1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 62 /* 63 * Each of the three rwsem locks (devices, clients, client_data) protects the 64 * xarray of the same name. Specifically it allows the caller to assert that 65 * the MARK will/will not be changing under the lock, and for devices and 66 * clients, that the value in the xarray is still a valid pointer. Change of 67 * the MARK is linked to the object state, so holding the lock and testing the 68 * MARK also asserts that the contained object is in a certain state. 69 * 70 * This is used to build a two stage register/unregister flow where objects 71 * can continue to be in the xarray even though they are still in progress to 72 * register/unregister. 73 * 74 * The xarray itself provides additional locking, and restartable iteration, 75 * which is also relied on. 76 * 77 * Locks should not be nested, with the exception of client_data, which is 78 * allowed to nest under the read side of the other two locks. 79 * 80 * The devices_rwsem also protects the device name list, any change or 81 * assignment of device name must also hold the write side to guarantee unique 82 * names. 83 */ 84 85 /* 86 * devices contains devices that have had their names assigned. The 87 * devices may not be registered. Users that care about the registration 88 * status need to call ib_device_try_get() on the device to ensure it is 89 * registered, and keep it registered, for the required duration. 90 * 91 */ 92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 93 static DECLARE_RWSEM(devices_rwsem); 94 #define DEVICE_REGISTERED XA_MARK_1 95 96 static u32 highest_client_id; 97 #define CLIENT_REGISTERED XA_MARK_1 98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 99 static DECLARE_RWSEM(clients_rwsem); 100 101 static void ib_client_put(struct ib_client *client) 102 { 103 if (refcount_dec_and_test(&client->uses)) 104 complete(&client->uses_zero); 105 } 106 107 /* 108 * If client_data is registered then the corresponding client must also still 109 * be registered. 110 */ 111 #define CLIENT_DATA_REGISTERED XA_MARK_1 112 113 unsigned int rdma_dev_net_id; 114 115 /* 116 * A list of net namespaces is maintained in an xarray. This is necessary 117 * because we can't get the locking right using the existing net ns list. We 118 * would require a init_net callback after the list is updated. 119 */ 120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 121 /* 122 * rwsem to protect accessing the rdma_nets xarray entries. 123 */ 124 static DECLARE_RWSEM(rdma_nets_rwsem); 125 126 bool ib_devices_shared_netns = true; 127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 128 MODULE_PARM_DESC(netns_mode, 129 "Share device among net namespaces; default=1 (shared)"); 130 /** 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 132 * from a specified net namespace or not. 133 * @dev: Pointer to rdma device which needs to be checked 134 * @net: Pointer to net namesapce for which access to be checked 135 * 136 * When the rdma device is in shared mode, it ignores the net namespace. 137 * When the rdma device is exclusive to a net namespace, rdma device net 138 * namespace is checked against the specified one. 139 */ 140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 141 { 142 return (ib_devices_shared_netns || 143 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 144 } 145 EXPORT_SYMBOL(rdma_dev_access_netns); 146 147 /* 148 * xarray has this behavior where it won't iterate over NULL values stored in 149 * allocated arrays. So we need our own iterator to see all values stored in 150 * the array. This does the same thing as xa_for_each except that it also 151 * returns NULL valued entries if the array is allocating. Simplified to only 152 * work on simple xarrays. 153 */ 154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 155 xa_mark_t filter) 156 { 157 XA_STATE(xas, xa, *indexp); 158 void *entry; 159 160 rcu_read_lock(); 161 do { 162 entry = xas_find_marked(&xas, ULONG_MAX, filter); 163 if (xa_is_zero(entry)) 164 break; 165 } while (xas_retry(&xas, entry)); 166 rcu_read_unlock(); 167 168 if (entry) { 169 *indexp = xas.xa_index; 170 if (xa_is_zero(entry)) 171 return NULL; 172 return entry; 173 } 174 return XA_ERROR(-ENOENT); 175 } 176 #define xan_for_each_marked(xa, index, entry, filter) \ 177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 178 !xa_is_err(entry); \ 179 (index)++, entry = xan_find_marked(xa, &(index), filter)) 180 181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 182 static DEFINE_SPINLOCK(ndev_hash_lock); 183 static DECLARE_HASHTABLE(ndev_hash, 5); 184 185 static void free_netdevs(struct ib_device *ib_dev); 186 static void ib_unregister_work(struct work_struct *work); 187 static void __ib_unregister_device(struct ib_device *device); 188 static int ib_security_change(struct notifier_block *nb, unsigned long event, 189 void *lsm_data); 190 static void ib_policy_change_task(struct work_struct *work); 191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 192 193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 194 struct va_format *vaf) 195 { 196 if (ibdev && ibdev->dev.parent) 197 dev_printk_emit(level[1] - '0', 198 ibdev->dev.parent, 199 "%s %s %s: %pV", 200 dev_driver_string(ibdev->dev.parent), 201 dev_name(ibdev->dev.parent), 202 dev_name(&ibdev->dev), 203 vaf); 204 else if (ibdev) 205 printk("%s%s: %pV", 206 level, dev_name(&ibdev->dev), vaf); 207 else 208 printk("%s(NULL ib_device): %pV", level, vaf); 209 } 210 211 void ibdev_printk(const char *level, const struct ib_device *ibdev, 212 const char *format, ...) 213 { 214 struct va_format vaf; 215 va_list args; 216 217 va_start(args, format); 218 219 vaf.fmt = format; 220 vaf.va = &args; 221 222 __ibdev_printk(level, ibdev, &vaf); 223 224 va_end(args); 225 } 226 EXPORT_SYMBOL(ibdev_printk); 227 228 #define define_ibdev_printk_level(func, level) \ 229 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 230 { \ 231 struct va_format vaf; \ 232 va_list args; \ 233 \ 234 va_start(args, fmt); \ 235 \ 236 vaf.fmt = fmt; \ 237 vaf.va = &args; \ 238 \ 239 __ibdev_printk(level, ibdev, &vaf); \ 240 \ 241 va_end(args); \ 242 } \ 243 EXPORT_SYMBOL(func); 244 245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 248 define_ibdev_printk_level(ibdev_err, KERN_ERR); 249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 251 define_ibdev_printk_level(ibdev_info, KERN_INFO); 252 253 static struct notifier_block ibdev_lsm_nb = { 254 .notifier_call = ib_security_change, 255 }; 256 257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 258 struct net *net); 259 260 /* Pointer to the RCU head at the start of the ib_port_data array */ 261 struct ib_port_data_rcu { 262 struct rcu_head rcu_head; 263 struct ib_port_data pdata[]; 264 }; 265 266 static void ib_device_check_mandatory(struct ib_device *device) 267 { 268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 269 static const struct { 270 size_t offset; 271 char *name; 272 } mandatory_table[] = { 273 IB_MANDATORY_FUNC(query_device), 274 IB_MANDATORY_FUNC(query_port), 275 IB_MANDATORY_FUNC(alloc_pd), 276 IB_MANDATORY_FUNC(dealloc_pd), 277 IB_MANDATORY_FUNC(create_qp), 278 IB_MANDATORY_FUNC(modify_qp), 279 IB_MANDATORY_FUNC(destroy_qp), 280 IB_MANDATORY_FUNC(post_send), 281 IB_MANDATORY_FUNC(post_recv), 282 IB_MANDATORY_FUNC(create_cq), 283 IB_MANDATORY_FUNC(destroy_cq), 284 IB_MANDATORY_FUNC(poll_cq), 285 IB_MANDATORY_FUNC(req_notify_cq), 286 IB_MANDATORY_FUNC(get_dma_mr), 287 IB_MANDATORY_FUNC(reg_user_mr), 288 IB_MANDATORY_FUNC(dereg_mr), 289 IB_MANDATORY_FUNC(get_port_immutable) 290 }; 291 int i; 292 293 device->kverbs_provider = true; 294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 295 if (!*(void **) ((void *) &device->ops + 296 mandatory_table[i].offset)) { 297 device->kverbs_provider = false; 298 break; 299 } 300 } 301 } 302 303 /* 304 * Caller must perform ib_device_put() to return the device reference count 305 * when ib_device_get_by_index() returns valid device pointer. 306 */ 307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 308 { 309 struct ib_device *device; 310 311 down_read(&devices_rwsem); 312 device = xa_load(&devices, index); 313 if (device) { 314 if (!rdma_dev_access_netns(device, net)) { 315 device = NULL; 316 goto out; 317 } 318 319 if (!ib_device_try_get(device)) 320 device = NULL; 321 } 322 out: 323 up_read(&devices_rwsem); 324 return device; 325 } 326 327 /** 328 * ib_device_put - Release IB device reference 329 * @device: device whose reference to be released 330 * 331 * ib_device_put() releases reference to the IB device to allow it to be 332 * unregistered and eventually free. 333 */ 334 void ib_device_put(struct ib_device *device) 335 { 336 if (refcount_dec_and_test(&device->refcount)) 337 complete(&device->unreg_completion); 338 } 339 EXPORT_SYMBOL(ib_device_put); 340 341 static struct ib_device *__ib_device_get_by_name(const char *name) 342 { 343 struct ib_device *device; 344 unsigned long index; 345 346 xa_for_each (&devices, index, device) 347 if (!strcmp(name, dev_name(&device->dev))) 348 return device; 349 350 return NULL; 351 } 352 353 /** 354 * ib_device_get_by_name - Find an IB device by name 355 * @name: The name to look for 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 357 * 358 * Find and hold an ib_device by its name. The caller must call 359 * ib_device_put() on the returned pointer. 360 */ 361 struct ib_device *ib_device_get_by_name(const char *name, 362 enum rdma_driver_id driver_id) 363 { 364 struct ib_device *device; 365 366 down_read(&devices_rwsem); 367 device = __ib_device_get_by_name(name); 368 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 369 device->ops.driver_id != driver_id) 370 device = NULL; 371 372 if (device) { 373 if (!ib_device_try_get(device)) 374 device = NULL; 375 } 376 up_read(&devices_rwsem); 377 return device; 378 } 379 EXPORT_SYMBOL(ib_device_get_by_name); 380 381 static int rename_compat_devs(struct ib_device *device) 382 { 383 struct ib_core_device *cdev; 384 unsigned long index; 385 int ret = 0; 386 387 mutex_lock(&device->compat_devs_mutex); 388 xa_for_each (&device->compat_devs, index, cdev) { 389 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 390 if (ret) { 391 dev_warn(&cdev->dev, 392 "Fail to rename compatdev to new name %s\n", 393 dev_name(&device->dev)); 394 break; 395 } 396 } 397 mutex_unlock(&device->compat_devs_mutex); 398 return ret; 399 } 400 401 int ib_device_rename(struct ib_device *ibdev, const char *name) 402 { 403 unsigned long index; 404 void *client_data; 405 int ret; 406 407 down_write(&devices_rwsem); 408 if (!strcmp(name, dev_name(&ibdev->dev))) { 409 up_write(&devices_rwsem); 410 return 0; 411 } 412 413 if (__ib_device_get_by_name(name)) { 414 up_write(&devices_rwsem); 415 return -EEXIST; 416 } 417 418 ret = device_rename(&ibdev->dev, name); 419 if (ret) { 420 up_write(&devices_rwsem); 421 return ret; 422 } 423 424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 425 ret = rename_compat_devs(ibdev); 426 427 downgrade_write(&devices_rwsem); 428 down_read(&ibdev->client_data_rwsem); 429 xan_for_each_marked(&ibdev->client_data, index, client_data, 430 CLIENT_DATA_REGISTERED) { 431 struct ib_client *client = xa_load(&clients, index); 432 433 if (!client || !client->rename) 434 continue; 435 436 client->rename(ibdev, client_data); 437 } 438 up_read(&ibdev->client_data_rwsem); 439 up_read(&devices_rwsem); 440 return 0; 441 } 442 443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 444 { 445 if (use_dim > 1) 446 return -EINVAL; 447 ibdev->use_cq_dim = use_dim; 448 449 return 0; 450 } 451 452 static int alloc_name(struct ib_device *ibdev, const char *name) 453 { 454 struct ib_device *device; 455 unsigned long index; 456 struct ida inuse; 457 int rc; 458 int i; 459 460 lockdep_assert_held_write(&devices_rwsem); 461 ida_init(&inuse); 462 xa_for_each (&devices, index, device) { 463 char buf[IB_DEVICE_NAME_MAX]; 464 465 if (sscanf(dev_name(&device->dev), name, &i) != 1) 466 continue; 467 if (i < 0 || i >= INT_MAX) 468 continue; 469 snprintf(buf, sizeof buf, name, i); 470 if (strcmp(buf, dev_name(&device->dev)) != 0) 471 continue; 472 473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 474 if (rc < 0) 475 goto out; 476 } 477 478 rc = ida_alloc(&inuse, GFP_KERNEL); 479 if (rc < 0) 480 goto out; 481 482 rc = dev_set_name(&ibdev->dev, name, rc); 483 out: 484 ida_destroy(&inuse); 485 return rc; 486 } 487 488 static void ib_device_release(struct device *device) 489 { 490 struct ib_device *dev = container_of(device, struct ib_device, dev); 491 492 free_netdevs(dev); 493 WARN_ON(refcount_read(&dev->refcount)); 494 if (dev->port_data) { 495 ib_cache_release_one(dev); 496 ib_security_release_port_pkey_list(dev); 497 rdma_counter_release(dev); 498 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 499 pdata[0]), 500 rcu_head); 501 } 502 503 mutex_destroy(&dev->unregistration_lock); 504 mutex_destroy(&dev->compat_devs_mutex); 505 506 xa_destroy(&dev->compat_devs); 507 xa_destroy(&dev->client_data); 508 kfree_rcu(dev, rcu_head); 509 } 510 511 static int ib_device_uevent(struct device *device, 512 struct kobj_uevent_env *env) 513 { 514 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 515 return -ENOMEM; 516 517 /* 518 * It would be nice to pass the node GUID with the event... 519 */ 520 521 return 0; 522 } 523 524 static const void *net_namespace(struct device *d) 525 { 526 struct ib_core_device *coredev = 527 container_of(d, struct ib_core_device, dev); 528 529 return read_pnet(&coredev->rdma_net); 530 } 531 532 static struct class ib_class = { 533 .name = "infiniband", 534 .dev_release = ib_device_release, 535 .dev_uevent = ib_device_uevent, 536 .ns_type = &net_ns_type_operations, 537 .namespace = net_namespace, 538 }; 539 540 static void rdma_init_coredev(struct ib_core_device *coredev, 541 struct ib_device *dev, struct net *net) 542 { 543 /* This BUILD_BUG_ON is intended to catch layout change 544 * of union of ib_core_device and device. 545 * dev must be the first element as ib_core and providers 546 * driver uses it. Adding anything in ib_core_device before 547 * device will break this assumption. 548 */ 549 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 550 offsetof(struct ib_device, dev)); 551 552 coredev->dev.class = &ib_class; 553 coredev->dev.groups = dev->groups; 554 device_initialize(&coredev->dev); 555 coredev->owner = dev; 556 INIT_LIST_HEAD(&coredev->port_list); 557 write_pnet(&coredev->rdma_net, net); 558 } 559 560 /** 561 * _ib_alloc_device - allocate an IB device struct 562 * @size:size of structure to allocate 563 * 564 * Low-level drivers should use ib_alloc_device() to allocate &struct 565 * ib_device. @size is the size of the structure to be allocated, 566 * including any private data used by the low-level driver. 567 * ib_dealloc_device() must be used to free structures allocated with 568 * ib_alloc_device(). 569 */ 570 struct ib_device *_ib_alloc_device(size_t size) 571 { 572 struct ib_device *device; 573 unsigned int i; 574 575 if (WARN_ON(size < sizeof(struct ib_device))) 576 return NULL; 577 578 device = kzalloc(size, GFP_KERNEL); 579 if (!device) 580 return NULL; 581 582 if (rdma_restrack_init(device)) { 583 kfree(device); 584 return NULL; 585 } 586 587 device->groups[0] = &ib_dev_attr_group; 588 rdma_init_coredev(&device->coredev, device, &init_net); 589 590 INIT_LIST_HEAD(&device->event_handler_list); 591 spin_lock_init(&device->qp_open_list_lock); 592 init_rwsem(&device->event_handler_rwsem); 593 mutex_init(&device->unregistration_lock); 594 /* 595 * client_data needs to be alloc because we don't want our mark to be 596 * destroyed if the user stores NULL in the client data. 597 */ 598 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 599 init_rwsem(&device->client_data_rwsem); 600 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 601 mutex_init(&device->compat_devs_mutex); 602 init_completion(&device->unreg_completion); 603 INIT_WORK(&device->unregistration_work, ib_unregister_work); 604 605 spin_lock_init(&device->cq_pools_lock); 606 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++) 607 INIT_LIST_HEAD(&device->cq_pools[i]); 608 609 device->uverbs_cmd_mask = 610 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) | 611 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) | 612 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) | 613 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) | 614 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) | 615 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | 616 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) | 617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) | 618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) | 619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) | 620 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) | 621 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) | 622 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) | 623 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) | 624 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) | 625 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) | 626 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) | 627 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) | 628 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) | 629 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) | 630 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) | 631 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) | 632 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) | 633 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) | 634 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) | 635 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) | 636 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) | 637 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) | 638 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) | 639 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ); 640 return device; 641 } 642 EXPORT_SYMBOL(_ib_alloc_device); 643 644 /** 645 * ib_dealloc_device - free an IB device struct 646 * @device:structure to free 647 * 648 * Free a structure allocated with ib_alloc_device(). 649 */ 650 void ib_dealloc_device(struct ib_device *device) 651 { 652 if (device->ops.dealloc_driver) 653 device->ops.dealloc_driver(device); 654 655 /* 656 * ib_unregister_driver() requires all devices to remain in the xarray 657 * while their ops are callable. The last op we call is dealloc_driver 658 * above. This is needed to create a fence on op callbacks prior to 659 * allowing the driver module to unload. 660 */ 661 down_write(&devices_rwsem); 662 if (xa_load(&devices, device->index) == device) 663 xa_erase(&devices, device->index); 664 up_write(&devices_rwsem); 665 666 /* Expedite releasing netdev references */ 667 free_netdevs(device); 668 669 WARN_ON(!xa_empty(&device->compat_devs)); 670 WARN_ON(!xa_empty(&device->client_data)); 671 WARN_ON(refcount_read(&device->refcount)); 672 rdma_restrack_clean(device); 673 /* Balances with device_initialize */ 674 put_device(&device->dev); 675 } 676 EXPORT_SYMBOL(ib_dealloc_device); 677 678 /* 679 * add_client_context() and remove_client_context() must be safe against 680 * parallel calls on the same device - registration/unregistration of both the 681 * device and client can be occurring in parallel. 682 * 683 * The routines need to be a fence, any caller must not return until the add 684 * or remove is fully completed. 685 */ 686 static int add_client_context(struct ib_device *device, 687 struct ib_client *client) 688 { 689 int ret = 0; 690 691 if (!device->kverbs_provider && !client->no_kverbs_req) 692 return 0; 693 694 down_write(&device->client_data_rwsem); 695 /* 696 * So long as the client is registered hold both the client and device 697 * unregistration locks. 698 */ 699 if (!refcount_inc_not_zero(&client->uses)) 700 goto out_unlock; 701 refcount_inc(&device->refcount); 702 703 /* 704 * Another caller to add_client_context got here first and has already 705 * completely initialized context. 706 */ 707 if (xa_get_mark(&device->client_data, client->client_id, 708 CLIENT_DATA_REGISTERED)) 709 goto out; 710 711 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 712 GFP_KERNEL)); 713 if (ret) 714 goto out; 715 downgrade_write(&device->client_data_rwsem); 716 if (client->add) { 717 if (client->add(device)) { 718 /* 719 * If a client fails to add then the error code is 720 * ignored, but we won't call any more ops on this 721 * client. 722 */ 723 xa_erase(&device->client_data, client->client_id); 724 up_read(&device->client_data_rwsem); 725 ib_device_put(device); 726 ib_client_put(client); 727 return 0; 728 } 729 } 730 731 /* Readers shall not see a client until add has been completed */ 732 xa_set_mark(&device->client_data, client->client_id, 733 CLIENT_DATA_REGISTERED); 734 up_read(&device->client_data_rwsem); 735 return 0; 736 737 out: 738 ib_device_put(device); 739 ib_client_put(client); 740 out_unlock: 741 up_write(&device->client_data_rwsem); 742 return ret; 743 } 744 745 static void remove_client_context(struct ib_device *device, 746 unsigned int client_id) 747 { 748 struct ib_client *client; 749 void *client_data; 750 751 down_write(&device->client_data_rwsem); 752 if (!xa_get_mark(&device->client_data, client_id, 753 CLIENT_DATA_REGISTERED)) { 754 up_write(&device->client_data_rwsem); 755 return; 756 } 757 client_data = xa_load(&device->client_data, client_id); 758 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 759 client = xa_load(&clients, client_id); 760 up_write(&device->client_data_rwsem); 761 762 /* 763 * Notice we cannot be holding any exclusive locks when calling the 764 * remove callback as the remove callback can recurse back into any 765 * public functions in this module and thus try for any locks those 766 * functions take. 767 * 768 * For this reason clients and drivers should not call the 769 * unregistration functions will holdling any locks. 770 */ 771 if (client->remove) 772 client->remove(device, client_data); 773 774 xa_erase(&device->client_data, client_id); 775 ib_device_put(device); 776 ib_client_put(client); 777 } 778 779 static int alloc_port_data(struct ib_device *device) 780 { 781 struct ib_port_data_rcu *pdata_rcu; 782 u32 port; 783 784 if (device->port_data) 785 return 0; 786 787 /* This can only be called once the physical port range is defined */ 788 if (WARN_ON(!device->phys_port_cnt)) 789 return -EINVAL; 790 791 /* Reserve U32_MAX so the logic to go over all the ports is sane */ 792 if (WARN_ON(device->phys_port_cnt == U32_MAX)) 793 return -EINVAL; 794 795 /* 796 * device->port_data is indexed directly by the port number to make 797 * access to this data as efficient as possible. 798 * 799 * Therefore port_data is declared as a 1 based array with potential 800 * empty slots at the beginning. 801 */ 802 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 803 rdma_end_port(device) + 1), 804 GFP_KERNEL); 805 if (!pdata_rcu) 806 return -ENOMEM; 807 /* 808 * The rcu_head is put in front of the port data array and the stored 809 * pointer is adjusted since we never need to see that member until 810 * kfree_rcu. 811 */ 812 device->port_data = pdata_rcu->pdata; 813 814 rdma_for_each_port (device, port) { 815 struct ib_port_data *pdata = &device->port_data[port]; 816 817 pdata->ib_dev = device; 818 spin_lock_init(&pdata->pkey_list_lock); 819 INIT_LIST_HEAD(&pdata->pkey_list); 820 spin_lock_init(&pdata->netdev_lock); 821 INIT_HLIST_NODE(&pdata->ndev_hash_link); 822 } 823 return 0; 824 } 825 826 static int verify_immutable(const struct ib_device *dev, u32 port) 827 { 828 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 829 rdma_max_mad_size(dev, port) != 0); 830 } 831 832 static int setup_port_data(struct ib_device *device) 833 { 834 u32 port; 835 int ret; 836 837 ret = alloc_port_data(device); 838 if (ret) 839 return ret; 840 841 rdma_for_each_port (device, port) { 842 struct ib_port_data *pdata = &device->port_data[port]; 843 844 ret = device->ops.get_port_immutable(device, port, 845 &pdata->immutable); 846 if (ret) 847 return ret; 848 849 if (verify_immutable(device, port)) 850 return -EINVAL; 851 } 852 return 0; 853 } 854 855 /** 856 * ib_port_immutable_read() - Read rdma port's immutable data 857 * @dev: IB device 858 * @port: port number whose immutable data to read. It starts with index 1 and 859 * valid upto including rdma_end_port(). 860 */ 861 const struct ib_port_immutable* 862 ib_port_immutable_read(struct ib_device *dev, unsigned int port) 863 { 864 WARN_ON(!rdma_is_port_valid(dev, port)); 865 return &dev->port_data[port].immutable; 866 } 867 EXPORT_SYMBOL(ib_port_immutable_read); 868 869 void ib_get_device_fw_str(struct ib_device *dev, char *str) 870 { 871 if (dev->ops.get_dev_fw_str) 872 dev->ops.get_dev_fw_str(dev, str); 873 else 874 str[0] = '\0'; 875 } 876 EXPORT_SYMBOL(ib_get_device_fw_str); 877 878 static void ib_policy_change_task(struct work_struct *work) 879 { 880 struct ib_device *dev; 881 unsigned long index; 882 883 down_read(&devices_rwsem); 884 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 885 unsigned int i; 886 887 rdma_for_each_port (dev, i) { 888 u64 sp; 889 int ret = ib_get_cached_subnet_prefix(dev, 890 i, 891 &sp); 892 893 WARN_ONCE(ret, 894 "ib_get_cached_subnet_prefix err: %d, this should never happen here\n", 895 ret); 896 if (!ret) 897 ib_security_cache_change(dev, i, sp); 898 } 899 } 900 up_read(&devices_rwsem); 901 } 902 903 static int ib_security_change(struct notifier_block *nb, unsigned long event, 904 void *lsm_data) 905 { 906 if (event != LSM_POLICY_CHANGE) 907 return NOTIFY_DONE; 908 909 schedule_work(&ib_policy_change_work); 910 ib_mad_agent_security_change(); 911 912 return NOTIFY_OK; 913 } 914 915 static void compatdev_release(struct device *dev) 916 { 917 struct ib_core_device *cdev = 918 container_of(dev, struct ib_core_device, dev); 919 920 kfree(cdev); 921 } 922 923 static int add_one_compat_dev(struct ib_device *device, 924 struct rdma_dev_net *rnet) 925 { 926 struct ib_core_device *cdev; 927 int ret; 928 929 lockdep_assert_held(&rdma_nets_rwsem); 930 if (!ib_devices_shared_netns) 931 return 0; 932 933 /* 934 * Create and add compat device in all namespaces other than where it 935 * is currently bound to. 936 */ 937 if (net_eq(read_pnet(&rnet->net), 938 read_pnet(&device->coredev.rdma_net))) 939 return 0; 940 941 /* 942 * The first of init_net() or ib_register_device() to take the 943 * compat_devs_mutex wins and gets to add the device. Others will wait 944 * for completion here. 945 */ 946 mutex_lock(&device->compat_devs_mutex); 947 cdev = xa_load(&device->compat_devs, rnet->id); 948 if (cdev) { 949 ret = 0; 950 goto done; 951 } 952 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 953 if (ret) 954 goto done; 955 956 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 957 if (!cdev) { 958 ret = -ENOMEM; 959 goto cdev_err; 960 } 961 962 cdev->dev.parent = device->dev.parent; 963 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 964 cdev->dev.release = compatdev_release; 965 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 966 if (ret) 967 goto add_err; 968 969 ret = device_add(&cdev->dev); 970 if (ret) 971 goto add_err; 972 ret = ib_setup_port_attrs(cdev); 973 if (ret) 974 goto port_err; 975 976 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 977 cdev, GFP_KERNEL)); 978 if (ret) 979 goto insert_err; 980 981 mutex_unlock(&device->compat_devs_mutex); 982 return 0; 983 984 insert_err: 985 ib_free_port_attrs(cdev); 986 port_err: 987 device_del(&cdev->dev); 988 add_err: 989 put_device(&cdev->dev); 990 cdev_err: 991 xa_release(&device->compat_devs, rnet->id); 992 done: 993 mutex_unlock(&device->compat_devs_mutex); 994 return ret; 995 } 996 997 static void remove_one_compat_dev(struct ib_device *device, u32 id) 998 { 999 struct ib_core_device *cdev; 1000 1001 mutex_lock(&device->compat_devs_mutex); 1002 cdev = xa_erase(&device->compat_devs, id); 1003 mutex_unlock(&device->compat_devs_mutex); 1004 if (cdev) { 1005 ib_free_port_attrs(cdev); 1006 device_del(&cdev->dev); 1007 put_device(&cdev->dev); 1008 } 1009 } 1010 1011 static void remove_compat_devs(struct ib_device *device) 1012 { 1013 struct ib_core_device *cdev; 1014 unsigned long index; 1015 1016 xa_for_each (&device->compat_devs, index, cdev) 1017 remove_one_compat_dev(device, index); 1018 } 1019 1020 static int add_compat_devs(struct ib_device *device) 1021 { 1022 struct rdma_dev_net *rnet; 1023 unsigned long index; 1024 int ret = 0; 1025 1026 lockdep_assert_held(&devices_rwsem); 1027 1028 down_read(&rdma_nets_rwsem); 1029 xa_for_each (&rdma_nets, index, rnet) { 1030 ret = add_one_compat_dev(device, rnet); 1031 if (ret) 1032 break; 1033 } 1034 up_read(&rdma_nets_rwsem); 1035 return ret; 1036 } 1037 1038 static void remove_all_compat_devs(void) 1039 { 1040 struct ib_compat_device *cdev; 1041 struct ib_device *dev; 1042 unsigned long index; 1043 1044 down_read(&devices_rwsem); 1045 xa_for_each (&devices, index, dev) { 1046 unsigned long c_index = 0; 1047 1048 /* Hold nets_rwsem so that any other thread modifying this 1049 * system param can sync with this thread. 1050 */ 1051 down_read(&rdma_nets_rwsem); 1052 xa_for_each (&dev->compat_devs, c_index, cdev) 1053 remove_one_compat_dev(dev, c_index); 1054 up_read(&rdma_nets_rwsem); 1055 } 1056 up_read(&devices_rwsem); 1057 } 1058 1059 static int add_all_compat_devs(void) 1060 { 1061 struct rdma_dev_net *rnet; 1062 struct ib_device *dev; 1063 unsigned long index; 1064 int ret = 0; 1065 1066 down_read(&devices_rwsem); 1067 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1068 unsigned long net_index = 0; 1069 1070 /* Hold nets_rwsem so that any other thread modifying this 1071 * system param can sync with this thread. 1072 */ 1073 down_read(&rdma_nets_rwsem); 1074 xa_for_each (&rdma_nets, net_index, rnet) { 1075 ret = add_one_compat_dev(dev, rnet); 1076 if (ret) 1077 break; 1078 } 1079 up_read(&rdma_nets_rwsem); 1080 } 1081 up_read(&devices_rwsem); 1082 if (ret) 1083 remove_all_compat_devs(); 1084 return ret; 1085 } 1086 1087 int rdma_compatdev_set(u8 enable) 1088 { 1089 struct rdma_dev_net *rnet; 1090 unsigned long index; 1091 int ret = 0; 1092 1093 down_write(&rdma_nets_rwsem); 1094 if (ib_devices_shared_netns == enable) { 1095 up_write(&rdma_nets_rwsem); 1096 return 0; 1097 } 1098 1099 /* enable/disable of compat devices is not supported 1100 * when more than default init_net exists. 1101 */ 1102 xa_for_each (&rdma_nets, index, rnet) { 1103 ret++; 1104 break; 1105 } 1106 if (!ret) 1107 ib_devices_shared_netns = enable; 1108 up_write(&rdma_nets_rwsem); 1109 if (ret) 1110 return -EBUSY; 1111 1112 if (enable) 1113 ret = add_all_compat_devs(); 1114 else 1115 remove_all_compat_devs(); 1116 return ret; 1117 } 1118 1119 static void rdma_dev_exit_net(struct net *net) 1120 { 1121 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1122 struct ib_device *dev; 1123 unsigned long index; 1124 int ret; 1125 1126 down_write(&rdma_nets_rwsem); 1127 /* 1128 * Prevent the ID from being re-used and hide the id from xa_for_each. 1129 */ 1130 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1131 WARN_ON(ret); 1132 up_write(&rdma_nets_rwsem); 1133 1134 down_read(&devices_rwsem); 1135 xa_for_each (&devices, index, dev) { 1136 get_device(&dev->dev); 1137 /* 1138 * Release the devices_rwsem so that pontentially blocking 1139 * device_del, doesn't hold the devices_rwsem for too long. 1140 */ 1141 up_read(&devices_rwsem); 1142 1143 remove_one_compat_dev(dev, rnet->id); 1144 1145 /* 1146 * If the real device is in the NS then move it back to init. 1147 */ 1148 rdma_dev_change_netns(dev, net, &init_net); 1149 1150 put_device(&dev->dev); 1151 down_read(&devices_rwsem); 1152 } 1153 up_read(&devices_rwsem); 1154 1155 rdma_nl_net_exit(rnet); 1156 xa_erase(&rdma_nets, rnet->id); 1157 } 1158 1159 static __net_init int rdma_dev_init_net(struct net *net) 1160 { 1161 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1162 unsigned long index; 1163 struct ib_device *dev; 1164 int ret; 1165 1166 write_pnet(&rnet->net, net); 1167 1168 ret = rdma_nl_net_init(rnet); 1169 if (ret) 1170 return ret; 1171 1172 /* No need to create any compat devices in default init_net. */ 1173 if (net_eq(net, &init_net)) 1174 return 0; 1175 1176 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1177 if (ret) { 1178 rdma_nl_net_exit(rnet); 1179 return ret; 1180 } 1181 1182 down_read(&devices_rwsem); 1183 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1184 /* Hold nets_rwsem so that netlink command cannot change 1185 * system configuration for device sharing mode. 1186 */ 1187 down_read(&rdma_nets_rwsem); 1188 ret = add_one_compat_dev(dev, rnet); 1189 up_read(&rdma_nets_rwsem); 1190 if (ret) 1191 break; 1192 } 1193 up_read(&devices_rwsem); 1194 1195 if (ret) 1196 rdma_dev_exit_net(net); 1197 1198 return ret; 1199 } 1200 1201 /* 1202 * Assign the unique string device name and the unique device index. This is 1203 * undone by ib_dealloc_device. 1204 */ 1205 static int assign_name(struct ib_device *device, const char *name) 1206 { 1207 static u32 last_id; 1208 int ret; 1209 1210 down_write(&devices_rwsem); 1211 /* Assign a unique name to the device */ 1212 if (strchr(name, '%')) 1213 ret = alloc_name(device, name); 1214 else 1215 ret = dev_set_name(&device->dev, name); 1216 if (ret) 1217 goto out; 1218 1219 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1220 ret = -ENFILE; 1221 goto out; 1222 } 1223 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1224 1225 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1226 &last_id, GFP_KERNEL); 1227 if (ret > 0) 1228 ret = 0; 1229 1230 out: 1231 up_write(&devices_rwsem); 1232 return ret; 1233 } 1234 1235 /* 1236 * setup_device() allocates memory and sets up data that requires calling the 1237 * device ops, this is the only reason these actions are not done during 1238 * ib_alloc_device. It is undone by ib_dealloc_device(). 1239 */ 1240 static int setup_device(struct ib_device *device) 1241 { 1242 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1243 int ret; 1244 1245 ib_device_check_mandatory(device); 1246 1247 ret = setup_port_data(device); 1248 if (ret) { 1249 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1250 return ret; 1251 } 1252 1253 memset(&device->attrs, 0, sizeof(device->attrs)); 1254 ret = device->ops.query_device(device, &device->attrs, &uhw); 1255 if (ret) { 1256 dev_warn(&device->dev, 1257 "Couldn't query the device attributes\n"); 1258 return ret; 1259 } 1260 1261 return 0; 1262 } 1263 1264 static void disable_device(struct ib_device *device) 1265 { 1266 u32 cid; 1267 1268 WARN_ON(!refcount_read(&device->refcount)); 1269 1270 down_write(&devices_rwsem); 1271 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1272 up_write(&devices_rwsem); 1273 1274 /* 1275 * Remove clients in LIFO order, see assign_client_id. This could be 1276 * more efficient if xarray learns to reverse iterate. Since no new 1277 * clients can be added to this ib_device past this point we only need 1278 * the maximum possible client_id value here. 1279 */ 1280 down_read(&clients_rwsem); 1281 cid = highest_client_id; 1282 up_read(&clients_rwsem); 1283 while (cid) { 1284 cid--; 1285 remove_client_context(device, cid); 1286 } 1287 1288 ib_cq_pool_cleanup(device); 1289 1290 /* Pairs with refcount_set in enable_device */ 1291 ib_device_put(device); 1292 wait_for_completion(&device->unreg_completion); 1293 1294 /* 1295 * compat devices must be removed after device refcount drops to zero. 1296 * Otherwise init_net() may add more compatdevs after removing compat 1297 * devices and before device is disabled. 1298 */ 1299 remove_compat_devs(device); 1300 } 1301 1302 /* 1303 * An enabled device is visible to all clients and to all the public facing 1304 * APIs that return a device pointer. This always returns with a new get, even 1305 * if it fails. 1306 */ 1307 static int enable_device_and_get(struct ib_device *device) 1308 { 1309 struct ib_client *client; 1310 unsigned long index; 1311 int ret = 0; 1312 1313 /* 1314 * One ref belongs to the xa and the other belongs to this 1315 * thread. This is needed to guard against parallel unregistration. 1316 */ 1317 refcount_set(&device->refcount, 2); 1318 down_write(&devices_rwsem); 1319 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1320 1321 /* 1322 * By using downgrade_write() we ensure that no other thread can clear 1323 * DEVICE_REGISTERED while we are completing the client setup. 1324 */ 1325 downgrade_write(&devices_rwsem); 1326 1327 if (device->ops.enable_driver) { 1328 ret = device->ops.enable_driver(device); 1329 if (ret) 1330 goto out; 1331 } 1332 1333 down_read(&clients_rwsem); 1334 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1335 ret = add_client_context(device, client); 1336 if (ret) 1337 break; 1338 } 1339 up_read(&clients_rwsem); 1340 if (!ret) 1341 ret = add_compat_devs(device); 1342 out: 1343 up_read(&devices_rwsem); 1344 return ret; 1345 } 1346 1347 static void prevent_dealloc_device(struct ib_device *ib_dev) 1348 { 1349 } 1350 1351 /** 1352 * ib_register_device - Register an IB device with IB core 1353 * @device: Device to register 1354 * @name: unique string device name. This may include a '%' which will 1355 * cause a unique index to be added to the passed device name. 1356 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB 1357 * device will be used. In this case the caller should fully 1358 * setup the ibdev for DMA. This usually means using dma_virt_ops. 1359 * 1360 * Low-level drivers use ib_register_device() to register their 1361 * devices with the IB core. All registered clients will receive a 1362 * callback for each device that is added. @device must be allocated 1363 * with ib_alloc_device(). 1364 * 1365 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1366 * asynchronously then the device pointer may become freed as soon as this 1367 * function returns. 1368 */ 1369 int ib_register_device(struct ib_device *device, const char *name, 1370 struct device *dma_device) 1371 { 1372 int ret; 1373 1374 ret = assign_name(device, name); 1375 if (ret) 1376 return ret; 1377 1378 /* 1379 * If the caller does not provide a DMA capable device then the IB core 1380 * will set up ib_sge and scatterlist structures that stash the kernel 1381 * virtual address into the address field. 1382 */ 1383 WARN_ON(dma_device && !dma_device->dma_parms); 1384 device->dma_device = dma_device; 1385 1386 ret = setup_device(device); 1387 if (ret) 1388 return ret; 1389 1390 ret = ib_cache_setup_one(device); 1391 if (ret) { 1392 dev_warn(&device->dev, 1393 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1394 return ret; 1395 } 1396 1397 ib_device_register_rdmacg(device); 1398 1399 rdma_counter_init(device); 1400 1401 /* 1402 * Ensure that ADD uevent is not fired because it 1403 * is too early amd device is not initialized yet. 1404 */ 1405 dev_set_uevent_suppress(&device->dev, true); 1406 ret = device_add(&device->dev); 1407 if (ret) 1408 goto cg_cleanup; 1409 1410 ret = ib_device_register_sysfs(device); 1411 if (ret) { 1412 dev_warn(&device->dev, 1413 "Couldn't register device with driver model\n"); 1414 goto dev_cleanup; 1415 } 1416 1417 ret = enable_device_and_get(device); 1418 if (ret) { 1419 void (*dealloc_fn)(struct ib_device *); 1420 1421 /* 1422 * If we hit this error flow then we don't want to 1423 * automatically dealloc the device since the caller is 1424 * expected to call ib_dealloc_device() after 1425 * ib_register_device() fails. This is tricky due to the 1426 * possibility for a parallel unregistration along with this 1427 * error flow. Since we have a refcount here we know any 1428 * parallel flow is stopped in disable_device and will see the 1429 * special dealloc_driver pointer, causing the responsibility to 1430 * ib_dealloc_device() to revert back to this thread. 1431 */ 1432 dealloc_fn = device->ops.dealloc_driver; 1433 device->ops.dealloc_driver = prevent_dealloc_device; 1434 ib_device_put(device); 1435 __ib_unregister_device(device); 1436 device->ops.dealloc_driver = dealloc_fn; 1437 dev_set_uevent_suppress(&device->dev, false); 1438 return ret; 1439 } 1440 dev_set_uevent_suppress(&device->dev, false); 1441 /* Mark for userspace that device is ready */ 1442 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1443 ib_device_put(device); 1444 1445 return 0; 1446 1447 dev_cleanup: 1448 device_del(&device->dev); 1449 cg_cleanup: 1450 dev_set_uevent_suppress(&device->dev, false); 1451 ib_device_unregister_rdmacg(device); 1452 ib_cache_cleanup_one(device); 1453 return ret; 1454 } 1455 EXPORT_SYMBOL(ib_register_device); 1456 1457 /* Callers must hold a get on the device. */ 1458 static void __ib_unregister_device(struct ib_device *ib_dev) 1459 { 1460 /* 1461 * We have a registration lock so that all the calls to unregister are 1462 * fully fenced, once any unregister returns the device is truely 1463 * unregistered even if multiple callers are unregistering it at the 1464 * same time. This also interacts with the registration flow and 1465 * provides sane semantics if register and unregister are racing. 1466 */ 1467 mutex_lock(&ib_dev->unregistration_lock); 1468 if (!refcount_read(&ib_dev->refcount)) 1469 goto out; 1470 1471 disable_device(ib_dev); 1472 1473 /* Expedite removing unregistered pointers from the hash table */ 1474 free_netdevs(ib_dev); 1475 1476 ib_device_unregister_sysfs(ib_dev); 1477 device_del(&ib_dev->dev); 1478 ib_device_unregister_rdmacg(ib_dev); 1479 ib_cache_cleanup_one(ib_dev); 1480 1481 /* 1482 * Drivers using the new flow may not call ib_dealloc_device except 1483 * in error unwind prior to registration success. 1484 */ 1485 if (ib_dev->ops.dealloc_driver && 1486 ib_dev->ops.dealloc_driver != prevent_dealloc_device) { 1487 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1488 ib_dealloc_device(ib_dev); 1489 } 1490 out: 1491 mutex_unlock(&ib_dev->unregistration_lock); 1492 } 1493 1494 /** 1495 * ib_unregister_device - Unregister an IB device 1496 * @ib_dev: The device to unregister 1497 * 1498 * Unregister an IB device. All clients will receive a remove callback. 1499 * 1500 * Callers should call this routine only once, and protect against races with 1501 * registration. Typically it should only be called as part of a remove 1502 * callback in an implementation of driver core's struct device_driver and 1503 * related. 1504 * 1505 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1506 * this function. 1507 */ 1508 void ib_unregister_device(struct ib_device *ib_dev) 1509 { 1510 get_device(&ib_dev->dev); 1511 __ib_unregister_device(ib_dev); 1512 put_device(&ib_dev->dev); 1513 } 1514 EXPORT_SYMBOL(ib_unregister_device); 1515 1516 /** 1517 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1518 * @ib_dev: The device to unregister 1519 * 1520 * This is the same as ib_unregister_device(), except it includes an internal 1521 * ib_device_put() that should match a 'get' obtained by the caller. 1522 * 1523 * It is safe to call this routine concurrently from multiple threads while 1524 * holding the 'get'. When the function returns the device is fully 1525 * unregistered. 1526 * 1527 * Drivers using this flow MUST use the driver_unregister callback to clean up 1528 * their resources associated with the device and dealloc it. 1529 */ 1530 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1531 { 1532 WARN_ON(!ib_dev->ops.dealloc_driver); 1533 get_device(&ib_dev->dev); 1534 ib_device_put(ib_dev); 1535 __ib_unregister_device(ib_dev); 1536 put_device(&ib_dev->dev); 1537 } 1538 EXPORT_SYMBOL(ib_unregister_device_and_put); 1539 1540 /** 1541 * ib_unregister_driver - Unregister all IB devices for a driver 1542 * @driver_id: The driver to unregister 1543 * 1544 * This implements a fence for device unregistration. It only returns once all 1545 * devices associated with the driver_id have fully completed their 1546 * unregistration and returned from ib_unregister_device*(). 1547 * 1548 * If device's are not yet unregistered it goes ahead and starts unregistering 1549 * them. 1550 * 1551 * This does not block creation of new devices with the given driver_id, that 1552 * is the responsibility of the caller. 1553 */ 1554 void ib_unregister_driver(enum rdma_driver_id driver_id) 1555 { 1556 struct ib_device *ib_dev; 1557 unsigned long index; 1558 1559 down_read(&devices_rwsem); 1560 xa_for_each (&devices, index, ib_dev) { 1561 if (ib_dev->ops.driver_id != driver_id) 1562 continue; 1563 1564 get_device(&ib_dev->dev); 1565 up_read(&devices_rwsem); 1566 1567 WARN_ON(!ib_dev->ops.dealloc_driver); 1568 __ib_unregister_device(ib_dev); 1569 1570 put_device(&ib_dev->dev); 1571 down_read(&devices_rwsem); 1572 } 1573 up_read(&devices_rwsem); 1574 } 1575 EXPORT_SYMBOL(ib_unregister_driver); 1576 1577 static void ib_unregister_work(struct work_struct *work) 1578 { 1579 struct ib_device *ib_dev = 1580 container_of(work, struct ib_device, unregistration_work); 1581 1582 __ib_unregister_device(ib_dev); 1583 put_device(&ib_dev->dev); 1584 } 1585 1586 /** 1587 * ib_unregister_device_queued - Unregister a device using a work queue 1588 * @ib_dev: The device to unregister 1589 * 1590 * This schedules an asynchronous unregistration using a WQ for the device. A 1591 * driver should use this to avoid holding locks while doing unregistration, 1592 * such as holding the RTNL lock. 1593 * 1594 * Drivers using this API must use ib_unregister_driver before module unload 1595 * to ensure that all scheduled unregistrations have completed. 1596 */ 1597 void ib_unregister_device_queued(struct ib_device *ib_dev) 1598 { 1599 WARN_ON(!refcount_read(&ib_dev->refcount)); 1600 WARN_ON(!ib_dev->ops.dealloc_driver); 1601 get_device(&ib_dev->dev); 1602 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) 1603 put_device(&ib_dev->dev); 1604 } 1605 EXPORT_SYMBOL(ib_unregister_device_queued); 1606 1607 /* 1608 * The caller must pass in a device that has the kref held and the refcount 1609 * released. If the device is in cur_net and still registered then it is moved 1610 * into net. 1611 */ 1612 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1613 struct net *net) 1614 { 1615 int ret2 = -EINVAL; 1616 int ret; 1617 1618 mutex_lock(&device->unregistration_lock); 1619 1620 /* 1621 * If a device not under ib_device_get() or if the unregistration_lock 1622 * is not held, the namespace can be changed, or it can be unregistered. 1623 * Check again under the lock. 1624 */ 1625 if (refcount_read(&device->refcount) == 0 || 1626 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1627 ret = -ENODEV; 1628 goto out; 1629 } 1630 1631 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1632 disable_device(device); 1633 1634 /* 1635 * At this point no one can be using the device, so it is safe to 1636 * change the namespace. 1637 */ 1638 write_pnet(&device->coredev.rdma_net, net); 1639 1640 down_read(&devices_rwsem); 1641 /* 1642 * Currently rdma devices are system wide unique. So the device name 1643 * is guaranteed free in the new namespace. Publish the new namespace 1644 * at the sysfs level. 1645 */ 1646 ret = device_rename(&device->dev, dev_name(&device->dev)); 1647 up_read(&devices_rwsem); 1648 if (ret) { 1649 dev_warn(&device->dev, 1650 "%s: Couldn't rename device after namespace change\n", 1651 __func__); 1652 /* Try and put things back and re-enable the device */ 1653 write_pnet(&device->coredev.rdma_net, cur_net); 1654 } 1655 1656 ret2 = enable_device_and_get(device); 1657 if (ret2) { 1658 /* 1659 * This shouldn't really happen, but if it does, let the user 1660 * retry at later point. So don't disable the device. 1661 */ 1662 dev_warn(&device->dev, 1663 "%s: Couldn't re-enable device after namespace change\n", 1664 __func__); 1665 } 1666 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1667 1668 ib_device_put(device); 1669 out: 1670 mutex_unlock(&device->unregistration_lock); 1671 if (ret) 1672 return ret; 1673 return ret2; 1674 } 1675 1676 int ib_device_set_netns_put(struct sk_buff *skb, 1677 struct ib_device *dev, u32 ns_fd) 1678 { 1679 struct net *net; 1680 int ret; 1681 1682 net = get_net_ns_by_fd(ns_fd); 1683 if (IS_ERR(net)) { 1684 ret = PTR_ERR(net); 1685 goto net_err; 1686 } 1687 1688 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1689 ret = -EPERM; 1690 goto ns_err; 1691 } 1692 1693 /* 1694 * Currently supported only for those providers which support 1695 * disassociation and don't do port specific sysfs init. Once a 1696 * port_cleanup infrastructure is implemented, this limitation will be 1697 * removed. 1698 */ 1699 if (!dev->ops.disassociate_ucontext || dev->ops.init_port || 1700 ib_devices_shared_netns) { 1701 ret = -EOPNOTSUPP; 1702 goto ns_err; 1703 } 1704 1705 get_device(&dev->dev); 1706 ib_device_put(dev); 1707 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1708 put_device(&dev->dev); 1709 1710 put_net(net); 1711 return ret; 1712 1713 ns_err: 1714 put_net(net); 1715 net_err: 1716 ib_device_put(dev); 1717 return ret; 1718 } 1719 1720 static struct pernet_operations rdma_dev_net_ops = { 1721 .init = rdma_dev_init_net, 1722 .exit = rdma_dev_exit_net, 1723 .id = &rdma_dev_net_id, 1724 .size = sizeof(struct rdma_dev_net), 1725 }; 1726 1727 static int assign_client_id(struct ib_client *client) 1728 { 1729 int ret; 1730 1731 down_write(&clients_rwsem); 1732 /* 1733 * The add/remove callbacks must be called in FIFO/LIFO order. To 1734 * achieve this we assign client_ids so they are sorted in 1735 * registration order. 1736 */ 1737 client->client_id = highest_client_id; 1738 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1739 if (ret) 1740 goto out; 1741 1742 highest_client_id++; 1743 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1744 1745 out: 1746 up_write(&clients_rwsem); 1747 return ret; 1748 } 1749 1750 static void remove_client_id(struct ib_client *client) 1751 { 1752 down_write(&clients_rwsem); 1753 xa_erase(&clients, client->client_id); 1754 for (; highest_client_id; highest_client_id--) 1755 if (xa_load(&clients, highest_client_id - 1)) 1756 break; 1757 up_write(&clients_rwsem); 1758 } 1759 1760 /** 1761 * ib_register_client - Register an IB client 1762 * @client:Client to register 1763 * 1764 * Upper level users of the IB drivers can use ib_register_client() to 1765 * register callbacks for IB device addition and removal. When an IB 1766 * device is added, each registered client's add method will be called 1767 * (in the order the clients were registered), and when a device is 1768 * removed, each client's remove method will be called (in the reverse 1769 * order that clients were registered). In addition, when 1770 * ib_register_client() is called, the client will receive an add 1771 * callback for all devices already registered. 1772 */ 1773 int ib_register_client(struct ib_client *client) 1774 { 1775 struct ib_device *device; 1776 unsigned long index; 1777 int ret; 1778 1779 refcount_set(&client->uses, 1); 1780 init_completion(&client->uses_zero); 1781 ret = assign_client_id(client); 1782 if (ret) 1783 return ret; 1784 1785 down_read(&devices_rwsem); 1786 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1787 ret = add_client_context(device, client); 1788 if (ret) { 1789 up_read(&devices_rwsem); 1790 ib_unregister_client(client); 1791 return ret; 1792 } 1793 } 1794 up_read(&devices_rwsem); 1795 return 0; 1796 } 1797 EXPORT_SYMBOL(ib_register_client); 1798 1799 /** 1800 * ib_unregister_client - Unregister an IB client 1801 * @client:Client to unregister 1802 * 1803 * Upper level users use ib_unregister_client() to remove their client 1804 * registration. When ib_unregister_client() is called, the client 1805 * will receive a remove callback for each IB device still registered. 1806 * 1807 * This is a full fence, once it returns no client callbacks will be called, 1808 * or are running in another thread. 1809 */ 1810 void ib_unregister_client(struct ib_client *client) 1811 { 1812 struct ib_device *device; 1813 unsigned long index; 1814 1815 down_write(&clients_rwsem); 1816 ib_client_put(client); 1817 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1818 up_write(&clients_rwsem); 1819 1820 /* We do not want to have locks while calling client->remove() */ 1821 rcu_read_lock(); 1822 xa_for_each (&devices, index, device) { 1823 if (!ib_device_try_get(device)) 1824 continue; 1825 rcu_read_unlock(); 1826 1827 remove_client_context(device, client->client_id); 1828 1829 ib_device_put(device); 1830 rcu_read_lock(); 1831 } 1832 rcu_read_unlock(); 1833 1834 /* 1835 * remove_client_context() is not a fence, it can return even though a 1836 * removal is ongoing. Wait until all removals are completed. 1837 */ 1838 wait_for_completion(&client->uses_zero); 1839 remove_client_id(client); 1840 } 1841 EXPORT_SYMBOL(ib_unregister_client); 1842 1843 static int __ib_get_global_client_nl_info(const char *client_name, 1844 struct ib_client_nl_info *res) 1845 { 1846 struct ib_client *client; 1847 unsigned long index; 1848 int ret = -ENOENT; 1849 1850 down_read(&clients_rwsem); 1851 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1852 if (strcmp(client->name, client_name) != 0) 1853 continue; 1854 if (!client->get_global_nl_info) { 1855 ret = -EOPNOTSUPP; 1856 break; 1857 } 1858 ret = client->get_global_nl_info(res); 1859 if (WARN_ON(ret == -ENOENT)) 1860 ret = -EINVAL; 1861 if (!ret && res->cdev) 1862 get_device(res->cdev); 1863 break; 1864 } 1865 up_read(&clients_rwsem); 1866 return ret; 1867 } 1868 1869 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1870 const char *client_name, 1871 struct ib_client_nl_info *res) 1872 { 1873 unsigned long index; 1874 void *client_data; 1875 int ret = -ENOENT; 1876 1877 down_read(&ibdev->client_data_rwsem); 1878 xan_for_each_marked (&ibdev->client_data, index, client_data, 1879 CLIENT_DATA_REGISTERED) { 1880 struct ib_client *client = xa_load(&clients, index); 1881 1882 if (!client || strcmp(client->name, client_name) != 0) 1883 continue; 1884 if (!client->get_nl_info) { 1885 ret = -EOPNOTSUPP; 1886 break; 1887 } 1888 ret = client->get_nl_info(ibdev, client_data, res); 1889 if (WARN_ON(ret == -ENOENT)) 1890 ret = -EINVAL; 1891 1892 /* 1893 * The cdev is guaranteed valid as long as we are inside the 1894 * client_data_rwsem as remove_one can't be called. Keep it 1895 * valid for the caller. 1896 */ 1897 if (!ret && res->cdev) 1898 get_device(res->cdev); 1899 break; 1900 } 1901 up_read(&ibdev->client_data_rwsem); 1902 1903 return ret; 1904 } 1905 1906 /** 1907 * ib_get_client_nl_info - Fetch the nl_info from a client 1908 * @ibdev: IB device 1909 * @client_name: Name of the client 1910 * @res: Result of the query 1911 */ 1912 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1913 struct ib_client_nl_info *res) 1914 { 1915 int ret; 1916 1917 if (ibdev) 1918 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1919 else 1920 ret = __ib_get_global_client_nl_info(client_name, res); 1921 #ifdef CONFIG_MODULES 1922 if (ret == -ENOENT) { 1923 request_module("rdma-client-%s", client_name); 1924 if (ibdev) 1925 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1926 else 1927 ret = __ib_get_global_client_nl_info(client_name, res); 1928 } 1929 #endif 1930 if (ret) { 1931 if (ret == -ENOENT) 1932 return -EOPNOTSUPP; 1933 return ret; 1934 } 1935 1936 if (WARN_ON(!res->cdev)) 1937 return -EINVAL; 1938 return 0; 1939 } 1940 1941 /** 1942 * ib_set_client_data - Set IB client context 1943 * @device:Device to set context for 1944 * @client:Client to set context for 1945 * @data:Context to set 1946 * 1947 * ib_set_client_data() sets client context data that can be retrieved with 1948 * ib_get_client_data(). This can only be called while the client is 1949 * registered to the device, once the ib_client remove() callback returns this 1950 * cannot be called. 1951 */ 1952 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1953 void *data) 1954 { 1955 void *rc; 1956 1957 if (WARN_ON(IS_ERR(data))) 1958 data = NULL; 1959 1960 rc = xa_store(&device->client_data, client->client_id, data, 1961 GFP_KERNEL); 1962 WARN_ON(xa_is_err(rc)); 1963 } 1964 EXPORT_SYMBOL(ib_set_client_data); 1965 1966 /** 1967 * ib_register_event_handler - Register an IB event handler 1968 * @event_handler:Handler to register 1969 * 1970 * ib_register_event_handler() registers an event handler that will be 1971 * called back when asynchronous IB events occur (as defined in 1972 * chapter 11 of the InfiniBand Architecture Specification). This 1973 * callback occurs in workqueue context. 1974 */ 1975 void ib_register_event_handler(struct ib_event_handler *event_handler) 1976 { 1977 down_write(&event_handler->device->event_handler_rwsem); 1978 list_add_tail(&event_handler->list, 1979 &event_handler->device->event_handler_list); 1980 up_write(&event_handler->device->event_handler_rwsem); 1981 } 1982 EXPORT_SYMBOL(ib_register_event_handler); 1983 1984 /** 1985 * ib_unregister_event_handler - Unregister an event handler 1986 * @event_handler:Handler to unregister 1987 * 1988 * Unregister an event handler registered with 1989 * ib_register_event_handler(). 1990 */ 1991 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 1992 { 1993 down_write(&event_handler->device->event_handler_rwsem); 1994 list_del(&event_handler->list); 1995 up_write(&event_handler->device->event_handler_rwsem); 1996 } 1997 EXPORT_SYMBOL(ib_unregister_event_handler); 1998 1999 void ib_dispatch_event_clients(struct ib_event *event) 2000 { 2001 struct ib_event_handler *handler; 2002 2003 down_read(&event->device->event_handler_rwsem); 2004 2005 list_for_each_entry(handler, &event->device->event_handler_list, list) 2006 handler->handler(handler, event); 2007 2008 up_read(&event->device->event_handler_rwsem); 2009 } 2010 2011 static int iw_query_port(struct ib_device *device, 2012 u32 port_num, 2013 struct ib_port_attr *port_attr) 2014 { 2015 struct in_device *inetdev; 2016 struct net_device *netdev; 2017 2018 memset(port_attr, 0, sizeof(*port_attr)); 2019 2020 netdev = ib_device_get_netdev(device, port_num); 2021 if (!netdev) 2022 return -ENODEV; 2023 2024 port_attr->max_mtu = IB_MTU_4096; 2025 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 2026 2027 if (!netif_carrier_ok(netdev)) { 2028 port_attr->state = IB_PORT_DOWN; 2029 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 2030 } else { 2031 rcu_read_lock(); 2032 inetdev = __in_dev_get_rcu(netdev); 2033 2034 if (inetdev && inetdev->ifa_list) { 2035 port_attr->state = IB_PORT_ACTIVE; 2036 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2037 } else { 2038 port_attr->state = IB_PORT_INIT; 2039 port_attr->phys_state = 2040 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2041 } 2042 2043 rcu_read_unlock(); 2044 } 2045 2046 dev_put(netdev); 2047 return device->ops.query_port(device, port_num, port_attr); 2048 } 2049 2050 static int __ib_query_port(struct ib_device *device, 2051 u32 port_num, 2052 struct ib_port_attr *port_attr) 2053 { 2054 union ib_gid gid = {}; 2055 int err; 2056 2057 memset(port_attr, 0, sizeof(*port_attr)); 2058 2059 err = device->ops.query_port(device, port_num, port_attr); 2060 if (err || port_attr->subnet_prefix) 2061 return err; 2062 2063 if (rdma_port_get_link_layer(device, port_num) != 2064 IB_LINK_LAYER_INFINIBAND) 2065 return 0; 2066 2067 err = device->ops.query_gid(device, port_num, 0, &gid); 2068 if (err) 2069 return err; 2070 2071 port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix); 2072 return 0; 2073 } 2074 2075 /** 2076 * ib_query_port - Query IB port attributes 2077 * @device:Device to query 2078 * @port_num:Port number to query 2079 * @port_attr:Port attributes 2080 * 2081 * ib_query_port() returns the attributes of a port through the 2082 * @port_attr pointer. 2083 */ 2084 int ib_query_port(struct ib_device *device, 2085 u32 port_num, 2086 struct ib_port_attr *port_attr) 2087 { 2088 if (!rdma_is_port_valid(device, port_num)) 2089 return -EINVAL; 2090 2091 if (rdma_protocol_iwarp(device, port_num)) 2092 return iw_query_port(device, port_num, port_attr); 2093 else 2094 return __ib_query_port(device, port_num, port_attr); 2095 } 2096 EXPORT_SYMBOL(ib_query_port); 2097 2098 static void add_ndev_hash(struct ib_port_data *pdata) 2099 { 2100 unsigned long flags; 2101 2102 might_sleep(); 2103 2104 spin_lock_irqsave(&ndev_hash_lock, flags); 2105 if (hash_hashed(&pdata->ndev_hash_link)) { 2106 hash_del_rcu(&pdata->ndev_hash_link); 2107 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2108 /* 2109 * We cannot do hash_add_rcu after a hash_del_rcu until the 2110 * grace period 2111 */ 2112 synchronize_rcu(); 2113 spin_lock_irqsave(&ndev_hash_lock, flags); 2114 } 2115 if (pdata->netdev) 2116 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2117 (uintptr_t)pdata->netdev); 2118 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2119 } 2120 2121 /** 2122 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2123 * @ib_dev: Device to modify 2124 * @ndev: net_device to affiliate, may be NULL 2125 * @port: IB port the net_device is connected to 2126 * 2127 * Drivers should use this to link the ib_device to a netdev so the netdev 2128 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2129 * affiliated with any port. 2130 * 2131 * The caller must ensure that the given ndev is not unregistered or 2132 * unregistering, and that either the ib_device is unregistered or 2133 * ib_device_set_netdev() is called with NULL when the ndev sends a 2134 * NETDEV_UNREGISTER event. 2135 */ 2136 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2137 u32 port) 2138 { 2139 struct net_device *old_ndev; 2140 struct ib_port_data *pdata; 2141 unsigned long flags; 2142 int ret; 2143 2144 /* 2145 * Drivers wish to call this before ib_register_driver, so we have to 2146 * setup the port data early. 2147 */ 2148 ret = alloc_port_data(ib_dev); 2149 if (ret) 2150 return ret; 2151 2152 if (!rdma_is_port_valid(ib_dev, port)) 2153 return -EINVAL; 2154 2155 pdata = &ib_dev->port_data[port]; 2156 spin_lock_irqsave(&pdata->netdev_lock, flags); 2157 old_ndev = rcu_dereference_protected( 2158 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2159 if (old_ndev == ndev) { 2160 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2161 return 0; 2162 } 2163 2164 if (ndev) 2165 dev_hold(ndev); 2166 rcu_assign_pointer(pdata->netdev, ndev); 2167 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2168 2169 add_ndev_hash(pdata); 2170 if (old_ndev) 2171 dev_put(old_ndev); 2172 2173 return 0; 2174 } 2175 EXPORT_SYMBOL(ib_device_set_netdev); 2176 2177 static void free_netdevs(struct ib_device *ib_dev) 2178 { 2179 unsigned long flags; 2180 u32 port; 2181 2182 if (!ib_dev->port_data) 2183 return; 2184 2185 rdma_for_each_port (ib_dev, port) { 2186 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2187 struct net_device *ndev; 2188 2189 spin_lock_irqsave(&pdata->netdev_lock, flags); 2190 ndev = rcu_dereference_protected( 2191 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2192 if (ndev) { 2193 spin_lock(&ndev_hash_lock); 2194 hash_del_rcu(&pdata->ndev_hash_link); 2195 spin_unlock(&ndev_hash_lock); 2196 2197 /* 2198 * If this is the last dev_put there is still a 2199 * synchronize_rcu before the netdev is kfreed, so we 2200 * can continue to rely on unlocked pointer 2201 * comparisons after the put 2202 */ 2203 rcu_assign_pointer(pdata->netdev, NULL); 2204 dev_put(ndev); 2205 } 2206 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2207 } 2208 } 2209 2210 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2211 u32 port) 2212 { 2213 struct ib_port_data *pdata; 2214 struct net_device *res; 2215 2216 if (!rdma_is_port_valid(ib_dev, port)) 2217 return NULL; 2218 2219 pdata = &ib_dev->port_data[port]; 2220 2221 /* 2222 * New drivers should use ib_device_set_netdev() not the legacy 2223 * get_netdev(). 2224 */ 2225 if (ib_dev->ops.get_netdev) 2226 res = ib_dev->ops.get_netdev(ib_dev, port); 2227 else { 2228 spin_lock(&pdata->netdev_lock); 2229 res = rcu_dereference_protected( 2230 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2231 if (res) 2232 dev_hold(res); 2233 spin_unlock(&pdata->netdev_lock); 2234 } 2235 2236 /* 2237 * If we are starting to unregister expedite things by preventing 2238 * propagation of an unregistering netdev. 2239 */ 2240 if (res && res->reg_state != NETREG_REGISTERED) { 2241 dev_put(res); 2242 return NULL; 2243 } 2244 2245 return res; 2246 } 2247 2248 /** 2249 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2250 * @ndev: netdev to locate 2251 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2252 * 2253 * Find and hold an ib_device that is associated with a netdev via 2254 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2255 * returned pointer. 2256 */ 2257 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2258 enum rdma_driver_id driver_id) 2259 { 2260 struct ib_device *res = NULL; 2261 struct ib_port_data *cur; 2262 2263 rcu_read_lock(); 2264 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2265 (uintptr_t)ndev) { 2266 if (rcu_access_pointer(cur->netdev) == ndev && 2267 (driver_id == RDMA_DRIVER_UNKNOWN || 2268 cur->ib_dev->ops.driver_id == driver_id) && 2269 ib_device_try_get(cur->ib_dev)) { 2270 res = cur->ib_dev; 2271 break; 2272 } 2273 } 2274 rcu_read_unlock(); 2275 2276 return res; 2277 } 2278 EXPORT_SYMBOL(ib_device_get_by_netdev); 2279 2280 /** 2281 * ib_enum_roce_netdev - enumerate all RoCE ports 2282 * @ib_dev : IB device we want to query 2283 * @filter: Should we call the callback? 2284 * @filter_cookie: Cookie passed to filter 2285 * @cb: Callback to call for each found RoCE ports 2286 * @cookie: Cookie passed back to the callback 2287 * 2288 * Enumerates all of the physical RoCE ports of ib_dev 2289 * which are related to netdevice and calls callback() on each 2290 * device for which filter() function returns non zero. 2291 */ 2292 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2293 roce_netdev_filter filter, 2294 void *filter_cookie, 2295 roce_netdev_callback cb, 2296 void *cookie) 2297 { 2298 u32 port; 2299 2300 rdma_for_each_port (ib_dev, port) 2301 if (rdma_protocol_roce(ib_dev, port)) { 2302 struct net_device *idev = 2303 ib_device_get_netdev(ib_dev, port); 2304 2305 if (filter(ib_dev, port, idev, filter_cookie)) 2306 cb(ib_dev, port, idev, cookie); 2307 2308 if (idev) 2309 dev_put(idev); 2310 } 2311 } 2312 2313 /** 2314 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2315 * @filter: Should we call the callback? 2316 * @filter_cookie: Cookie passed to filter 2317 * @cb: Callback to call for each found RoCE ports 2318 * @cookie: Cookie passed back to the callback 2319 * 2320 * Enumerates all RoCE devices' physical ports which are related 2321 * to netdevices and calls callback() on each device for which 2322 * filter() function returns non zero. 2323 */ 2324 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2325 void *filter_cookie, 2326 roce_netdev_callback cb, 2327 void *cookie) 2328 { 2329 struct ib_device *dev; 2330 unsigned long index; 2331 2332 down_read(&devices_rwsem); 2333 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2334 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2335 up_read(&devices_rwsem); 2336 } 2337 2338 /* 2339 * ib_enum_all_devs - enumerate all ib_devices 2340 * @cb: Callback to call for each found ib_device 2341 * 2342 * Enumerates all ib_devices and calls callback() on each device. 2343 */ 2344 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2345 struct netlink_callback *cb) 2346 { 2347 unsigned long index; 2348 struct ib_device *dev; 2349 unsigned int idx = 0; 2350 int ret = 0; 2351 2352 down_read(&devices_rwsem); 2353 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2354 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2355 continue; 2356 2357 ret = nldev_cb(dev, skb, cb, idx); 2358 if (ret) 2359 break; 2360 idx++; 2361 } 2362 up_read(&devices_rwsem); 2363 return ret; 2364 } 2365 2366 /** 2367 * ib_query_pkey - Get P_Key table entry 2368 * @device:Device to query 2369 * @port_num:Port number to query 2370 * @index:P_Key table index to query 2371 * @pkey:Returned P_Key 2372 * 2373 * ib_query_pkey() fetches the specified P_Key table entry. 2374 */ 2375 int ib_query_pkey(struct ib_device *device, 2376 u32 port_num, u16 index, u16 *pkey) 2377 { 2378 if (!rdma_is_port_valid(device, port_num)) 2379 return -EINVAL; 2380 2381 if (!device->ops.query_pkey) 2382 return -EOPNOTSUPP; 2383 2384 return device->ops.query_pkey(device, port_num, index, pkey); 2385 } 2386 EXPORT_SYMBOL(ib_query_pkey); 2387 2388 /** 2389 * ib_modify_device - Change IB device attributes 2390 * @device:Device to modify 2391 * @device_modify_mask:Mask of attributes to change 2392 * @device_modify:New attribute values 2393 * 2394 * ib_modify_device() changes a device's attributes as specified by 2395 * the @device_modify_mask and @device_modify structure. 2396 */ 2397 int ib_modify_device(struct ib_device *device, 2398 int device_modify_mask, 2399 struct ib_device_modify *device_modify) 2400 { 2401 if (!device->ops.modify_device) 2402 return -EOPNOTSUPP; 2403 2404 return device->ops.modify_device(device, device_modify_mask, 2405 device_modify); 2406 } 2407 EXPORT_SYMBOL(ib_modify_device); 2408 2409 /** 2410 * ib_modify_port - Modifies the attributes for the specified port. 2411 * @device: The device to modify. 2412 * @port_num: The number of the port to modify. 2413 * @port_modify_mask: Mask used to specify which attributes of the port 2414 * to change. 2415 * @port_modify: New attribute values for the port. 2416 * 2417 * ib_modify_port() changes a port's attributes as specified by the 2418 * @port_modify_mask and @port_modify structure. 2419 */ 2420 int ib_modify_port(struct ib_device *device, 2421 u32 port_num, int port_modify_mask, 2422 struct ib_port_modify *port_modify) 2423 { 2424 int rc; 2425 2426 if (!rdma_is_port_valid(device, port_num)) 2427 return -EINVAL; 2428 2429 if (device->ops.modify_port) 2430 rc = device->ops.modify_port(device, port_num, 2431 port_modify_mask, 2432 port_modify); 2433 else if (rdma_protocol_roce(device, port_num) && 2434 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2435 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2436 rc = 0; 2437 else 2438 rc = -EOPNOTSUPP; 2439 return rc; 2440 } 2441 EXPORT_SYMBOL(ib_modify_port); 2442 2443 /** 2444 * ib_find_gid - Returns the port number and GID table index where 2445 * a specified GID value occurs. Its searches only for IB link layer. 2446 * @device: The device to query. 2447 * @gid: The GID value to search for. 2448 * @port_num: The port number of the device where the GID value was found. 2449 * @index: The index into the GID table where the GID was found. This 2450 * parameter may be NULL. 2451 */ 2452 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2453 u32 *port_num, u16 *index) 2454 { 2455 union ib_gid tmp_gid; 2456 u32 port; 2457 int ret, i; 2458 2459 rdma_for_each_port (device, port) { 2460 if (!rdma_protocol_ib(device, port)) 2461 continue; 2462 2463 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2464 ++i) { 2465 ret = rdma_query_gid(device, port, i, &tmp_gid); 2466 if (ret) 2467 return ret; 2468 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2469 *port_num = port; 2470 if (index) 2471 *index = i; 2472 return 0; 2473 } 2474 } 2475 } 2476 2477 return -ENOENT; 2478 } 2479 EXPORT_SYMBOL(ib_find_gid); 2480 2481 /** 2482 * ib_find_pkey - Returns the PKey table index where a specified 2483 * PKey value occurs. 2484 * @device: The device to query. 2485 * @port_num: The port number of the device to search for the PKey. 2486 * @pkey: The PKey value to search for. 2487 * @index: The index into the PKey table where the PKey was found. 2488 */ 2489 int ib_find_pkey(struct ib_device *device, 2490 u32 port_num, u16 pkey, u16 *index) 2491 { 2492 int ret, i; 2493 u16 tmp_pkey; 2494 int partial_ix = -1; 2495 2496 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2497 ++i) { 2498 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2499 if (ret) 2500 return ret; 2501 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2502 /* if there is full-member pkey take it.*/ 2503 if (tmp_pkey & 0x8000) { 2504 *index = i; 2505 return 0; 2506 } 2507 if (partial_ix < 0) 2508 partial_ix = i; 2509 } 2510 } 2511 2512 /*no full-member, if exists take the limited*/ 2513 if (partial_ix >= 0) { 2514 *index = partial_ix; 2515 return 0; 2516 } 2517 return -ENOENT; 2518 } 2519 EXPORT_SYMBOL(ib_find_pkey); 2520 2521 /** 2522 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2523 * for a received CM request 2524 * @dev: An RDMA device on which the request has been received. 2525 * @port: Port number on the RDMA device. 2526 * @pkey: The Pkey the request came on. 2527 * @gid: A GID that the net_dev uses to communicate. 2528 * @addr: Contains the IP address that the request specified as its 2529 * destination. 2530 * 2531 */ 2532 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2533 u32 port, 2534 u16 pkey, 2535 const union ib_gid *gid, 2536 const struct sockaddr *addr) 2537 { 2538 struct net_device *net_dev = NULL; 2539 unsigned long index; 2540 void *client_data; 2541 2542 if (!rdma_protocol_ib(dev, port)) 2543 return NULL; 2544 2545 /* 2546 * Holding the read side guarantees that the client will not become 2547 * unregistered while we are calling get_net_dev_by_params() 2548 */ 2549 down_read(&dev->client_data_rwsem); 2550 xan_for_each_marked (&dev->client_data, index, client_data, 2551 CLIENT_DATA_REGISTERED) { 2552 struct ib_client *client = xa_load(&clients, index); 2553 2554 if (!client || !client->get_net_dev_by_params) 2555 continue; 2556 2557 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2558 addr, client_data); 2559 if (net_dev) 2560 break; 2561 } 2562 up_read(&dev->client_data_rwsem); 2563 2564 return net_dev; 2565 } 2566 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2567 2568 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2569 { 2570 struct ib_device_ops *dev_ops = &dev->ops; 2571 #define SET_DEVICE_OP(ptr, name) \ 2572 do { \ 2573 if (ops->name) \ 2574 if (!((ptr)->name)) \ 2575 (ptr)->name = ops->name; \ 2576 } while (0) 2577 2578 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2579 2580 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2581 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2582 dev_ops->driver_id != ops->driver_id); 2583 dev_ops->driver_id = ops->driver_id; 2584 } 2585 if (ops->owner) { 2586 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2587 dev_ops->owner = ops->owner; 2588 } 2589 if (ops->uverbs_abi_ver) 2590 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2591 2592 dev_ops->uverbs_no_driver_id_binding |= 2593 ops->uverbs_no_driver_id_binding; 2594 2595 SET_DEVICE_OP(dev_ops, add_gid); 2596 SET_DEVICE_OP(dev_ops, advise_mr); 2597 SET_DEVICE_OP(dev_ops, alloc_dm); 2598 SET_DEVICE_OP(dev_ops, alloc_hw_stats); 2599 SET_DEVICE_OP(dev_ops, alloc_mr); 2600 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2601 SET_DEVICE_OP(dev_ops, alloc_mw); 2602 SET_DEVICE_OP(dev_ops, alloc_pd); 2603 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2604 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2605 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2606 SET_DEVICE_OP(dev_ops, attach_mcast); 2607 SET_DEVICE_OP(dev_ops, check_mr_status); 2608 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2609 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2610 SET_DEVICE_OP(dev_ops, counter_dealloc); 2611 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2612 SET_DEVICE_OP(dev_ops, counter_update_stats); 2613 SET_DEVICE_OP(dev_ops, create_ah); 2614 SET_DEVICE_OP(dev_ops, create_counters); 2615 SET_DEVICE_OP(dev_ops, create_cq); 2616 SET_DEVICE_OP(dev_ops, create_flow); 2617 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 2618 SET_DEVICE_OP(dev_ops, create_qp); 2619 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2620 SET_DEVICE_OP(dev_ops, create_srq); 2621 SET_DEVICE_OP(dev_ops, create_user_ah); 2622 SET_DEVICE_OP(dev_ops, create_wq); 2623 SET_DEVICE_OP(dev_ops, dealloc_dm); 2624 SET_DEVICE_OP(dev_ops, dealloc_driver); 2625 SET_DEVICE_OP(dev_ops, dealloc_mw); 2626 SET_DEVICE_OP(dev_ops, dealloc_pd); 2627 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2628 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2629 SET_DEVICE_OP(dev_ops, del_gid); 2630 SET_DEVICE_OP(dev_ops, dereg_mr); 2631 SET_DEVICE_OP(dev_ops, destroy_ah); 2632 SET_DEVICE_OP(dev_ops, destroy_counters); 2633 SET_DEVICE_OP(dev_ops, destroy_cq); 2634 SET_DEVICE_OP(dev_ops, destroy_flow); 2635 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2636 SET_DEVICE_OP(dev_ops, destroy_qp); 2637 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2638 SET_DEVICE_OP(dev_ops, destroy_srq); 2639 SET_DEVICE_OP(dev_ops, destroy_wq); 2640 SET_DEVICE_OP(dev_ops, detach_mcast); 2641 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2642 SET_DEVICE_OP(dev_ops, drain_rq); 2643 SET_DEVICE_OP(dev_ops, drain_sq); 2644 SET_DEVICE_OP(dev_ops, enable_driver); 2645 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry); 2646 SET_DEVICE_OP(dev_ops, fill_res_cq_entry); 2647 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw); 2648 SET_DEVICE_OP(dev_ops, fill_res_mr_entry); 2649 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw); 2650 SET_DEVICE_OP(dev_ops, fill_res_qp_entry); 2651 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw); 2652 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry); 2653 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2654 SET_DEVICE_OP(dev_ops, get_dma_mr); 2655 SET_DEVICE_OP(dev_ops, get_hw_stats); 2656 SET_DEVICE_OP(dev_ops, get_link_layer); 2657 SET_DEVICE_OP(dev_ops, get_netdev); 2658 SET_DEVICE_OP(dev_ops, get_port_immutable); 2659 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2660 SET_DEVICE_OP(dev_ops, get_vf_config); 2661 SET_DEVICE_OP(dev_ops, get_vf_guid); 2662 SET_DEVICE_OP(dev_ops, get_vf_stats); 2663 SET_DEVICE_OP(dev_ops, init_port); 2664 SET_DEVICE_OP(dev_ops, iw_accept); 2665 SET_DEVICE_OP(dev_ops, iw_add_ref); 2666 SET_DEVICE_OP(dev_ops, iw_connect); 2667 SET_DEVICE_OP(dev_ops, iw_create_listen); 2668 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2669 SET_DEVICE_OP(dev_ops, iw_get_qp); 2670 SET_DEVICE_OP(dev_ops, iw_reject); 2671 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2672 SET_DEVICE_OP(dev_ops, map_mr_sg); 2673 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2674 SET_DEVICE_OP(dev_ops, mmap); 2675 SET_DEVICE_OP(dev_ops, mmap_free); 2676 SET_DEVICE_OP(dev_ops, modify_ah); 2677 SET_DEVICE_OP(dev_ops, modify_cq); 2678 SET_DEVICE_OP(dev_ops, modify_device); 2679 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 2680 SET_DEVICE_OP(dev_ops, modify_port); 2681 SET_DEVICE_OP(dev_ops, modify_qp); 2682 SET_DEVICE_OP(dev_ops, modify_srq); 2683 SET_DEVICE_OP(dev_ops, modify_wq); 2684 SET_DEVICE_OP(dev_ops, peek_cq); 2685 SET_DEVICE_OP(dev_ops, poll_cq); 2686 SET_DEVICE_OP(dev_ops, post_recv); 2687 SET_DEVICE_OP(dev_ops, post_send); 2688 SET_DEVICE_OP(dev_ops, post_srq_recv); 2689 SET_DEVICE_OP(dev_ops, process_mad); 2690 SET_DEVICE_OP(dev_ops, query_ah); 2691 SET_DEVICE_OP(dev_ops, query_device); 2692 SET_DEVICE_OP(dev_ops, query_gid); 2693 SET_DEVICE_OP(dev_ops, query_pkey); 2694 SET_DEVICE_OP(dev_ops, query_port); 2695 SET_DEVICE_OP(dev_ops, query_qp); 2696 SET_DEVICE_OP(dev_ops, query_srq); 2697 SET_DEVICE_OP(dev_ops, query_ucontext); 2698 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2699 SET_DEVICE_OP(dev_ops, read_counters); 2700 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2701 SET_DEVICE_OP(dev_ops, reg_user_mr); 2702 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf); 2703 SET_DEVICE_OP(dev_ops, req_notify_cq); 2704 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2705 SET_DEVICE_OP(dev_ops, resize_cq); 2706 SET_DEVICE_OP(dev_ops, set_vf_guid); 2707 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2708 2709 SET_OBJ_SIZE(dev_ops, ib_ah); 2710 SET_OBJ_SIZE(dev_ops, ib_counters); 2711 SET_OBJ_SIZE(dev_ops, ib_cq); 2712 SET_OBJ_SIZE(dev_ops, ib_mw); 2713 SET_OBJ_SIZE(dev_ops, ib_pd); 2714 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table); 2715 SET_OBJ_SIZE(dev_ops, ib_srq); 2716 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2717 SET_OBJ_SIZE(dev_ops, ib_xrcd); 2718 } 2719 EXPORT_SYMBOL(ib_set_device_ops); 2720 2721 #ifdef CONFIG_INFINIBAND_VIRT_DMA 2722 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents) 2723 { 2724 struct scatterlist *s; 2725 int i; 2726 2727 for_each_sg(sg, s, nents, i) { 2728 sg_dma_address(s) = (uintptr_t)sg_virt(s); 2729 sg_dma_len(s) = s->length; 2730 } 2731 return nents; 2732 } 2733 EXPORT_SYMBOL(ib_dma_virt_map_sg); 2734 #endif /* CONFIG_INFINIBAND_VIRT_DMA */ 2735 2736 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2737 [RDMA_NL_LS_OP_RESOLVE] = { 2738 .doit = ib_nl_handle_resolve_resp, 2739 .flags = RDMA_NL_ADMIN_PERM, 2740 }, 2741 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2742 .doit = ib_nl_handle_set_timeout, 2743 .flags = RDMA_NL_ADMIN_PERM, 2744 }, 2745 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2746 .doit = ib_nl_handle_ip_res_resp, 2747 .flags = RDMA_NL_ADMIN_PERM, 2748 }, 2749 }; 2750 2751 static int __init ib_core_init(void) 2752 { 2753 int ret; 2754 2755 ib_wq = alloc_workqueue("infiniband", 0, 0); 2756 if (!ib_wq) 2757 return -ENOMEM; 2758 2759 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2760 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2761 if (!ib_comp_wq) { 2762 ret = -ENOMEM; 2763 goto err; 2764 } 2765 2766 ib_comp_unbound_wq = 2767 alloc_workqueue("ib-comp-unb-wq", 2768 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2769 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2770 if (!ib_comp_unbound_wq) { 2771 ret = -ENOMEM; 2772 goto err_comp; 2773 } 2774 2775 ret = class_register(&ib_class); 2776 if (ret) { 2777 pr_warn("Couldn't create InfiniBand device class\n"); 2778 goto err_comp_unbound; 2779 } 2780 2781 rdma_nl_init(); 2782 2783 ret = addr_init(); 2784 if (ret) { 2785 pr_warn("Couldn't init IB address resolution\n"); 2786 goto err_ibnl; 2787 } 2788 2789 ret = ib_mad_init(); 2790 if (ret) { 2791 pr_warn("Couldn't init IB MAD\n"); 2792 goto err_addr; 2793 } 2794 2795 ret = ib_sa_init(); 2796 if (ret) { 2797 pr_warn("Couldn't init SA\n"); 2798 goto err_mad; 2799 } 2800 2801 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2802 if (ret) { 2803 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2804 goto err_sa; 2805 } 2806 2807 ret = register_pernet_device(&rdma_dev_net_ops); 2808 if (ret) { 2809 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2810 goto err_compat; 2811 } 2812 2813 nldev_init(); 2814 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2815 roce_gid_mgmt_init(); 2816 2817 return 0; 2818 2819 err_compat: 2820 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2821 err_sa: 2822 ib_sa_cleanup(); 2823 err_mad: 2824 ib_mad_cleanup(); 2825 err_addr: 2826 addr_cleanup(); 2827 err_ibnl: 2828 class_unregister(&ib_class); 2829 err_comp_unbound: 2830 destroy_workqueue(ib_comp_unbound_wq); 2831 err_comp: 2832 destroy_workqueue(ib_comp_wq); 2833 err: 2834 destroy_workqueue(ib_wq); 2835 return ret; 2836 } 2837 2838 static void __exit ib_core_cleanup(void) 2839 { 2840 roce_gid_mgmt_cleanup(); 2841 nldev_exit(); 2842 rdma_nl_unregister(RDMA_NL_LS); 2843 unregister_pernet_device(&rdma_dev_net_ops); 2844 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2845 ib_sa_cleanup(); 2846 ib_mad_cleanup(); 2847 addr_cleanup(); 2848 rdma_nl_exit(); 2849 class_unregister(&ib_class); 2850 destroy_workqueue(ib_comp_unbound_wq); 2851 destroy_workqueue(ib_comp_wq); 2852 /* Make sure that any pending umem accounting work is done. */ 2853 destroy_workqueue(ib_wq); 2854 flush_workqueue(system_unbound_wq); 2855 WARN_ON(!xa_empty(&clients)); 2856 WARN_ON(!xa_empty(&devices)); 2857 } 2858 2859 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 2860 2861 /* ib core relies on netdev stack to first register net_ns_type_operations 2862 * ns kobject type before ib_core initialization. 2863 */ 2864 fs_initcall(ib_core_init); 2865 module_exit(ib_core_cleanup); 2866