.
119  */
120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
121 /*
122  * rwsem to protect accessing the rdma_nets xarray entries.
123  */
124 static DECLARE_RWSEM(rdma_nets_rwsem);
125 
126 bool ib_devices_shared_netns = true;
127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
128 MODULE_PARM_DESC(netns_mode,
129 		 "Share device among net namespaces; default=1 (shared)");
130 /**
131  * rdma_dev_access_netns() - Return whether an rdma device can be accessed
132  *			     from a specified net namespace or not.
133  * @dev:	Pointer to rdma device which needs to be checked
134  * @net:	Pointer to net namesapce for which access to be checked
135  *
136  * When the rdma device is in shared mode, it ignores the net namespace.
137  * When the rdma device is exclusive to a net namespace, rdma device net
138  * namespace is checked against the specified one.
139  */
140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
141 {
142 	return (ib_devices_shared_netns ||
143 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
144 }
145 EXPORT_SYMBOL(rdma_dev_access_netns);
146 
147 /*
148  * xarray has this behavior where it won't iterate over NULL values stored in
149  * allocated arrays.  So we need our own iterator to see all values stored in
150  * the array. This does the same thing as xa_for_each except that it also
151  * returns NULL valued entries if the array is allocating. Simplified to only
152  * work on simple xarrays.
153  */
154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
155 			     xa_mark_t filter)
156 {
157 	XA_STATE(xas, xa, *indexp);
158 	void *entry;
159 
160 	rcu_read_lock();
161 	do {
162 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
163 		if (xa_is_zero(entry))
164 			break;
165 	} while (xas_retry(&xas, entry));
166 	rcu_read_unlock();
167 
168 	if (entry) {
169 		*indexp = xas.xa_index;
170 		if (xa_is_zero(entry))
171 			return NULL;
172 		return entry;
173 	}
174 	return XA_ERROR(-ENOENT);
175 }
176 #define xan_for_each_marked(xa, index, entry, filter)                          \
177 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
178 	     !xa_is_err(entry);                                                \
179 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
180 
181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
182 static DEFINE_SPINLOCK(ndev_hash_lock);
183 static DECLARE_HASHTABLE(ndev_hash, 5);
184 
185 static void free_netdevs(struct ib_device *ib_dev);
186 static void ib_unregister_work(struct work_struct *work);
187 static void __ib_unregister_device(struct ib_device *device);
188 static int ib_security_change(struct notifier_block *nb, unsigned long event,
189 			      void *lsm_data);
190 static void ib_policy_change_task(struct work_struct *work);
191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
192 
193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
194 			   struct va_format *vaf)
195 {
196 	if (ibdev && ibdev->dev.parent)
197 		dev_printk_emit(level[1] - '0',
198 				ibdev->dev.parent,
199 				"%s %s %s: %pV",
200 				dev_driver_string(ibdev->dev.parent),
201 				dev_name(ibdev->dev.parent),
202 				dev_name(&ibdev->dev),
203 				vaf);
204 	else if (ibdev)
205 		printk("%s%s: %pV",
206 		       level, dev_name(&ibdev->dev), vaf);
207 	else
208 		printk("%s(NULL ib_device): %pV", level, vaf);
209 }
210 
211 void ibdev_printk(const char *level, const struct ib_device *ibdev,
212 		  const char *format, ...)
213 {
214 	struct va_format vaf;
215 	va_list args;
216 
217 	va_start(args, format);
218 
219 	vaf.fmt = format;
220 	vaf.va = &args;
221 
222 	__ibdev_printk(level, ibdev, &vaf);
223 
224 	va_end(args);
225 }
226 EXPORT_SYMBOL(ibdev_printk);
227 
228 #define define_ibdev_printk_level(func, level)                  \
229 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
230 {                                                               \
231 	struct va_format vaf;                                   \
232 	va_list args;                                           \
233 								\
234 	va_start(args, fmt);                                    \
235 								\
236 	vaf.fmt = fmt;                                          \
237 	vaf.va = &args;                                         \
238 								\
239 	__ibdev_printk(level, ibdev, &vaf);                     \
240 								\
241 	va_end(args);                                           \
242 }                                                               \
243 EXPORT_SYMBOL(func);
244 
245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
248 define_ibdev_printk_level(ibdev_err, KERN_ERR);
249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
251 define_ibdev_printk_level(ibdev_info, KERN_INFO);
252 
253 static struct notifier_block ibdev_lsm_nb = {
254 	.notifier_call = ib_security_change,
255 };
256 
257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
258 				 struct net *net);
259 
260 /* Pointer to the RCU head at the start of the ib_port_data array */
261 struct ib_port_data_rcu {
262 	struct rcu_head rcu_head;
263 	struct ib_port_data pdata[];
264 };
265 
266 static void ib_device_check_mandatory(struct ib_device *device)
267 {
268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
269 	static const struct {
270 		size_t offset;
271 		char  *name;
272 	} mandatory_table[] = {
273 		IB_MANDATORY_FUNC(query_device),
274 		IB_MANDATORY_FUNC(query_port),
275 		IB_MANDATORY_FUNC(alloc_pd),
276 		IB_MANDATORY_FUNC(dealloc_pd),
277 		IB_MANDATORY_FUNC(create_qp),
278 		IB_MANDATORY_FUNC(modify_qp),
279 		IB_MANDATORY_FUNC(destroy_qp),
280 		IB_MANDATORY_FUNC(post_send),
281 		IB_MANDATORY_FUNC(post_recv),
282 		IB_MANDATORY_FUNC(create_cq),
283 		IB_MANDATORY_FUNC(destroy_cq),
284 		IB_MANDATORY_FUNC(poll_cq),
285 		IB_MANDATORY_FUNC(req_notify_cq),
286 		IB_MANDATORY_FUNC(get_dma_mr),
287 		IB_MANDATORY_FUNC(reg_user_mr),
288 		IB_MANDATORY_FUNC(dereg_mr),
289 		IB_MANDATORY_FUNC(get_port_immutable)
290 	};
291 	int i;
292 
293 	device->kverbs_provider = true;
294 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
295 		if (!*(void **) ((void *) &device->ops +
296 				 mandatory_table[i].offset)) {
297 			device->kverbs_provider = false;
298 			break;
299 		}
300 	}
301 }
302 
303 /*
304  * Caller must perform ib_device_put() to return the device reference count
305  * when ib_device_get_by_index() returns valid device pointer.
306  */
307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
308 {
309 	struct ib_device *device;
310 
311 	down_read(&devices_rwsem);
312 	device = xa_load(&devices, index);
313 	if (device) {
314 		if (!rdma_dev_access_netns(device, net)) {
315 			device = NULL;
316 			goto out;
317 		}
318 
319 		if (!ib_device_try_get(device))
320 			device = NULL;
321 	}
322 out:
323 	up_read(&devices_rwsem);
324 	return device;
325 }
326 
327 /**
328  * ib_device_put - Release IB device reference
329  * @device: device whose reference to be released
330  *
331  * ib_device_put() releases reference to the IB device to allow it to be
332  * unregistered and eventually free.
333  */
334 void ib_device_put(struct ib_device *device)
335 {
336 	if (refcount_dec_and_test(&device->refcount))
337 		complete(&device->unreg_completion);
338 }
339 EXPORT_SYMBOL(ib_device_put);
340 
341 static struct ib_device *__ib_device_get_by_name(const char *name)
342 {
343 	struct ib_device *device;
344 	unsigned long index;
345 
346 	xa_for_each (&devices, index, device)
347 		if (!strcmp(name, dev_name(&device->dev)))
348 			return device;
349 
350 	return NULL;
351 }
352 
353 /**
354  * ib_device_get_by_name - Find an IB device by name
355  * @name: The name to look for
356  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
357  *
358  * Find and hold an ib_device by its name. The caller must call
359  * ib_device_put() on the returned pointer.
360  */
361 struct ib_device *ib_device_get_by_name(const char *name,
362 					enum rdma_driver_id driver_id)
363 {
364 	struct ib_device *device;
365 
366 	down_read(&devices_rwsem);
367 	device = __ib_device_get_by_name(name);
368 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
369 	    device->ops.driver_id != driver_id)
370 		device = NULL;
371 
372 	if (device) {
373 		if (!ib_device_try_get(device))
374 			device = NULL;
375 	}
376 	up_read(&devices_rwsem);
377 	return device;
378 }
379 EXPORT_SYMBOL(ib_device_get_by_name);
380 
381 static int rename_compat_devs(struct ib_device *device)
382 {
383 	struct ib_core_device *cdev;
384 	unsigned long index;
385 	int ret = 0;
386 
387 	mutex_lock(&device->compat_devs_mutex);
388 	xa_for_each (&device->compat_devs, index, cdev) {
389 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
390 		if (ret) {
391 			dev_warn(&cdev->dev,
392 				 "Fail to rename compatdev to new name %s\n",
393 				 dev_name(&device->dev));
394 			break;
395 		}
396 	}
397 	mutex_unlock(&device->compat_devs_mutex);
398 	return ret;
399 }
400 
401 int ib_device_rename(struct ib_device *ibdev, const char *name)
402 {
403 	unsigned long index;
404 	void *client_data;
405 	int ret;
406 
407 	down_write(&devices_rwsem);
408 	if (!strcmp(name, dev_name(&ibdev->dev))) {
409 		up_write(&devices_rwsem);
410 		return 0;
411 	}
412 
413 	if (__ib_device_get_by_name(name)) {
414 		up_write(&devices_rwsem);
415 		return -EEXIST;
416 	}
417 
418 	ret = device_rename(&ibdev->dev, name);
419 	if (ret) {
420 		up_write(&devices_rwsem);
421 		return ret;
422 	}
423 
424 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
425 	ret = rename_compat_devs(ibdev);
426 
427 	downgrade_write(&devices_rwsem);
428 	down_read(&ibdev->client_data_rwsem);
429 	xan_for_each_marked(&ibdev->client_data, index, client_data,
430 			    CLIENT_DATA_REGISTERED) {
431 		struct ib_client *client = xa_load(&clients, index);
432 
433 		if (!client || !client->rename)
434 			continue;
435 
436 		client->rename(ibdev, client_data);
437 	}
438 	up_read(&ibdev->client_data_rwsem);
439 	up_read(&devices_rwsem);
440 	return 0;
441 }
442 
443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
444 {
445 	if (use_dim > 1)
446 		return -EINVAL;
447 	ibdev->use_cq_dim = use_dim;
448 
449 	return 0;
450 }
451 
452 static int alloc_name(struct ib_device *ibdev, const char *name)
453 {
454 	struct ib_device *device;
455 	unsigned long index;
456 	struct ida inuse;
457 	int rc;
458 	int i;
459 
460 	lockdep_assert_held_write(&devices_rwsem);
461 	ida_init(&inuse);
462 	xa_for_each (&devices, index, device) {
463 		char buf[IB_DEVICE_NAME_MAX];
464 
465 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
466 			continue;
467 		if (i < 0 || i >= INT_MAX)
468 			continue;
469 		snprintf(buf, sizeof buf, name, i);
470 		if (strcmp(buf, dev_name(&device->dev)) != 0)
471 			continue;
472 
473 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
474 		if (rc < 0)
475 			goto out;
476 	}
477 
478 	rc = ida_alloc(&inuse, GFP_KERNEL);
479 	if (rc < 0)
480 		goto out;
481 
482 	rc = dev_set_name(&ibdev->dev, name, rc);
483 out:
484 	ida_destroy(&inuse);
485 	return rc;
486 }
487 
488 static void ib_device_release(struct device *device)
489 {
490 	struct ib_device *dev = container_of(device, struct ib_device, dev);
491 
492 	free_netdevs(dev);
493 	WARN_ON(refcount_read(&dev->refcount));
494 	if (dev->port_data) {
495 		ib_cache_release_one(dev);
496 		ib_security_release_port_pkey_list(dev);
497 		rdma_counter_release(dev);
498 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
499 				       pdata[0]),
500 			  rcu_head);
501 	}
502 
503 	mutex_destroy(&dev->unregistration_lock);
504 	mutex_destroy(&dev->compat_devs_mutex);
505 
506 	xa_destroy(&dev->compat_devs);
507 	xa_destroy(&dev->client_data);
508 	kfree_rcu(dev, rcu_head);
509 }
510 
511 static int ib_device_uevent(struct device *device,
512 			    struct kobj_uevent_env *env)
513 {
514 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
515 		return -ENOMEM;
516 
517 	/*
518 	 * It would be nice to pass the node GUID with the event...
519 	 */
520 
521 	return 0;
522 }
523 
524 static const void *net_namespace(struct device *d)
525 {
526 	struct ib_core_device *coredev =
527 			container_of(d, struct ib_core_device, dev);
528 
529 	return read_pnet(&coredev->rdma_net);
530 }
531 
532 static struct class ib_class = {
533 	.name    = "infiniband",
534 	.dev_release = ib_device_release,
535 	.dev_uevent = ib_device_uevent,
536 	.ns_type = &net_ns_type_operations,
537 	.namespace = net_namespace,
538 };
539 
540 static void rdma_init_coredev(struct ib_core_device *coredev,
541 			      struct ib_device *dev, struct net *net)
542 {
543 	/* This BUILD_BUG_ON is intended to catch layout change
544 	 * of union of ib_core_device and device.
545 	 * dev must be the first element as ib_core and providers
546 	 * driver uses it. Adding anything in ib_core_device before
547 	 * device will break this assumption.
548 	 */
549 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
550 		     offsetof(struct ib_device, dev));
551 
552 	coredev->dev.class = &ib_class;
553 	coredev->dev.groups = dev->groups;
554 	device_initialize(&coredev->dev);
555 	coredev->owner = dev;
556 	INIT_LIST_HEAD(&coredev->port_list);
557 	write_pnet(&coredev->rdma_net, net);
558 }
559 
560 /**
561  * _ib_alloc_device - allocate an IB device struct
562  * @size:size of structure to allocate
563  *
564  * Low-level drivers should use ib_alloc_device() to allocate &struct
565  * ib_device.  @size is the size of the structure to be allocated,
566  * including any private data used by the low-level driver.
567  * ib_dealloc_device() must be used to free structures allocated with
568  * ib_alloc_device().
569  */
570 struct ib_device *_ib_alloc_device(size_t size)
571 {
572 	struct ib_device *device;
573 	unsigned int i;
574 
575 	if (WARN_ON(size < sizeof(struct ib_device)))
576 		return NULL;
577 
578 	device = kzalloc(size, GFP_KERNEL);
579 	if (!device)
580 		return NULL;
581 
582 	if (rdma_restrack_init(device)) {
583 		kfree(device);
584 		return NULL;
585 	}
586 
587 	device->groups[0] = &ib_dev_attr_group;
588 	rdma_init_coredev(&device->coredev, device, &init_net);
589 
590 	INIT_LIST_HEAD(&device->event_handler_list);
591 	spin_lock_init(&device->qp_open_list_lock);
592 	init_rwsem(&device->event_handler_rwsem);
593 	mutex_init(&device->unregistration_lock);
594 	/*
595 	 * client_data needs to be alloc because we don't want our mark to be
596 	 * destroyed if the user stores NULL in the client data.
597 	 */
598 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
599 	init_rwsem(&device->client_data_rwsem);
600 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
601 	mutex_init(&device->compat_devs_mutex);
602 	init_completion(&device->unreg_completion);
603 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
604 
605 	spin_lock_init(&device->cq_pools_lock);
606 	for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
607 		INIT_LIST_HEAD(&device->cq_pools[i]);
608 
609 	device->uverbs_cmd_mask =
610 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
611 		BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
612 		BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
613 		BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
614 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
615 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
616 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
617 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
618 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
619 		BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
620 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
621 		BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
622 		BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
623 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
624 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
625 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
626 		BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
627 		BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
628 		BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
629 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
630 		BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
631 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
632 		BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
633 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
634 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
635 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
636 		BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
637 		BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
638 		BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
639 		BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
640 	return device;
641 }
642 EXPORT_SYMBOL(_ib_alloc_device);
643 
644 /**
645  * ib_dealloc_device - free an IB device struct
646  * @device:structure to free
647  *
648  * Free a structure allocated with ib_alloc_device().
649  */
650 void ib_dealloc_device(struct ib_device *device)
651 {
652 	if (device->ops.dealloc_driver)
653 		device->ops.dealloc_driver(device);
654 
655 	/*
656 	 * ib_unregister_driver() requires all devices to remain in the xarray
657 	 * while their ops are callable. The last op we call is dealloc_driver
658 	 * above.  This is needed to create a fence on op callbacks prior to
659 	 * allowing the driver module to unload.
660 	 */
661 	down_write(&devices_rwsem);
662 	if (xa_load(&devices, device->index) == device)
663 		xa_erase(&devices, device->index);
664 	up_write(&devices_rwsem);
665 
666 	/* Expedite releasing netdev references */
667 	free_netdevs(device);
668 
669 	WARN_ON(!xa_empty(&device->compat_devs));
670 	WARN_ON(!xa_empty(&device->client_data));
671 	WARN_ON(refcount_read(&device->refcount));
672 	rdma_restrack_clean(device);
673 	/* Balances with device_initialize */
674 	put_device(&device->dev);
675 }
676 EXPORT_SYMBOL(ib_dealloc_device);
677 
678 /*
679  * add_client_context() and remove_client_context() must be safe against
680  * parallel calls on the same device - registration/unregistration of both the
681  * device and client can be occurring in parallel.
682  *
683  * The routines need to be a fence, any caller must not return until the add
684  * or remove is fully completed.
685  */
686 static int add_client_context(struct ib_device *device,
687 			      struct ib_client *client)
688 {
689 	int ret = 0;
690 
691 	if (!device->kverbs_provider && !client->no_kverbs_req)
692 		return 0;
693 
694 	down_write(&device->client_data_rwsem);
695 	/*
696 	 * So long as the client is registered hold both the client and device
697 	 * unregistration locks.
698 	 */
699 	if (!refcount_inc_not_zero(&client->uses))
700 		goto out_unlock;
701 	refcount_inc(&device->refcount);
702 
703 	/*
704 	 * Another caller to add_client_context got here first and has already
705 	 * completely initialized context.
706 	 */
707 	if (xa_get_mark(&device->client_data, client->client_id,
708 		    CLIENT_DATA_REGISTERED))
709 		goto out;
710 
711 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
712 			      GFP_KERNEL));
713 	if (ret)
714 		goto out;
715 	downgrade_write(&device->client_data_rwsem);
716 	if (client->add) {
717 		if (client->add(device)) {
718 			/*
719 			 * If a client fails to add then the error code is
720 			 * ignored, but we won't call any more ops on this
721 			 * client.
722 			 */
723 			xa_erase(&device->client_data, client->client_id);
724 			up_read(&device->client_data_rwsem);
725 			ib_device_put(device);
726 			ib_client_put(client);
727 			return 0;
728 		}
729 	}
730 
731 	/* Readers shall not see a client until add has been completed */
732 	xa_set_mark(&device->client_data, client->client_id,
733 		    CLIENT_DATA_REGISTERED);
734 	up_read(&device->client_data_rwsem);
735 	return 0;
736 
737 out:
738 	ib_device_put(device);
739 	ib_client_put(client);
740 out_unlock:
741 	up_write(&device->client_data_rwsem);
742 	return ret;
743 }
744 
745 static void remove_client_context(struct ib_device *device,
746 				  unsigned int client_id)
747 {
748 	struct ib_client *client;
749 	void *client_data;
750 
751 	down_write(&device->client_data_rwsem);
752 	if (!xa_get_mark(&device->client_data, client_id,
753 			 CLIENT_DATA_REGISTERED)) {
754 		up_write(&device->client_data_rwsem);
755 		return;
756 	}
757 	client_data = xa_load(&device->client_data, client_id);
758 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
759 	client = xa_load(&clients, client_id);
760 	up_write(&device->client_data_rwsem);
761 
762 	/*
763 	 * Notice we cannot be holding any exclusive locks when calling the
764 	 * remove callback as the remove callback can recurse back into any
765 	 * public functions in this module and thus try for any locks those
766 	 * functions take.
767 	 *
768 	 * For this reason clients and drivers should not call the
769 	 * unregistration functions will holdling any locks.
770 	 */
771 	if (client->remove)
772 		client->remove(device, client_data);
773 
774 	xa_erase(&device->client_data, client_id);
775 	ib_device_put(device);
776 	ib_client_put(client);
777 }
778 
779 static int alloc_port_data(struct ib_device *device)
780 {
781 	struct ib_port_data_rcu *pdata_rcu;
782 	unsigned int port;
783 
784 	if (device->port_data)
785 		return 0;
786 
787 	/* This can only be called once the physical port range is defined */
788 	if (WARN_ON(!device->phys_port_cnt))
789 		return -EINVAL;
790 
791 	/*
792 	 * device->port_data is indexed directly by the port number to make
793 	 * access to this data as efficient as possible.
794 	 *
795 	 * Therefore port_data is declared as a 1 based array with potential
796 	 * empty slots at the beginning.
797 	 */
798 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
799 					rdma_end_port(device) + 1),
800 			    GFP_KERNEL);
801 	if (!pdata_rcu)
802 		return -ENOMEM;
803 	/*
804 	 * The rcu_head is put in front of the port data array and the stored
805 	 * pointer is adjusted since we never need to see that member until
806 	 * kfree_rcu.
807 	 */
808 	device->port_data = pdata_rcu->pdata;
809 
810 	rdma_for_each_port (device, port) {
811 		struct ib_port_data *pdata = &device->port_data[port];
812 
813 		pdata->ib_dev = device;
814 		spin_lock_init(&pdata->pkey_list_lock);
815 		INIT_LIST_HEAD(&pdata->pkey_list);
816 		spin_lock_init(&pdata->netdev_lock);
817 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
818 	}
819 	return 0;
820 }
821 
822 static int verify_immutable(const struct ib_device *dev, u8 port)
823 {
824 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
825 			    rdma_max_mad_size(dev, port) != 0);
826 }
827 
828 static int setup_port_data(struct ib_device *device)
829 {
830 	unsigned int port;
831 	int ret;
832 
833 	ret = alloc_port_data(device);
834 	if (ret)
835 		return ret;
836 
837 	rdma_for_each_port (device, port) {
838 		struct ib_port_data *pdata = &device->port_data[port];
839 
840 		ret = device->ops.get_port_immutable(device, port,
841 						     &pdata->immutable);
842 		if (ret)
843 			return ret;
844 
845 		if (verify_immutable(device, port))
846 			return -EINVAL;
847 	}
848 	return 0;
849 }
850 
851 void ib_get_device_fw_str(struct ib_device *dev, char *str)
852 {
853 	if (dev->ops.get_dev_fw_str)
854 		dev->ops.get_dev_fw_str(dev, str);
855 	else
856 		str[0] = '\0';
857 }
858 EXPORT_SYMBOL(ib_get_device_fw_str);
859 
860 static void ib_policy_change_task(struct work_struct *work)
861 {
862 	struct ib_device *dev;
863 	unsigned long index;
864 
865 	down_read(&devices_rwsem);
866 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
867 		unsigned int i;
868 
869 		rdma_for_each_port (dev, i) {
870 			u64 sp;
871 			int ret = ib_get_cached_subnet_prefix(dev,
872 							      i,
873 							      &sp);
874 
875 			WARN_ONCE(ret,
876 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
877 				  ret);
878 			if (!ret)
879 				ib_security_cache_change(dev, i, sp);
880 		}
881 	}
882 	up_read(&devices_rwsem);
883 }
884 
885 static int ib_security_change(struct notifier_block *nb, unsigned long event,
886 			      void *lsm_data)
887 {
888 	if (event != LSM_POLICY_CHANGE)
889 		return NOTIFY_DONE;
890 
891 	schedule_work(&ib_policy_change_work);
892 	ib_mad_agent_security_change();
893 
894 	return NOTIFY_OK;
895 }
896 
897 static void compatdev_release(struct device *dev)
898 {
899 	struct ib_core_device *cdev =
900 		container_of(dev, struct ib_core_device, dev);
901 
902 	kfree(cdev);
903 }
904 
905 static int add_one_compat_dev(struct ib_device *device,
906 			      struct rdma_dev_net *rnet)
907 {
908 	struct ib_core_device *cdev;
909 	int ret;
910 
911 	lockdep_assert_held(&rdma_nets_rwsem);
912 	if (!ib_devices_shared_netns)
913 		return 0;
914 
915 	/*
916 	 * Create and add compat device in all namespaces other than where it
917 	 * is currently bound to.
918 	 */
919 	if (net_eq(read_pnet(&rnet->net),
920 		   read_pnet(&device->coredev.rdma_net)))
921 		return 0;
922 
923 	/*
924 	 * The first of init_net() or ib_register_device() to take the
925 	 * compat_devs_mutex wins and gets to add the device. Others will wait
926 	 * for completion here.
927 	 */
928 	mutex_lock(&device->compat_devs_mutex);
929 	cdev = xa_load(&device->compat_devs, rnet->id);
930 	if (cdev) {
931 		ret = 0;
932 		goto done;
933 	}
934 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
935 	if (ret)
936 		goto done;
937 
938 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
939 	if (!cdev) {
940 		ret = -ENOMEM;
941 		goto cdev_err;
942 	}
943 
944 	cdev->dev.parent = device->dev.parent;
945 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
946 	cdev->dev.release = compatdev_release;
947 	ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
948 	if (ret)
949 		goto add_err;
950 
951 	ret = device_add(&cdev->dev);
952 	if (ret)
953 		goto add_err;
954 	ret = ib_setup_port_attrs(cdev);
955 	if (ret)
956 		goto port_err;
957 
958 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
959 			      cdev, GFP_KERNEL));
960 	if (ret)
961 		goto insert_err;
962 
963 	mutex_unlock(&device->compat_devs_mutex);
964 	return 0;
965 
966 insert_err:
967 	ib_free_port_attrs(cdev);
968 port_err:
969 	device_del(&cdev->dev);
970 add_err:
971 	put_device(&cdev->dev);
972 cdev_err:
973 	xa_release(&device->compat_devs, rnet->id);
974 done:
975 	mutex_unlock(&device->compat_devs_mutex);
976 	return ret;
977 }
978 
979 static void remove_one_compat_dev(struct ib_device *device, u32 id)
980 {
981 	struct ib_core_device *cdev;
982 
983 	mutex_lock(&device->compat_devs_mutex);
984 	cdev = xa_erase(&device->compat_devs, id);
985 	mutex_unlock(&device->compat_devs_mutex);
986 	if (cdev) {
987 		ib_free_port_attrs(cdev);
988 		device_del(&cdev->dev);
989 		put_device(&cdev->dev);
990 	}
991 }
992 
993 static void remove_compat_devs(struct ib_device *device)
994 {
995 	struct ib_core_device *cdev;
996 	unsigned long index;
997 
998 	xa_for_each (&device->compat_devs, index, cdev)
999 		remove_one_compat_dev(device, index);
1000 }
1001 
1002 static int add_compat_devs(struct ib_device *device)
1003 {
1004 	struct rdma_dev_net *rnet;
1005 	unsigned long index;
1006 	int ret = 0;
1007 
1008 	lockdep_assert_held(&devices_rwsem);
1009 
1010 	down_read(&rdma_nets_rwsem);
1011 	xa_for_each (&rdma_nets, index, rnet) {
1012 		ret = add_one_compat_dev(device, rnet);
1013 		if (ret)
1014 			break;
1015 	}
1016 	up_read(&rdma_nets_rwsem);
1017 	return ret;
1018 }
1019 
1020 static void remove_all_compat_devs(void)
1021 {
1022 	struct ib_compat_device *cdev;
1023 	struct ib_device *dev;
1024 	unsigned long index;
1025 
1026 	down_read(&devices_rwsem);
1027 	xa_for_each (&devices, index, dev) {
1028 		unsigned long c_index = 0;
1029 
1030 		/* Hold nets_rwsem so that any other thread modifying this
1031 		 * system param can sync with this thread.
1032 		 */
1033 		down_read(&rdma_nets_rwsem);
1034 		xa_for_each (&dev->compat_devs, c_index, cdev)
1035 			remove_one_compat_dev(dev, c_index);
1036 		up_read(&rdma_nets_rwsem);
1037 	}
1038 	up_read(&devices_rwsem);
1039 }
1040 
1041 static int add_all_compat_devs(void)
1042 {
1043 	struct rdma_dev_net *rnet;
1044 	struct ib_device *dev;
1045 	unsigned long index;
1046 	int ret = 0;
1047 
1048 	down_read(&devices_rwsem);
1049 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1050 		unsigned long net_index = 0;
1051 
1052 		/* Hold nets_rwsem so that any other thread modifying this
1053 		 * system param can sync with this thread.
1054 		 */
1055 		down_read(&rdma_nets_rwsem);
1056 		xa_for_each (&rdma_nets, net_index, rnet) {
1057 			ret = add_one_compat_dev(dev, rnet);
1058 			if (ret)
1059 				break;
1060 		}
1061 		up_read(&rdma_nets_rwsem);
1062 	}
1063 	up_read(&devices_rwsem);
1064 	if (ret)
1065 		remove_all_compat_devs();
1066 	return ret;
1067 }
1068 
1069 int rdma_compatdev_set(u8 enable)
1070 {
1071 	struct rdma_dev_net *rnet;
1072 	unsigned long index;
1073 	int ret = 0;
1074 
1075 	down_write(&rdma_nets_rwsem);
1076 	if (ib_devices_shared_netns == enable) {
1077 		up_write(&rdma_nets_rwsem);
1078 		return 0;
1079 	}
1080 
1081 	/* enable/disable of compat devices is not supported
1082 	 * when more than default init_net exists.
1083 	 */
1084 	xa_for_each (&rdma_nets, index, rnet) {
1085 		ret++;
1086 		break;
1087 	}
1088 	if (!ret)
1089 		ib_devices_shared_netns = enable;
1090 	up_write(&rdma_nets_rwsem);
1091 	if (ret)
1092 		return -EBUSY;
1093 
1094 	if (enable)
1095 		ret = add_all_compat_devs();
1096 	else
1097 		remove_all_compat_devs();
1098 	return ret;
1099 }
1100 
1101 static void rdma_dev_exit_net(struct net *net)
1102 {
1103 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1104 	struct ib_device *dev;
1105 	unsigned long index;
1106 	int ret;
1107 
1108 	down_write(&rdma_nets_rwsem);
1109 	/*
1110 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1111 	 */
1112 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1113 	WARN_ON(ret);
1114 	up_write(&rdma_nets_rwsem);
1115 
1116 	down_read(&devices_rwsem);
1117 	xa_for_each (&devices, index, dev) {
1118 		get_device(&dev->dev);
1119 		/*
1120 		 * Release the devices_rwsem so that pontentially blocking
1121 		 * device_del, doesn't hold the devices_rwsem for too long.
1122 		 */
1123 		up_read(&devices_rwsem);
1124 
1125 		remove_one_compat_dev(dev, rnet->id);
1126 
1127 		/*
1128 		 * If the real device is in the NS then move it back to init.
1129 		 */
1130 		rdma_dev_change_netns(dev, net, &init_net);
1131 
1132 		put_device(&dev->dev);
1133 		down_read(&devices_rwsem);
1134 	}
1135 	up_read(&devices_rwsem);
1136 
1137 	rdma_nl_net_exit(rnet);
1138 	xa_erase(&rdma_nets, rnet->id);
1139 }
1140 
1141 static __net_init int rdma_dev_init_net(struct net *net)
1142 {
1143 	struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1144 	unsigned long index;
1145 	struct ib_device *dev;
1146 	int ret;
1147 
1148 	write_pnet(&rnet->net, net);
1149 
1150 	ret = rdma_nl_net_init(rnet);
1151 	if (ret)
1152 		return ret;
1153 
1154 	/* No need to create any compat devices in default init_net. */
1155 	if (net_eq(net, &init_net))
1156 		return 0;
1157 
1158 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1159 	if (ret) {
1160 		rdma_nl_net_exit(rnet);
1161 		return ret;
1162 	}
1163 
1164 	down_read(&devices_rwsem);
1165 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1166 		/* Hold nets_rwsem so that netlink command cannot change
1167 		 * system configuration for device sharing mode.
1168 		 */
1169 		down_read(&rdma_nets_rwsem);
1170 		ret = add_one_compat_dev(dev, rnet);
1171 		up_read(&rdma_nets_rwsem);
1172 		if (ret)
1173 			break;
1174 	}
1175 	up_read(&devices_rwsem);
1176 
1177 	if (ret)
1178 		rdma_dev_exit_net(net);
1179 
1180 	return ret;
1181 }
1182 
1183 /*
1184  * Assign the unique string device name and the unique device index. This is
1185  * undone by ib_dealloc_device.
1186  */
1187 static int assign_name(struct ib_device *device, const char *name)
1188 {
1189 	static u32 last_id;
1190 	int ret;
1191 
1192 	down_write(&devices_rwsem);
1193 	/* Assign a unique name to the device */
1194 	if (strchr(name, '%'))
1195 		ret = alloc_name(device, name);
1196 	else
1197 		ret = dev_set_name(&device->dev, name);
1198 	if (ret)
1199 		goto out;
1200 
1201 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1202 		ret = -ENFILE;
1203 		goto out;
1204 	}
1205 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1206 
1207 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1208 			&last_id, GFP_KERNEL);
1209 	if (ret > 0)
1210 		ret = 0;
1211 
1212 out:
1213 	up_write(&devices_rwsem);
1214 	return ret;
1215 }
1216 
1217 /*
1218  * setup_device() allocates memory and sets up data that requires calling the
1219  * device ops, this is the only reason these actions are not done during
1220  * ib_alloc_device. It is undone by ib_dealloc_device().
1221  */
1222 static int setup_device(struct ib_device *device)
1223 {
1224 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1225 	int ret;
1226 
1227 	ib_device_check_mandatory(device);
1228 
1229 	ret = setup_port_data(device);
1230 	if (ret) {
1231 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1232 		return ret;
1233 	}
1234 
1235 	memset(&device->attrs, 0, sizeof(device->attrs));
1236 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1237 	if (ret) {
1238 		dev_warn(&device->dev,
1239 			 "Couldn't query the device attributes\n");
1240 		return ret;
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static void disable_device(struct ib_device *device)
1247 {
1248 	u32 cid;
1249 
1250 	WARN_ON(!refcount_read(&device->refcount));
1251 
1252 	down_write(&devices_rwsem);
1253 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1254 	up_write(&devices_rwsem);
1255 
1256 	/*
1257 	 * Remove clients in LIFO order, see assign_client_id. This could be
1258 	 * more efficient if xarray learns to reverse iterate. Since no new
1259 	 * clients can be added to this ib_device past this point we only need
1260 	 * the maximum possible client_id value here.
1261 	 */
1262 	down_read(&clients_rwsem);
1263 	cid = highest_client_id;
1264 	up_read(&clients_rwsem);
1265 	while (cid) {
1266 		cid--;
1267 		remove_client_context(device, cid);
1268 	}
1269 
1270 	ib_cq_pool_cleanup(device);
1271 
1272 	/* Pairs with refcount_set in enable_device */
1273 	ib_device_put(device);
1274 	wait_for_completion(&device->unreg_completion);
1275 
1276 	/*
1277 	 * compat devices must be removed after device refcount drops to zero.
1278 	 * Otherwise init_net() may add more compatdevs after removing compat
1279 	 * devices and before device is disabled.
1280 	 */
1281 	remove_compat_devs(device);
1282 }
1283 
1284 /*
1285  * An enabled device is visible to all clients and to all the public facing
1286  * APIs that return a device pointer. This always returns with a new get, even
1287  * if it fails.
1288  */
1289 static int enable_device_and_get(struct ib_device *device)
1290 {
1291 	struct ib_client *client;
1292 	unsigned long index;
1293 	int ret = 0;
1294 
1295 	/*
1296 	 * One ref belongs to the xa and the other belongs to this
1297 	 * thread. This is needed to guard against parallel unregistration.
1298 	 */
1299 	refcount_set(&device->refcount, 2);
1300 	down_write(&devices_rwsem);
1301 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1302 
1303 	/*
1304 	 * By using downgrade_write() we ensure that no other thread can clear
1305 	 * DEVICE_REGISTERED while we are completing the client setup.
1306 	 */
1307 	downgrade_write(&devices_rwsem);
1308 
1309 	if (device->ops.enable_driver) {
1310 		ret = device->ops.enable_driver(device);
1311 		if (ret)
1312 			goto out;
1313 	}
1314 
1315 	down_read(&clients_rwsem);
1316 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1317 		ret = add_client_context(device, client);
1318 		if (ret)
1319 			break;
1320 	}
1321 	up_read(&clients_rwsem);
1322 	if (!ret)
1323 		ret = add_compat_devs(device);
1324 out:
1325 	up_read(&devices_rwsem);
1326 	return ret;
1327 }
1328 
1329 static void prevent_dealloc_device(struct ib_device *ib_dev)
1330 {
1331 }
1332 
1333 /**
1334  * ib_register_device - Register an IB device with IB core
1335  * @device: Device to register
1336  * @name: unique string device name. This may include a '%' which will
1337  * 	  cause a unique index to be added to the passed device name.
1338  * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1339  *	        device will be used. In this case the caller should fully
1340  *		setup the ibdev for DMA. This usually means using dma_virt_ops.
1341  *
1342  * Low-level drivers use ib_register_device() to register their
1343  * devices with the IB core.  All registered clients will receive a
1344  * callback for each device that is added. @device must be allocated
1345  * with ib_alloc_device().
1346  *
1347  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1348  * asynchronously then the device pointer may become freed as soon as this
1349  * function returns.
1350  */
1351 int ib_register_device(struct ib_device *device, const char *name,
1352 		       struct device *dma_device)
1353 {
1354 	int ret;
1355 
1356 	ret = assign_name(device, name);
1357 	if (ret)
1358 		return ret;
1359 
1360 	/*
1361 	 * If the caller does not provide a DMA capable device then the IB core
1362 	 * will set up ib_sge and scatterlist structures that stash the kernel
1363 	 * virtual address into the address field.
1364 	 */
1365 	WARN_ON(dma_device && !dma_device->dma_parms);
1366 	device->dma_device = dma_device;
1367 
1368 	ret = setup_device(device);
1369 	if (ret)
1370 		return ret;
1371 
1372 	ret = ib_cache_setup_one(device);
1373 	if (ret) {
1374 		dev_warn(&device->dev,
1375 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1376 		return ret;
1377 	}
1378 
1379 	ib_device_register_rdmacg(device);
1380 
1381 	rdma_counter_init(device);
1382 
1383 	/*
1384 	 * Ensure that ADD uevent is not fired because it
1385 	 * is too early amd device is not initialized yet.
1386 	 */
1387 	dev_set_uevent_suppress(&device->dev, true);
1388 	ret = device_add(&device->dev);
1389 	if (ret)
1390 		goto cg_cleanup;
1391 
1392 	ret = ib_device_register_sysfs(device);
1393 	if (ret) {
1394 		dev_warn(&device->dev,
1395 			 "Couldn't register device with driver model\n");
1396 		goto dev_cleanup;
1397 	}
1398 
1399 	ret = enable_device_and_get(device);
1400 	if (ret) {
1401 		void (*dealloc_fn)(struct ib_device *);
1402 
1403 		/*
1404 		 * If we hit this error flow then we don't want to
1405 		 * automatically dealloc the device since the caller is
1406 		 * expected to call ib_dealloc_device() after
1407 		 * ib_register_device() fails. This is tricky due to the
1408 		 * possibility for a parallel unregistration along with this
1409 		 * error flow. Since we have a refcount here we know any
1410 		 * parallel flow is stopped in disable_device and will see the
1411 		 * special dealloc_driver pointer, causing the responsibility to
1412 		 * ib_dealloc_device() to revert back to this thread.
1413 		 */
1414 		dealloc_fn = device->ops.dealloc_driver;
1415 		device->ops.dealloc_driver = prevent_dealloc_device;
1416 		ib_device_put(device);
1417 		__ib_unregister_device(device);
1418 		device->ops.dealloc_driver = dealloc_fn;
1419 		dev_set_uevent_suppress(&device->dev, false);
1420 		return ret;
1421 	}
1422 	dev_set_uevent_suppress(&device->dev, false);
1423 	/* Mark for userspace that device is ready */
1424 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1425 	ib_device_put(device);
1426 
1427 	return 0;
1428 
1429 dev_cleanup:
1430 	device_del(&device->dev);
1431 cg_cleanup:
1432 	dev_set_uevent_suppress(&device->dev, false);
1433 	ib_device_unregister_rdmacg(device);
1434 	ib_cache_cleanup_one(device);
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(ib_register_device);
1438 
1439 /* Callers must hold a get on the device. */
1440 static void __ib_unregister_device(struct ib_device *ib_dev)
1441 {
1442 	/*
1443 	 * We have a registration lock so that all the calls to unregister are
1444 	 * fully fenced, once any unregister returns the device is truely
1445 	 * unregistered even if multiple callers are unregistering it at the
1446 	 * same time. This also interacts with the registration flow and
1447 	 * provides sane semantics if register and unregister are racing.
1448 	 */
1449 	mutex_lock(&ib_dev->unregistration_lock);
1450 	if (!refcount_read(&ib_dev->refcount))
1451 		goto out;
1452 
1453 	disable_device(ib_dev);
1454 
1455 	/* Expedite removing unregistered pointers from the hash table */
1456 	free_netdevs(ib_dev);
1457 
1458 	ib_device_unregister_sysfs(ib_dev);
1459 	device_del(&ib_dev->dev);
1460 	ib_device_unregister_rdmacg(ib_dev);
1461 	ib_cache_cleanup_one(ib_dev);
1462 
1463 	/*
1464 	 * Drivers using the new flow may not call ib_dealloc_device except
1465 	 * in error unwind prior to registration success.
1466 	 */
1467 	if (ib_dev->ops.dealloc_driver &&
1468 	    ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1469 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1470 		ib_dealloc_device(ib_dev);
1471 	}
1472 out:
1473 	mutex_unlock(&ib_dev->unregistration_lock);
1474 }
1475 
1476 /**
1477  * ib_unregister_device - Unregister an IB device
1478  * @ib_dev: The device to unregister
1479  *
1480  * Unregister an IB device.  All clients will receive a remove callback.
1481  *
1482  * Callers should call this routine only once, and protect against races with
1483  * registration. Typically it should only be called as part of a remove
1484  * callback in an implementation of driver core's struct device_driver and
1485  * related.
1486  *
1487  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1488  * this function.
1489  */
1490 void ib_unregister_device(struct ib_device *ib_dev)
1491 {
1492 	get_device(&ib_dev->dev);
1493 	__ib_unregister_device(ib_dev);
1494 	put_device(&ib_dev->dev);
1495 }
1496 EXPORT_SYMBOL(ib_unregister_device);
1497 
1498 /**
1499  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1500  * @ib_dev: The device to unregister
1501  *
1502  * This is the same as ib_unregister_device(), except it includes an internal
1503  * ib_device_put() that should match a 'get' obtained by the caller.
1504  *
1505  * It is safe to call this routine concurrently from multiple threads while
1506  * holding the 'get'. When the function returns the device is fully
1507  * unregistered.
1508  *
1509  * Drivers using this flow MUST use the driver_unregister callback to clean up
1510  * their resources associated with the device and dealloc it.
1511  */
1512 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1513 {
1514 	WARN_ON(!ib_dev->ops.dealloc_driver);
1515 	get_device(&ib_dev->dev);
1516 	ib_device_put(ib_dev);
1517 	__ib_unregister_device(ib_dev);
1518 	put_device(&ib_dev->dev);
1519 }
1520 EXPORT_SYMBOL(ib_unregister_device_and_put);
1521 
1522 /**
1523  * ib_unregister_driver - Unregister all IB devices for a driver
1524  * @driver_id: The driver to unregister
1525  *
1526  * This implements a fence for device unregistration. It only returns once all
1527  * devices associated with the driver_id have fully completed their
1528  * unregistration and returned from ib_unregister_device*().
1529  *
1530  * If device's are not yet unregistered it goes ahead and starts unregistering
1531  * them.
1532  *
1533  * This does not block creation of new devices with the given driver_id, that
1534  * is the responsibility of the caller.
1535  */
1536 void ib_unregister_driver(enum rdma_driver_id driver_id)
1537 {
1538 	struct ib_device *ib_dev;
1539 	unsigned long index;
1540 
1541 	down_read(&devices_rwsem);
1542 	xa_for_each (&devices, index, ib_dev) {
1543 		if (ib_dev->ops.driver_id != driver_id)
1544 			continue;
1545 
1546 		get_device(&ib_dev->dev);
1547 		up_read(&devices_rwsem);
1548 
1549 		WARN_ON(!ib_dev->ops.dealloc_driver);
1550 		__ib_unregister_device(ib_dev);
1551 
1552 		put_device(&ib_dev->dev);
1553 		down_read(&devices_rwsem);
1554 	}
1555 	up_read(&devices_rwsem);
1556 }
1557 EXPORT_SYMBOL(ib_unregister_driver);
1558 
1559 static void ib_unregister_work(struct work_struct *work)
1560 {
1561 	struct ib_device *ib_dev =
1562 		container_of(work, struct ib_device, unregistration_work);
1563 
1564 	__ib_unregister_device(ib_dev);
1565 	put_device(&ib_dev->dev);
1566 }
1567 
1568 /**
1569  * ib_unregister_device_queued - Unregister a device using a work queue
1570  * @ib_dev: The device to unregister
1571  *
1572  * This schedules an asynchronous unregistration using a WQ for the device. A
1573  * driver should use this to avoid holding locks while doing unregistration,
1574  * such as holding the RTNL lock.
1575  *
1576  * Drivers using this API must use ib_unregister_driver before module unload
1577  * to ensure that all scheduled unregistrations have completed.
1578  */
1579 void ib_unregister_device_queued(struct ib_device *ib_dev)
1580 {
1581 	WARN_ON(!refcount_read(&ib_dev->refcount));
1582 	WARN_ON(!ib_dev->ops.dealloc_driver);
1583 	get_device(&ib_dev->dev);
1584 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1585 		put_device(&ib_dev->dev);
1586 }
1587 EXPORT_SYMBOL(ib_unregister_device_queued);
1588 
1589 /*
1590  * The caller must pass in a device that has the kref held and the refcount
1591  * released. If the device is in cur_net and still registered then it is moved
1592  * into net.
1593  */
1594 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1595 				 struct net *net)
1596 {
1597 	int ret2 = -EINVAL;
1598 	int ret;
1599 
1600 	mutex_lock(&device->unregistration_lock);
1601 
1602 	/*
1603 	 * If a device not under ib_device_get() or if the unregistration_lock
1604 	 * is not held, the namespace can be changed, or it can be unregistered.
1605 	 * Check again under the lock.
1606 	 */
1607 	if (refcount_read(&device->refcount) == 0 ||
1608 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1609 		ret = -ENODEV;
1610 		goto out;
1611 	}
1612 
1613 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1614 	disable_device(device);
1615 
1616 	/*
1617 	 * At this point no one can be using the device, so it is safe to
1618 	 * change the namespace.
1619 	 */
1620 	write_pnet(&device->coredev.rdma_net, net);
1621 
1622 	down_read(&devices_rwsem);
1623 	/*
1624 	 * Currently rdma devices are system wide unique. So the device name
1625 	 * is guaranteed free in the new namespace. Publish the new namespace
1626 	 * at the sysfs level.
1627 	 */
1628 	ret = device_rename(&device->dev, dev_name(&device->dev));
1629 	up_read(&devices_rwsem);
1630 	if (ret) {
1631 		dev_warn(&device->dev,
1632 			 "%s: Couldn't rename device after namespace change\n",
1633 			 __func__);
1634 		/* Try and put things back and re-enable the device */
1635 		write_pnet(&device->coredev.rdma_net, cur_net);
1636 	}
1637 
1638 	ret2 = enable_device_and_get(device);
1639 	if (ret2) {
1640 		/*
1641 		 * This shouldn't really happen, but if it does, let the user
1642 		 * retry at later point. So don't disable the device.
1643 		 */
1644 		dev_warn(&device->dev,
1645 			 "%s: Couldn't re-enable device after namespace change\n",
1646 			 __func__);
1647 	}
1648 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1649 
1650 	ib_device_put(device);
1651 out:
1652 	mutex_unlock(&device->unregistration_lock);
1653 	if (ret)
1654 		return ret;
1655 	return ret2;
1656 }
1657 
1658 int ib_device_set_netns_put(struct sk_buff *skb,
1659 			    struct ib_device *dev, u32 ns_fd)
1660 {
1661 	struct net *net;
1662 	int ret;
1663 
1664 	net = get_net_ns_by_fd(ns_fd);
1665 	if (IS_ERR(net)) {
1666 		ret = PTR_ERR(net);
1667 		goto net_err;
1668 	}
1669 
1670 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1671 		ret = -EPERM;
1672 		goto ns_err;
1673 	}
1674 
1675 	/*
1676 	 * Currently supported only for those providers which support
1677 	 * disassociation and don't do port specific sysfs init. Once a
1678 	 * port_cleanup infrastructure is implemented, this limitation will be
1679 	 * removed.
1680 	 */
1681 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1682 	    ib_devices_shared_netns) {
1683 		ret = -EOPNOTSUPP;
1684 		goto ns_err;
1685 	}
1686 
1687 	get_device(&dev->dev);
1688 	ib_device_put(dev);
1689 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1690 	put_device(&dev->dev);
1691 
1692 	put_net(net);
1693 	return ret;
1694 
1695 ns_err:
1696 	put_net(net);
1697 net_err:
1698 	ib_device_put(dev);
1699 	return ret;
1700 }
1701 
1702 static struct pernet_operations rdma_dev_net_ops = {
1703 	.init = rdma_dev_init_net,
1704 	.exit = rdma_dev_exit_net,
1705 	.id = &rdma_dev_net_id,
1706 	.size = sizeof(struct rdma_dev_net),
1707 };
1708 
1709 static int assign_client_id(struct ib_client *client)
1710 {
1711 	int ret;
1712 
1713 	down_write(&clients_rwsem);
1714 	/*
1715 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1716 	 * achieve this we assign client_ids so they are sorted in
1717 	 * registration order.
1718 	 */
1719 	client->client_id = highest_client_id;
1720 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1721 	if (ret)
1722 		goto out;
1723 
1724 	highest_client_id++;
1725 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1726 
1727 out:
1728 	up_write(&clients_rwsem);
1729 	return ret;
1730 }
1731 
1732 static void remove_client_id(struct ib_client *client)
1733 {
1734 	down_write(&clients_rwsem);
1735 	xa_erase(&clients, client->client_id);
1736 	for (; highest_client_id; highest_client_id--)
1737 		if (xa_load(&clients, highest_client_id - 1))
1738 			break;
1739 	up_write(&clients_rwsem);
1740 }
1741 
1742 /**
1743  * ib_register_client - Register an IB client
1744  * @client:Client to register
1745  *
1746  * Upper level users of the IB drivers can use ib_register_client() to
1747  * register callbacks for IB device addition and removal.  When an IB
1748  * device is added, each registered client's add method will be called
1749  * (in the order the clients were registered), and when a device is
1750  * removed, each client's remove method will be called (in the reverse
1751  * order that clients were registered).  In addition, when
1752  * ib_register_client() is called, the client will receive an add
1753  * callback for all devices already registered.
1754  */
1755 int ib_register_client(struct ib_client *client)
1756 {
1757 	struct ib_device *device;
1758 	unsigned long index;
1759 	int ret;
1760 
1761 	refcount_set(&client->uses, 1);
1762 	init_completion(&client->uses_zero);
1763 	ret = assign_client_id(client);
1764 	if (ret)
1765 		return ret;
1766 
1767 	down_read(&devices_rwsem);
1768 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1769 		ret = add_client_context(device, client);
1770 		if (ret) {
1771 			up_read(&devices_rwsem);
1772 			ib_unregister_client(client);
1773 			return ret;
1774 		}
1775 	}
1776 	up_read(&devices_rwsem);
1777 	return 0;
1778 }
1779 EXPORT_SYMBOL(ib_register_client);
1780 
1781 /**
1782  * ib_unregister_client - Unregister an IB client
1783  * @client:Client to unregister
1784  *
1785  * Upper level users use ib_unregister_client() to remove their client
1786  * registration.  When ib_unregister_client() is called, the client
1787  * will receive a remove callback for each IB device still registered.
1788  *
1789  * This is a full fence, once it returns no client callbacks will be called,
1790  * or are running in another thread.
1791  */
1792 void ib_unregister_client(struct ib_client *client)
1793 {
1794 	struct ib_device *device;
1795 	unsigned long index;
1796 
1797 	down_write(&clients_rwsem);
1798 	ib_client_put(client);
1799 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1800 	up_write(&clients_rwsem);
1801 
1802 	/* We do not want to have locks while calling client->remove() */
1803 	rcu_read_lock();
1804 	xa_for_each (&devices, index, device) {
1805 		if (!ib_device_try_get(device))
1806 			continue;
1807 		rcu_read_unlock();
1808 
1809 		remove_client_context(device, client->client_id);
1810 
1811 		ib_device_put(device);
1812 		rcu_read_lock();
1813 	}
1814 	rcu_read_unlock();
1815 
1816 	/*
1817 	 * remove_client_context() is not a fence, it can return even though a
1818 	 * removal is ongoing. Wait until all removals are completed.
1819 	 */
1820 	wait_for_completion(&client->uses_zero);
1821 	remove_client_id(client);
1822 }
1823 EXPORT_SYMBOL(ib_unregister_client);
1824 
1825 static int __ib_get_global_client_nl_info(const char *client_name,
1826 					  struct ib_client_nl_info *res)
1827 {
1828 	struct ib_client *client;
1829 	unsigned long index;
1830 	int ret = -ENOENT;
1831 
1832 	down_read(&clients_rwsem);
1833 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1834 		if (strcmp(client->name, client_name) != 0)
1835 			continue;
1836 		if (!client->get_global_nl_info) {
1837 			ret = -EOPNOTSUPP;
1838 			break;
1839 		}
1840 		ret = client->get_global_nl_info(res);
1841 		if (WARN_ON(ret == -ENOENT))
1842 			ret = -EINVAL;
1843 		if (!ret && res->cdev)
1844 			get_device(res->cdev);
1845 		break;
1846 	}
1847 	up_read(&clients_rwsem);
1848 	return ret;
1849 }
1850 
1851 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1852 				   const char *client_name,
1853 				   struct ib_client_nl_info *res)
1854 {
1855 	unsigned long index;
1856 	void *client_data;
1857 	int ret = -ENOENT;
1858 
1859 	down_read(&ibdev->client_data_rwsem);
1860 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1861 			     CLIENT_DATA_REGISTERED) {
1862 		struct ib_client *client = xa_load(&clients, index);
1863 
1864 		if (!client || strcmp(client->name, client_name) != 0)
1865 			continue;
1866 		if (!client->get_nl_info) {
1867 			ret = -EOPNOTSUPP;
1868 			break;
1869 		}
1870 		ret = client->get_nl_info(ibdev, client_data, res);
1871 		if (WARN_ON(ret == -ENOENT))
1872 			ret = -EINVAL;
1873 
1874 		/*
1875 		 * The cdev is guaranteed valid as long as we are inside the
1876 		 * client_data_rwsem as remove_one can't be called. Keep it
1877 		 * valid for the caller.
1878 		 */
1879 		if (!ret && res->cdev)
1880 			get_device(res->cdev);
1881 		break;
1882 	}
1883 	up_read(&ibdev->client_data_rwsem);
1884 
1885 	return ret;
1886 }
1887 
1888 /**
1889  * ib_get_client_nl_info - Fetch the nl_info from a client
1890  * @device - IB device
1891  * @client_name - Name of the client
1892  * @res - Result of the query
1893  */
1894 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1895 			  struct ib_client_nl_info *res)
1896 {
1897 	int ret;
1898 
1899 	if (ibdev)
1900 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1901 	else
1902 		ret = __ib_get_global_client_nl_info(client_name, res);
1903 #ifdef CONFIG_MODULES
1904 	if (ret == -ENOENT) {
1905 		request_module("rdma-client-%s", client_name);
1906 		if (ibdev)
1907 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1908 		else
1909 			ret = __ib_get_global_client_nl_info(client_name, res);
1910 	}
1911 #endif
1912 	if (ret) {
1913 		if (ret == -ENOENT)
1914 			return -EOPNOTSUPP;
1915 		return ret;
1916 	}
1917 
1918 	if (WARN_ON(!res->cdev))
1919 		return -EINVAL;
1920 	return 0;
1921 }
1922 
1923 /**
1924  * ib_set_client_data - Set IB client context
1925  * @device:Device to set context for
1926  * @client:Client to set context for
1927  * @data:Context to set
1928  *
1929  * ib_set_client_data() sets client context data that can be retrieved with
1930  * ib_get_client_data(). This can only be called while the client is
1931  * registered to the device, once the ib_client remove() callback returns this
1932  * cannot be called.
1933  */
1934 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1935 			void *data)
1936 {
1937 	void *rc;
1938 
1939 	if (WARN_ON(IS_ERR(data)))
1940 		data = NULL;
1941 
1942 	rc = xa_store(&device->client_data, client->client_id, data,
1943 		      GFP_KERNEL);
1944 	WARN_ON(xa_is_err(rc));
1945 }
1946 EXPORT_SYMBOL(ib_set_client_data);
1947 
1948 /**
1949  * ib_register_event_handler - Register an IB event handler
1950  * @event_handler:Handler to register
1951  *
1952  * ib_register_event_handler() registers an event handler that will be
1953  * called back when asynchronous IB events occur (as defined in
1954  * chapter 11 of the InfiniBand Architecture Specification). This
1955  * callback occurs in workqueue context.
1956  */
1957 void ib_register_event_handler(struct ib_event_handler *event_handler)
1958 {
1959 	down_write(&event_handler->device->event_handler_rwsem);
1960 	list_add_tail(&event_handler->list,
1961 		      &event_handler->device->event_handler_list);
1962 	up_write(&event_handler->device->event_handler_rwsem);
1963 }
1964 EXPORT_SYMBOL(ib_register_event_handler);
1965 
1966 /**
1967  * ib_unregister_event_handler - Unregister an event handler
1968  * @event_handler:Handler to unregister
1969  *
1970  * Unregister an event handler registered with
1971  * ib_register_event_handler().
1972  */
1973 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1974 {
1975 	down_write(&event_handler->device->event_handler_rwsem);
1976 	list_del(&event_handler->list);
1977 	up_write(&event_handler->device->event_handler_rwsem);
1978 }
1979 EXPORT_SYMBOL(ib_unregister_event_handler);
1980 
1981 void ib_dispatch_event_clients(struct ib_event *event)
1982 {
1983 	struct ib_event_handler *handler;
1984 
1985 	down_read(&event->device->event_handler_rwsem);
1986 
1987 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1988 		handler->handler(handler, event);
1989 
1990 	up_read(&event->device->event_handler_rwsem);
1991 }
1992 
1993 static int iw_query_port(struct ib_device *device,
1994 			   u8 port_num,
1995 			   struct ib_port_attr *port_attr)
1996 {
1997 	struct in_device *inetdev;
1998 	struct net_device *netdev;
1999 
2000 	memset(port_attr, 0, sizeof(*port_attr));
2001 
2002 	netdev = ib_device_get_netdev(device, port_num);
2003 	if (!netdev)
2004 		return -ENODEV;
2005 
2006 	port_attr->max_mtu = IB_MTU_4096;
2007 	port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu);
2008 
2009 	if (!netif_carrier_ok(netdev)) {
2010 		port_attr->state = IB_PORT_DOWN;
2011 		port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2012 	} else {
2013 		rcu_read_lock();
2014 		inetdev = __in_dev_get_rcu(netdev);
2015 
2016 		if (inetdev && inetdev->ifa_list) {
2017 			port_attr->state = IB_PORT_ACTIVE;
2018 			port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2019 		} else {
2020 			port_attr->state = IB_PORT_INIT;
2021 			port_attr->phys_state =
2022 				IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2023 		}
2024 
2025 		rcu_read_unlock();
2026 	}
2027 
2028 	dev_put(netdev);
2029 	return device->ops.query_port(device, port_num, port_attr);
2030 }
2031 
2032 static int __ib_query_port(struct ib_device *device,
2033 			   u8 port_num,
2034 			   struct ib_port_attr *port_attr)
2035 {
2036 	union ib_gid gid = {};
2037 	int err;
2038 
2039 	memset(port_attr, 0, sizeof(*port_attr));
2040 
2041 	err = device->ops.query_port(device, port_num, port_attr);
2042 	if (err || port_attr->subnet_prefix)
2043 		return err;
2044 
2045 	if (rdma_port_get_link_layer(device, port_num) !=
2046 	    IB_LINK_LAYER_INFINIBAND)
2047 		return 0;
2048 
2049 	err = device->ops.query_gid(device, port_num, 0, &gid);
2050 	if (err)
2051 		return err;
2052 
2053 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2054 	return 0;
2055 }
2056 
2057 /**
2058  * ib_query_port - Query IB port attributes
2059  * @device:Device to query
2060  * @port_num:Port number to query
2061  * @port_attr:Port attributes
2062  *
2063  * ib_query_port() returns the attributes of a port through the
2064  * @port_attr pointer.
2065  */
2066 int ib_query_port(struct ib_device *device,
2067 		  u8 port_num,
2068 		  struct ib_port_attr *port_attr)
2069 {
2070 	if (!rdma_is_port_valid(device, port_num))
2071 		return -EINVAL;
2072 
2073 	if (rdma_protocol_iwarp(device, port_num))
2074 		return iw_query_port(device, port_num, port_attr);
2075 	else
2076 		return __ib_query_port(device, port_num, port_attr);
2077 }
2078 EXPORT_SYMBOL(ib_query_port);
2079 
2080 static void add_ndev_hash(struct ib_port_data *pdata)
2081 {
2082 	unsigned long flags;
2083 
2084 	might_sleep();
2085 
2086 	spin_lock_irqsave(&ndev_hash_lock, flags);
2087 	if (hash_hashed(&pdata->ndev_hash_link)) {
2088 		hash_del_rcu(&pdata->ndev_hash_link);
2089 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2090 		/*
2091 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2092 		 * grace period
2093 		 */
2094 		synchronize_rcu();
2095 		spin_lock_irqsave(&ndev_hash_lock, flags);
2096 	}
2097 	if (pdata->netdev)
2098 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2099 			     (uintptr_t)pdata->netdev);
2100 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2101 }
2102 
2103 /**
2104  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2105  * @ib_dev: Device to modify
2106  * @ndev: net_device to affiliate, may be NULL
2107  * @port: IB port the net_device is connected to
2108  *
2109  * Drivers should use this to link the ib_device to a netdev so the netdev
2110  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2111  * affiliated with any port.
2112  *
2113  * The caller must ensure that the given ndev is not unregistered or
2114  * unregistering, and that either the ib_device is unregistered or
2115  * ib_device_set_netdev() is called with NULL when the ndev sends a
2116  * NETDEV_UNREGISTER event.
2117  */
2118 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2119 			 unsigned int port)
2120 {
2121 	struct net_device *old_ndev;
2122 	struct ib_port_data *pdata;
2123 	unsigned long flags;
2124 	int ret;
2125 
2126 	/*
2127 	 * Drivers wish to call this before ib_register_driver, so we have to
2128 	 * setup the port data early.
2129 	 */
2130 	ret = alloc_port_data(ib_dev);
2131 	if (ret)
2132 		return ret;
2133 
2134 	if (!rdma_is_port_valid(ib_dev, port))
2135 		return -EINVAL;
2136 
2137 	pdata = &ib_dev->port_data[port];
2138 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2139 	old_ndev = rcu_dereference_protected(
2140 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2141 	if (old_ndev == ndev) {
2142 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2143 		return 0;
2144 	}
2145 
2146 	if (ndev)
2147 		dev_hold(ndev);
2148 	rcu_assign_pointer(pdata->netdev, ndev);
2149 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2150 
2151 	add_ndev_hash(pdata);
2152 	if (old_ndev)
2153 		dev_put(old_ndev);
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL(ib_device_set_netdev);
2158 
2159 static void free_netdevs(struct ib_device *ib_dev)
2160 {
2161 	unsigned long flags;
2162 	unsigned int port;
2163 
2164 	if (!ib_dev->port_data)
2165 		return;
2166 
2167 	rdma_for_each_port (ib_dev, port) {
2168 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2169 		struct net_device *ndev;
2170 
2171 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2172 		ndev = rcu_dereference_protected(
2173 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2174 		if (ndev) {
2175 			spin_lock(&ndev_hash_lock);
2176 			hash_del_rcu(&pdata->ndev_hash_link);
2177 			spin_unlock(&ndev_hash_lock);
2178 
2179 			/*
2180 			 * If this is the last dev_put there is still a
2181 			 * synchronize_rcu before the netdev is kfreed, so we
2182 			 * can continue to rely on unlocked pointer
2183 			 * comparisons after the put
2184 			 */
2185 			rcu_assign_pointer(pdata->netdev, NULL);
2186 			dev_put(ndev);
2187 		}
2188 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2189 	}
2190 }
2191 
2192 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2193 					unsigned int port)
2194 {
2195 	struct ib_port_data *pdata;
2196 	struct net_device *res;
2197 
2198 	if (!rdma_is_port_valid(ib_dev, port))
2199 		return NULL;
2200 
2201 	pdata = &ib_dev->port_data[port];
2202 
2203 	/*
2204 	 * New drivers should use ib_device_set_netdev() not the legacy
2205 	 * get_netdev().
2206 	 */
2207 	if (ib_dev->ops.get_netdev)
2208 		res = ib_dev->ops.get_netdev(ib_dev, port);
2209 	else {
2210 		spin_lock(&pdata->netdev_lock);
2211 		res = rcu_dereference_protected(
2212 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2213 		if (res)
2214 			dev_hold(res);
2215 		spin_unlock(&pdata->netdev_lock);
2216 	}
2217 
2218 	/*
2219 	 * If we are starting to unregister expedite things by preventing
2220 	 * propagation of an unregistering netdev.
2221 	 */
2222 	if (res && res->reg_state != NETREG_REGISTERED) {
2223 		dev_put(res);
2224 		return NULL;
2225 	}
2226 
2227 	return res;
2228 }
2229 
2230 /**
2231  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2232  * @ndev: netdev to locate
2233  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2234  *
2235  * Find and hold an ib_device that is associated with a netdev via
2236  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2237  * returned pointer.
2238  */
2239 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2240 					  enum rdma_driver_id driver_id)
2241 {
2242 	struct ib_device *res = NULL;
2243 	struct ib_port_data *cur;
2244 
2245 	rcu_read_lock();
2246 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2247 				    (uintptr_t)ndev) {
2248 		if (rcu_access_pointer(cur->netdev) == ndev &&
2249 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2250 		     cur->ib_dev->ops.driver_id == driver_id) &&
2251 		    ib_device_try_get(cur->ib_dev)) {
2252 			res = cur->ib_dev;
2253 			break;
2254 		}
2255 	}
2256 	rcu_read_unlock();
2257 
2258 	return res;
2259 }
2260 EXPORT_SYMBOL(ib_device_get_by_netdev);
2261 
2262 /**
2263  * ib_enum_roce_netdev - enumerate all RoCE ports
2264  * @ib_dev : IB device we want to query
2265  * @filter: Should we call the callback?
2266  * @filter_cookie: Cookie passed to filter
2267  * @cb: Callback to call for each found RoCE ports
2268  * @cookie: Cookie passed back to the callback
2269  *
2270  * Enumerates all of the physical RoCE ports of ib_dev
2271  * which are related to netdevice and calls callback() on each
2272  * device for which filter() function returns non zero.
2273  */
2274 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2275 			 roce_netdev_filter filter,
2276 			 void *filter_cookie,
2277 			 roce_netdev_callback cb,
2278 			 void *cookie)
2279 {
2280 	unsigned int port;
2281 
2282 	rdma_for_each_port (ib_dev, port)
2283 		if (rdma_protocol_roce(ib_dev, port)) {
2284 			struct net_device *idev =
2285 				ib_device_get_netdev(ib_dev, port);
2286 
2287 			if (filter(ib_dev, port, idev, filter_cookie))
2288 				cb(ib_dev, port, idev, cookie);
2289 
2290 			if (idev)
2291 				dev_put(idev);
2292 		}
2293 }
2294 
2295 /**
2296  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2297  * @filter: Should we call the callback?
2298  * @filter_cookie: Cookie passed to filter
2299  * @cb: Callback to call for each found RoCE ports
2300  * @cookie: Cookie passed back to the callback
2301  *
2302  * Enumerates all RoCE devices' physical ports which are related
2303  * to netdevices and calls callback() on each device for which
2304  * filter() function returns non zero.
2305  */
2306 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2307 			      void *filter_cookie,
2308 			      roce_netdev_callback cb,
2309 			      void *cookie)
2310 {
2311 	struct ib_device *dev;
2312 	unsigned long index;
2313 
2314 	down_read(&devices_rwsem);
2315 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2316 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2317 	up_read(&devices_rwsem);
2318 }
2319 
2320 /**
2321  * ib_enum_all_devs - enumerate all ib_devices
2322  * @cb: Callback to call for each found ib_device
2323  *
2324  * Enumerates all ib_devices and calls callback() on each device.
2325  */
2326 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2327 		     struct netlink_callback *cb)
2328 {
2329 	unsigned long index;
2330 	struct ib_device *dev;
2331 	unsigned int idx = 0;
2332 	int ret = 0;
2333 
2334 	down_read(&devices_rwsem);
2335 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2336 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2337 			continue;
2338 
2339 		ret = nldev_cb(dev, skb, cb, idx);
2340 		if (ret)
2341 			break;
2342 		idx++;
2343 	}
2344 	up_read(&devices_rwsem);
2345 	return ret;
2346 }
2347 
2348 /**
2349  * ib_query_pkey - Get P_Key table entry
2350  * @device:Device to query
2351  * @port_num:Port number to query
2352  * @index:P_Key table index to query
2353  * @pkey:Returned P_Key
2354  *
2355  * ib_query_pkey() fetches the specified P_Key table entry.
2356  */
2357 int ib_query_pkey(struct ib_device *device,
2358 		  u8 port_num, u16 index, u16 *pkey)
2359 {
2360 	if (!rdma_is_port_valid(device, port_num))
2361 		return -EINVAL;
2362 
2363 	if (!device->ops.query_pkey)
2364 		return -EOPNOTSUPP;
2365 
2366 	return device->ops.query_pkey(device, port_num, index, pkey);
2367 }
2368 EXPORT_SYMBOL(ib_query_pkey);
2369 
2370 /**
2371  * ib_modify_device - Change IB device attributes
2372  * @device:Device to modify
2373  * @device_modify_mask:Mask of attributes to change
2374  * @device_modify:New attribute values
2375  *
2376  * ib_modify_device() changes a device's attributes as specified by
2377  * the @device_modify_mask and @device_modify structure.
2378  */
2379 int ib_modify_device(struct ib_device *device,
2380 		     int device_modify_mask,
2381 		     struct ib_device_modify *device_modify)
2382 {
2383 	if (!device->ops.modify_device)
2384 		return -EOPNOTSUPP;
2385 
2386 	return device->ops.modify_device(device, device_modify_mask,
2387 					 device_modify);
2388 }
2389 EXPORT_SYMBOL(ib_modify_device);
2390 
2391 /**
2392  * ib_modify_port - Modifies the attributes for the specified port.
2393  * @device: The device to modify.
2394  * @port_num: The number of the port to modify.
2395  * @port_modify_mask: Mask used to specify which attributes of the port
2396  *   to change.
2397  * @port_modify: New attribute values for the port.
2398  *
2399  * ib_modify_port() changes a port's attributes as specified by the
2400  * @port_modify_mask and @port_modify structure.
2401  */
2402 int ib_modify_port(struct ib_device *device,
2403 		   u8 port_num, int port_modify_mask,
2404 		   struct ib_port_modify *port_modify)
2405 {
2406 	int rc;
2407 
2408 	if (!rdma_is_port_valid(device, port_num))
2409 		return -EINVAL;
2410 
2411 	if (device->ops.modify_port)
2412 		rc = device->ops.modify_port(device, port_num,
2413 					     port_modify_mask,
2414 					     port_modify);
2415 	else if (rdma_protocol_roce(device, port_num) &&
2416 		 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2417 		  (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2418 		rc = 0;
2419 	else
2420 		rc = -EOPNOTSUPP;
2421 	return rc;
2422 }
2423 EXPORT_SYMBOL(ib_modify_port);
2424 
2425 /**
2426  * ib_find_gid - Returns the port number and GID table index where
2427  *   a specified GID value occurs. Its searches only for IB link layer.
2428  * @device: The device to query.
2429  * @gid: The GID value to search for.
2430  * @port_num: The port number of the device where the GID value was found.
2431  * @index: The index into the GID table where the GID was found.  This
2432  *   parameter may be NULL.
2433  */
2434 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2435 		u8 *port_num, u16 *index)
2436 {
2437 	union ib_gid tmp_gid;
2438 	unsigned int port;
2439 	int ret, i;
2440 
2441 	rdma_for_each_port (device, port) {
2442 		if (!rdma_protocol_ib(device, port))
2443 			continue;
2444 
2445 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2446 		     ++i) {
2447 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2448 			if (ret)
2449 				return ret;
2450 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2451 				*port_num = port;
2452 				if (index)
2453 					*index = i;
2454 				return 0;
2455 			}
2456 		}
2457 	}
2458 
2459 	return -ENOENT;
2460 }
2461 EXPORT_SYMBOL(ib_find_gid);
2462 
2463 /**
2464  * ib_find_pkey - Returns the PKey table index where a specified
2465  *   PKey value occurs.
2466  * @device: The device to query.
2467  * @port_num: The port number of the device to search for the PKey.
2468  * @pkey: The PKey value to search for.
2469  * @index: The index into the PKey table where the PKey was found.
2470  */
2471 int ib_find_pkey(struct ib_device *device,
2472 		 u8 port_num, u16 pkey, u16 *index)
2473 {
2474 	int ret, i;
2475 	u16 tmp_pkey;
2476 	int partial_ix = -1;
2477 
2478 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2479 	     ++i) {
2480 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2481 		if (ret)
2482 			return ret;
2483 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2484 			/* if there is full-member pkey take it.*/
2485 			if (tmp_pkey & 0x8000) {
2486 				*index = i;
2487 				return 0;
2488 			}
2489 			if (partial_ix < 0)
2490 				partial_ix = i;
2491 		}
2492 	}
2493 
2494 	/*no full-member, if exists take the limited*/
2495 	if (partial_ix >= 0) {
2496 		*index = partial_ix;
2497 		return 0;
2498 	}
2499 	return -ENOENT;
2500 }
2501 EXPORT_SYMBOL(ib_find_pkey);
2502 
2503 /**
2504  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2505  * for a received CM request
2506  * @dev:	An RDMA device on which the request has been received.
2507  * @port:	Port number on the RDMA device.
2508  * @pkey:	The Pkey the request came on.
2509  * @gid:	A GID that the net_dev uses to communicate.
2510  * @addr:	Contains the IP address that the request specified as its
2511  *		destination.
2512  *
2513  */
2514 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2515 					    u8 port,
2516 					    u16 pkey,
2517 					    const union ib_gid *gid,
2518 					    const struct sockaddr *addr)
2519 {
2520 	struct net_device *net_dev = NULL;
2521 	unsigned long index;
2522 	void *client_data;
2523 
2524 	if (!rdma_protocol_ib(dev, port))
2525 		return NULL;
2526 
2527 	/*
2528 	 * Holding the read side guarantees that the client will not become
2529 	 * unregistered while we are calling get_net_dev_by_params()
2530 	 */
2531 	down_read(&dev->client_data_rwsem);
2532 	xan_for_each_marked (&dev->client_data, index, client_data,
2533 			     CLIENT_DATA_REGISTERED) {
2534 		struct ib_client *client = xa_load(&clients, index);
2535 
2536 		if (!client || !client->get_net_dev_by_params)
2537 			continue;
2538 
2539 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2540 							addr, client_data);
2541 		if (net_dev)
2542 			break;
2543 	}
2544 	up_read(&dev->client_data_rwsem);
2545 
2546 	return net_dev;
2547 }
2548 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2549 
2550 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2551 {
2552 	struct ib_device_ops *dev_ops = &dev->ops;
2553 #define SET_DEVICE_OP(ptr, name)                                               \
2554 	do {                                                                   \
2555 		if (ops->name)                                                 \
2556 			if (!((ptr)->name))				       \
2557 				(ptr)->name = ops->name;                       \
2558 	} while (0)
2559 
2560 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2561 
2562 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2563 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2564 			dev_ops->driver_id != ops->driver_id);
2565 		dev_ops->driver_id = ops->driver_id;
2566 	}
2567 	if (ops->owner) {
2568 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2569 		dev_ops->owner = ops->owner;
2570 	}
2571 	if (ops->uverbs_abi_ver)
2572 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2573 
2574 	dev_ops->uverbs_no_driver_id_binding |=
2575 		ops->uverbs_no_driver_id_binding;
2576 
2577 	SET_DEVICE_OP(dev_ops, add_gid);
2578 	SET_DEVICE_OP(dev_ops, advise_mr);
2579 	SET_DEVICE_OP(dev_ops, alloc_dm);
2580 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2581 	SET_DEVICE_OP(dev_ops, alloc_mr);
2582 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2583 	SET_DEVICE_OP(dev_ops, alloc_mw);
2584 	SET_DEVICE_OP(dev_ops, alloc_pd);
2585 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2586 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2587 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2588 	SET_DEVICE_OP(dev_ops, attach_mcast);
2589 	SET_DEVICE_OP(dev_ops, check_mr_status);
2590 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2591 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2592 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2593 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2594 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2595 	SET_DEVICE_OP(dev_ops, create_ah);
2596 	SET_DEVICE_OP(dev_ops, create_counters);
2597 	SET_DEVICE_OP(dev_ops, create_cq);
2598 	SET_DEVICE_OP(dev_ops, create_flow);
2599 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2600 	SET_DEVICE_OP(dev_ops, create_qp);
2601 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2602 	SET_DEVICE_OP(dev_ops, create_srq);
2603 	SET_DEVICE_OP(dev_ops, create_user_ah);
2604 	SET_DEVICE_OP(dev_ops, create_wq);
2605 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2606 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2607 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2608 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2609 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2610 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2611 	SET_DEVICE_OP(dev_ops, del_gid);
2612 	SET_DEVICE_OP(dev_ops, dereg_mr);
2613 	SET_DEVICE_OP(dev_ops, destroy_ah);
2614 	SET_DEVICE_OP(dev_ops, destroy_counters);
2615 	SET_DEVICE_OP(dev_ops, destroy_cq);
2616 	SET_DEVICE_OP(dev_ops, destroy_flow);
2617 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2618 	SET_DEVICE_OP(dev_ops, destroy_qp);
2619 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2620 	SET_DEVICE_OP(dev_ops, destroy_srq);
2621 	SET_DEVICE_OP(dev_ops, destroy_wq);
2622 	SET_DEVICE_OP(dev_ops, detach_mcast);
2623 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2624 	SET_DEVICE_OP(dev_ops, drain_rq);
2625 	SET_DEVICE_OP(dev_ops, drain_sq);
2626 	SET_DEVICE_OP(dev_ops, enable_driver);
2627 	SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2628 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2629 	SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2630 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2631 	SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2632 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2633 	SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2634 	SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2635 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2636 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2637 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2638 	SET_DEVICE_OP(dev_ops, get_link_layer);
2639 	SET_DEVICE_OP(dev_ops, get_netdev);
2640 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2641 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2642 	SET_DEVICE_OP(dev_ops, get_vf_config);
2643 	SET_DEVICE_OP(dev_ops, get_vf_guid);
2644 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2645 	SET_DEVICE_OP(dev_ops, init_port);
2646 	SET_DEVICE_OP(dev_ops, iw_accept);
2647 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2648 	SET_DEVICE_OP(dev_ops, iw_connect);
2649 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2650 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2651 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2652 	SET_DEVICE_OP(dev_ops, iw_reject);
2653 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2654 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2655 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2656 	SET_DEVICE_OP(dev_ops, mmap);
2657 	SET_DEVICE_OP(dev_ops, mmap_free);
2658 	SET_DEVICE_OP(dev_ops, modify_ah);
2659 	SET_DEVICE_OP(dev_ops, modify_cq);
2660 	SET_DEVICE_OP(dev_ops, modify_device);
2661 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2662 	SET_DEVICE_OP(dev_ops, modify_port);
2663 	SET_DEVICE_OP(dev_ops, modify_qp);
2664 	SET_DEVICE_OP(dev_ops, modify_srq);
2665 	SET_DEVICE_OP(dev_ops, modify_wq);
2666 	SET_DEVICE_OP(dev_ops, peek_cq);
2667 	SET_DEVICE_OP(dev_ops, poll_cq);
2668 	SET_DEVICE_OP(dev_ops, post_recv);
2669 	SET_DEVICE_OP(dev_ops, post_send);
2670 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2671 	SET_DEVICE_OP(dev_ops, process_mad);
2672 	SET_DEVICE_OP(dev_ops, query_ah);
2673 	SET_DEVICE_OP(dev_ops, query_device);
2674 	SET_DEVICE_OP(dev_ops, query_gid);
2675 	SET_DEVICE_OP(dev_ops, query_pkey);
2676 	SET_DEVICE_OP(dev_ops, query_port);
2677 	SET_DEVICE_OP(dev_ops, query_qp);
2678 	SET_DEVICE_OP(dev_ops, query_srq);
2679 	SET_DEVICE_OP(dev_ops, query_ucontext);
2680 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2681 	SET_DEVICE_OP(dev_ops, read_counters);
2682 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2683 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2684 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2685 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2686 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2687 	SET_DEVICE_OP(dev_ops, resize_cq);
2688 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2689 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2690 
2691 	SET_OBJ_SIZE(dev_ops, ib_ah);
2692 	SET_OBJ_SIZE(dev_ops, ib_counters);
2693 	SET_OBJ_SIZE(dev_ops, ib_cq);
2694 	SET_OBJ_SIZE(dev_ops, ib_mw);
2695 	SET_OBJ_SIZE(dev_ops, ib_pd);
2696 	SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2697 	SET_OBJ_SIZE(dev_ops, ib_srq);
2698 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2699 	SET_OBJ_SIZE(dev_ops, ib_xrcd);
2700 }
2701 EXPORT_SYMBOL(ib_set_device_ops);
2702 
2703 #ifdef CONFIG_INFINIBAND_VIRT_DMA
2704 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2705 {
2706 	struct scatterlist *s;
2707 	int i;
2708 
2709 	for_each_sg(sg, s, nents, i) {
2710 		sg_dma_address(s) = (uintptr_t)sg_virt(s);
2711 		sg_dma_len(s) = s->length;
2712 	}
2713 	return nents;
2714 }
2715 EXPORT_SYMBOL(ib_dma_virt_map_sg);
2716 #endif /* CONFIG_INFINIBAND_VIRT_DMA */
2717 
2718 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2719 	[RDMA_NL_LS_OP_RESOLVE] = {
2720 		.doit = ib_nl_handle_resolve_resp,
2721 		.flags = RDMA_NL_ADMIN_PERM,
2722 	},
2723 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2724 		.doit = ib_nl_handle_set_timeout,
2725 		.flags = RDMA_NL_ADMIN_PERM,
2726 	},
2727 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2728 		.doit = ib_nl_handle_ip_res_resp,
2729 		.flags = RDMA_NL_ADMIN_PERM,
2730 	},
2731 };
2732 
2733 static int __init ib_core_init(void)
2734 {
2735 	int ret;
2736 
2737 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2738 	if (!ib_wq)
2739 		return -ENOMEM;
2740 
2741 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2742 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2743 	if (!ib_comp_wq) {
2744 		ret = -ENOMEM;
2745 		goto err;
2746 	}
2747 
2748 	ib_comp_unbound_wq =
2749 		alloc_workqueue("ib-comp-unb-wq",
2750 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2751 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2752 	if (!ib_comp_unbound_wq) {
2753 		ret = -ENOMEM;
2754 		goto err_comp;
2755 	}
2756 
2757 	ret = class_register(&ib_class);
2758 	if (ret) {
2759 		pr_warn("Couldn't create InfiniBand device class\n");
2760 		goto err_comp_unbound;
2761 	}
2762 
2763 	rdma_nl_init();
2764 
2765 	ret = addr_init();
2766 	if (ret) {
2767 		pr_warn("Couldn't init IB address resolution\n");
2768 		goto err_ibnl;
2769 	}
2770 
2771 	ret = ib_mad_init();
2772 	if (ret) {
2773 		pr_warn("Couldn't init IB MAD\n");
2774 		goto err_addr;
2775 	}
2776 
2777 	ret = ib_sa_init();
2778 	if (ret) {
2779 		pr_warn("Couldn't init SA\n");
2780 		goto err_mad;
2781 	}
2782 
2783 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2784 	if (ret) {
2785 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2786 		goto err_sa;
2787 	}
2788 
2789 	ret = register_pernet_device(&rdma_dev_net_ops);
2790 	if (ret) {
2791 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2792 		goto err_compat;
2793 	}
2794 
2795 	nldev_init();
2796 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2797 	roce_gid_mgmt_init();
2798 
2799 	return 0;
2800 
2801 err_compat:
2802 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2803 err_sa:
2804 	ib_sa_cleanup();
2805 err_mad:
2806 	ib_mad_cleanup();
2807 err_addr:
2808 	addr_cleanup();
2809 err_ibnl:
2810 	class_unregister(&ib_class);
2811 err_comp_unbound:
2812 	destroy_workqueue(ib_comp_unbound_wq);
2813 err_comp:
2814 	destroy_workqueue(ib_comp_wq);
2815 err:
2816 	destroy_workqueue(ib_wq);
2817 	return ret;
2818 }
2819 
2820 static void __exit ib_core_cleanup(void)
2821 {
2822 	roce_gid_mgmt_cleanup();
2823 	nldev_exit();
2824 	rdma_nl_unregister(RDMA_NL_LS);
2825 	unregister_pernet_device(&rdma_dev_net_ops);
2826 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2827 	ib_sa_cleanup();
2828 	ib_mad_cleanup();
2829 	addr_cleanup();
2830 	rdma_nl_exit();
2831 	class_unregister(&ib_class);
2832 	destroy_workqueue(ib_comp_unbound_wq);
2833 	destroy_workqueue(ib_comp_wq);
2834 	/* Make sure that any pending umem accounting work is done. */
2835 	destroy_workqueue(ib_wq);
2836 	flush_workqueue(system_unbound_wq);
2837 	WARN_ON(!xa_empty(&clients));
2838 	WARN_ON(!xa_empty(&devices));
2839 }
2840 
2841 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2842 
2843 /* ib core relies on netdev stack to first register net_ns_type_operations
2844  * ns kobject type before ib_core initialization.
2845  */
2846 fs_initcall(ib_core_init);
2847 module_exit(ib_core_cleanup);
2848