1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/string.h> 36 #include <linux/errno.h> 37 #include <linux/kernel.h> 38 #include <linux/slab.h> 39 #include <linux/init.h> 40 #include <linux/netdevice.h> 41 #include <net/net_namespace.h> 42 #include <linux/security.h> 43 #include <linux/notifier.h> 44 #include <linux/hashtable.h> 45 #include <rdma/rdma_netlink.h> 46 #include <rdma/ib_addr.h> 47 #include <rdma/ib_cache.h> 48 #include <rdma/rdma_counter.h> 49 50 #include "core_priv.h" 51 #include "restrack.h" 52 53 MODULE_AUTHOR("Roland Dreier"); 54 MODULE_DESCRIPTION("core kernel InfiniBand API"); 55 MODULE_LICENSE("Dual BSD/GPL"); 56 57 struct workqueue_struct *ib_comp_wq; 58 struct workqueue_struct *ib_comp_unbound_wq; 59 struct workqueue_struct *ib_wq; 60 EXPORT_SYMBOL_GPL(ib_wq); 61 62 /* 63 * Each of the three rwsem locks (devices, clients, client_data) protects the 64 * xarray of the same name. Specifically it allows the caller to assert that 65 * the MARK will/will not be changing under the lock, and for devices and 66 * clients, that the value in the xarray is still a valid pointer. Change of 67 * the MARK is linked to the object state, so holding the lock and testing the 68 * MARK also asserts that the contained object is in a certain state. 69 * 70 * This is used to build a two stage register/unregister flow where objects 71 * can continue to be in the xarray even though they are still in progress to 72 * register/unregister. 73 * 74 * The xarray itself provides additional locking, and restartable iteration, 75 * which is also relied on. 76 * 77 * Locks should not be nested, with the exception of client_data, which is 78 * allowed to nest under the read side of the other two locks. 79 * 80 * The devices_rwsem also protects the device name list, any change or 81 * assignment of device name must also hold the write side to guarantee unique 82 * names. 83 */ 84 85 /* 86 * devices contains devices that have had their names assigned. The 87 * devices may not be registered. Users that care about the registration 88 * status need to call ib_device_try_get() on the device to ensure it is 89 * registered, and keep it registered, for the required duration. 90 * 91 */ 92 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC); 93 static DECLARE_RWSEM(devices_rwsem); 94 #define DEVICE_REGISTERED XA_MARK_1 95 96 static u32 highest_client_id; 97 #define CLIENT_REGISTERED XA_MARK_1 98 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC); 99 static DECLARE_RWSEM(clients_rwsem); 100 101 static void ib_client_put(struct ib_client *client) 102 { 103 if (refcount_dec_and_test(&client->uses)) 104 complete(&client->uses_zero); 105 } 106 107 /* 108 * If client_data is registered then the corresponding client must also still 109 * be registered. 110 */ 111 #define CLIENT_DATA_REGISTERED XA_MARK_1 112 113 unsigned int rdma_dev_net_id; 114 115 /* 116 * A list of net namespaces is maintained in an xarray. This is necessary 117 * because we can't get the locking right using the existing net ns list. We 118 * would require a init_net callback after the list is updated. 119 */ 120 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC); 121 /* 122 * rwsem to protect accessing the rdma_nets xarray entries. 123 */ 124 static DECLARE_RWSEM(rdma_nets_rwsem); 125 126 bool ib_devices_shared_netns = true; 127 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444); 128 MODULE_PARM_DESC(netns_mode, 129 "Share device among net namespaces; default=1 (shared)"); 130 /** 131 * rdma_dev_access_netns() - Return whether an rdma device can be accessed 132 * from a specified net namespace or not. 133 * @dev: Pointer to rdma device which needs to be checked 134 * @net: Pointer to net namesapce for which access to be checked 135 * 136 * When the rdma device is in shared mode, it ignores the net namespace. 137 * When the rdma device is exclusive to a net namespace, rdma device net 138 * namespace is checked against the specified one. 139 */ 140 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net) 141 { 142 return (ib_devices_shared_netns || 143 net_eq(read_pnet(&dev->coredev.rdma_net), net)); 144 } 145 EXPORT_SYMBOL(rdma_dev_access_netns); 146 147 /* 148 * xarray has this behavior where it won't iterate over NULL values stored in 149 * allocated arrays. So we need our own iterator to see all values stored in 150 * the array. This does the same thing as xa_for_each except that it also 151 * returns NULL valued entries if the array is allocating. Simplified to only 152 * work on simple xarrays. 153 */ 154 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp, 155 xa_mark_t filter) 156 { 157 XA_STATE(xas, xa, *indexp); 158 void *entry; 159 160 rcu_read_lock(); 161 do { 162 entry = xas_find_marked(&xas, ULONG_MAX, filter); 163 if (xa_is_zero(entry)) 164 break; 165 } while (xas_retry(&xas, entry)); 166 rcu_read_unlock(); 167 168 if (entry) { 169 *indexp = xas.xa_index; 170 if (xa_is_zero(entry)) 171 return NULL; 172 return entry; 173 } 174 return XA_ERROR(-ENOENT); 175 } 176 #define xan_for_each_marked(xa, index, entry, filter) \ 177 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \ 178 !xa_is_err(entry); \ 179 (index)++, entry = xan_find_marked(xa, &(index), filter)) 180 181 /* RCU hash table mapping netdevice pointers to struct ib_port_data */ 182 static DEFINE_SPINLOCK(ndev_hash_lock); 183 static DECLARE_HASHTABLE(ndev_hash, 5); 184 185 static void free_netdevs(struct ib_device *ib_dev); 186 static void ib_unregister_work(struct work_struct *work); 187 static void __ib_unregister_device(struct ib_device *device); 188 static int ib_security_change(struct notifier_block *nb, unsigned long event, 189 void *lsm_data); 190 static void ib_policy_change_task(struct work_struct *work); 191 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task); 192 193 static void __ibdev_printk(const char *level, const struct ib_device *ibdev, 194 struct va_format *vaf) 195 { 196 if (ibdev && ibdev->dev.parent) 197 dev_printk_emit(level[1] - '0', 198 ibdev->dev.parent, 199 "%s %s %s: %pV", 200 dev_driver_string(ibdev->dev.parent), 201 dev_name(ibdev->dev.parent), 202 dev_name(&ibdev->dev), 203 vaf); 204 else if (ibdev) 205 printk("%s%s: %pV", 206 level, dev_name(&ibdev->dev), vaf); 207 else 208 printk("%s(NULL ib_device): %pV", level, vaf); 209 } 210 211 void ibdev_printk(const char *level, const struct ib_device *ibdev, 212 const char *format, ...) 213 { 214 struct va_format vaf; 215 va_list args; 216 217 va_start(args, format); 218 219 vaf.fmt = format; 220 vaf.va = &args; 221 222 __ibdev_printk(level, ibdev, &vaf); 223 224 va_end(args); 225 } 226 EXPORT_SYMBOL(ibdev_printk); 227 228 #define define_ibdev_printk_level(func, level) \ 229 void func(const struct ib_device *ibdev, const char *fmt, ...) \ 230 { \ 231 struct va_format vaf; \ 232 va_list args; \ 233 \ 234 va_start(args, fmt); \ 235 \ 236 vaf.fmt = fmt; \ 237 vaf.va = &args; \ 238 \ 239 __ibdev_printk(level, ibdev, &vaf); \ 240 \ 241 va_end(args); \ 242 } \ 243 EXPORT_SYMBOL(func); 244 245 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG); 246 define_ibdev_printk_level(ibdev_alert, KERN_ALERT); 247 define_ibdev_printk_level(ibdev_crit, KERN_CRIT); 248 define_ibdev_printk_level(ibdev_err, KERN_ERR); 249 define_ibdev_printk_level(ibdev_warn, KERN_WARNING); 250 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE); 251 define_ibdev_printk_level(ibdev_info, KERN_INFO); 252 253 static struct notifier_block ibdev_lsm_nb = { 254 .notifier_call = ib_security_change, 255 }; 256 257 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 258 struct net *net); 259 260 /* Pointer to the RCU head at the start of the ib_port_data array */ 261 struct ib_port_data_rcu { 262 struct rcu_head rcu_head; 263 struct ib_port_data pdata[]; 264 }; 265 266 static void ib_device_check_mandatory(struct ib_device *device) 267 { 268 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x } 269 static const struct { 270 size_t offset; 271 char *name; 272 } mandatory_table[] = { 273 IB_MANDATORY_FUNC(query_device), 274 IB_MANDATORY_FUNC(query_port), 275 IB_MANDATORY_FUNC(alloc_pd), 276 IB_MANDATORY_FUNC(dealloc_pd), 277 IB_MANDATORY_FUNC(create_qp), 278 IB_MANDATORY_FUNC(modify_qp), 279 IB_MANDATORY_FUNC(destroy_qp), 280 IB_MANDATORY_FUNC(post_send), 281 IB_MANDATORY_FUNC(post_recv), 282 IB_MANDATORY_FUNC(create_cq), 283 IB_MANDATORY_FUNC(destroy_cq), 284 IB_MANDATORY_FUNC(poll_cq), 285 IB_MANDATORY_FUNC(req_notify_cq), 286 IB_MANDATORY_FUNC(get_dma_mr), 287 IB_MANDATORY_FUNC(reg_user_mr), 288 IB_MANDATORY_FUNC(dereg_mr), 289 IB_MANDATORY_FUNC(get_port_immutable) 290 }; 291 int i; 292 293 device->kverbs_provider = true; 294 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { 295 if (!*(void **) ((void *) &device->ops + 296 mandatory_table[i].offset)) { 297 device->kverbs_provider = false; 298 break; 299 } 300 } 301 } 302 303 /* 304 * Caller must perform ib_device_put() to return the device reference count 305 * when ib_device_get_by_index() returns valid device pointer. 306 */ 307 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index) 308 { 309 struct ib_device *device; 310 311 down_read(&devices_rwsem); 312 device = xa_load(&devices, index); 313 if (device) { 314 if (!rdma_dev_access_netns(device, net)) { 315 device = NULL; 316 goto out; 317 } 318 319 if (!ib_device_try_get(device)) 320 device = NULL; 321 } 322 out: 323 up_read(&devices_rwsem); 324 return device; 325 } 326 327 /** 328 * ib_device_put - Release IB device reference 329 * @device: device whose reference to be released 330 * 331 * ib_device_put() releases reference to the IB device to allow it to be 332 * unregistered and eventually free. 333 */ 334 void ib_device_put(struct ib_device *device) 335 { 336 if (refcount_dec_and_test(&device->refcount)) 337 complete(&device->unreg_completion); 338 } 339 EXPORT_SYMBOL(ib_device_put); 340 341 static struct ib_device *__ib_device_get_by_name(const char *name) 342 { 343 struct ib_device *device; 344 unsigned long index; 345 346 xa_for_each (&devices, index, device) 347 if (!strcmp(name, dev_name(&device->dev))) 348 return device; 349 350 return NULL; 351 } 352 353 /** 354 * ib_device_get_by_name - Find an IB device by name 355 * @name: The name to look for 356 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 357 * 358 * Find and hold an ib_device by its name. The caller must call 359 * ib_device_put() on the returned pointer. 360 */ 361 struct ib_device *ib_device_get_by_name(const char *name, 362 enum rdma_driver_id driver_id) 363 { 364 struct ib_device *device; 365 366 down_read(&devices_rwsem); 367 device = __ib_device_get_by_name(name); 368 if (device && driver_id != RDMA_DRIVER_UNKNOWN && 369 device->ops.driver_id != driver_id) 370 device = NULL; 371 372 if (device) { 373 if (!ib_device_try_get(device)) 374 device = NULL; 375 } 376 up_read(&devices_rwsem); 377 return device; 378 } 379 EXPORT_SYMBOL(ib_device_get_by_name); 380 381 static int rename_compat_devs(struct ib_device *device) 382 { 383 struct ib_core_device *cdev; 384 unsigned long index; 385 int ret = 0; 386 387 mutex_lock(&device->compat_devs_mutex); 388 xa_for_each (&device->compat_devs, index, cdev) { 389 ret = device_rename(&cdev->dev, dev_name(&device->dev)); 390 if (ret) { 391 dev_warn(&cdev->dev, 392 "Fail to rename compatdev to new name %s\n", 393 dev_name(&device->dev)); 394 break; 395 } 396 } 397 mutex_unlock(&device->compat_devs_mutex); 398 return ret; 399 } 400 401 int ib_device_rename(struct ib_device *ibdev, const char *name) 402 { 403 unsigned long index; 404 void *client_data; 405 int ret; 406 407 down_write(&devices_rwsem); 408 if (!strcmp(name, dev_name(&ibdev->dev))) { 409 up_write(&devices_rwsem); 410 return 0; 411 } 412 413 if (__ib_device_get_by_name(name)) { 414 up_write(&devices_rwsem); 415 return -EEXIST; 416 } 417 418 ret = device_rename(&ibdev->dev, name); 419 if (ret) { 420 up_write(&devices_rwsem); 421 return ret; 422 } 423 424 strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX); 425 ret = rename_compat_devs(ibdev); 426 427 downgrade_write(&devices_rwsem); 428 down_read(&ibdev->client_data_rwsem); 429 xan_for_each_marked(&ibdev->client_data, index, client_data, 430 CLIENT_DATA_REGISTERED) { 431 struct ib_client *client = xa_load(&clients, index); 432 433 if (!client || !client->rename) 434 continue; 435 436 client->rename(ibdev, client_data); 437 } 438 up_read(&ibdev->client_data_rwsem); 439 up_read(&devices_rwsem); 440 return 0; 441 } 442 443 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim) 444 { 445 if (use_dim > 1) 446 return -EINVAL; 447 ibdev->use_cq_dim = use_dim; 448 449 return 0; 450 } 451 452 static int alloc_name(struct ib_device *ibdev, const char *name) 453 { 454 struct ib_device *device; 455 unsigned long index; 456 struct ida inuse; 457 int rc; 458 int i; 459 460 lockdep_assert_held_write(&devices_rwsem); 461 ida_init(&inuse); 462 xa_for_each (&devices, index, device) { 463 char buf[IB_DEVICE_NAME_MAX]; 464 465 if (sscanf(dev_name(&device->dev), name, &i) != 1) 466 continue; 467 if (i < 0 || i >= INT_MAX) 468 continue; 469 snprintf(buf, sizeof buf, name, i); 470 if (strcmp(buf, dev_name(&device->dev)) != 0) 471 continue; 472 473 rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL); 474 if (rc < 0) 475 goto out; 476 } 477 478 rc = ida_alloc(&inuse, GFP_KERNEL); 479 if (rc < 0) 480 goto out; 481 482 rc = dev_set_name(&ibdev->dev, name, rc); 483 out: 484 ida_destroy(&inuse); 485 return rc; 486 } 487 488 static void ib_device_release(struct device *device) 489 { 490 struct ib_device *dev = container_of(device, struct ib_device, dev); 491 492 free_netdevs(dev); 493 WARN_ON(refcount_read(&dev->refcount)); 494 if (dev->hw_stats_data) 495 ib_device_release_hw_stats(dev->hw_stats_data); 496 if (dev->port_data) { 497 ib_cache_release_one(dev); 498 ib_security_release_port_pkey_list(dev); 499 rdma_counter_release(dev); 500 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu, 501 pdata[0]), 502 rcu_head); 503 } 504 505 mutex_destroy(&dev->unregistration_lock); 506 mutex_destroy(&dev->compat_devs_mutex); 507 508 xa_destroy(&dev->compat_devs); 509 xa_destroy(&dev->client_data); 510 kfree_rcu(dev, rcu_head); 511 } 512 513 static int ib_device_uevent(struct device *device, 514 struct kobj_uevent_env *env) 515 { 516 if (add_uevent_var(env, "NAME=%s", dev_name(device))) 517 return -ENOMEM; 518 519 /* 520 * It would be nice to pass the node GUID with the event... 521 */ 522 523 return 0; 524 } 525 526 static const void *net_namespace(struct device *d) 527 { 528 struct ib_core_device *coredev = 529 container_of(d, struct ib_core_device, dev); 530 531 return read_pnet(&coredev->rdma_net); 532 } 533 534 static struct class ib_class = { 535 .name = "infiniband", 536 .dev_release = ib_device_release, 537 .dev_uevent = ib_device_uevent, 538 .ns_type = &net_ns_type_operations, 539 .namespace = net_namespace, 540 }; 541 542 static void rdma_init_coredev(struct ib_core_device *coredev, 543 struct ib_device *dev, struct net *net) 544 { 545 /* This BUILD_BUG_ON is intended to catch layout change 546 * of union of ib_core_device and device. 547 * dev must be the first element as ib_core and providers 548 * driver uses it. Adding anything in ib_core_device before 549 * device will break this assumption. 550 */ 551 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) != 552 offsetof(struct ib_device, dev)); 553 554 coredev->dev.class = &ib_class; 555 coredev->dev.groups = dev->groups; 556 device_initialize(&coredev->dev); 557 coredev->owner = dev; 558 INIT_LIST_HEAD(&coredev->port_list); 559 write_pnet(&coredev->rdma_net, net); 560 } 561 562 /** 563 * _ib_alloc_device - allocate an IB device struct 564 * @size:size of structure to allocate 565 * 566 * Low-level drivers should use ib_alloc_device() to allocate &struct 567 * ib_device. @size is the size of the structure to be allocated, 568 * including any private data used by the low-level driver. 569 * ib_dealloc_device() must be used to free structures allocated with 570 * ib_alloc_device(). 571 */ 572 struct ib_device *_ib_alloc_device(size_t size) 573 { 574 struct ib_device *device; 575 unsigned int i; 576 577 if (WARN_ON(size < sizeof(struct ib_device))) 578 return NULL; 579 580 device = kzalloc(size, GFP_KERNEL); 581 if (!device) 582 return NULL; 583 584 if (rdma_restrack_init(device)) { 585 kfree(device); 586 return NULL; 587 } 588 589 rdma_init_coredev(&device->coredev, device, &init_net); 590 591 INIT_LIST_HEAD(&device->event_handler_list); 592 spin_lock_init(&device->qp_open_list_lock); 593 init_rwsem(&device->event_handler_rwsem); 594 mutex_init(&device->unregistration_lock); 595 /* 596 * client_data needs to be alloc because we don't want our mark to be 597 * destroyed if the user stores NULL in the client data. 598 */ 599 xa_init_flags(&device->client_data, XA_FLAGS_ALLOC); 600 init_rwsem(&device->client_data_rwsem); 601 xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC); 602 mutex_init(&device->compat_devs_mutex); 603 init_completion(&device->unreg_completion); 604 INIT_WORK(&device->unregistration_work, ib_unregister_work); 605 606 spin_lock_init(&device->cq_pools_lock); 607 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++) 608 INIT_LIST_HEAD(&device->cq_pools[i]); 609 610 rwlock_init(&device->cache_lock); 611 612 device->uverbs_cmd_mask = 613 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) | 614 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) | 615 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) | 616 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) | 617 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) | 618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) | 619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) | 620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) | 621 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) | 622 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) | 623 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) | 624 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) | 625 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) | 626 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) | 627 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) | 628 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) | 629 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) | 630 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) | 631 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) | 632 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) | 633 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) | 634 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) | 635 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) | 636 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) | 637 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) | 638 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) | 639 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) | 640 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) | 641 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) | 642 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ); 643 return device; 644 } 645 EXPORT_SYMBOL(_ib_alloc_device); 646 647 /** 648 * ib_dealloc_device - free an IB device struct 649 * @device:structure to free 650 * 651 * Free a structure allocated with ib_alloc_device(). 652 */ 653 void ib_dealloc_device(struct ib_device *device) 654 { 655 if (device->ops.dealloc_driver) 656 device->ops.dealloc_driver(device); 657 658 /* 659 * ib_unregister_driver() requires all devices to remain in the xarray 660 * while their ops are callable. The last op we call is dealloc_driver 661 * above. This is needed to create a fence on op callbacks prior to 662 * allowing the driver module to unload. 663 */ 664 down_write(&devices_rwsem); 665 if (xa_load(&devices, device->index) == device) 666 xa_erase(&devices, device->index); 667 up_write(&devices_rwsem); 668 669 /* Expedite releasing netdev references */ 670 free_netdevs(device); 671 672 WARN_ON(!xa_empty(&device->compat_devs)); 673 WARN_ON(!xa_empty(&device->client_data)); 674 WARN_ON(refcount_read(&device->refcount)); 675 rdma_restrack_clean(device); 676 /* Balances with device_initialize */ 677 put_device(&device->dev); 678 } 679 EXPORT_SYMBOL(ib_dealloc_device); 680 681 /* 682 * add_client_context() and remove_client_context() must be safe against 683 * parallel calls on the same device - registration/unregistration of both the 684 * device and client can be occurring in parallel. 685 * 686 * The routines need to be a fence, any caller must not return until the add 687 * or remove is fully completed. 688 */ 689 static int add_client_context(struct ib_device *device, 690 struct ib_client *client) 691 { 692 int ret = 0; 693 694 if (!device->kverbs_provider && !client->no_kverbs_req) 695 return 0; 696 697 down_write(&device->client_data_rwsem); 698 /* 699 * So long as the client is registered hold both the client and device 700 * unregistration locks. 701 */ 702 if (!refcount_inc_not_zero(&client->uses)) 703 goto out_unlock; 704 refcount_inc(&device->refcount); 705 706 /* 707 * Another caller to add_client_context got here first and has already 708 * completely initialized context. 709 */ 710 if (xa_get_mark(&device->client_data, client->client_id, 711 CLIENT_DATA_REGISTERED)) 712 goto out; 713 714 ret = xa_err(xa_store(&device->client_data, client->client_id, NULL, 715 GFP_KERNEL)); 716 if (ret) 717 goto out; 718 downgrade_write(&device->client_data_rwsem); 719 if (client->add) { 720 if (client->add(device)) { 721 /* 722 * If a client fails to add then the error code is 723 * ignored, but we won't call any more ops on this 724 * client. 725 */ 726 xa_erase(&device->client_data, client->client_id); 727 up_read(&device->client_data_rwsem); 728 ib_device_put(device); 729 ib_client_put(client); 730 return 0; 731 } 732 } 733 734 /* Readers shall not see a client until add has been completed */ 735 xa_set_mark(&device->client_data, client->client_id, 736 CLIENT_DATA_REGISTERED); 737 up_read(&device->client_data_rwsem); 738 return 0; 739 740 out: 741 ib_device_put(device); 742 ib_client_put(client); 743 out_unlock: 744 up_write(&device->client_data_rwsem); 745 return ret; 746 } 747 748 static void remove_client_context(struct ib_device *device, 749 unsigned int client_id) 750 { 751 struct ib_client *client; 752 void *client_data; 753 754 down_write(&device->client_data_rwsem); 755 if (!xa_get_mark(&device->client_data, client_id, 756 CLIENT_DATA_REGISTERED)) { 757 up_write(&device->client_data_rwsem); 758 return; 759 } 760 client_data = xa_load(&device->client_data, client_id); 761 xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED); 762 client = xa_load(&clients, client_id); 763 up_write(&device->client_data_rwsem); 764 765 /* 766 * Notice we cannot be holding any exclusive locks when calling the 767 * remove callback as the remove callback can recurse back into any 768 * public functions in this module and thus try for any locks those 769 * functions take. 770 * 771 * For this reason clients and drivers should not call the 772 * unregistration functions will holdling any locks. 773 */ 774 if (client->remove) 775 client->remove(device, client_data); 776 777 xa_erase(&device->client_data, client_id); 778 ib_device_put(device); 779 ib_client_put(client); 780 } 781 782 static int alloc_port_data(struct ib_device *device) 783 { 784 struct ib_port_data_rcu *pdata_rcu; 785 u32 port; 786 787 if (device->port_data) 788 return 0; 789 790 /* This can only be called once the physical port range is defined */ 791 if (WARN_ON(!device->phys_port_cnt)) 792 return -EINVAL; 793 794 /* Reserve U32_MAX so the logic to go over all the ports is sane */ 795 if (WARN_ON(device->phys_port_cnt == U32_MAX)) 796 return -EINVAL; 797 798 /* 799 * device->port_data is indexed directly by the port number to make 800 * access to this data as efficient as possible. 801 * 802 * Therefore port_data is declared as a 1 based array with potential 803 * empty slots at the beginning. 804 */ 805 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata, 806 rdma_end_port(device) + 1), 807 GFP_KERNEL); 808 if (!pdata_rcu) 809 return -ENOMEM; 810 /* 811 * The rcu_head is put in front of the port data array and the stored 812 * pointer is adjusted since we never need to see that member until 813 * kfree_rcu. 814 */ 815 device->port_data = pdata_rcu->pdata; 816 817 rdma_for_each_port (device, port) { 818 struct ib_port_data *pdata = &device->port_data[port]; 819 820 pdata->ib_dev = device; 821 spin_lock_init(&pdata->pkey_list_lock); 822 INIT_LIST_HEAD(&pdata->pkey_list); 823 spin_lock_init(&pdata->netdev_lock); 824 INIT_HLIST_NODE(&pdata->ndev_hash_link); 825 } 826 return 0; 827 } 828 829 static int verify_immutable(const struct ib_device *dev, u32 port) 830 { 831 return WARN_ON(!rdma_cap_ib_mad(dev, port) && 832 rdma_max_mad_size(dev, port) != 0); 833 } 834 835 static int setup_port_data(struct ib_device *device) 836 { 837 u32 port; 838 int ret; 839 840 ret = alloc_port_data(device); 841 if (ret) 842 return ret; 843 844 rdma_for_each_port (device, port) { 845 struct ib_port_data *pdata = &device->port_data[port]; 846 847 ret = device->ops.get_port_immutable(device, port, 848 &pdata->immutable); 849 if (ret) 850 return ret; 851 852 if (verify_immutable(device, port)) 853 return -EINVAL; 854 } 855 return 0; 856 } 857 858 /** 859 * ib_port_immutable_read() - Read rdma port's immutable data 860 * @dev: IB device 861 * @port: port number whose immutable data to read. It starts with index 1 and 862 * valid upto including rdma_end_port(). 863 */ 864 const struct ib_port_immutable* 865 ib_port_immutable_read(struct ib_device *dev, unsigned int port) 866 { 867 WARN_ON(!rdma_is_port_valid(dev, port)); 868 return &dev->port_data[port].immutable; 869 } 870 EXPORT_SYMBOL(ib_port_immutable_read); 871 872 void ib_get_device_fw_str(struct ib_device *dev, char *str) 873 { 874 if (dev->ops.get_dev_fw_str) 875 dev->ops.get_dev_fw_str(dev, str); 876 else 877 str[0] = '\0'; 878 } 879 EXPORT_SYMBOL(ib_get_device_fw_str); 880 881 static void ib_policy_change_task(struct work_struct *work) 882 { 883 struct ib_device *dev; 884 unsigned long index; 885 886 down_read(&devices_rwsem); 887 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 888 unsigned int i; 889 890 rdma_for_each_port (dev, i) { 891 u64 sp; 892 ib_get_cached_subnet_prefix(dev, i, &sp); 893 ib_security_cache_change(dev, i, sp); 894 } 895 } 896 up_read(&devices_rwsem); 897 } 898 899 static int ib_security_change(struct notifier_block *nb, unsigned long event, 900 void *lsm_data) 901 { 902 if (event != LSM_POLICY_CHANGE) 903 return NOTIFY_DONE; 904 905 schedule_work(&ib_policy_change_work); 906 ib_mad_agent_security_change(); 907 908 return NOTIFY_OK; 909 } 910 911 static void compatdev_release(struct device *dev) 912 { 913 struct ib_core_device *cdev = 914 container_of(dev, struct ib_core_device, dev); 915 916 kfree(cdev); 917 } 918 919 static int add_one_compat_dev(struct ib_device *device, 920 struct rdma_dev_net *rnet) 921 { 922 struct ib_core_device *cdev; 923 int ret; 924 925 lockdep_assert_held(&rdma_nets_rwsem); 926 if (!ib_devices_shared_netns) 927 return 0; 928 929 /* 930 * Create and add compat device in all namespaces other than where it 931 * is currently bound to. 932 */ 933 if (net_eq(read_pnet(&rnet->net), 934 read_pnet(&device->coredev.rdma_net))) 935 return 0; 936 937 /* 938 * The first of init_net() or ib_register_device() to take the 939 * compat_devs_mutex wins and gets to add the device. Others will wait 940 * for completion here. 941 */ 942 mutex_lock(&device->compat_devs_mutex); 943 cdev = xa_load(&device->compat_devs, rnet->id); 944 if (cdev) { 945 ret = 0; 946 goto done; 947 } 948 ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL); 949 if (ret) 950 goto done; 951 952 cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); 953 if (!cdev) { 954 ret = -ENOMEM; 955 goto cdev_err; 956 } 957 958 cdev->dev.parent = device->dev.parent; 959 rdma_init_coredev(cdev, device, read_pnet(&rnet->net)); 960 cdev->dev.release = compatdev_release; 961 ret = dev_set_name(&cdev->dev, "%s", dev_name(&device->dev)); 962 if (ret) 963 goto add_err; 964 965 ret = device_add(&cdev->dev); 966 if (ret) 967 goto add_err; 968 ret = ib_setup_port_attrs(cdev); 969 if (ret) 970 goto port_err; 971 972 ret = xa_err(xa_store(&device->compat_devs, rnet->id, 973 cdev, GFP_KERNEL)); 974 if (ret) 975 goto insert_err; 976 977 mutex_unlock(&device->compat_devs_mutex); 978 return 0; 979 980 insert_err: 981 ib_free_port_attrs(cdev); 982 port_err: 983 device_del(&cdev->dev); 984 add_err: 985 put_device(&cdev->dev); 986 cdev_err: 987 xa_release(&device->compat_devs, rnet->id); 988 done: 989 mutex_unlock(&device->compat_devs_mutex); 990 return ret; 991 } 992 993 static void remove_one_compat_dev(struct ib_device *device, u32 id) 994 { 995 struct ib_core_device *cdev; 996 997 mutex_lock(&device->compat_devs_mutex); 998 cdev = xa_erase(&device->compat_devs, id); 999 mutex_unlock(&device->compat_devs_mutex); 1000 if (cdev) { 1001 ib_free_port_attrs(cdev); 1002 device_del(&cdev->dev); 1003 put_device(&cdev->dev); 1004 } 1005 } 1006 1007 static void remove_compat_devs(struct ib_device *device) 1008 { 1009 struct ib_core_device *cdev; 1010 unsigned long index; 1011 1012 xa_for_each (&device->compat_devs, index, cdev) 1013 remove_one_compat_dev(device, index); 1014 } 1015 1016 static int add_compat_devs(struct ib_device *device) 1017 { 1018 struct rdma_dev_net *rnet; 1019 unsigned long index; 1020 int ret = 0; 1021 1022 lockdep_assert_held(&devices_rwsem); 1023 1024 down_read(&rdma_nets_rwsem); 1025 xa_for_each (&rdma_nets, index, rnet) { 1026 ret = add_one_compat_dev(device, rnet); 1027 if (ret) 1028 break; 1029 } 1030 up_read(&rdma_nets_rwsem); 1031 return ret; 1032 } 1033 1034 static void remove_all_compat_devs(void) 1035 { 1036 struct ib_compat_device *cdev; 1037 struct ib_device *dev; 1038 unsigned long index; 1039 1040 down_read(&devices_rwsem); 1041 xa_for_each (&devices, index, dev) { 1042 unsigned long c_index = 0; 1043 1044 /* Hold nets_rwsem so that any other thread modifying this 1045 * system param can sync with this thread. 1046 */ 1047 down_read(&rdma_nets_rwsem); 1048 xa_for_each (&dev->compat_devs, c_index, cdev) 1049 remove_one_compat_dev(dev, c_index); 1050 up_read(&rdma_nets_rwsem); 1051 } 1052 up_read(&devices_rwsem); 1053 } 1054 1055 static int add_all_compat_devs(void) 1056 { 1057 struct rdma_dev_net *rnet; 1058 struct ib_device *dev; 1059 unsigned long index; 1060 int ret = 0; 1061 1062 down_read(&devices_rwsem); 1063 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1064 unsigned long net_index = 0; 1065 1066 /* Hold nets_rwsem so that any other thread modifying this 1067 * system param can sync with this thread. 1068 */ 1069 down_read(&rdma_nets_rwsem); 1070 xa_for_each (&rdma_nets, net_index, rnet) { 1071 ret = add_one_compat_dev(dev, rnet); 1072 if (ret) 1073 break; 1074 } 1075 up_read(&rdma_nets_rwsem); 1076 } 1077 up_read(&devices_rwsem); 1078 if (ret) 1079 remove_all_compat_devs(); 1080 return ret; 1081 } 1082 1083 int rdma_compatdev_set(u8 enable) 1084 { 1085 struct rdma_dev_net *rnet; 1086 unsigned long index; 1087 int ret = 0; 1088 1089 down_write(&rdma_nets_rwsem); 1090 if (ib_devices_shared_netns == enable) { 1091 up_write(&rdma_nets_rwsem); 1092 return 0; 1093 } 1094 1095 /* enable/disable of compat devices is not supported 1096 * when more than default init_net exists. 1097 */ 1098 xa_for_each (&rdma_nets, index, rnet) { 1099 ret++; 1100 break; 1101 } 1102 if (!ret) 1103 ib_devices_shared_netns = enable; 1104 up_write(&rdma_nets_rwsem); 1105 if (ret) 1106 return -EBUSY; 1107 1108 if (enable) 1109 ret = add_all_compat_devs(); 1110 else 1111 remove_all_compat_devs(); 1112 return ret; 1113 } 1114 1115 static void rdma_dev_exit_net(struct net *net) 1116 { 1117 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1118 struct ib_device *dev; 1119 unsigned long index; 1120 int ret; 1121 1122 down_write(&rdma_nets_rwsem); 1123 /* 1124 * Prevent the ID from being re-used and hide the id from xa_for_each. 1125 */ 1126 ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL)); 1127 WARN_ON(ret); 1128 up_write(&rdma_nets_rwsem); 1129 1130 down_read(&devices_rwsem); 1131 xa_for_each (&devices, index, dev) { 1132 get_device(&dev->dev); 1133 /* 1134 * Release the devices_rwsem so that pontentially blocking 1135 * device_del, doesn't hold the devices_rwsem for too long. 1136 */ 1137 up_read(&devices_rwsem); 1138 1139 remove_one_compat_dev(dev, rnet->id); 1140 1141 /* 1142 * If the real device is in the NS then move it back to init. 1143 */ 1144 rdma_dev_change_netns(dev, net, &init_net); 1145 1146 put_device(&dev->dev); 1147 down_read(&devices_rwsem); 1148 } 1149 up_read(&devices_rwsem); 1150 1151 rdma_nl_net_exit(rnet); 1152 xa_erase(&rdma_nets, rnet->id); 1153 } 1154 1155 static __net_init int rdma_dev_init_net(struct net *net) 1156 { 1157 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net); 1158 unsigned long index; 1159 struct ib_device *dev; 1160 int ret; 1161 1162 write_pnet(&rnet->net, net); 1163 1164 ret = rdma_nl_net_init(rnet); 1165 if (ret) 1166 return ret; 1167 1168 /* No need to create any compat devices in default init_net. */ 1169 if (net_eq(net, &init_net)) 1170 return 0; 1171 1172 ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL); 1173 if (ret) { 1174 rdma_nl_net_exit(rnet); 1175 return ret; 1176 } 1177 1178 down_read(&devices_rwsem); 1179 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 1180 /* Hold nets_rwsem so that netlink command cannot change 1181 * system configuration for device sharing mode. 1182 */ 1183 down_read(&rdma_nets_rwsem); 1184 ret = add_one_compat_dev(dev, rnet); 1185 up_read(&rdma_nets_rwsem); 1186 if (ret) 1187 break; 1188 } 1189 up_read(&devices_rwsem); 1190 1191 if (ret) 1192 rdma_dev_exit_net(net); 1193 1194 return ret; 1195 } 1196 1197 /* 1198 * Assign the unique string device name and the unique device index. This is 1199 * undone by ib_dealloc_device. 1200 */ 1201 static int assign_name(struct ib_device *device, const char *name) 1202 { 1203 static u32 last_id; 1204 int ret; 1205 1206 down_write(&devices_rwsem); 1207 /* Assign a unique name to the device */ 1208 if (strchr(name, '%')) 1209 ret = alloc_name(device, name); 1210 else 1211 ret = dev_set_name(&device->dev, name); 1212 if (ret) 1213 goto out; 1214 1215 if (__ib_device_get_by_name(dev_name(&device->dev))) { 1216 ret = -ENFILE; 1217 goto out; 1218 } 1219 strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX); 1220 1221 ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b, 1222 &last_id, GFP_KERNEL); 1223 if (ret > 0) 1224 ret = 0; 1225 1226 out: 1227 up_write(&devices_rwsem); 1228 return ret; 1229 } 1230 1231 /* 1232 * setup_device() allocates memory and sets up data that requires calling the 1233 * device ops, this is the only reason these actions are not done during 1234 * ib_alloc_device. It is undone by ib_dealloc_device(). 1235 */ 1236 static int setup_device(struct ib_device *device) 1237 { 1238 struct ib_udata uhw = {.outlen = 0, .inlen = 0}; 1239 int ret; 1240 1241 ib_device_check_mandatory(device); 1242 1243 ret = setup_port_data(device); 1244 if (ret) { 1245 dev_warn(&device->dev, "Couldn't create per-port data\n"); 1246 return ret; 1247 } 1248 1249 memset(&device->attrs, 0, sizeof(device->attrs)); 1250 ret = device->ops.query_device(device, &device->attrs, &uhw); 1251 if (ret) { 1252 dev_warn(&device->dev, 1253 "Couldn't query the device attributes\n"); 1254 return ret; 1255 } 1256 1257 return 0; 1258 } 1259 1260 static void disable_device(struct ib_device *device) 1261 { 1262 u32 cid; 1263 1264 WARN_ON(!refcount_read(&device->refcount)); 1265 1266 down_write(&devices_rwsem); 1267 xa_clear_mark(&devices, device->index, DEVICE_REGISTERED); 1268 up_write(&devices_rwsem); 1269 1270 /* 1271 * Remove clients in LIFO order, see assign_client_id. This could be 1272 * more efficient if xarray learns to reverse iterate. Since no new 1273 * clients can be added to this ib_device past this point we only need 1274 * the maximum possible client_id value here. 1275 */ 1276 down_read(&clients_rwsem); 1277 cid = highest_client_id; 1278 up_read(&clients_rwsem); 1279 while (cid) { 1280 cid--; 1281 remove_client_context(device, cid); 1282 } 1283 1284 ib_cq_pool_cleanup(device); 1285 1286 /* Pairs with refcount_set in enable_device */ 1287 ib_device_put(device); 1288 wait_for_completion(&device->unreg_completion); 1289 1290 /* 1291 * compat devices must be removed after device refcount drops to zero. 1292 * Otherwise init_net() may add more compatdevs after removing compat 1293 * devices and before device is disabled. 1294 */ 1295 remove_compat_devs(device); 1296 } 1297 1298 /* 1299 * An enabled device is visible to all clients and to all the public facing 1300 * APIs that return a device pointer. This always returns with a new get, even 1301 * if it fails. 1302 */ 1303 static int enable_device_and_get(struct ib_device *device) 1304 { 1305 struct ib_client *client; 1306 unsigned long index; 1307 int ret = 0; 1308 1309 /* 1310 * One ref belongs to the xa and the other belongs to this 1311 * thread. This is needed to guard against parallel unregistration. 1312 */ 1313 refcount_set(&device->refcount, 2); 1314 down_write(&devices_rwsem); 1315 xa_set_mark(&devices, device->index, DEVICE_REGISTERED); 1316 1317 /* 1318 * By using downgrade_write() we ensure that no other thread can clear 1319 * DEVICE_REGISTERED while we are completing the client setup. 1320 */ 1321 downgrade_write(&devices_rwsem); 1322 1323 if (device->ops.enable_driver) { 1324 ret = device->ops.enable_driver(device); 1325 if (ret) 1326 goto out; 1327 } 1328 1329 down_read(&clients_rwsem); 1330 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1331 ret = add_client_context(device, client); 1332 if (ret) 1333 break; 1334 } 1335 up_read(&clients_rwsem); 1336 if (!ret) 1337 ret = add_compat_devs(device); 1338 out: 1339 up_read(&devices_rwsem); 1340 return ret; 1341 } 1342 1343 static void prevent_dealloc_device(struct ib_device *ib_dev) 1344 { 1345 } 1346 1347 /** 1348 * ib_register_device - Register an IB device with IB core 1349 * @device: Device to register 1350 * @name: unique string device name. This may include a '%' which will 1351 * cause a unique index to be added to the passed device name. 1352 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB 1353 * device will be used. In this case the caller should fully 1354 * setup the ibdev for DMA. This usually means using dma_virt_ops. 1355 * 1356 * Low-level drivers use ib_register_device() to register their 1357 * devices with the IB core. All registered clients will receive a 1358 * callback for each device that is added. @device must be allocated 1359 * with ib_alloc_device(). 1360 * 1361 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device() 1362 * asynchronously then the device pointer may become freed as soon as this 1363 * function returns. 1364 */ 1365 int ib_register_device(struct ib_device *device, const char *name, 1366 struct device *dma_device) 1367 { 1368 int ret; 1369 1370 ret = assign_name(device, name); 1371 if (ret) 1372 return ret; 1373 1374 /* 1375 * If the caller does not provide a DMA capable device then the IB core 1376 * will set up ib_sge and scatterlist structures that stash the kernel 1377 * virtual address into the address field. 1378 */ 1379 WARN_ON(dma_device && !dma_device->dma_parms); 1380 device->dma_device = dma_device; 1381 1382 ret = setup_device(device); 1383 if (ret) 1384 return ret; 1385 1386 ret = ib_cache_setup_one(device); 1387 if (ret) { 1388 dev_warn(&device->dev, 1389 "Couldn't set up InfiniBand P_Key/GID cache\n"); 1390 return ret; 1391 } 1392 1393 device->groups[0] = &ib_dev_attr_group; 1394 device->groups[1] = device->ops.device_group; 1395 ret = ib_setup_device_attrs(device); 1396 if (ret) 1397 goto cache_cleanup; 1398 1399 ib_device_register_rdmacg(device); 1400 1401 rdma_counter_init(device); 1402 1403 /* 1404 * Ensure that ADD uevent is not fired because it 1405 * is too early amd device is not initialized yet. 1406 */ 1407 dev_set_uevent_suppress(&device->dev, true); 1408 ret = device_add(&device->dev); 1409 if (ret) 1410 goto cg_cleanup; 1411 1412 ret = ib_setup_port_attrs(&device->coredev); 1413 if (ret) { 1414 dev_warn(&device->dev, 1415 "Couldn't register device with driver model\n"); 1416 goto dev_cleanup; 1417 } 1418 1419 ret = enable_device_and_get(device); 1420 if (ret) { 1421 void (*dealloc_fn)(struct ib_device *); 1422 1423 /* 1424 * If we hit this error flow then we don't want to 1425 * automatically dealloc the device since the caller is 1426 * expected to call ib_dealloc_device() after 1427 * ib_register_device() fails. This is tricky due to the 1428 * possibility for a parallel unregistration along with this 1429 * error flow. Since we have a refcount here we know any 1430 * parallel flow is stopped in disable_device and will see the 1431 * special dealloc_driver pointer, causing the responsibility to 1432 * ib_dealloc_device() to revert back to this thread. 1433 */ 1434 dealloc_fn = device->ops.dealloc_driver; 1435 device->ops.dealloc_driver = prevent_dealloc_device; 1436 ib_device_put(device); 1437 __ib_unregister_device(device); 1438 device->ops.dealloc_driver = dealloc_fn; 1439 dev_set_uevent_suppress(&device->dev, false); 1440 return ret; 1441 } 1442 dev_set_uevent_suppress(&device->dev, false); 1443 /* Mark for userspace that device is ready */ 1444 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1445 ib_device_put(device); 1446 1447 return 0; 1448 1449 dev_cleanup: 1450 device_del(&device->dev); 1451 cg_cleanup: 1452 dev_set_uevent_suppress(&device->dev, false); 1453 ib_device_unregister_rdmacg(device); 1454 cache_cleanup: 1455 ib_cache_cleanup_one(device); 1456 return ret; 1457 } 1458 EXPORT_SYMBOL(ib_register_device); 1459 1460 /* Callers must hold a get on the device. */ 1461 static void __ib_unregister_device(struct ib_device *ib_dev) 1462 { 1463 /* 1464 * We have a registration lock so that all the calls to unregister are 1465 * fully fenced, once any unregister returns the device is truely 1466 * unregistered even if multiple callers are unregistering it at the 1467 * same time. This also interacts with the registration flow and 1468 * provides sane semantics if register and unregister are racing. 1469 */ 1470 mutex_lock(&ib_dev->unregistration_lock); 1471 if (!refcount_read(&ib_dev->refcount)) 1472 goto out; 1473 1474 disable_device(ib_dev); 1475 1476 /* Expedite removing unregistered pointers from the hash table */ 1477 free_netdevs(ib_dev); 1478 1479 ib_free_port_attrs(&ib_dev->coredev); 1480 device_del(&ib_dev->dev); 1481 ib_device_unregister_rdmacg(ib_dev); 1482 ib_cache_cleanup_one(ib_dev); 1483 1484 /* 1485 * Drivers using the new flow may not call ib_dealloc_device except 1486 * in error unwind prior to registration success. 1487 */ 1488 if (ib_dev->ops.dealloc_driver && 1489 ib_dev->ops.dealloc_driver != prevent_dealloc_device) { 1490 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1); 1491 ib_dealloc_device(ib_dev); 1492 } 1493 out: 1494 mutex_unlock(&ib_dev->unregistration_lock); 1495 } 1496 1497 /** 1498 * ib_unregister_device - Unregister an IB device 1499 * @ib_dev: The device to unregister 1500 * 1501 * Unregister an IB device. All clients will receive a remove callback. 1502 * 1503 * Callers should call this routine only once, and protect against races with 1504 * registration. Typically it should only be called as part of a remove 1505 * callback in an implementation of driver core's struct device_driver and 1506 * related. 1507 * 1508 * If ops.dealloc_driver is used then ib_dev will be freed upon return from 1509 * this function. 1510 */ 1511 void ib_unregister_device(struct ib_device *ib_dev) 1512 { 1513 get_device(&ib_dev->dev); 1514 __ib_unregister_device(ib_dev); 1515 put_device(&ib_dev->dev); 1516 } 1517 EXPORT_SYMBOL(ib_unregister_device); 1518 1519 /** 1520 * ib_unregister_device_and_put - Unregister a device while holding a 'get' 1521 * @ib_dev: The device to unregister 1522 * 1523 * This is the same as ib_unregister_device(), except it includes an internal 1524 * ib_device_put() that should match a 'get' obtained by the caller. 1525 * 1526 * It is safe to call this routine concurrently from multiple threads while 1527 * holding the 'get'. When the function returns the device is fully 1528 * unregistered. 1529 * 1530 * Drivers using this flow MUST use the driver_unregister callback to clean up 1531 * their resources associated with the device and dealloc it. 1532 */ 1533 void ib_unregister_device_and_put(struct ib_device *ib_dev) 1534 { 1535 WARN_ON(!ib_dev->ops.dealloc_driver); 1536 get_device(&ib_dev->dev); 1537 ib_device_put(ib_dev); 1538 __ib_unregister_device(ib_dev); 1539 put_device(&ib_dev->dev); 1540 } 1541 EXPORT_SYMBOL(ib_unregister_device_and_put); 1542 1543 /** 1544 * ib_unregister_driver - Unregister all IB devices for a driver 1545 * @driver_id: The driver to unregister 1546 * 1547 * This implements a fence for device unregistration. It only returns once all 1548 * devices associated with the driver_id have fully completed their 1549 * unregistration and returned from ib_unregister_device*(). 1550 * 1551 * If device's are not yet unregistered it goes ahead and starts unregistering 1552 * them. 1553 * 1554 * This does not block creation of new devices with the given driver_id, that 1555 * is the responsibility of the caller. 1556 */ 1557 void ib_unregister_driver(enum rdma_driver_id driver_id) 1558 { 1559 struct ib_device *ib_dev; 1560 unsigned long index; 1561 1562 down_read(&devices_rwsem); 1563 xa_for_each (&devices, index, ib_dev) { 1564 if (ib_dev->ops.driver_id != driver_id) 1565 continue; 1566 1567 get_device(&ib_dev->dev); 1568 up_read(&devices_rwsem); 1569 1570 WARN_ON(!ib_dev->ops.dealloc_driver); 1571 __ib_unregister_device(ib_dev); 1572 1573 put_device(&ib_dev->dev); 1574 down_read(&devices_rwsem); 1575 } 1576 up_read(&devices_rwsem); 1577 } 1578 EXPORT_SYMBOL(ib_unregister_driver); 1579 1580 static void ib_unregister_work(struct work_struct *work) 1581 { 1582 struct ib_device *ib_dev = 1583 container_of(work, struct ib_device, unregistration_work); 1584 1585 __ib_unregister_device(ib_dev); 1586 put_device(&ib_dev->dev); 1587 } 1588 1589 /** 1590 * ib_unregister_device_queued - Unregister a device using a work queue 1591 * @ib_dev: The device to unregister 1592 * 1593 * This schedules an asynchronous unregistration using a WQ for the device. A 1594 * driver should use this to avoid holding locks while doing unregistration, 1595 * such as holding the RTNL lock. 1596 * 1597 * Drivers using this API must use ib_unregister_driver before module unload 1598 * to ensure that all scheduled unregistrations have completed. 1599 */ 1600 void ib_unregister_device_queued(struct ib_device *ib_dev) 1601 { 1602 WARN_ON(!refcount_read(&ib_dev->refcount)); 1603 WARN_ON(!ib_dev->ops.dealloc_driver); 1604 get_device(&ib_dev->dev); 1605 if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work)) 1606 put_device(&ib_dev->dev); 1607 } 1608 EXPORT_SYMBOL(ib_unregister_device_queued); 1609 1610 /* 1611 * The caller must pass in a device that has the kref held and the refcount 1612 * released. If the device is in cur_net and still registered then it is moved 1613 * into net. 1614 */ 1615 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net, 1616 struct net *net) 1617 { 1618 int ret2 = -EINVAL; 1619 int ret; 1620 1621 mutex_lock(&device->unregistration_lock); 1622 1623 /* 1624 * If a device not under ib_device_get() or if the unregistration_lock 1625 * is not held, the namespace can be changed, or it can be unregistered. 1626 * Check again under the lock. 1627 */ 1628 if (refcount_read(&device->refcount) == 0 || 1629 !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) { 1630 ret = -ENODEV; 1631 goto out; 1632 } 1633 1634 kobject_uevent(&device->dev.kobj, KOBJ_REMOVE); 1635 disable_device(device); 1636 1637 /* 1638 * At this point no one can be using the device, so it is safe to 1639 * change the namespace. 1640 */ 1641 write_pnet(&device->coredev.rdma_net, net); 1642 1643 down_read(&devices_rwsem); 1644 /* 1645 * Currently rdma devices are system wide unique. So the device name 1646 * is guaranteed free in the new namespace. Publish the new namespace 1647 * at the sysfs level. 1648 */ 1649 ret = device_rename(&device->dev, dev_name(&device->dev)); 1650 up_read(&devices_rwsem); 1651 if (ret) { 1652 dev_warn(&device->dev, 1653 "%s: Couldn't rename device after namespace change\n", 1654 __func__); 1655 /* Try and put things back and re-enable the device */ 1656 write_pnet(&device->coredev.rdma_net, cur_net); 1657 } 1658 1659 ret2 = enable_device_and_get(device); 1660 if (ret2) { 1661 /* 1662 * This shouldn't really happen, but if it does, let the user 1663 * retry at later point. So don't disable the device. 1664 */ 1665 dev_warn(&device->dev, 1666 "%s: Couldn't re-enable device after namespace change\n", 1667 __func__); 1668 } 1669 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1670 1671 ib_device_put(device); 1672 out: 1673 mutex_unlock(&device->unregistration_lock); 1674 if (ret) 1675 return ret; 1676 return ret2; 1677 } 1678 1679 int ib_device_set_netns_put(struct sk_buff *skb, 1680 struct ib_device *dev, u32 ns_fd) 1681 { 1682 struct net *net; 1683 int ret; 1684 1685 net = get_net_ns_by_fd(ns_fd); 1686 if (IS_ERR(net)) { 1687 ret = PTR_ERR(net); 1688 goto net_err; 1689 } 1690 1691 if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) { 1692 ret = -EPERM; 1693 goto ns_err; 1694 } 1695 1696 /* 1697 * All the ib_clients, including uverbs, are reset when the namespace is 1698 * changed and this cannot be blocked waiting for userspace to do 1699 * something, so disassociation is mandatory. 1700 */ 1701 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) { 1702 ret = -EOPNOTSUPP; 1703 goto ns_err; 1704 } 1705 1706 get_device(&dev->dev); 1707 ib_device_put(dev); 1708 ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net); 1709 put_device(&dev->dev); 1710 1711 put_net(net); 1712 return ret; 1713 1714 ns_err: 1715 put_net(net); 1716 net_err: 1717 ib_device_put(dev); 1718 return ret; 1719 } 1720 1721 static struct pernet_operations rdma_dev_net_ops = { 1722 .init = rdma_dev_init_net, 1723 .exit = rdma_dev_exit_net, 1724 .id = &rdma_dev_net_id, 1725 .size = sizeof(struct rdma_dev_net), 1726 }; 1727 1728 static int assign_client_id(struct ib_client *client) 1729 { 1730 int ret; 1731 1732 down_write(&clients_rwsem); 1733 /* 1734 * The add/remove callbacks must be called in FIFO/LIFO order. To 1735 * achieve this we assign client_ids so they are sorted in 1736 * registration order. 1737 */ 1738 client->client_id = highest_client_id; 1739 ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL); 1740 if (ret) 1741 goto out; 1742 1743 highest_client_id++; 1744 xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED); 1745 1746 out: 1747 up_write(&clients_rwsem); 1748 return ret; 1749 } 1750 1751 static void remove_client_id(struct ib_client *client) 1752 { 1753 down_write(&clients_rwsem); 1754 xa_erase(&clients, client->client_id); 1755 for (; highest_client_id; highest_client_id--) 1756 if (xa_load(&clients, highest_client_id - 1)) 1757 break; 1758 up_write(&clients_rwsem); 1759 } 1760 1761 /** 1762 * ib_register_client - Register an IB client 1763 * @client:Client to register 1764 * 1765 * Upper level users of the IB drivers can use ib_register_client() to 1766 * register callbacks for IB device addition and removal. When an IB 1767 * device is added, each registered client's add method will be called 1768 * (in the order the clients were registered), and when a device is 1769 * removed, each client's remove method will be called (in the reverse 1770 * order that clients were registered). In addition, when 1771 * ib_register_client() is called, the client will receive an add 1772 * callback for all devices already registered. 1773 */ 1774 int ib_register_client(struct ib_client *client) 1775 { 1776 struct ib_device *device; 1777 unsigned long index; 1778 int ret; 1779 1780 refcount_set(&client->uses, 1); 1781 init_completion(&client->uses_zero); 1782 ret = assign_client_id(client); 1783 if (ret) 1784 return ret; 1785 1786 down_read(&devices_rwsem); 1787 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) { 1788 ret = add_client_context(device, client); 1789 if (ret) { 1790 up_read(&devices_rwsem); 1791 ib_unregister_client(client); 1792 return ret; 1793 } 1794 } 1795 up_read(&devices_rwsem); 1796 return 0; 1797 } 1798 EXPORT_SYMBOL(ib_register_client); 1799 1800 /** 1801 * ib_unregister_client - Unregister an IB client 1802 * @client:Client to unregister 1803 * 1804 * Upper level users use ib_unregister_client() to remove their client 1805 * registration. When ib_unregister_client() is called, the client 1806 * will receive a remove callback for each IB device still registered. 1807 * 1808 * This is a full fence, once it returns no client callbacks will be called, 1809 * or are running in another thread. 1810 */ 1811 void ib_unregister_client(struct ib_client *client) 1812 { 1813 struct ib_device *device; 1814 unsigned long index; 1815 1816 down_write(&clients_rwsem); 1817 ib_client_put(client); 1818 xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED); 1819 up_write(&clients_rwsem); 1820 1821 /* We do not want to have locks while calling client->remove() */ 1822 rcu_read_lock(); 1823 xa_for_each (&devices, index, device) { 1824 if (!ib_device_try_get(device)) 1825 continue; 1826 rcu_read_unlock(); 1827 1828 remove_client_context(device, client->client_id); 1829 1830 ib_device_put(device); 1831 rcu_read_lock(); 1832 } 1833 rcu_read_unlock(); 1834 1835 /* 1836 * remove_client_context() is not a fence, it can return even though a 1837 * removal is ongoing. Wait until all removals are completed. 1838 */ 1839 wait_for_completion(&client->uses_zero); 1840 remove_client_id(client); 1841 } 1842 EXPORT_SYMBOL(ib_unregister_client); 1843 1844 static int __ib_get_global_client_nl_info(const char *client_name, 1845 struct ib_client_nl_info *res) 1846 { 1847 struct ib_client *client; 1848 unsigned long index; 1849 int ret = -ENOENT; 1850 1851 down_read(&clients_rwsem); 1852 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) { 1853 if (strcmp(client->name, client_name) != 0) 1854 continue; 1855 if (!client->get_global_nl_info) { 1856 ret = -EOPNOTSUPP; 1857 break; 1858 } 1859 ret = client->get_global_nl_info(res); 1860 if (WARN_ON(ret == -ENOENT)) 1861 ret = -EINVAL; 1862 if (!ret && res->cdev) 1863 get_device(res->cdev); 1864 break; 1865 } 1866 up_read(&clients_rwsem); 1867 return ret; 1868 } 1869 1870 static int __ib_get_client_nl_info(struct ib_device *ibdev, 1871 const char *client_name, 1872 struct ib_client_nl_info *res) 1873 { 1874 unsigned long index; 1875 void *client_data; 1876 int ret = -ENOENT; 1877 1878 down_read(&ibdev->client_data_rwsem); 1879 xan_for_each_marked (&ibdev->client_data, index, client_data, 1880 CLIENT_DATA_REGISTERED) { 1881 struct ib_client *client = xa_load(&clients, index); 1882 1883 if (!client || strcmp(client->name, client_name) != 0) 1884 continue; 1885 if (!client->get_nl_info) { 1886 ret = -EOPNOTSUPP; 1887 break; 1888 } 1889 ret = client->get_nl_info(ibdev, client_data, res); 1890 if (WARN_ON(ret == -ENOENT)) 1891 ret = -EINVAL; 1892 1893 /* 1894 * The cdev is guaranteed valid as long as we are inside the 1895 * client_data_rwsem as remove_one can't be called. Keep it 1896 * valid for the caller. 1897 */ 1898 if (!ret && res->cdev) 1899 get_device(res->cdev); 1900 break; 1901 } 1902 up_read(&ibdev->client_data_rwsem); 1903 1904 return ret; 1905 } 1906 1907 /** 1908 * ib_get_client_nl_info - Fetch the nl_info from a client 1909 * @ibdev: IB device 1910 * @client_name: Name of the client 1911 * @res: Result of the query 1912 */ 1913 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name, 1914 struct ib_client_nl_info *res) 1915 { 1916 int ret; 1917 1918 if (ibdev) 1919 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1920 else 1921 ret = __ib_get_global_client_nl_info(client_name, res); 1922 #ifdef CONFIG_MODULES 1923 if (ret == -ENOENT) { 1924 request_module("rdma-client-%s", client_name); 1925 if (ibdev) 1926 ret = __ib_get_client_nl_info(ibdev, client_name, res); 1927 else 1928 ret = __ib_get_global_client_nl_info(client_name, res); 1929 } 1930 #endif 1931 if (ret) { 1932 if (ret == -ENOENT) 1933 return -EOPNOTSUPP; 1934 return ret; 1935 } 1936 1937 if (WARN_ON(!res->cdev)) 1938 return -EINVAL; 1939 return 0; 1940 } 1941 1942 /** 1943 * ib_set_client_data - Set IB client context 1944 * @device:Device to set context for 1945 * @client:Client to set context for 1946 * @data:Context to set 1947 * 1948 * ib_set_client_data() sets client context data that can be retrieved with 1949 * ib_get_client_data(). This can only be called while the client is 1950 * registered to the device, once the ib_client remove() callback returns this 1951 * cannot be called. 1952 */ 1953 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1954 void *data) 1955 { 1956 void *rc; 1957 1958 if (WARN_ON(IS_ERR(data))) 1959 data = NULL; 1960 1961 rc = xa_store(&device->client_data, client->client_id, data, 1962 GFP_KERNEL); 1963 WARN_ON(xa_is_err(rc)); 1964 } 1965 EXPORT_SYMBOL(ib_set_client_data); 1966 1967 /** 1968 * ib_register_event_handler - Register an IB event handler 1969 * @event_handler:Handler to register 1970 * 1971 * ib_register_event_handler() registers an event handler that will be 1972 * called back when asynchronous IB events occur (as defined in 1973 * chapter 11 of the InfiniBand Architecture Specification). This 1974 * callback occurs in workqueue context. 1975 */ 1976 void ib_register_event_handler(struct ib_event_handler *event_handler) 1977 { 1978 down_write(&event_handler->device->event_handler_rwsem); 1979 list_add_tail(&event_handler->list, 1980 &event_handler->device->event_handler_list); 1981 up_write(&event_handler->device->event_handler_rwsem); 1982 } 1983 EXPORT_SYMBOL(ib_register_event_handler); 1984 1985 /** 1986 * ib_unregister_event_handler - Unregister an event handler 1987 * @event_handler:Handler to unregister 1988 * 1989 * Unregister an event handler registered with 1990 * ib_register_event_handler(). 1991 */ 1992 void ib_unregister_event_handler(struct ib_event_handler *event_handler) 1993 { 1994 down_write(&event_handler->device->event_handler_rwsem); 1995 list_del(&event_handler->list); 1996 up_write(&event_handler->device->event_handler_rwsem); 1997 } 1998 EXPORT_SYMBOL(ib_unregister_event_handler); 1999 2000 void ib_dispatch_event_clients(struct ib_event *event) 2001 { 2002 struct ib_event_handler *handler; 2003 2004 down_read(&event->device->event_handler_rwsem); 2005 2006 list_for_each_entry(handler, &event->device->event_handler_list, list) 2007 handler->handler(handler, event); 2008 2009 up_read(&event->device->event_handler_rwsem); 2010 } 2011 2012 static int iw_query_port(struct ib_device *device, 2013 u32 port_num, 2014 struct ib_port_attr *port_attr) 2015 { 2016 struct in_device *inetdev; 2017 struct net_device *netdev; 2018 2019 memset(port_attr, 0, sizeof(*port_attr)); 2020 2021 netdev = ib_device_get_netdev(device, port_num); 2022 if (!netdev) 2023 return -ENODEV; 2024 2025 port_attr->max_mtu = IB_MTU_4096; 2026 port_attr->active_mtu = ib_mtu_int_to_enum(netdev->mtu); 2027 2028 if (!netif_carrier_ok(netdev)) { 2029 port_attr->state = IB_PORT_DOWN; 2030 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED; 2031 } else { 2032 rcu_read_lock(); 2033 inetdev = __in_dev_get_rcu(netdev); 2034 2035 if (inetdev && inetdev->ifa_list) { 2036 port_attr->state = IB_PORT_ACTIVE; 2037 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP; 2038 } else { 2039 port_attr->state = IB_PORT_INIT; 2040 port_attr->phys_state = 2041 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING; 2042 } 2043 2044 rcu_read_unlock(); 2045 } 2046 2047 dev_put(netdev); 2048 return device->ops.query_port(device, port_num, port_attr); 2049 } 2050 2051 static int __ib_query_port(struct ib_device *device, 2052 u32 port_num, 2053 struct ib_port_attr *port_attr) 2054 { 2055 int err; 2056 2057 memset(port_attr, 0, sizeof(*port_attr)); 2058 2059 err = device->ops.query_port(device, port_num, port_attr); 2060 if (err || port_attr->subnet_prefix) 2061 return err; 2062 2063 if (rdma_port_get_link_layer(device, port_num) != 2064 IB_LINK_LAYER_INFINIBAND) 2065 return 0; 2066 2067 ib_get_cached_subnet_prefix(device, port_num, 2068 &port_attr->subnet_prefix); 2069 return 0; 2070 } 2071 2072 /** 2073 * ib_query_port - Query IB port attributes 2074 * @device:Device to query 2075 * @port_num:Port number to query 2076 * @port_attr:Port attributes 2077 * 2078 * ib_query_port() returns the attributes of a port through the 2079 * @port_attr pointer. 2080 */ 2081 int ib_query_port(struct ib_device *device, 2082 u32 port_num, 2083 struct ib_port_attr *port_attr) 2084 { 2085 if (!rdma_is_port_valid(device, port_num)) 2086 return -EINVAL; 2087 2088 if (rdma_protocol_iwarp(device, port_num)) 2089 return iw_query_port(device, port_num, port_attr); 2090 else 2091 return __ib_query_port(device, port_num, port_attr); 2092 } 2093 EXPORT_SYMBOL(ib_query_port); 2094 2095 static void add_ndev_hash(struct ib_port_data *pdata) 2096 { 2097 unsigned long flags; 2098 2099 might_sleep(); 2100 2101 spin_lock_irqsave(&ndev_hash_lock, flags); 2102 if (hash_hashed(&pdata->ndev_hash_link)) { 2103 hash_del_rcu(&pdata->ndev_hash_link); 2104 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2105 /* 2106 * We cannot do hash_add_rcu after a hash_del_rcu until the 2107 * grace period 2108 */ 2109 synchronize_rcu(); 2110 spin_lock_irqsave(&ndev_hash_lock, flags); 2111 } 2112 if (pdata->netdev) 2113 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link, 2114 (uintptr_t)pdata->netdev); 2115 spin_unlock_irqrestore(&ndev_hash_lock, flags); 2116 } 2117 2118 /** 2119 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device 2120 * @ib_dev: Device to modify 2121 * @ndev: net_device to affiliate, may be NULL 2122 * @port: IB port the net_device is connected to 2123 * 2124 * Drivers should use this to link the ib_device to a netdev so the netdev 2125 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be 2126 * affiliated with any port. 2127 * 2128 * The caller must ensure that the given ndev is not unregistered or 2129 * unregistering, and that either the ib_device is unregistered or 2130 * ib_device_set_netdev() is called with NULL when the ndev sends a 2131 * NETDEV_UNREGISTER event. 2132 */ 2133 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 2134 u32 port) 2135 { 2136 struct net_device *old_ndev; 2137 struct ib_port_data *pdata; 2138 unsigned long flags; 2139 int ret; 2140 2141 /* 2142 * Drivers wish to call this before ib_register_driver, so we have to 2143 * setup the port data early. 2144 */ 2145 ret = alloc_port_data(ib_dev); 2146 if (ret) 2147 return ret; 2148 2149 if (!rdma_is_port_valid(ib_dev, port)) 2150 return -EINVAL; 2151 2152 pdata = &ib_dev->port_data[port]; 2153 spin_lock_irqsave(&pdata->netdev_lock, flags); 2154 old_ndev = rcu_dereference_protected( 2155 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2156 if (old_ndev == ndev) { 2157 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2158 return 0; 2159 } 2160 2161 if (ndev) 2162 dev_hold(ndev); 2163 rcu_assign_pointer(pdata->netdev, ndev); 2164 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2165 2166 add_ndev_hash(pdata); 2167 if (old_ndev) 2168 dev_put(old_ndev); 2169 2170 return 0; 2171 } 2172 EXPORT_SYMBOL(ib_device_set_netdev); 2173 2174 static void free_netdevs(struct ib_device *ib_dev) 2175 { 2176 unsigned long flags; 2177 u32 port; 2178 2179 if (!ib_dev->port_data) 2180 return; 2181 2182 rdma_for_each_port (ib_dev, port) { 2183 struct ib_port_data *pdata = &ib_dev->port_data[port]; 2184 struct net_device *ndev; 2185 2186 spin_lock_irqsave(&pdata->netdev_lock, flags); 2187 ndev = rcu_dereference_protected( 2188 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2189 if (ndev) { 2190 spin_lock(&ndev_hash_lock); 2191 hash_del_rcu(&pdata->ndev_hash_link); 2192 spin_unlock(&ndev_hash_lock); 2193 2194 /* 2195 * If this is the last dev_put there is still a 2196 * synchronize_rcu before the netdev is kfreed, so we 2197 * can continue to rely on unlocked pointer 2198 * comparisons after the put 2199 */ 2200 rcu_assign_pointer(pdata->netdev, NULL); 2201 dev_put(ndev); 2202 } 2203 spin_unlock_irqrestore(&pdata->netdev_lock, flags); 2204 } 2205 } 2206 2207 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 2208 u32 port) 2209 { 2210 struct ib_port_data *pdata; 2211 struct net_device *res; 2212 2213 if (!rdma_is_port_valid(ib_dev, port)) 2214 return NULL; 2215 2216 pdata = &ib_dev->port_data[port]; 2217 2218 /* 2219 * New drivers should use ib_device_set_netdev() not the legacy 2220 * get_netdev(). 2221 */ 2222 if (ib_dev->ops.get_netdev) 2223 res = ib_dev->ops.get_netdev(ib_dev, port); 2224 else { 2225 spin_lock(&pdata->netdev_lock); 2226 res = rcu_dereference_protected( 2227 pdata->netdev, lockdep_is_held(&pdata->netdev_lock)); 2228 if (res) 2229 dev_hold(res); 2230 spin_unlock(&pdata->netdev_lock); 2231 } 2232 2233 /* 2234 * If we are starting to unregister expedite things by preventing 2235 * propagation of an unregistering netdev. 2236 */ 2237 if (res && res->reg_state != NETREG_REGISTERED) { 2238 dev_put(res); 2239 return NULL; 2240 } 2241 2242 return res; 2243 } 2244 2245 /** 2246 * ib_device_get_by_netdev - Find an IB device associated with a netdev 2247 * @ndev: netdev to locate 2248 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all) 2249 * 2250 * Find and hold an ib_device that is associated with a netdev via 2251 * ib_device_set_netdev(). The caller must call ib_device_put() on the 2252 * returned pointer. 2253 */ 2254 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 2255 enum rdma_driver_id driver_id) 2256 { 2257 struct ib_device *res = NULL; 2258 struct ib_port_data *cur; 2259 2260 rcu_read_lock(); 2261 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link, 2262 (uintptr_t)ndev) { 2263 if (rcu_access_pointer(cur->netdev) == ndev && 2264 (driver_id == RDMA_DRIVER_UNKNOWN || 2265 cur->ib_dev->ops.driver_id == driver_id) && 2266 ib_device_try_get(cur->ib_dev)) { 2267 res = cur->ib_dev; 2268 break; 2269 } 2270 } 2271 rcu_read_unlock(); 2272 2273 return res; 2274 } 2275 EXPORT_SYMBOL(ib_device_get_by_netdev); 2276 2277 /** 2278 * ib_enum_roce_netdev - enumerate all RoCE ports 2279 * @ib_dev : IB device we want to query 2280 * @filter: Should we call the callback? 2281 * @filter_cookie: Cookie passed to filter 2282 * @cb: Callback to call for each found RoCE ports 2283 * @cookie: Cookie passed back to the callback 2284 * 2285 * Enumerates all of the physical RoCE ports of ib_dev 2286 * which are related to netdevice and calls callback() on each 2287 * device for which filter() function returns non zero. 2288 */ 2289 void ib_enum_roce_netdev(struct ib_device *ib_dev, 2290 roce_netdev_filter filter, 2291 void *filter_cookie, 2292 roce_netdev_callback cb, 2293 void *cookie) 2294 { 2295 u32 port; 2296 2297 rdma_for_each_port (ib_dev, port) 2298 if (rdma_protocol_roce(ib_dev, port)) { 2299 struct net_device *idev = 2300 ib_device_get_netdev(ib_dev, port); 2301 2302 if (filter(ib_dev, port, idev, filter_cookie)) 2303 cb(ib_dev, port, idev, cookie); 2304 2305 if (idev) 2306 dev_put(idev); 2307 } 2308 } 2309 2310 /** 2311 * ib_enum_all_roce_netdevs - enumerate all RoCE devices 2312 * @filter: Should we call the callback? 2313 * @filter_cookie: Cookie passed to filter 2314 * @cb: Callback to call for each found RoCE ports 2315 * @cookie: Cookie passed back to the callback 2316 * 2317 * Enumerates all RoCE devices' physical ports which are related 2318 * to netdevices and calls callback() on each device for which 2319 * filter() function returns non zero. 2320 */ 2321 void ib_enum_all_roce_netdevs(roce_netdev_filter filter, 2322 void *filter_cookie, 2323 roce_netdev_callback cb, 2324 void *cookie) 2325 { 2326 struct ib_device *dev; 2327 unsigned long index; 2328 2329 down_read(&devices_rwsem); 2330 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) 2331 ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie); 2332 up_read(&devices_rwsem); 2333 } 2334 2335 /* 2336 * ib_enum_all_devs - enumerate all ib_devices 2337 * @cb: Callback to call for each found ib_device 2338 * 2339 * Enumerates all ib_devices and calls callback() on each device. 2340 */ 2341 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb, 2342 struct netlink_callback *cb) 2343 { 2344 unsigned long index; 2345 struct ib_device *dev; 2346 unsigned int idx = 0; 2347 int ret = 0; 2348 2349 down_read(&devices_rwsem); 2350 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) { 2351 if (!rdma_dev_access_netns(dev, sock_net(skb->sk))) 2352 continue; 2353 2354 ret = nldev_cb(dev, skb, cb, idx); 2355 if (ret) 2356 break; 2357 idx++; 2358 } 2359 up_read(&devices_rwsem); 2360 return ret; 2361 } 2362 2363 /** 2364 * ib_query_pkey - Get P_Key table entry 2365 * @device:Device to query 2366 * @port_num:Port number to query 2367 * @index:P_Key table index to query 2368 * @pkey:Returned P_Key 2369 * 2370 * ib_query_pkey() fetches the specified P_Key table entry. 2371 */ 2372 int ib_query_pkey(struct ib_device *device, 2373 u32 port_num, u16 index, u16 *pkey) 2374 { 2375 if (!rdma_is_port_valid(device, port_num)) 2376 return -EINVAL; 2377 2378 if (!device->ops.query_pkey) 2379 return -EOPNOTSUPP; 2380 2381 return device->ops.query_pkey(device, port_num, index, pkey); 2382 } 2383 EXPORT_SYMBOL(ib_query_pkey); 2384 2385 /** 2386 * ib_modify_device - Change IB device attributes 2387 * @device:Device to modify 2388 * @device_modify_mask:Mask of attributes to change 2389 * @device_modify:New attribute values 2390 * 2391 * ib_modify_device() changes a device's attributes as specified by 2392 * the @device_modify_mask and @device_modify structure. 2393 */ 2394 int ib_modify_device(struct ib_device *device, 2395 int device_modify_mask, 2396 struct ib_device_modify *device_modify) 2397 { 2398 if (!device->ops.modify_device) 2399 return -EOPNOTSUPP; 2400 2401 return device->ops.modify_device(device, device_modify_mask, 2402 device_modify); 2403 } 2404 EXPORT_SYMBOL(ib_modify_device); 2405 2406 /** 2407 * ib_modify_port - Modifies the attributes for the specified port. 2408 * @device: The device to modify. 2409 * @port_num: The number of the port to modify. 2410 * @port_modify_mask: Mask used to specify which attributes of the port 2411 * to change. 2412 * @port_modify: New attribute values for the port. 2413 * 2414 * ib_modify_port() changes a port's attributes as specified by the 2415 * @port_modify_mask and @port_modify structure. 2416 */ 2417 int ib_modify_port(struct ib_device *device, 2418 u32 port_num, int port_modify_mask, 2419 struct ib_port_modify *port_modify) 2420 { 2421 int rc; 2422 2423 if (!rdma_is_port_valid(device, port_num)) 2424 return -EINVAL; 2425 2426 if (device->ops.modify_port) 2427 rc = device->ops.modify_port(device, port_num, 2428 port_modify_mask, 2429 port_modify); 2430 else if (rdma_protocol_roce(device, port_num) && 2431 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 || 2432 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0)) 2433 rc = 0; 2434 else 2435 rc = -EOPNOTSUPP; 2436 return rc; 2437 } 2438 EXPORT_SYMBOL(ib_modify_port); 2439 2440 /** 2441 * ib_find_gid - Returns the port number and GID table index where 2442 * a specified GID value occurs. Its searches only for IB link layer. 2443 * @device: The device to query. 2444 * @gid: The GID value to search for. 2445 * @port_num: The port number of the device where the GID value was found. 2446 * @index: The index into the GID table where the GID was found. This 2447 * parameter may be NULL. 2448 */ 2449 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2450 u32 *port_num, u16 *index) 2451 { 2452 union ib_gid tmp_gid; 2453 u32 port; 2454 int ret, i; 2455 2456 rdma_for_each_port (device, port) { 2457 if (!rdma_protocol_ib(device, port)) 2458 continue; 2459 2460 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len; 2461 ++i) { 2462 ret = rdma_query_gid(device, port, i, &tmp_gid); 2463 if (ret) 2464 return ret; 2465 if (!memcmp(&tmp_gid, gid, sizeof *gid)) { 2466 *port_num = port; 2467 if (index) 2468 *index = i; 2469 return 0; 2470 } 2471 } 2472 } 2473 2474 return -ENOENT; 2475 } 2476 EXPORT_SYMBOL(ib_find_gid); 2477 2478 /** 2479 * ib_find_pkey - Returns the PKey table index where a specified 2480 * PKey value occurs. 2481 * @device: The device to query. 2482 * @port_num: The port number of the device to search for the PKey. 2483 * @pkey: The PKey value to search for. 2484 * @index: The index into the PKey table where the PKey was found. 2485 */ 2486 int ib_find_pkey(struct ib_device *device, 2487 u32 port_num, u16 pkey, u16 *index) 2488 { 2489 int ret, i; 2490 u16 tmp_pkey; 2491 int partial_ix = -1; 2492 2493 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len; 2494 ++i) { 2495 ret = ib_query_pkey(device, port_num, i, &tmp_pkey); 2496 if (ret) 2497 return ret; 2498 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { 2499 /* if there is full-member pkey take it.*/ 2500 if (tmp_pkey & 0x8000) { 2501 *index = i; 2502 return 0; 2503 } 2504 if (partial_ix < 0) 2505 partial_ix = i; 2506 } 2507 } 2508 2509 /*no full-member, if exists take the limited*/ 2510 if (partial_ix >= 0) { 2511 *index = partial_ix; 2512 return 0; 2513 } 2514 return -ENOENT; 2515 } 2516 EXPORT_SYMBOL(ib_find_pkey); 2517 2518 /** 2519 * ib_get_net_dev_by_params() - Return the appropriate net_dev 2520 * for a received CM request 2521 * @dev: An RDMA device on which the request has been received. 2522 * @port: Port number on the RDMA device. 2523 * @pkey: The Pkey the request came on. 2524 * @gid: A GID that the net_dev uses to communicate. 2525 * @addr: Contains the IP address that the request specified as its 2526 * destination. 2527 * 2528 */ 2529 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, 2530 u32 port, 2531 u16 pkey, 2532 const union ib_gid *gid, 2533 const struct sockaddr *addr) 2534 { 2535 struct net_device *net_dev = NULL; 2536 unsigned long index; 2537 void *client_data; 2538 2539 if (!rdma_protocol_ib(dev, port)) 2540 return NULL; 2541 2542 /* 2543 * Holding the read side guarantees that the client will not become 2544 * unregistered while we are calling get_net_dev_by_params() 2545 */ 2546 down_read(&dev->client_data_rwsem); 2547 xan_for_each_marked (&dev->client_data, index, client_data, 2548 CLIENT_DATA_REGISTERED) { 2549 struct ib_client *client = xa_load(&clients, index); 2550 2551 if (!client || !client->get_net_dev_by_params) 2552 continue; 2553 2554 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid, 2555 addr, client_data); 2556 if (net_dev) 2557 break; 2558 } 2559 up_read(&dev->client_data_rwsem); 2560 2561 return net_dev; 2562 } 2563 EXPORT_SYMBOL(ib_get_net_dev_by_params); 2564 2565 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops) 2566 { 2567 struct ib_device_ops *dev_ops = &dev->ops; 2568 #define SET_DEVICE_OP(ptr, name) \ 2569 do { \ 2570 if (ops->name) \ 2571 if (!((ptr)->name)) \ 2572 (ptr)->name = ops->name; \ 2573 } while (0) 2574 2575 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name) 2576 2577 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) { 2578 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN && 2579 dev_ops->driver_id != ops->driver_id); 2580 dev_ops->driver_id = ops->driver_id; 2581 } 2582 if (ops->owner) { 2583 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner); 2584 dev_ops->owner = ops->owner; 2585 } 2586 if (ops->uverbs_abi_ver) 2587 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver; 2588 2589 dev_ops->uverbs_no_driver_id_binding |= 2590 ops->uverbs_no_driver_id_binding; 2591 2592 SET_DEVICE_OP(dev_ops, add_gid); 2593 SET_DEVICE_OP(dev_ops, advise_mr); 2594 SET_DEVICE_OP(dev_ops, alloc_dm); 2595 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats); 2596 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats); 2597 SET_DEVICE_OP(dev_ops, alloc_mr); 2598 SET_DEVICE_OP(dev_ops, alloc_mr_integrity); 2599 SET_DEVICE_OP(dev_ops, alloc_mw); 2600 SET_DEVICE_OP(dev_ops, alloc_pd); 2601 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev); 2602 SET_DEVICE_OP(dev_ops, alloc_ucontext); 2603 SET_DEVICE_OP(dev_ops, alloc_xrcd); 2604 SET_DEVICE_OP(dev_ops, attach_mcast); 2605 SET_DEVICE_OP(dev_ops, check_mr_status); 2606 SET_DEVICE_OP(dev_ops, counter_alloc_stats); 2607 SET_DEVICE_OP(dev_ops, counter_bind_qp); 2608 SET_DEVICE_OP(dev_ops, counter_dealloc); 2609 SET_DEVICE_OP(dev_ops, counter_unbind_qp); 2610 SET_DEVICE_OP(dev_ops, counter_update_stats); 2611 SET_DEVICE_OP(dev_ops, create_ah); 2612 SET_DEVICE_OP(dev_ops, create_counters); 2613 SET_DEVICE_OP(dev_ops, create_cq); 2614 SET_DEVICE_OP(dev_ops, create_flow); 2615 SET_DEVICE_OP(dev_ops, create_flow_action_esp); 2616 SET_DEVICE_OP(dev_ops, create_qp); 2617 SET_DEVICE_OP(dev_ops, create_rwq_ind_table); 2618 SET_DEVICE_OP(dev_ops, create_srq); 2619 SET_DEVICE_OP(dev_ops, create_user_ah); 2620 SET_DEVICE_OP(dev_ops, create_wq); 2621 SET_DEVICE_OP(dev_ops, dealloc_dm); 2622 SET_DEVICE_OP(dev_ops, dealloc_driver); 2623 SET_DEVICE_OP(dev_ops, dealloc_mw); 2624 SET_DEVICE_OP(dev_ops, dealloc_pd); 2625 SET_DEVICE_OP(dev_ops, dealloc_ucontext); 2626 SET_DEVICE_OP(dev_ops, dealloc_xrcd); 2627 SET_DEVICE_OP(dev_ops, del_gid); 2628 SET_DEVICE_OP(dev_ops, dereg_mr); 2629 SET_DEVICE_OP(dev_ops, destroy_ah); 2630 SET_DEVICE_OP(dev_ops, destroy_counters); 2631 SET_DEVICE_OP(dev_ops, destroy_cq); 2632 SET_DEVICE_OP(dev_ops, destroy_flow); 2633 SET_DEVICE_OP(dev_ops, destroy_flow_action); 2634 SET_DEVICE_OP(dev_ops, destroy_qp); 2635 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table); 2636 SET_DEVICE_OP(dev_ops, destroy_srq); 2637 SET_DEVICE_OP(dev_ops, destroy_wq); 2638 SET_DEVICE_OP(dev_ops, device_group); 2639 SET_DEVICE_OP(dev_ops, detach_mcast); 2640 SET_DEVICE_OP(dev_ops, disassociate_ucontext); 2641 SET_DEVICE_OP(dev_ops, drain_rq); 2642 SET_DEVICE_OP(dev_ops, drain_sq); 2643 SET_DEVICE_OP(dev_ops, enable_driver); 2644 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry); 2645 SET_DEVICE_OP(dev_ops, fill_res_cq_entry); 2646 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw); 2647 SET_DEVICE_OP(dev_ops, fill_res_mr_entry); 2648 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw); 2649 SET_DEVICE_OP(dev_ops, fill_res_qp_entry); 2650 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw); 2651 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry); 2652 SET_DEVICE_OP(dev_ops, get_dev_fw_str); 2653 SET_DEVICE_OP(dev_ops, get_dma_mr); 2654 SET_DEVICE_OP(dev_ops, get_hw_stats); 2655 SET_DEVICE_OP(dev_ops, get_link_layer); 2656 SET_DEVICE_OP(dev_ops, get_netdev); 2657 SET_DEVICE_OP(dev_ops, get_numa_node); 2658 SET_DEVICE_OP(dev_ops, get_port_immutable); 2659 SET_DEVICE_OP(dev_ops, get_vector_affinity); 2660 SET_DEVICE_OP(dev_ops, get_vf_config); 2661 SET_DEVICE_OP(dev_ops, get_vf_guid); 2662 SET_DEVICE_OP(dev_ops, get_vf_stats); 2663 SET_DEVICE_OP(dev_ops, iw_accept); 2664 SET_DEVICE_OP(dev_ops, iw_add_ref); 2665 SET_DEVICE_OP(dev_ops, iw_connect); 2666 SET_DEVICE_OP(dev_ops, iw_create_listen); 2667 SET_DEVICE_OP(dev_ops, iw_destroy_listen); 2668 SET_DEVICE_OP(dev_ops, iw_get_qp); 2669 SET_DEVICE_OP(dev_ops, iw_reject); 2670 SET_DEVICE_OP(dev_ops, iw_rem_ref); 2671 SET_DEVICE_OP(dev_ops, map_mr_sg); 2672 SET_DEVICE_OP(dev_ops, map_mr_sg_pi); 2673 SET_DEVICE_OP(dev_ops, mmap); 2674 SET_DEVICE_OP(dev_ops, mmap_free); 2675 SET_DEVICE_OP(dev_ops, modify_ah); 2676 SET_DEVICE_OP(dev_ops, modify_cq); 2677 SET_DEVICE_OP(dev_ops, modify_device); 2678 SET_DEVICE_OP(dev_ops, modify_flow_action_esp); 2679 SET_DEVICE_OP(dev_ops, modify_port); 2680 SET_DEVICE_OP(dev_ops, modify_qp); 2681 SET_DEVICE_OP(dev_ops, modify_srq); 2682 SET_DEVICE_OP(dev_ops, modify_wq); 2683 SET_DEVICE_OP(dev_ops, peek_cq); 2684 SET_DEVICE_OP(dev_ops, poll_cq); 2685 SET_DEVICE_OP(dev_ops, port_groups); 2686 SET_DEVICE_OP(dev_ops, post_recv); 2687 SET_DEVICE_OP(dev_ops, post_send); 2688 SET_DEVICE_OP(dev_ops, post_srq_recv); 2689 SET_DEVICE_OP(dev_ops, process_mad); 2690 SET_DEVICE_OP(dev_ops, query_ah); 2691 SET_DEVICE_OP(dev_ops, query_device); 2692 SET_DEVICE_OP(dev_ops, query_gid); 2693 SET_DEVICE_OP(dev_ops, query_pkey); 2694 SET_DEVICE_OP(dev_ops, query_port); 2695 SET_DEVICE_OP(dev_ops, query_qp); 2696 SET_DEVICE_OP(dev_ops, query_srq); 2697 SET_DEVICE_OP(dev_ops, query_ucontext); 2698 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params); 2699 SET_DEVICE_OP(dev_ops, read_counters); 2700 SET_DEVICE_OP(dev_ops, reg_dm_mr); 2701 SET_DEVICE_OP(dev_ops, reg_user_mr); 2702 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf); 2703 SET_DEVICE_OP(dev_ops, req_notify_cq); 2704 SET_DEVICE_OP(dev_ops, rereg_user_mr); 2705 SET_DEVICE_OP(dev_ops, resize_cq); 2706 SET_DEVICE_OP(dev_ops, set_vf_guid); 2707 SET_DEVICE_OP(dev_ops, set_vf_link_state); 2708 2709 SET_OBJ_SIZE(dev_ops, ib_ah); 2710 SET_OBJ_SIZE(dev_ops, ib_counters); 2711 SET_OBJ_SIZE(dev_ops, ib_cq); 2712 SET_OBJ_SIZE(dev_ops, ib_mw); 2713 SET_OBJ_SIZE(dev_ops, ib_pd); 2714 SET_OBJ_SIZE(dev_ops, ib_qp); 2715 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table); 2716 SET_OBJ_SIZE(dev_ops, ib_srq); 2717 SET_OBJ_SIZE(dev_ops, ib_ucontext); 2718 SET_OBJ_SIZE(dev_ops, ib_xrcd); 2719 } 2720 EXPORT_SYMBOL(ib_set_device_ops); 2721 2722 #ifdef CONFIG_INFINIBAND_VIRT_DMA 2723 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents) 2724 { 2725 struct scatterlist *s; 2726 int i; 2727 2728 for_each_sg(sg, s, nents, i) { 2729 sg_dma_address(s) = (uintptr_t)sg_virt(s); 2730 sg_dma_len(s) = s->length; 2731 } 2732 return nents; 2733 } 2734 EXPORT_SYMBOL(ib_dma_virt_map_sg); 2735 #endif /* CONFIG_INFINIBAND_VIRT_DMA */ 2736 2737 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = { 2738 [RDMA_NL_LS_OP_RESOLVE] = { 2739 .doit = ib_nl_handle_resolve_resp, 2740 .flags = RDMA_NL_ADMIN_PERM, 2741 }, 2742 [RDMA_NL_LS_OP_SET_TIMEOUT] = { 2743 .doit = ib_nl_handle_set_timeout, 2744 .flags = RDMA_NL_ADMIN_PERM, 2745 }, 2746 [RDMA_NL_LS_OP_IP_RESOLVE] = { 2747 .doit = ib_nl_handle_ip_res_resp, 2748 .flags = RDMA_NL_ADMIN_PERM, 2749 }, 2750 }; 2751 2752 static int __init ib_core_init(void) 2753 { 2754 int ret; 2755 2756 ib_wq = alloc_workqueue("infiniband", 0, 0); 2757 if (!ib_wq) 2758 return -ENOMEM; 2759 2760 ib_comp_wq = alloc_workqueue("ib-comp-wq", 2761 WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 2762 if (!ib_comp_wq) { 2763 ret = -ENOMEM; 2764 goto err; 2765 } 2766 2767 ib_comp_unbound_wq = 2768 alloc_workqueue("ib-comp-unb-wq", 2769 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM | 2770 WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE); 2771 if (!ib_comp_unbound_wq) { 2772 ret = -ENOMEM; 2773 goto err_comp; 2774 } 2775 2776 ret = class_register(&ib_class); 2777 if (ret) { 2778 pr_warn("Couldn't create InfiniBand device class\n"); 2779 goto err_comp_unbound; 2780 } 2781 2782 rdma_nl_init(); 2783 2784 ret = addr_init(); 2785 if (ret) { 2786 pr_warn("Couldn't init IB address resolution\n"); 2787 goto err_ibnl; 2788 } 2789 2790 ret = ib_mad_init(); 2791 if (ret) { 2792 pr_warn("Couldn't init IB MAD\n"); 2793 goto err_addr; 2794 } 2795 2796 ret = ib_sa_init(); 2797 if (ret) { 2798 pr_warn("Couldn't init SA\n"); 2799 goto err_mad; 2800 } 2801 2802 ret = register_blocking_lsm_notifier(&ibdev_lsm_nb); 2803 if (ret) { 2804 pr_warn("Couldn't register LSM notifier. ret %d\n", ret); 2805 goto err_sa; 2806 } 2807 2808 ret = register_pernet_device(&rdma_dev_net_ops); 2809 if (ret) { 2810 pr_warn("Couldn't init compat dev. ret %d\n", ret); 2811 goto err_compat; 2812 } 2813 2814 nldev_init(); 2815 rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table); 2816 roce_gid_mgmt_init(); 2817 2818 return 0; 2819 2820 err_compat: 2821 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2822 err_sa: 2823 ib_sa_cleanup(); 2824 err_mad: 2825 ib_mad_cleanup(); 2826 err_addr: 2827 addr_cleanup(); 2828 err_ibnl: 2829 class_unregister(&ib_class); 2830 err_comp_unbound: 2831 destroy_workqueue(ib_comp_unbound_wq); 2832 err_comp: 2833 destroy_workqueue(ib_comp_wq); 2834 err: 2835 destroy_workqueue(ib_wq); 2836 return ret; 2837 } 2838 2839 static void __exit ib_core_cleanup(void) 2840 { 2841 roce_gid_mgmt_cleanup(); 2842 nldev_exit(); 2843 rdma_nl_unregister(RDMA_NL_LS); 2844 unregister_pernet_device(&rdma_dev_net_ops); 2845 unregister_blocking_lsm_notifier(&ibdev_lsm_nb); 2846 ib_sa_cleanup(); 2847 ib_mad_cleanup(); 2848 addr_cleanup(); 2849 rdma_nl_exit(); 2850 class_unregister(&ib_class); 2851 destroy_workqueue(ib_comp_unbound_wq); 2852 destroy_workqueue(ib_comp_wq); 2853 /* Make sure that any pending umem accounting work is done. */ 2854 destroy_workqueue(ib_wq); 2855 flush_workqueue(system_unbound_wq); 2856 WARN_ON(!xa_empty(&clients)); 2857 WARN_ON(!xa_empty(&devices)); 2858 } 2859 2860 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4); 2861 2862 /* ib core relies on netdev stack to first register net_ns_type_operations 2863 * ns kobject type before ib_core initialization. 2864 */ 2865 fs_initcall(ib_core_init); 2866 module_exit(ib_core_cleanup); 2867