xref: /openbmc/linux/drivers/infiniband/core/device.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/string.h>
36 #include <linux/errno.h>
37 #include <linux/kernel.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/netdevice.h>
41 #include <net/net_namespace.h>
42 #include <net/netns/generic.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/hashtable.h>
46 #include <rdma/rdma_netlink.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/rdma_counter.h>
50 
51 #include "core_priv.h"
52 #include "restrack.h"
53 
54 MODULE_AUTHOR("Roland Dreier");
55 MODULE_DESCRIPTION("core kernel InfiniBand API");
56 MODULE_LICENSE("Dual BSD/GPL");
57 
58 struct workqueue_struct *ib_comp_wq;
59 struct workqueue_struct *ib_comp_unbound_wq;
60 struct workqueue_struct *ib_wq;
61 EXPORT_SYMBOL_GPL(ib_wq);
62 
63 /*
64  * Each of the three rwsem locks (devices, clients, client_data) protects the
65  * xarray of the same name. Specifically it allows the caller to assert that
66  * the MARK will/will not be changing under the lock, and for devices and
67  * clients, that the value in the xarray is still a valid pointer. Change of
68  * the MARK is linked to the object state, so holding the lock and testing the
69  * MARK also asserts that the contained object is in a certain state.
70  *
71  * This is used to build a two stage register/unregister flow where objects
72  * can continue to be in the xarray even though they are still in progress to
73  * register/unregister.
74  *
75  * The xarray itself provides additional locking, and restartable iteration,
76  * which is also relied on.
77  *
78  * Locks should not be nested, with the exception of client_data, which is
79  * allowed to nest under the read side of the other two locks.
80  *
81  * The devices_rwsem also protects the device name list, any change or
82  * assignment of device name must also hold the write side to guarantee unique
83  * names.
84  */
85 
86 /*
87  * devices contains devices that have had their names assigned. The
88  * devices may not be registered. Users that care about the registration
89  * status need to call ib_device_try_get() on the device to ensure it is
90  * registered, and keep it registered, for the required duration.
91  *
92  */
93 static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94 static DECLARE_RWSEM(devices_rwsem);
95 #define DEVICE_REGISTERED XA_MARK_1
96 
97 static u32 highest_client_id;
98 #define CLIENT_REGISTERED XA_MARK_1
99 static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100 static DECLARE_RWSEM(clients_rwsem);
101 
102 static void ib_client_put(struct ib_client *client)
103 {
104 	if (refcount_dec_and_test(&client->uses))
105 		complete(&client->uses_zero);
106 }
107 
108 /*
109  * If client_data is registered then the corresponding client must also still
110  * be registered.
111  */
112 #define CLIENT_DATA_REGISTERED XA_MARK_1
113 
114 /**
115  * struct rdma_dev_net - rdma net namespace metadata for a net
116  * @net:	Pointer to owner net namespace
117  * @id:		xarray id to identify the net namespace.
118  */
119 struct rdma_dev_net {
120 	possible_net_t net;
121 	u32 id;
122 };
123 
124 static unsigned int rdma_dev_net_id;
125 
126 /*
127  * A list of net namespaces is maintained in an xarray. This is necessary
128  * because we can't get the locking right using the existing net ns list. We
129  * would require a init_net callback after the list is updated.
130  */
131 static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
132 /*
133  * rwsem to protect accessing the rdma_nets xarray entries.
134  */
135 static DECLARE_RWSEM(rdma_nets_rwsem);
136 
137 bool ib_devices_shared_netns = true;
138 module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
139 MODULE_PARM_DESC(netns_mode,
140 		 "Share device among net namespaces; default=1 (shared)");
141 /**
142  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
143  *			     from a specified net namespace or not.
144  * @device:	Pointer to rdma device which needs to be checked
145  * @net:	Pointer to net namesapce for which access to be checked
146  *
147  * rdma_dev_access_netns() - Return whether a rdma device can be accessed
148  *			     from a specified net namespace or not. When
149  *			     rdma device is in shared mode, it ignores the
150  *			     net namespace. When rdma device is exclusive
151  *			     to a net namespace, rdma device net namespace is
152  *			     checked against the specified one.
153  */
154 bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
155 {
156 	return (ib_devices_shared_netns ||
157 		net_eq(read_pnet(&dev->coredev.rdma_net), net));
158 }
159 EXPORT_SYMBOL(rdma_dev_access_netns);
160 
161 /*
162  * xarray has this behavior where it won't iterate over NULL values stored in
163  * allocated arrays.  So we need our own iterator to see all values stored in
164  * the array. This does the same thing as xa_for_each except that it also
165  * returns NULL valued entries if the array is allocating. Simplified to only
166  * work on simple xarrays.
167  */
168 static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
169 			     xa_mark_t filter)
170 {
171 	XA_STATE(xas, xa, *indexp);
172 	void *entry;
173 
174 	rcu_read_lock();
175 	do {
176 		entry = xas_find_marked(&xas, ULONG_MAX, filter);
177 		if (xa_is_zero(entry))
178 			break;
179 	} while (xas_retry(&xas, entry));
180 	rcu_read_unlock();
181 
182 	if (entry) {
183 		*indexp = xas.xa_index;
184 		if (xa_is_zero(entry))
185 			return NULL;
186 		return entry;
187 	}
188 	return XA_ERROR(-ENOENT);
189 }
190 #define xan_for_each_marked(xa, index, entry, filter)                          \
191 	for (index = 0, entry = xan_find_marked(xa, &(index), filter);         \
192 	     !xa_is_err(entry);                                                \
193 	     (index)++, entry = xan_find_marked(xa, &(index), filter))
194 
195 /* RCU hash table mapping netdevice pointers to struct ib_port_data */
196 static DEFINE_SPINLOCK(ndev_hash_lock);
197 static DECLARE_HASHTABLE(ndev_hash, 5);
198 
199 static void free_netdevs(struct ib_device *ib_dev);
200 static void ib_unregister_work(struct work_struct *work);
201 static void __ib_unregister_device(struct ib_device *device);
202 static int ib_security_change(struct notifier_block *nb, unsigned long event,
203 			      void *lsm_data);
204 static void ib_policy_change_task(struct work_struct *work);
205 static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
206 
207 static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
208 			   struct va_format *vaf)
209 {
210 	if (ibdev && ibdev->dev.parent)
211 		dev_printk_emit(level[1] - '0',
212 				ibdev->dev.parent,
213 				"%s %s %s: %pV",
214 				dev_driver_string(ibdev->dev.parent),
215 				dev_name(ibdev->dev.parent),
216 				dev_name(&ibdev->dev),
217 				vaf);
218 	else if (ibdev)
219 		printk("%s%s: %pV",
220 		       level, dev_name(&ibdev->dev), vaf);
221 	else
222 		printk("%s(NULL ib_device): %pV", level, vaf);
223 }
224 
225 void ibdev_printk(const char *level, const struct ib_device *ibdev,
226 		  const char *format, ...)
227 {
228 	struct va_format vaf;
229 	va_list args;
230 
231 	va_start(args, format);
232 
233 	vaf.fmt = format;
234 	vaf.va = &args;
235 
236 	__ibdev_printk(level, ibdev, &vaf);
237 
238 	va_end(args);
239 }
240 EXPORT_SYMBOL(ibdev_printk);
241 
242 #define define_ibdev_printk_level(func, level)                  \
243 void func(const struct ib_device *ibdev, const char *fmt, ...)  \
244 {                                                               \
245 	struct va_format vaf;                                   \
246 	va_list args;                                           \
247 								\
248 	va_start(args, fmt);                                    \
249 								\
250 	vaf.fmt = fmt;                                          \
251 	vaf.va = &args;                                         \
252 								\
253 	__ibdev_printk(level, ibdev, &vaf);                     \
254 								\
255 	va_end(args);                                           \
256 }                                                               \
257 EXPORT_SYMBOL(func);
258 
259 define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
260 define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
261 define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
262 define_ibdev_printk_level(ibdev_err, KERN_ERR);
263 define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
264 define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
265 define_ibdev_printk_level(ibdev_info, KERN_INFO);
266 
267 static struct notifier_block ibdev_lsm_nb = {
268 	.notifier_call = ib_security_change,
269 };
270 
271 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
272 				 struct net *net);
273 
274 /* Pointer to the RCU head at the start of the ib_port_data array */
275 struct ib_port_data_rcu {
276 	struct rcu_head rcu_head;
277 	struct ib_port_data pdata[];
278 };
279 
280 static void ib_device_check_mandatory(struct ib_device *device)
281 {
282 #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
283 	static const struct {
284 		size_t offset;
285 		char  *name;
286 	} mandatory_table[] = {
287 		IB_MANDATORY_FUNC(query_device),
288 		IB_MANDATORY_FUNC(query_port),
289 		IB_MANDATORY_FUNC(query_pkey),
290 		IB_MANDATORY_FUNC(alloc_pd),
291 		IB_MANDATORY_FUNC(dealloc_pd),
292 		IB_MANDATORY_FUNC(create_qp),
293 		IB_MANDATORY_FUNC(modify_qp),
294 		IB_MANDATORY_FUNC(destroy_qp),
295 		IB_MANDATORY_FUNC(post_send),
296 		IB_MANDATORY_FUNC(post_recv),
297 		IB_MANDATORY_FUNC(create_cq),
298 		IB_MANDATORY_FUNC(destroy_cq),
299 		IB_MANDATORY_FUNC(poll_cq),
300 		IB_MANDATORY_FUNC(req_notify_cq),
301 		IB_MANDATORY_FUNC(get_dma_mr),
302 		IB_MANDATORY_FUNC(dereg_mr),
303 		IB_MANDATORY_FUNC(get_port_immutable)
304 	};
305 	int i;
306 
307 	device->kverbs_provider = true;
308 	for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
309 		if (!*(void **) ((void *) &device->ops +
310 				 mandatory_table[i].offset)) {
311 			device->kverbs_provider = false;
312 			break;
313 		}
314 	}
315 }
316 
317 /*
318  * Caller must perform ib_device_put() to return the device reference count
319  * when ib_device_get_by_index() returns valid device pointer.
320  */
321 struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
322 {
323 	struct ib_device *device;
324 
325 	down_read(&devices_rwsem);
326 	device = xa_load(&devices, index);
327 	if (device) {
328 		if (!rdma_dev_access_netns(device, net)) {
329 			device = NULL;
330 			goto out;
331 		}
332 
333 		if (!ib_device_try_get(device))
334 			device = NULL;
335 	}
336 out:
337 	up_read(&devices_rwsem);
338 	return device;
339 }
340 
341 /**
342  * ib_device_put - Release IB device reference
343  * @device: device whose reference to be released
344  *
345  * ib_device_put() releases reference to the IB device to allow it to be
346  * unregistered and eventually free.
347  */
348 void ib_device_put(struct ib_device *device)
349 {
350 	if (refcount_dec_and_test(&device->refcount))
351 		complete(&device->unreg_completion);
352 }
353 EXPORT_SYMBOL(ib_device_put);
354 
355 static struct ib_device *__ib_device_get_by_name(const char *name)
356 {
357 	struct ib_device *device;
358 	unsigned long index;
359 
360 	xa_for_each (&devices, index, device)
361 		if (!strcmp(name, dev_name(&device->dev)))
362 			return device;
363 
364 	return NULL;
365 }
366 
367 /**
368  * ib_device_get_by_name - Find an IB device by name
369  * @name: The name to look for
370  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
371  *
372  * Find and hold an ib_device by its name. The caller must call
373  * ib_device_put() on the returned pointer.
374  */
375 struct ib_device *ib_device_get_by_name(const char *name,
376 					enum rdma_driver_id driver_id)
377 {
378 	struct ib_device *device;
379 
380 	down_read(&devices_rwsem);
381 	device = __ib_device_get_by_name(name);
382 	if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
383 	    device->ops.driver_id != driver_id)
384 		device = NULL;
385 
386 	if (device) {
387 		if (!ib_device_try_get(device))
388 			device = NULL;
389 	}
390 	up_read(&devices_rwsem);
391 	return device;
392 }
393 EXPORT_SYMBOL(ib_device_get_by_name);
394 
395 static int rename_compat_devs(struct ib_device *device)
396 {
397 	struct ib_core_device *cdev;
398 	unsigned long index;
399 	int ret = 0;
400 
401 	mutex_lock(&device->compat_devs_mutex);
402 	xa_for_each (&device->compat_devs, index, cdev) {
403 		ret = device_rename(&cdev->dev, dev_name(&device->dev));
404 		if (ret) {
405 			dev_warn(&cdev->dev,
406 				 "Fail to rename compatdev to new name %s\n",
407 				 dev_name(&device->dev));
408 			break;
409 		}
410 	}
411 	mutex_unlock(&device->compat_devs_mutex);
412 	return ret;
413 }
414 
415 int ib_device_rename(struct ib_device *ibdev, const char *name)
416 {
417 	unsigned long index;
418 	void *client_data;
419 	int ret;
420 
421 	down_write(&devices_rwsem);
422 	if (!strcmp(name, dev_name(&ibdev->dev))) {
423 		up_write(&devices_rwsem);
424 		return 0;
425 	}
426 
427 	if (__ib_device_get_by_name(name)) {
428 		up_write(&devices_rwsem);
429 		return -EEXIST;
430 	}
431 
432 	ret = device_rename(&ibdev->dev, name);
433 	if (ret) {
434 		up_write(&devices_rwsem);
435 		return ret;
436 	}
437 
438 	strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
439 	ret = rename_compat_devs(ibdev);
440 
441 	downgrade_write(&devices_rwsem);
442 	down_read(&ibdev->client_data_rwsem);
443 	xan_for_each_marked(&ibdev->client_data, index, client_data,
444 			    CLIENT_DATA_REGISTERED) {
445 		struct ib_client *client = xa_load(&clients, index);
446 
447 		if (!client || !client->rename)
448 			continue;
449 
450 		client->rename(ibdev, client_data);
451 	}
452 	up_read(&ibdev->client_data_rwsem);
453 	up_read(&devices_rwsem);
454 	return 0;
455 }
456 
457 int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
458 {
459 	if (use_dim > 1)
460 		return -EINVAL;
461 	ibdev->use_cq_dim = use_dim;
462 
463 	return 0;
464 }
465 
466 static int alloc_name(struct ib_device *ibdev, const char *name)
467 {
468 	struct ib_device *device;
469 	unsigned long index;
470 	struct ida inuse;
471 	int rc;
472 	int i;
473 
474 	lockdep_assert_held_write(&devices_rwsem);
475 	ida_init(&inuse);
476 	xa_for_each (&devices, index, device) {
477 		char buf[IB_DEVICE_NAME_MAX];
478 
479 		if (sscanf(dev_name(&device->dev), name, &i) != 1)
480 			continue;
481 		if (i < 0 || i >= INT_MAX)
482 			continue;
483 		snprintf(buf, sizeof buf, name, i);
484 		if (strcmp(buf, dev_name(&device->dev)) != 0)
485 			continue;
486 
487 		rc = ida_alloc_range(&inuse, i, i, GFP_KERNEL);
488 		if (rc < 0)
489 			goto out;
490 	}
491 
492 	rc = ida_alloc(&inuse, GFP_KERNEL);
493 	if (rc < 0)
494 		goto out;
495 
496 	rc = dev_set_name(&ibdev->dev, name, rc);
497 out:
498 	ida_destroy(&inuse);
499 	return rc;
500 }
501 
502 static void ib_device_release(struct device *device)
503 {
504 	struct ib_device *dev = container_of(device, struct ib_device, dev);
505 
506 	free_netdevs(dev);
507 	WARN_ON(refcount_read(&dev->refcount));
508 	if (dev->port_data) {
509 		ib_cache_release_one(dev);
510 		ib_security_release_port_pkey_list(dev);
511 		rdma_counter_release(dev);
512 		kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
513 				       pdata[0]),
514 			  rcu_head);
515 	}
516 
517 	xa_destroy(&dev->compat_devs);
518 	xa_destroy(&dev->client_data);
519 	kfree_rcu(dev, rcu_head);
520 }
521 
522 static int ib_device_uevent(struct device *device,
523 			    struct kobj_uevent_env *env)
524 {
525 	if (add_uevent_var(env, "NAME=%s", dev_name(device)))
526 		return -ENOMEM;
527 
528 	/*
529 	 * It would be nice to pass the node GUID with the event...
530 	 */
531 
532 	return 0;
533 }
534 
535 static const void *net_namespace(struct device *d)
536 {
537 	struct ib_core_device *coredev =
538 			container_of(d, struct ib_core_device, dev);
539 
540 	return read_pnet(&coredev->rdma_net);
541 }
542 
543 static struct class ib_class = {
544 	.name    = "infiniband",
545 	.dev_release = ib_device_release,
546 	.dev_uevent = ib_device_uevent,
547 	.ns_type = &net_ns_type_operations,
548 	.namespace = net_namespace,
549 };
550 
551 static void rdma_init_coredev(struct ib_core_device *coredev,
552 			      struct ib_device *dev, struct net *net)
553 {
554 	/* This BUILD_BUG_ON is intended to catch layout change
555 	 * of union of ib_core_device and device.
556 	 * dev must be the first element as ib_core and providers
557 	 * driver uses it. Adding anything in ib_core_device before
558 	 * device will break this assumption.
559 	 */
560 	BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
561 		     offsetof(struct ib_device, dev));
562 
563 	coredev->dev.class = &ib_class;
564 	coredev->dev.groups = dev->groups;
565 	device_initialize(&coredev->dev);
566 	coredev->owner = dev;
567 	INIT_LIST_HEAD(&coredev->port_list);
568 	write_pnet(&coredev->rdma_net, net);
569 }
570 
571 /**
572  * _ib_alloc_device - allocate an IB device struct
573  * @size:size of structure to allocate
574  *
575  * Low-level drivers should use ib_alloc_device() to allocate &struct
576  * ib_device.  @size is the size of the structure to be allocated,
577  * including any private data used by the low-level driver.
578  * ib_dealloc_device() must be used to free structures allocated with
579  * ib_alloc_device().
580  */
581 struct ib_device *_ib_alloc_device(size_t size)
582 {
583 	struct ib_device *device;
584 
585 	if (WARN_ON(size < sizeof(struct ib_device)))
586 		return NULL;
587 
588 	device = kzalloc(size, GFP_KERNEL);
589 	if (!device)
590 		return NULL;
591 
592 	if (rdma_restrack_init(device)) {
593 		kfree(device);
594 		return NULL;
595 	}
596 
597 	device->groups[0] = &ib_dev_attr_group;
598 	rdma_init_coredev(&device->coredev, device, &init_net);
599 
600 	INIT_LIST_HEAD(&device->event_handler_list);
601 	spin_lock_init(&device->event_handler_lock);
602 	mutex_init(&device->unregistration_lock);
603 	/*
604 	 * client_data needs to be alloc because we don't want our mark to be
605 	 * destroyed if the user stores NULL in the client data.
606 	 */
607 	xa_init_flags(&device->client_data, XA_FLAGS_ALLOC);
608 	init_rwsem(&device->client_data_rwsem);
609 	xa_init_flags(&device->compat_devs, XA_FLAGS_ALLOC);
610 	mutex_init(&device->compat_devs_mutex);
611 	init_completion(&device->unreg_completion);
612 	INIT_WORK(&device->unregistration_work, ib_unregister_work);
613 
614 	return device;
615 }
616 EXPORT_SYMBOL(_ib_alloc_device);
617 
618 /**
619  * ib_dealloc_device - free an IB device struct
620  * @device:structure to free
621  *
622  * Free a structure allocated with ib_alloc_device().
623  */
624 void ib_dealloc_device(struct ib_device *device)
625 {
626 	if (device->ops.dealloc_driver)
627 		device->ops.dealloc_driver(device);
628 
629 	/*
630 	 * ib_unregister_driver() requires all devices to remain in the xarray
631 	 * while their ops are callable. The last op we call is dealloc_driver
632 	 * above.  This is needed to create a fence on op callbacks prior to
633 	 * allowing the driver module to unload.
634 	 */
635 	down_write(&devices_rwsem);
636 	if (xa_load(&devices, device->index) == device)
637 		xa_erase(&devices, device->index);
638 	up_write(&devices_rwsem);
639 
640 	/* Expedite releasing netdev references */
641 	free_netdevs(device);
642 
643 	WARN_ON(!xa_empty(&device->compat_devs));
644 	WARN_ON(!xa_empty(&device->client_data));
645 	WARN_ON(refcount_read(&device->refcount));
646 	rdma_restrack_clean(device);
647 	/* Balances with device_initialize */
648 	put_device(&device->dev);
649 }
650 EXPORT_SYMBOL(ib_dealloc_device);
651 
652 /*
653  * add_client_context() and remove_client_context() must be safe against
654  * parallel calls on the same device - registration/unregistration of both the
655  * device and client can be occurring in parallel.
656  *
657  * The routines need to be a fence, any caller must not return until the add
658  * or remove is fully completed.
659  */
660 static int add_client_context(struct ib_device *device,
661 			      struct ib_client *client)
662 {
663 	int ret = 0;
664 
665 	if (!device->kverbs_provider && !client->no_kverbs_req)
666 		return 0;
667 
668 	down_write(&device->client_data_rwsem);
669 	/*
670 	 * So long as the client is registered hold both the client and device
671 	 * unregistration locks.
672 	 */
673 	if (!refcount_inc_not_zero(&client->uses))
674 		goto out_unlock;
675 	refcount_inc(&device->refcount);
676 
677 	/*
678 	 * Another caller to add_client_context got here first and has already
679 	 * completely initialized context.
680 	 */
681 	if (xa_get_mark(&device->client_data, client->client_id,
682 		    CLIENT_DATA_REGISTERED))
683 		goto out;
684 
685 	ret = xa_err(xa_store(&device->client_data, client->client_id, NULL,
686 			      GFP_KERNEL));
687 	if (ret)
688 		goto out;
689 	downgrade_write(&device->client_data_rwsem);
690 	if (client->add)
691 		client->add(device);
692 
693 	/* Readers shall not see a client until add has been completed */
694 	xa_set_mark(&device->client_data, client->client_id,
695 		    CLIENT_DATA_REGISTERED);
696 	up_read(&device->client_data_rwsem);
697 	return 0;
698 
699 out:
700 	ib_device_put(device);
701 	ib_client_put(client);
702 out_unlock:
703 	up_write(&device->client_data_rwsem);
704 	return ret;
705 }
706 
707 static void remove_client_context(struct ib_device *device,
708 				  unsigned int client_id)
709 {
710 	struct ib_client *client;
711 	void *client_data;
712 
713 	down_write(&device->client_data_rwsem);
714 	if (!xa_get_mark(&device->client_data, client_id,
715 			 CLIENT_DATA_REGISTERED)) {
716 		up_write(&device->client_data_rwsem);
717 		return;
718 	}
719 	client_data = xa_load(&device->client_data, client_id);
720 	xa_clear_mark(&device->client_data, client_id, CLIENT_DATA_REGISTERED);
721 	client = xa_load(&clients, client_id);
722 	up_write(&device->client_data_rwsem);
723 
724 	/*
725 	 * Notice we cannot be holding any exclusive locks when calling the
726 	 * remove callback as the remove callback can recurse back into any
727 	 * public functions in this module and thus try for any locks those
728 	 * functions take.
729 	 *
730 	 * For this reason clients and drivers should not call the
731 	 * unregistration functions will holdling any locks.
732 	 */
733 	if (client->remove)
734 		client->remove(device, client_data);
735 
736 	xa_erase(&device->client_data, client_id);
737 	ib_device_put(device);
738 	ib_client_put(client);
739 }
740 
741 static int alloc_port_data(struct ib_device *device)
742 {
743 	struct ib_port_data_rcu *pdata_rcu;
744 	unsigned int port;
745 
746 	if (device->port_data)
747 		return 0;
748 
749 	/* This can only be called once the physical port range is defined */
750 	if (WARN_ON(!device->phys_port_cnt))
751 		return -EINVAL;
752 
753 	/*
754 	 * device->port_data is indexed directly by the port number to make
755 	 * access to this data as efficient as possible.
756 	 *
757 	 * Therefore port_data is declared as a 1 based array with potential
758 	 * empty slots at the beginning.
759 	 */
760 	pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
761 					rdma_end_port(device) + 1),
762 			    GFP_KERNEL);
763 	if (!pdata_rcu)
764 		return -ENOMEM;
765 	/*
766 	 * The rcu_head is put in front of the port data array and the stored
767 	 * pointer is adjusted since we never need to see that member until
768 	 * kfree_rcu.
769 	 */
770 	device->port_data = pdata_rcu->pdata;
771 
772 	rdma_for_each_port (device, port) {
773 		struct ib_port_data *pdata = &device->port_data[port];
774 
775 		pdata->ib_dev = device;
776 		spin_lock_init(&pdata->pkey_list_lock);
777 		INIT_LIST_HEAD(&pdata->pkey_list);
778 		spin_lock_init(&pdata->netdev_lock);
779 		INIT_HLIST_NODE(&pdata->ndev_hash_link);
780 	}
781 	return 0;
782 }
783 
784 static int verify_immutable(const struct ib_device *dev, u8 port)
785 {
786 	return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
787 			    rdma_max_mad_size(dev, port) != 0);
788 }
789 
790 static int setup_port_data(struct ib_device *device)
791 {
792 	unsigned int port;
793 	int ret;
794 
795 	ret = alloc_port_data(device);
796 	if (ret)
797 		return ret;
798 
799 	rdma_for_each_port (device, port) {
800 		struct ib_port_data *pdata = &device->port_data[port];
801 
802 		ret = device->ops.get_port_immutable(device, port,
803 						     &pdata->immutable);
804 		if (ret)
805 			return ret;
806 
807 		if (verify_immutable(device, port))
808 			return -EINVAL;
809 	}
810 	return 0;
811 }
812 
813 void ib_get_device_fw_str(struct ib_device *dev, char *str)
814 {
815 	if (dev->ops.get_dev_fw_str)
816 		dev->ops.get_dev_fw_str(dev, str);
817 	else
818 		str[0] = '\0';
819 }
820 EXPORT_SYMBOL(ib_get_device_fw_str);
821 
822 static void ib_policy_change_task(struct work_struct *work)
823 {
824 	struct ib_device *dev;
825 	unsigned long index;
826 
827 	down_read(&devices_rwsem);
828 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
829 		unsigned int i;
830 
831 		rdma_for_each_port (dev, i) {
832 			u64 sp;
833 			int ret = ib_get_cached_subnet_prefix(dev,
834 							      i,
835 							      &sp);
836 
837 			WARN_ONCE(ret,
838 				  "ib_get_cached_subnet_prefix err: %d, this should never happen here\n",
839 				  ret);
840 			if (!ret)
841 				ib_security_cache_change(dev, i, sp);
842 		}
843 	}
844 	up_read(&devices_rwsem);
845 }
846 
847 static int ib_security_change(struct notifier_block *nb, unsigned long event,
848 			      void *lsm_data)
849 {
850 	if (event != LSM_POLICY_CHANGE)
851 		return NOTIFY_DONE;
852 
853 	schedule_work(&ib_policy_change_work);
854 	ib_mad_agent_security_change();
855 
856 	return NOTIFY_OK;
857 }
858 
859 static void compatdev_release(struct device *dev)
860 {
861 	struct ib_core_device *cdev =
862 		container_of(dev, struct ib_core_device, dev);
863 
864 	kfree(cdev);
865 }
866 
867 static int add_one_compat_dev(struct ib_device *device,
868 			      struct rdma_dev_net *rnet)
869 {
870 	struct ib_core_device *cdev;
871 	int ret;
872 
873 	lockdep_assert_held(&rdma_nets_rwsem);
874 	if (!ib_devices_shared_netns)
875 		return 0;
876 
877 	/*
878 	 * Create and add compat device in all namespaces other than where it
879 	 * is currently bound to.
880 	 */
881 	if (net_eq(read_pnet(&rnet->net),
882 		   read_pnet(&device->coredev.rdma_net)))
883 		return 0;
884 
885 	/*
886 	 * The first of init_net() or ib_register_device() to take the
887 	 * compat_devs_mutex wins and gets to add the device. Others will wait
888 	 * for completion here.
889 	 */
890 	mutex_lock(&device->compat_devs_mutex);
891 	cdev = xa_load(&device->compat_devs, rnet->id);
892 	if (cdev) {
893 		ret = 0;
894 		goto done;
895 	}
896 	ret = xa_reserve(&device->compat_devs, rnet->id, GFP_KERNEL);
897 	if (ret)
898 		goto done;
899 
900 	cdev = kzalloc(sizeof(*cdev), GFP_KERNEL);
901 	if (!cdev) {
902 		ret = -ENOMEM;
903 		goto cdev_err;
904 	}
905 
906 	cdev->dev.parent = device->dev.parent;
907 	rdma_init_coredev(cdev, device, read_pnet(&rnet->net));
908 	cdev->dev.release = compatdev_release;
909 	dev_set_name(&cdev->dev, "%s", dev_name(&device->dev));
910 
911 	ret = device_add(&cdev->dev);
912 	if (ret)
913 		goto add_err;
914 	ret = ib_setup_port_attrs(cdev);
915 	if (ret)
916 		goto port_err;
917 
918 	ret = xa_err(xa_store(&device->compat_devs, rnet->id,
919 			      cdev, GFP_KERNEL));
920 	if (ret)
921 		goto insert_err;
922 
923 	mutex_unlock(&device->compat_devs_mutex);
924 	return 0;
925 
926 insert_err:
927 	ib_free_port_attrs(cdev);
928 port_err:
929 	device_del(&cdev->dev);
930 add_err:
931 	put_device(&cdev->dev);
932 cdev_err:
933 	xa_release(&device->compat_devs, rnet->id);
934 done:
935 	mutex_unlock(&device->compat_devs_mutex);
936 	return ret;
937 }
938 
939 static void remove_one_compat_dev(struct ib_device *device, u32 id)
940 {
941 	struct ib_core_device *cdev;
942 
943 	mutex_lock(&device->compat_devs_mutex);
944 	cdev = xa_erase(&device->compat_devs, id);
945 	mutex_unlock(&device->compat_devs_mutex);
946 	if (cdev) {
947 		ib_free_port_attrs(cdev);
948 		device_del(&cdev->dev);
949 		put_device(&cdev->dev);
950 	}
951 }
952 
953 static void remove_compat_devs(struct ib_device *device)
954 {
955 	struct ib_core_device *cdev;
956 	unsigned long index;
957 
958 	xa_for_each (&device->compat_devs, index, cdev)
959 		remove_one_compat_dev(device, index);
960 }
961 
962 static int add_compat_devs(struct ib_device *device)
963 {
964 	struct rdma_dev_net *rnet;
965 	unsigned long index;
966 	int ret = 0;
967 
968 	lockdep_assert_held(&devices_rwsem);
969 
970 	down_read(&rdma_nets_rwsem);
971 	xa_for_each (&rdma_nets, index, rnet) {
972 		ret = add_one_compat_dev(device, rnet);
973 		if (ret)
974 			break;
975 	}
976 	up_read(&rdma_nets_rwsem);
977 	return ret;
978 }
979 
980 static void remove_all_compat_devs(void)
981 {
982 	struct ib_compat_device *cdev;
983 	struct ib_device *dev;
984 	unsigned long index;
985 
986 	down_read(&devices_rwsem);
987 	xa_for_each (&devices, index, dev) {
988 		unsigned long c_index = 0;
989 
990 		/* Hold nets_rwsem so that any other thread modifying this
991 		 * system param can sync with this thread.
992 		 */
993 		down_read(&rdma_nets_rwsem);
994 		xa_for_each (&dev->compat_devs, c_index, cdev)
995 			remove_one_compat_dev(dev, c_index);
996 		up_read(&rdma_nets_rwsem);
997 	}
998 	up_read(&devices_rwsem);
999 }
1000 
1001 static int add_all_compat_devs(void)
1002 {
1003 	struct rdma_dev_net *rnet;
1004 	struct ib_device *dev;
1005 	unsigned long index;
1006 	int ret = 0;
1007 
1008 	down_read(&devices_rwsem);
1009 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1010 		unsigned long net_index = 0;
1011 
1012 		/* Hold nets_rwsem so that any other thread modifying this
1013 		 * system param can sync with this thread.
1014 		 */
1015 		down_read(&rdma_nets_rwsem);
1016 		xa_for_each (&rdma_nets, net_index, rnet) {
1017 			ret = add_one_compat_dev(dev, rnet);
1018 			if (ret)
1019 				break;
1020 		}
1021 		up_read(&rdma_nets_rwsem);
1022 	}
1023 	up_read(&devices_rwsem);
1024 	if (ret)
1025 		remove_all_compat_devs();
1026 	return ret;
1027 }
1028 
1029 int rdma_compatdev_set(u8 enable)
1030 {
1031 	struct rdma_dev_net *rnet;
1032 	unsigned long index;
1033 	int ret = 0;
1034 
1035 	down_write(&rdma_nets_rwsem);
1036 	if (ib_devices_shared_netns == enable) {
1037 		up_write(&rdma_nets_rwsem);
1038 		return 0;
1039 	}
1040 
1041 	/* enable/disable of compat devices is not supported
1042 	 * when more than default init_net exists.
1043 	 */
1044 	xa_for_each (&rdma_nets, index, rnet) {
1045 		ret++;
1046 		break;
1047 	}
1048 	if (!ret)
1049 		ib_devices_shared_netns = enable;
1050 	up_write(&rdma_nets_rwsem);
1051 	if (ret)
1052 		return -EBUSY;
1053 
1054 	if (enable)
1055 		ret = add_all_compat_devs();
1056 	else
1057 		remove_all_compat_devs();
1058 	return ret;
1059 }
1060 
1061 static void rdma_dev_exit_net(struct net *net)
1062 {
1063 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1064 	struct ib_device *dev;
1065 	unsigned long index;
1066 	int ret;
1067 
1068 	down_write(&rdma_nets_rwsem);
1069 	/*
1070 	 * Prevent the ID from being re-used and hide the id from xa_for_each.
1071 	 */
1072 	ret = xa_err(xa_store(&rdma_nets, rnet->id, NULL, GFP_KERNEL));
1073 	WARN_ON(ret);
1074 	up_write(&rdma_nets_rwsem);
1075 
1076 	down_read(&devices_rwsem);
1077 	xa_for_each (&devices, index, dev) {
1078 		get_device(&dev->dev);
1079 		/*
1080 		 * Release the devices_rwsem so that pontentially blocking
1081 		 * device_del, doesn't hold the devices_rwsem for too long.
1082 		 */
1083 		up_read(&devices_rwsem);
1084 
1085 		remove_one_compat_dev(dev, rnet->id);
1086 
1087 		/*
1088 		 * If the real device is in the NS then move it back to init.
1089 		 */
1090 		rdma_dev_change_netns(dev, net, &init_net);
1091 
1092 		put_device(&dev->dev);
1093 		down_read(&devices_rwsem);
1094 	}
1095 	up_read(&devices_rwsem);
1096 
1097 	xa_erase(&rdma_nets, rnet->id);
1098 }
1099 
1100 static __net_init int rdma_dev_init_net(struct net *net)
1101 {
1102 	struct rdma_dev_net *rnet = net_generic(net, rdma_dev_net_id);
1103 	unsigned long index;
1104 	struct ib_device *dev;
1105 	int ret;
1106 
1107 	/* No need to create any compat devices in default init_net. */
1108 	if (net_eq(net, &init_net))
1109 		return 0;
1110 
1111 	write_pnet(&rnet->net, net);
1112 
1113 	ret = xa_alloc(&rdma_nets, &rnet->id, rnet, xa_limit_32b, GFP_KERNEL);
1114 	if (ret)
1115 		return ret;
1116 
1117 	down_read(&devices_rwsem);
1118 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1119 		/* Hold nets_rwsem so that netlink command cannot change
1120 		 * system configuration for device sharing mode.
1121 		 */
1122 		down_read(&rdma_nets_rwsem);
1123 		ret = add_one_compat_dev(dev, rnet);
1124 		up_read(&rdma_nets_rwsem);
1125 		if (ret)
1126 			break;
1127 	}
1128 	up_read(&devices_rwsem);
1129 
1130 	if (ret)
1131 		rdma_dev_exit_net(net);
1132 
1133 	return ret;
1134 }
1135 
1136 /*
1137  * Assign the unique string device name and the unique device index. This is
1138  * undone by ib_dealloc_device.
1139  */
1140 static int assign_name(struct ib_device *device, const char *name)
1141 {
1142 	static u32 last_id;
1143 	int ret;
1144 
1145 	down_write(&devices_rwsem);
1146 	/* Assign a unique name to the device */
1147 	if (strchr(name, '%'))
1148 		ret = alloc_name(device, name);
1149 	else
1150 		ret = dev_set_name(&device->dev, name);
1151 	if (ret)
1152 		goto out;
1153 
1154 	if (__ib_device_get_by_name(dev_name(&device->dev))) {
1155 		ret = -ENFILE;
1156 		goto out;
1157 	}
1158 	strlcpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1159 
1160 	ret = xa_alloc_cyclic(&devices, &device->index, device, xa_limit_31b,
1161 			&last_id, GFP_KERNEL);
1162 	if (ret > 0)
1163 		ret = 0;
1164 
1165 out:
1166 	up_write(&devices_rwsem);
1167 	return ret;
1168 }
1169 
1170 static void setup_dma_device(struct ib_device *device)
1171 {
1172 	struct device *parent = device->dev.parent;
1173 
1174 	WARN_ON_ONCE(device->dma_device);
1175 	if (device->dev.dma_ops) {
1176 		/*
1177 		 * The caller provided custom DMA operations. Copy the
1178 		 * DMA-related fields that are used by e.g. dma_alloc_coherent()
1179 		 * into device->dev.
1180 		 */
1181 		device->dma_device = &device->dev;
1182 		if (!device->dev.dma_mask) {
1183 			if (parent)
1184 				device->dev.dma_mask = parent->dma_mask;
1185 			else
1186 				WARN_ON_ONCE(true);
1187 		}
1188 		if (!device->dev.coherent_dma_mask) {
1189 			if (parent)
1190 				device->dev.coherent_dma_mask =
1191 					parent->coherent_dma_mask;
1192 			else
1193 				WARN_ON_ONCE(true);
1194 		}
1195 	} else {
1196 		/*
1197 		 * The caller did not provide custom DMA operations. Use the
1198 		 * DMA mapping operations of the parent device.
1199 		 */
1200 		WARN_ON_ONCE(!parent);
1201 		device->dma_device = parent;
1202 	}
1203 	/* Setup default max segment size for all IB devices */
1204 	dma_set_max_seg_size(device->dma_device, SZ_2G);
1205 
1206 }
1207 
1208 /*
1209  * setup_device() allocates memory and sets up data that requires calling the
1210  * device ops, this is the only reason these actions are not done during
1211  * ib_alloc_device. It is undone by ib_dealloc_device().
1212  */
1213 static int setup_device(struct ib_device *device)
1214 {
1215 	struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1216 	int ret;
1217 
1218 	setup_dma_device(device);
1219 	ib_device_check_mandatory(device);
1220 
1221 	ret = setup_port_data(device);
1222 	if (ret) {
1223 		dev_warn(&device->dev, "Couldn't create per-port data\n");
1224 		return ret;
1225 	}
1226 
1227 	memset(&device->attrs, 0, sizeof(device->attrs));
1228 	ret = device->ops.query_device(device, &device->attrs, &uhw);
1229 	if (ret) {
1230 		dev_warn(&device->dev,
1231 			 "Couldn't query the device attributes\n");
1232 		return ret;
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 static void disable_device(struct ib_device *device)
1239 {
1240 	u32 cid;
1241 
1242 	WARN_ON(!refcount_read(&device->refcount));
1243 
1244 	down_write(&devices_rwsem);
1245 	xa_clear_mark(&devices, device->index, DEVICE_REGISTERED);
1246 	up_write(&devices_rwsem);
1247 
1248 	/*
1249 	 * Remove clients in LIFO order, see assign_client_id. This could be
1250 	 * more efficient if xarray learns to reverse iterate. Since no new
1251 	 * clients can be added to this ib_device past this point we only need
1252 	 * the maximum possible client_id value here.
1253 	 */
1254 	down_read(&clients_rwsem);
1255 	cid = highest_client_id;
1256 	up_read(&clients_rwsem);
1257 	while (cid) {
1258 		cid--;
1259 		remove_client_context(device, cid);
1260 	}
1261 
1262 	/* Pairs with refcount_set in enable_device */
1263 	ib_device_put(device);
1264 	wait_for_completion(&device->unreg_completion);
1265 
1266 	/*
1267 	 * compat devices must be removed after device refcount drops to zero.
1268 	 * Otherwise init_net() may add more compatdevs after removing compat
1269 	 * devices and before device is disabled.
1270 	 */
1271 	remove_compat_devs(device);
1272 }
1273 
1274 /*
1275  * An enabled device is visible to all clients and to all the public facing
1276  * APIs that return a device pointer. This always returns with a new get, even
1277  * if it fails.
1278  */
1279 static int enable_device_and_get(struct ib_device *device)
1280 {
1281 	struct ib_client *client;
1282 	unsigned long index;
1283 	int ret = 0;
1284 
1285 	/*
1286 	 * One ref belongs to the xa and the other belongs to this
1287 	 * thread. This is needed to guard against parallel unregistration.
1288 	 */
1289 	refcount_set(&device->refcount, 2);
1290 	down_write(&devices_rwsem);
1291 	xa_set_mark(&devices, device->index, DEVICE_REGISTERED);
1292 
1293 	/*
1294 	 * By using downgrade_write() we ensure that no other thread can clear
1295 	 * DEVICE_REGISTERED while we are completing the client setup.
1296 	 */
1297 	downgrade_write(&devices_rwsem);
1298 
1299 	if (device->ops.enable_driver) {
1300 		ret = device->ops.enable_driver(device);
1301 		if (ret)
1302 			goto out;
1303 	}
1304 
1305 	down_read(&clients_rwsem);
1306 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1307 		ret = add_client_context(device, client);
1308 		if (ret)
1309 			break;
1310 	}
1311 	up_read(&clients_rwsem);
1312 	if (!ret)
1313 		ret = add_compat_devs(device);
1314 out:
1315 	up_read(&devices_rwsem);
1316 	return ret;
1317 }
1318 
1319 /**
1320  * ib_register_device - Register an IB device with IB core
1321  * @device:Device to register
1322  *
1323  * Low-level drivers use ib_register_device() to register their
1324  * devices with the IB core.  All registered clients will receive a
1325  * callback for each device that is added. @device must be allocated
1326  * with ib_alloc_device().
1327  *
1328  * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1329  * asynchronously then the device pointer may become freed as soon as this
1330  * function returns.
1331  */
1332 int ib_register_device(struct ib_device *device, const char *name)
1333 {
1334 	int ret;
1335 
1336 	ret = assign_name(device, name);
1337 	if (ret)
1338 		return ret;
1339 
1340 	ret = setup_device(device);
1341 	if (ret)
1342 		return ret;
1343 
1344 	ret = ib_cache_setup_one(device);
1345 	if (ret) {
1346 		dev_warn(&device->dev,
1347 			 "Couldn't set up InfiniBand P_Key/GID cache\n");
1348 		return ret;
1349 	}
1350 
1351 	ib_device_register_rdmacg(device);
1352 
1353 	rdma_counter_init(device);
1354 
1355 	/*
1356 	 * Ensure that ADD uevent is not fired because it
1357 	 * is too early amd device is not initialized yet.
1358 	 */
1359 	dev_set_uevent_suppress(&device->dev, true);
1360 	ret = device_add(&device->dev);
1361 	if (ret)
1362 		goto cg_cleanup;
1363 
1364 	ret = ib_device_register_sysfs(device);
1365 	if (ret) {
1366 		dev_warn(&device->dev,
1367 			 "Couldn't register device with driver model\n");
1368 		goto dev_cleanup;
1369 	}
1370 
1371 	ret = enable_device_and_get(device);
1372 	dev_set_uevent_suppress(&device->dev, false);
1373 	/* Mark for userspace that device is ready */
1374 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1375 	if (ret) {
1376 		void (*dealloc_fn)(struct ib_device *);
1377 
1378 		/*
1379 		 * If we hit this error flow then we don't want to
1380 		 * automatically dealloc the device since the caller is
1381 		 * expected to call ib_dealloc_device() after
1382 		 * ib_register_device() fails. This is tricky due to the
1383 		 * possibility for a parallel unregistration along with this
1384 		 * error flow. Since we have a refcount here we know any
1385 		 * parallel flow is stopped in disable_device and will see the
1386 		 * NULL pointers, causing the responsibility to
1387 		 * ib_dealloc_device() to revert back to this thread.
1388 		 */
1389 		dealloc_fn = device->ops.dealloc_driver;
1390 		device->ops.dealloc_driver = NULL;
1391 		ib_device_put(device);
1392 		__ib_unregister_device(device);
1393 		device->ops.dealloc_driver = dealloc_fn;
1394 		return ret;
1395 	}
1396 	ib_device_put(device);
1397 
1398 	return 0;
1399 
1400 dev_cleanup:
1401 	device_del(&device->dev);
1402 cg_cleanup:
1403 	dev_set_uevent_suppress(&device->dev, false);
1404 	ib_device_unregister_rdmacg(device);
1405 	ib_cache_cleanup_one(device);
1406 	return ret;
1407 }
1408 EXPORT_SYMBOL(ib_register_device);
1409 
1410 /* Callers must hold a get on the device. */
1411 static void __ib_unregister_device(struct ib_device *ib_dev)
1412 {
1413 	/*
1414 	 * We have a registration lock so that all the calls to unregister are
1415 	 * fully fenced, once any unregister returns the device is truely
1416 	 * unregistered even if multiple callers are unregistering it at the
1417 	 * same time. This also interacts with the registration flow and
1418 	 * provides sane semantics if register and unregister are racing.
1419 	 */
1420 	mutex_lock(&ib_dev->unregistration_lock);
1421 	if (!refcount_read(&ib_dev->refcount))
1422 		goto out;
1423 
1424 	disable_device(ib_dev);
1425 
1426 	/* Expedite removing unregistered pointers from the hash table */
1427 	free_netdevs(ib_dev);
1428 
1429 	ib_device_unregister_sysfs(ib_dev);
1430 	device_del(&ib_dev->dev);
1431 	ib_device_unregister_rdmacg(ib_dev);
1432 	ib_cache_cleanup_one(ib_dev);
1433 
1434 	/*
1435 	 * Drivers using the new flow may not call ib_dealloc_device except
1436 	 * in error unwind prior to registration success.
1437 	 */
1438 	if (ib_dev->ops.dealloc_driver) {
1439 		WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1440 		ib_dealloc_device(ib_dev);
1441 	}
1442 out:
1443 	mutex_unlock(&ib_dev->unregistration_lock);
1444 }
1445 
1446 /**
1447  * ib_unregister_device - Unregister an IB device
1448  * @device: The device to unregister
1449  *
1450  * Unregister an IB device.  All clients will receive a remove callback.
1451  *
1452  * Callers should call this routine only once, and protect against races with
1453  * registration. Typically it should only be called as part of a remove
1454  * callback in an implementation of driver core's struct device_driver and
1455  * related.
1456  *
1457  * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1458  * this function.
1459  */
1460 void ib_unregister_device(struct ib_device *ib_dev)
1461 {
1462 	get_device(&ib_dev->dev);
1463 	__ib_unregister_device(ib_dev);
1464 	put_device(&ib_dev->dev);
1465 }
1466 EXPORT_SYMBOL(ib_unregister_device);
1467 
1468 /**
1469  * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1470  * device: The device to unregister
1471  *
1472  * This is the same as ib_unregister_device(), except it includes an internal
1473  * ib_device_put() that should match a 'get' obtained by the caller.
1474  *
1475  * It is safe to call this routine concurrently from multiple threads while
1476  * holding the 'get'. When the function returns the device is fully
1477  * unregistered.
1478  *
1479  * Drivers using this flow MUST use the driver_unregister callback to clean up
1480  * their resources associated with the device and dealloc it.
1481  */
1482 void ib_unregister_device_and_put(struct ib_device *ib_dev)
1483 {
1484 	WARN_ON(!ib_dev->ops.dealloc_driver);
1485 	get_device(&ib_dev->dev);
1486 	ib_device_put(ib_dev);
1487 	__ib_unregister_device(ib_dev);
1488 	put_device(&ib_dev->dev);
1489 }
1490 EXPORT_SYMBOL(ib_unregister_device_and_put);
1491 
1492 /**
1493  * ib_unregister_driver - Unregister all IB devices for a driver
1494  * @driver_id: The driver to unregister
1495  *
1496  * This implements a fence for device unregistration. It only returns once all
1497  * devices associated with the driver_id have fully completed their
1498  * unregistration and returned from ib_unregister_device*().
1499  *
1500  * If device's are not yet unregistered it goes ahead and starts unregistering
1501  * them.
1502  *
1503  * This does not block creation of new devices with the given driver_id, that
1504  * is the responsibility of the caller.
1505  */
1506 void ib_unregister_driver(enum rdma_driver_id driver_id)
1507 {
1508 	struct ib_device *ib_dev;
1509 	unsigned long index;
1510 
1511 	down_read(&devices_rwsem);
1512 	xa_for_each (&devices, index, ib_dev) {
1513 		if (ib_dev->ops.driver_id != driver_id)
1514 			continue;
1515 
1516 		get_device(&ib_dev->dev);
1517 		up_read(&devices_rwsem);
1518 
1519 		WARN_ON(!ib_dev->ops.dealloc_driver);
1520 		__ib_unregister_device(ib_dev);
1521 
1522 		put_device(&ib_dev->dev);
1523 		down_read(&devices_rwsem);
1524 	}
1525 	up_read(&devices_rwsem);
1526 }
1527 EXPORT_SYMBOL(ib_unregister_driver);
1528 
1529 static void ib_unregister_work(struct work_struct *work)
1530 {
1531 	struct ib_device *ib_dev =
1532 		container_of(work, struct ib_device, unregistration_work);
1533 
1534 	__ib_unregister_device(ib_dev);
1535 	put_device(&ib_dev->dev);
1536 }
1537 
1538 /**
1539  * ib_unregister_device_queued - Unregister a device using a work queue
1540  * device: The device to unregister
1541  *
1542  * This schedules an asynchronous unregistration using a WQ for the device. A
1543  * driver should use this to avoid holding locks while doing unregistration,
1544  * such as holding the RTNL lock.
1545  *
1546  * Drivers using this API must use ib_unregister_driver before module unload
1547  * to ensure that all scheduled unregistrations have completed.
1548  */
1549 void ib_unregister_device_queued(struct ib_device *ib_dev)
1550 {
1551 	WARN_ON(!refcount_read(&ib_dev->refcount));
1552 	WARN_ON(!ib_dev->ops.dealloc_driver);
1553 	get_device(&ib_dev->dev);
1554 	if (!queue_work(system_unbound_wq, &ib_dev->unregistration_work))
1555 		put_device(&ib_dev->dev);
1556 }
1557 EXPORT_SYMBOL(ib_unregister_device_queued);
1558 
1559 /*
1560  * The caller must pass in a device that has the kref held and the refcount
1561  * released. If the device is in cur_net and still registered then it is moved
1562  * into net.
1563  */
1564 static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1565 				 struct net *net)
1566 {
1567 	int ret2 = -EINVAL;
1568 	int ret;
1569 
1570 	mutex_lock(&device->unregistration_lock);
1571 
1572 	/*
1573 	 * If a device not under ib_device_get() or if the unregistration_lock
1574 	 * is not held, the namespace can be changed, or it can be unregistered.
1575 	 * Check again under the lock.
1576 	 */
1577 	if (refcount_read(&device->refcount) == 0 ||
1578 	    !net_eq(cur_net, read_pnet(&device->coredev.rdma_net))) {
1579 		ret = -ENODEV;
1580 		goto out;
1581 	}
1582 
1583 	kobject_uevent(&device->dev.kobj, KOBJ_REMOVE);
1584 	disable_device(device);
1585 
1586 	/*
1587 	 * At this point no one can be using the device, so it is safe to
1588 	 * change the namespace.
1589 	 */
1590 	write_pnet(&device->coredev.rdma_net, net);
1591 
1592 	down_read(&devices_rwsem);
1593 	/*
1594 	 * Currently rdma devices are system wide unique. So the device name
1595 	 * is guaranteed free in the new namespace. Publish the new namespace
1596 	 * at the sysfs level.
1597 	 */
1598 	ret = device_rename(&device->dev, dev_name(&device->dev));
1599 	up_read(&devices_rwsem);
1600 	if (ret) {
1601 		dev_warn(&device->dev,
1602 			 "%s: Couldn't rename device after namespace change\n",
1603 			 __func__);
1604 		/* Try and put things back and re-enable the device */
1605 		write_pnet(&device->coredev.rdma_net, cur_net);
1606 	}
1607 
1608 	ret2 = enable_device_and_get(device);
1609 	if (ret2) {
1610 		/*
1611 		 * This shouldn't really happen, but if it does, let the user
1612 		 * retry at later point. So don't disable the device.
1613 		 */
1614 		dev_warn(&device->dev,
1615 			 "%s: Couldn't re-enable device after namespace change\n",
1616 			 __func__);
1617 	}
1618 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1619 
1620 	ib_device_put(device);
1621 out:
1622 	mutex_unlock(&device->unregistration_lock);
1623 	if (ret)
1624 		return ret;
1625 	return ret2;
1626 }
1627 
1628 int ib_device_set_netns_put(struct sk_buff *skb,
1629 			    struct ib_device *dev, u32 ns_fd)
1630 {
1631 	struct net *net;
1632 	int ret;
1633 
1634 	net = get_net_ns_by_fd(ns_fd);
1635 	if (IS_ERR(net)) {
1636 		ret = PTR_ERR(net);
1637 		goto net_err;
1638 	}
1639 
1640 	if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
1641 		ret = -EPERM;
1642 		goto ns_err;
1643 	}
1644 
1645 	/*
1646 	 * Currently supported only for those providers which support
1647 	 * disassociation and don't do port specific sysfs init. Once a
1648 	 * port_cleanup infrastructure is implemented, this limitation will be
1649 	 * removed.
1650 	 */
1651 	if (!dev->ops.disassociate_ucontext || dev->ops.init_port ||
1652 	    ib_devices_shared_netns) {
1653 		ret = -EOPNOTSUPP;
1654 		goto ns_err;
1655 	}
1656 
1657 	get_device(&dev->dev);
1658 	ib_device_put(dev);
1659 	ret = rdma_dev_change_netns(dev, current->nsproxy->net_ns, net);
1660 	put_device(&dev->dev);
1661 
1662 	put_net(net);
1663 	return ret;
1664 
1665 ns_err:
1666 	put_net(net);
1667 net_err:
1668 	ib_device_put(dev);
1669 	return ret;
1670 }
1671 
1672 static struct pernet_operations rdma_dev_net_ops = {
1673 	.init = rdma_dev_init_net,
1674 	.exit = rdma_dev_exit_net,
1675 	.id = &rdma_dev_net_id,
1676 	.size = sizeof(struct rdma_dev_net),
1677 };
1678 
1679 static int assign_client_id(struct ib_client *client)
1680 {
1681 	int ret;
1682 
1683 	down_write(&clients_rwsem);
1684 	/*
1685 	 * The add/remove callbacks must be called in FIFO/LIFO order. To
1686 	 * achieve this we assign client_ids so they are sorted in
1687 	 * registration order.
1688 	 */
1689 	client->client_id = highest_client_id;
1690 	ret = xa_insert(&clients, client->client_id, client, GFP_KERNEL);
1691 	if (ret)
1692 		goto out;
1693 
1694 	highest_client_id++;
1695 	xa_set_mark(&clients, client->client_id, CLIENT_REGISTERED);
1696 
1697 out:
1698 	up_write(&clients_rwsem);
1699 	return ret;
1700 }
1701 
1702 static void remove_client_id(struct ib_client *client)
1703 {
1704 	down_write(&clients_rwsem);
1705 	xa_erase(&clients, client->client_id);
1706 	for (; highest_client_id; highest_client_id--)
1707 		if (xa_load(&clients, highest_client_id - 1))
1708 			break;
1709 	up_write(&clients_rwsem);
1710 }
1711 
1712 /**
1713  * ib_register_client - Register an IB client
1714  * @client:Client to register
1715  *
1716  * Upper level users of the IB drivers can use ib_register_client() to
1717  * register callbacks for IB device addition and removal.  When an IB
1718  * device is added, each registered client's add method will be called
1719  * (in the order the clients were registered), and when a device is
1720  * removed, each client's remove method will be called (in the reverse
1721  * order that clients were registered).  In addition, when
1722  * ib_register_client() is called, the client will receive an add
1723  * callback for all devices already registered.
1724  */
1725 int ib_register_client(struct ib_client *client)
1726 {
1727 	struct ib_device *device;
1728 	unsigned long index;
1729 	int ret;
1730 
1731 	refcount_set(&client->uses, 1);
1732 	init_completion(&client->uses_zero);
1733 	ret = assign_client_id(client);
1734 	if (ret)
1735 		return ret;
1736 
1737 	down_read(&devices_rwsem);
1738 	xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1739 		ret = add_client_context(device, client);
1740 		if (ret) {
1741 			up_read(&devices_rwsem);
1742 			ib_unregister_client(client);
1743 			return ret;
1744 		}
1745 	}
1746 	up_read(&devices_rwsem);
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(ib_register_client);
1750 
1751 /**
1752  * ib_unregister_client - Unregister an IB client
1753  * @client:Client to unregister
1754  *
1755  * Upper level users use ib_unregister_client() to remove their client
1756  * registration.  When ib_unregister_client() is called, the client
1757  * will receive a remove callback for each IB device still registered.
1758  *
1759  * This is a full fence, once it returns no client callbacks will be called,
1760  * or are running in another thread.
1761  */
1762 void ib_unregister_client(struct ib_client *client)
1763 {
1764 	struct ib_device *device;
1765 	unsigned long index;
1766 
1767 	down_write(&clients_rwsem);
1768 	ib_client_put(client);
1769 	xa_clear_mark(&clients, client->client_id, CLIENT_REGISTERED);
1770 	up_write(&clients_rwsem);
1771 
1772 	/* We do not want to have locks while calling client->remove() */
1773 	rcu_read_lock();
1774 	xa_for_each (&devices, index, device) {
1775 		if (!ib_device_try_get(device))
1776 			continue;
1777 		rcu_read_unlock();
1778 
1779 		remove_client_context(device, client->client_id);
1780 
1781 		ib_device_put(device);
1782 		rcu_read_lock();
1783 	}
1784 	rcu_read_unlock();
1785 
1786 	/*
1787 	 * remove_client_context() is not a fence, it can return even though a
1788 	 * removal is ongoing. Wait until all removals are completed.
1789 	 */
1790 	wait_for_completion(&client->uses_zero);
1791 	remove_client_id(client);
1792 }
1793 EXPORT_SYMBOL(ib_unregister_client);
1794 
1795 static int __ib_get_global_client_nl_info(const char *client_name,
1796 					  struct ib_client_nl_info *res)
1797 {
1798 	struct ib_client *client;
1799 	unsigned long index;
1800 	int ret = -ENOENT;
1801 
1802 	down_read(&clients_rwsem);
1803 	xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1804 		if (strcmp(client->name, client_name) != 0)
1805 			continue;
1806 		if (!client->get_global_nl_info) {
1807 			ret = -EOPNOTSUPP;
1808 			break;
1809 		}
1810 		ret = client->get_global_nl_info(res);
1811 		if (WARN_ON(ret == -ENOENT))
1812 			ret = -EINVAL;
1813 		if (!ret && res->cdev)
1814 			get_device(res->cdev);
1815 		break;
1816 	}
1817 	up_read(&clients_rwsem);
1818 	return ret;
1819 }
1820 
1821 static int __ib_get_client_nl_info(struct ib_device *ibdev,
1822 				   const char *client_name,
1823 				   struct ib_client_nl_info *res)
1824 {
1825 	unsigned long index;
1826 	void *client_data;
1827 	int ret = -ENOENT;
1828 
1829 	down_read(&ibdev->client_data_rwsem);
1830 	xan_for_each_marked (&ibdev->client_data, index, client_data,
1831 			     CLIENT_DATA_REGISTERED) {
1832 		struct ib_client *client = xa_load(&clients, index);
1833 
1834 		if (!client || strcmp(client->name, client_name) != 0)
1835 			continue;
1836 		if (!client->get_nl_info) {
1837 			ret = -EOPNOTSUPP;
1838 			break;
1839 		}
1840 		ret = client->get_nl_info(ibdev, client_data, res);
1841 		if (WARN_ON(ret == -ENOENT))
1842 			ret = -EINVAL;
1843 
1844 		/*
1845 		 * The cdev is guaranteed valid as long as we are inside the
1846 		 * client_data_rwsem as remove_one can't be called. Keep it
1847 		 * valid for the caller.
1848 		 */
1849 		if (!ret && res->cdev)
1850 			get_device(res->cdev);
1851 		break;
1852 	}
1853 	up_read(&ibdev->client_data_rwsem);
1854 
1855 	return ret;
1856 }
1857 
1858 /**
1859  * ib_get_client_nl_info - Fetch the nl_info from a client
1860  * @device - IB device
1861  * @client_name - Name of the client
1862  * @res - Result of the query
1863  */
1864 int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1865 			  struct ib_client_nl_info *res)
1866 {
1867 	int ret;
1868 
1869 	if (ibdev)
1870 		ret = __ib_get_client_nl_info(ibdev, client_name, res);
1871 	else
1872 		ret = __ib_get_global_client_nl_info(client_name, res);
1873 #ifdef CONFIG_MODULES
1874 	if (ret == -ENOENT) {
1875 		request_module("rdma-client-%s", client_name);
1876 		if (ibdev)
1877 			ret = __ib_get_client_nl_info(ibdev, client_name, res);
1878 		else
1879 			ret = __ib_get_global_client_nl_info(client_name, res);
1880 	}
1881 #endif
1882 	if (ret) {
1883 		if (ret == -ENOENT)
1884 			return -EOPNOTSUPP;
1885 		return ret;
1886 	}
1887 
1888 	if (WARN_ON(!res->cdev))
1889 		return -EINVAL;
1890 	return 0;
1891 }
1892 
1893 /**
1894  * ib_set_client_data - Set IB client context
1895  * @device:Device to set context for
1896  * @client:Client to set context for
1897  * @data:Context to set
1898  *
1899  * ib_set_client_data() sets client context data that can be retrieved with
1900  * ib_get_client_data(). This can only be called while the client is
1901  * registered to the device, once the ib_client remove() callback returns this
1902  * cannot be called.
1903  */
1904 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1905 			void *data)
1906 {
1907 	void *rc;
1908 
1909 	if (WARN_ON(IS_ERR(data)))
1910 		data = NULL;
1911 
1912 	rc = xa_store(&device->client_data, client->client_id, data,
1913 		      GFP_KERNEL);
1914 	WARN_ON(xa_is_err(rc));
1915 }
1916 EXPORT_SYMBOL(ib_set_client_data);
1917 
1918 /**
1919  * ib_register_event_handler - Register an IB event handler
1920  * @event_handler:Handler to register
1921  *
1922  * ib_register_event_handler() registers an event handler that will be
1923  * called back when asynchronous IB events occur (as defined in
1924  * chapter 11 of the InfiniBand Architecture Specification).  This
1925  * callback may occur in interrupt context.
1926  */
1927 void ib_register_event_handler(struct ib_event_handler *event_handler)
1928 {
1929 	unsigned long flags;
1930 
1931 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1932 	list_add_tail(&event_handler->list,
1933 		      &event_handler->device->event_handler_list);
1934 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1935 }
1936 EXPORT_SYMBOL(ib_register_event_handler);
1937 
1938 /**
1939  * ib_unregister_event_handler - Unregister an event handler
1940  * @event_handler:Handler to unregister
1941  *
1942  * Unregister an event handler registered with
1943  * ib_register_event_handler().
1944  */
1945 void ib_unregister_event_handler(struct ib_event_handler *event_handler)
1946 {
1947 	unsigned long flags;
1948 
1949 	spin_lock_irqsave(&event_handler->device->event_handler_lock, flags);
1950 	list_del(&event_handler->list);
1951 	spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags);
1952 }
1953 EXPORT_SYMBOL(ib_unregister_event_handler);
1954 
1955 /**
1956  * ib_dispatch_event - Dispatch an asynchronous event
1957  * @event:Event to dispatch
1958  *
1959  * Low-level drivers must call ib_dispatch_event() to dispatch the
1960  * event to all registered event handlers when an asynchronous event
1961  * occurs.
1962  */
1963 void ib_dispatch_event(struct ib_event *event)
1964 {
1965 	unsigned long flags;
1966 	struct ib_event_handler *handler;
1967 
1968 	spin_lock_irqsave(&event->device->event_handler_lock, flags);
1969 
1970 	list_for_each_entry(handler, &event->device->event_handler_list, list)
1971 		handler->handler(handler, event);
1972 
1973 	spin_unlock_irqrestore(&event->device->event_handler_lock, flags);
1974 }
1975 EXPORT_SYMBOL(ib_dispatch_event);
1976 
1977 /**
1978  * ib_query_port - Query IB port attributes
1979  * @device:Device to query
1980  * @port_num:Port number to query
1981  * @port_attr:Port attributes
1982  *
1983  * ib_query_port() returns the attributes of a port through the
1984  * @port_attr pointer.
1985  */
1986 int ib_query_port(struct ib_device *device,
1987 		  u8 port_num,
1988 		  struct ib_port_attr *port_attr)
1989 {
1990 	union ib_gid gid;
1991 	int err;
1992 
1993 	if (!rdma_is_port_valid(device, port_num))
1994 		return -EINVAL;
1995 
1996 	memset(port_attr, 0, sizeof(*port_attr));
1997 	err = device->ops.query_port(device, port_num, port_attr);
1998 	if (err || port_attr->subnet_prefix)
1999 		return err;
2000 
2001 	if (rdma_port_get_link_layer(device, port_num) != IB_LINK_LAYER_INFINIBAND)
2002 		return 0;
2003 
2004 	err = device->ops.query_gid(device, port_num, 0, &gid);
2005 	if (err)
2006 		return err;
2007 
2008 	port_attr->subnet_prefix = be64_to_cpu(gid.global.subnet_prefix);
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL(ib_query_port);
2012 
2013 static void add_ndev_hash(struct ib_port_data *pdata)
2014 {
2015 	unsigned long flags;
2016 
2017 	might_sleep();
2018 
2019 	spin_lock_irqsave(&ndev_hash_lock, flags);
2020 	if (hash_hashed(&pdata->ndev_hash_link)) {
2021 		hash_del_rcu(&pdata->ndev_hash_link);
2022 		spin_unlock_irqrestore(&ndev_hash_lock, flags);
2023 		/*
2024 		 * We cannot do hash_add_rcu after a hash_del_rcu until the
2025 		 * grace period
2026 		 */
2027 		synchronize_rcu();
2028 		spin_lock_irqsave(&ndev_hash_lock, flags);
2029 	}
2030 	if (pdata->netdev)
2031 		hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2032 			     (uintptr_t)pdata->netdev);
2033 	spin_unlock_irqrestore(&ndev_hash_lock, flags);
2034 }
2035 
2036 /**
2037  * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2038  * @ib_dev: Device to modify
2039  * @ndev: net_device to affiliate, may be NULL
2040  * @port: IB port the net_device is connected to
2041  *
2042  * Drivers should use this to link the ib_device to a netdev so the netdev
2043  * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2044  * affiliated with any port.
2045  *
2046  * The caller must ensure that the given ndev is not unregistered or
2047  * unregistering, and that either the ib_device is unregistered or
2048  * ib_device_set_netdev() is called with NULL when the ndev sends a
2049  * NETDEV_UNREGISTER event.
2050  */
2051 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2052 			 unsigned int port)
2053 {
2054 	struct net_device *old_ndev;
2055 	struct ib_port_data *pdata;
2056 	unsigned long flags;
2057 	int ret;
2058 
2059 	/*
2060 	 * Drivers wish to call this before ib_register_driver, so we have to
2061 	 * setup the port data early.
2062 	 */
2063 	ret = alloc_port_data(ib_dev);
2064 	if (ret)
2065 		return ret;
2066 
2067 	if (!rdma_is_port_valid(ib_dev, port))
2068 		return -EINVAL;
2069 
2070 	pdata = &ib_dev->port_data[port];
2071 	spin_lock_irqsave(&pdata->netdev_lock, flags);
2072 	old_ndev = rcu_dereference_protected(
2073 		pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2074 	if (old_ndev == ndev) {
2075 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2076 		return 0;
2077 	}
2078 
2079 	if (ndev)
2080 		dev_hold(ndev);
2081 	rcu_assign_pointer(pdata->netdev, ndev);
2082 	spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2083 
2084 	add_ndev_hash(pdata);
2085 	if (old_ndev)
2086 		dev_put(old_ndev);
2087 
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL(ib_device_set_netdev);
2091 
2092 static void free_netdevs(struct ib_device *ib_dev)
2093 {
2094 	unsigned long flags;
2095 	unsigned int port;
2096 
2097 	if (!ib_dev->port_data)
2098 		return;
2099 
2100 	rdma_for_each_port (ib_dev, port) {
2101 		struct ib_port_data *pdata = &ib_dev->port_data[port];
2102 		struct net_device *ndev;
2103 
2104 		spin_lock_irqsave(&pdata->netdev_lock, flags);
2105 		ndev = rcu_dereference_protected(
2106 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2107 		if (ndev) {
2108 			spin_lock(&ndev_hash_lock);
2109 			hash_del_rcu(&pdata->ndev_hash_link);
2110 			spin_unlock(&ndev_hash_lock);
2111 
2112 			/*
2113 			 * If this is the last dev_put there is still a
2114 			 * synchronize_rcu before the netdev is kfreed, so we
2115 			 * can continue to rely on unlocked pointer
2116 			 * comparisons after the put
2117 			 */
2118 			rcu_assign_pointer(pdata->netdev, NULL);
2119 			dev_put(ndev);
2120 		}
2121 		spin_unlock_irqrestore(&pdata->netdev_lock, flags);
2122 	}
2123 }
2124 
2125 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2126 					unsigned int port)
2127 {
2128 	struct ib_port_data *pdata;
2129 	struct net_device *res;
2130 
2131 	if (!rdma_is_port_valid(ib_dev, port))
2132 		return NULL;
2133 
2134 	pdata = &ib_dev->port_data[port];
2135 
2136 	/*
2137 	 * New drivers should use ib_device_set_netdev() not the legacy
2138 	 * get_netdev().
2139 	 */
2140 	if (ib_dev->ops.get_netdev)
2141 		res = ib_dev->ops.get_netdev(ib_dev, port);
2142 	else {
2143 		spin_lock(&pdata->netdev_lock);
2144 		res = rcu_dereference_protected(
2145 			pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2146 		if (res)
2147 			dev_hold(res);
2148 		spin_unlock(&pdata->netdev_lock);
2149 	}
2150 
2151 	/*
2152 	 * If we are starting to unregister expedite things by preventing
2153 	 * propagation of an unregistering netdev.
2154 	 */
2155 	if (res && res->reg_state != NETREG_REGISTERED) {
2156 		dev_put(res);
2157 		return NULL;
2158 	}
2159 
2160 	return res;
2161 }
2162 
2163 /**
2164  * ib_device_get_by_netdev - Find an IB device associated with a netdev
2165  * @ndev: netdev to locate
2166  * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2167  *
2168  * Find and hold an ib_device that is associated with a netdev via
2169  * ib_device_set_netdev(). The caller must call ib_device_put() on the
2170  * returned pointer.
2171  */
2172 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2173 					  enum rdma_driver_id driver_id)
2174 {
2175 	struct ib_device *res = NULL;
2176 	struct ib_port_data *cur;
2177 
2178 	rcu_read_lock();
2179 	hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2180 				    (uintptr_t)ndev) {
2181 		if (rcu_access_pointer(cur->netdev) == ndev &&
2182 		    (driver_id == RDMA_DRIVER_UNKNOWN ||
2183 		     cur->ib_dev->ops.driver_id == driver_id) &&
2184 		    ib_device_try_get(cur->ib_dev)) {
2185 			res = cur->ib_dev;
2186 			break;
2187 		}
2188 	}
2189 	rcu_read_unlock();
2190 
2191 	return res;
2192 }
2193 EXPORT_SYMBOL(ib_device_get_by_netdev);
2194 
2195 /**
2196  * ib_enum_roce_netdev - enumerate all RoCE ports
2197  * @ib_dev : IB device we want to query
2198  * @filter: Should we call the callback?
2199  * @filter_cookie: Cookie passed to filter
2200  * @cb: Callback to call for each found RoCE ports
2201  * @cookie: Cookie passed back to the callback
2202  *
2203  * Enumerates all of the physical RoCE ports of ib_dev
2204  * which are related to netdevice and calls callback() on each
2205  * device for which filter() function returns non zero.
2206  */
2207 void ib_enum_roce_netdev(struct ib_device *ib_dev,
2208 			 roce_netdev_filter filter,
2209 			 void *filter_cookie,
2210 			 roce_netdev_callback cb,
2211 			 void *cookie)
2212 {
2213 	unsigned int port;
2214 
2215 	rdma_for_each_port (ib_dev, port)
2216 		if (rdma_protocol_roce(ib_dev, port)) {
2217 			struct net_device *idev =
2218 				ib_device_get_netdev(ib_dev, port);
2219 
2220 			if (filter(ib_dev, port, idev, filter_cookie))
2221 				cb(ib_dev, port, idev, cookie);
2222 
2223 			if (idev)
2224 				dev_put(idev);
2225 		}
2226 }
2227 
2228 /**
2229  * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2230  * @filter: Should we call the callback?
2231  * @filter_cookie: Cookie passed to filter
2232  * @cb: Callback to call for each found RoCE ports
2233  * @cookie: Cookie passed back to the callback
2234  *
2235  * Enumerates all RoCE devices' physical ports which are related
2236  * to netdevices and calls callback() on each device for which
2237  * filter() function returns non zero.
2238  */
2239 void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2240 			      void *filter_cookie,
2241 			      roce_netdev_callback cb,
2242 			      void *cookie)
2243 {
2244 	struct ib_device *dev;
2245 	unsigned long index;
2246 
2247 	down_read(&devices_rwsem);
2248 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2249 		ib_enum_roce_netdev(dev, filter, filter_cookie, cb, cookie);
2250 	up_read(&devices_rwsem);
2251 }
2252 
2253 /**
2254  * ib_enum_all_devs - enumerate all ib_devices
2255  * @cb: Callback to call for each found ib_device
2256  *
2257  * Enumerates all ib_devices and calls callback() on each device.
2258  */
2259 int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2260 		     struct netlink_callback *cb)
2261 {
2262 	unsigned long index;
2263 	struct ib_device *dev;
2264 	unsigned int idx = 0;
2265 	int ret = 0;
2266 
2267 	down_read(&devices_rwsem);
2268 	xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2269 		if (!rdma_dev_access_netns(dev, sock_net(skb->sk)))
2270 			continue;
2271 
2272 		ret = nldev_cb(dev, skb, cb, idx);
2273 		if (ret)
2274 			break;
2275 		idx++;
2276 	}
2277 	up_read(&devices_rwsem);
2278 	return ret;
2279 }
2280 
2281 /**
2282  * ib_query_pkey - Get P_Key table entry
2283  * @device:Device to query
2284  * @port_num:Port number to query
2285  * @index:P_Key table index to query
2286  * @pkey:Returned P_Key
2287  *
2288  * ib_query_pkey() fetches the specified P_Key table entry.
2289  */
2290 int ib_query_pkey(struct ib_device *device,
2291 		  u8 port_num, u16 index, u16 *pkey)
2292 {
2293 	if (!rdma_is_port_valid(device, port_num))
2294 		return -EINVAL;
2295 
2296 	return device->ops.query_pkey(device, port_num, index, pkey);
2297 }
2298 EXPORT_SYMBOL(ib_query_pkey);
2299 
2300 /**
2301  * ib_modify_device - Change IB device attributes
2302  * @device:Device to modify
2303  * @device_modify_mask:Mask of attributes to change
2304  * @device_modify:New attribute values
2305  *
2306  * ib_modify_device() changes a device's attributes as specified by
2307  * the @device_modify_mask and @device_modify structure.
2308  */
2309 int ib_modify_device(struct ib_device *device,
2310 		     int device_modify_mask,
2311 		     struct ib_device_modify *device_modify)
2312 {
2313 	if (!device->ops.modify_device)
2314 		return -ENOSYS;
2315 
2316 	return device->ops.modify_device(device, device_modify_mask,
2317 					 device_modify);
2318 }
2319 EXPORT_SYMBOL(ib_modify_device);
2320 
2321 /**
2322  * ib_modify_port - Modifies the attributes for the specified port.
2323  * @device: The device to modify.
2324  * @port_num: The number of the port to modify.
2325  * @port_modify_mask: Mask used to specify which attributes of the port
2326  *   to change.
2327  * @port_modify: New attribute values for the port.
2328  *
2329  * ib_modify_port() changes a port's attributes as specified by the
2330  * @port_modify_mask and @port_modify structure.
2331  */
2332 int ib_modify_port(struct ib_device *device,
2333 		   u8 port_num, int port_modify_mask,
2334 		   struct ib_port_modify *port_modify)
2335 {
2336 	int rc;
2337 
2338 	if (!rdma_is_port_valid(device, port_num))
2339 		return -EINVAL;
2340 
2341 	if (device->ops.modify_port)
2342 		rc = device->ops.modify_port(device, port_num,
2343 					     port_modify_mask,
2344 					     port_modify);
2345 	else
2346 		rc = rdma_protocol_roce(device, port_num) ? 0 : -ENOSYS;
2347 	return rc;
2348 }
2349 EXPORT_SYMBOL(ib_modify_port);
2350 
2351 /**
2352  * ib_find_gid - Returns the port number and GID table index where
2353  *   a specified GID value occurs. Its searches only for IB link layer.
2354  * @device: The device to query.
2355  * @gid: The GID value to search for.
2356  * @port_num: The port number of the device where the GID value was found.
2357  * @index: The index into the GID table where the GID was found.  This
2358  *   parameter may be NULL.
2359  */
2360 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2361 		u8 *port_num, u16 *index)
2362 {
2363 	union ib_gid tmp_gid;
2364 	unsigned int port;
2365 	int ret, i;
2366 
2367 	rdma_for_each_port (device, port) {
2368 		if (!rdma_protocol_ib(device, port))
2369 			continue;
2370 
2371 		for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2372 		     ++i) {
2373 			ret = rdma_query_gid(device, port, i, &tmp_gid);
2374 			if (ret)
2375 				return ret;
2376 			if (!memcmp(&tmp_gid, gid, sizeof *gid)) {
2377 				*port_num = port;
2378 				if (index)
2379 					*index = i;
2380 				return 0;
2381 			}
2382 		}
2383 	}
2384 
2385 	return -ENOENT;
2386 }
2387 EXPORT_SYMBOL(ib_find_gid);
2388 
2389 /**
2390  * ib_find_pkey - Returns the PKey table index where a specified
2391  *   PKey value occurs.
2392  * @device: The device to query.
2393  * @port_num: The port number of the device to search for the PKey.
2394  * @pkey: The PKey value to search for.
2395  * @index: The index into the PKey table where the PKey was found.
2396  */
2397 int ib_find_pkey(struct ib_device *device,
2398 		 u8 port_num, u16 pkey, u16 *index)
2399 {
2400 	int ret, i;
2401 	u16 tmp_pkey;
2402 	int partial_ix = -1;
2403 
2404 	for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2405 	     ++i) {
2406 		ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2407 		if (ret)
2408 			return ret;
2409 		if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2410 			/* if there is full-member pkey take it.*/
2411 			if (tmp_pkey & 0x8000) {
2412 				*index = i;
2413 				return 0;
2414 			}
2415 			if (partial_ix < 0)
2416 				partial_ix = i;
2417 		}
2418 	}
2419 
2420 	/*no full-member, if exists take the limited*/
2421 	if (partial_ix >= 0) {
2422 		*index = partial_ix;
2423 		return 0;
2424 	}
2425 	return -ENOENT;
2426 }
2427 EXPORT_SYMBOL(ib_find_pkey);
2428 
2429 /**
2430  * ib_get_net_dev_by_params() - Return the appropriate net_dev
2431  * for a received CM request
2432  * @dev:	An RDMA device on which the request has been received.
2433  * @port:	Port number on the RDMA device.
2434  * @pkey:	The Pkey the request came on.
2435  * @gid:	A GID that the net_dev uses to communicate.
2436  * @addr:	Contains the IP address that the request specified as its
2437  *		destination.
2438  *
2439  */
2440 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2441 					    u8 port,
2442 					    u16 pkey,
2443 					    const union ib_gid *gid,
2444 					    const struct sockaddr *addr)
2445 {
2446 	struct net_device *net_dev = NULL;
2447 	unsigned long index;
2448 	void *client_data;
2449 
2450 	if (!rdma_protocol_ib(dev, port))
2451 		return NULL;
2452 
2453 	/*
2454 	 * Holding the read side guarantees that the client will not become
2455 	 * unregistered while we are calling get_net_dev_by_params()
2456 	 */
2457 	down_read(&dev->client_data_rwsem);
2458 	xan_for_each_marked (&dev->client_data, index, client_data,
2459 			     CLIENT_DATA_REGISTERED) {
2460 		struct ib_client *client = xa_load(&clients, index);
2461 
2462 		if (!client || !client->get_net_dev_by_params)
2463 			continue;
2464 
2465 		net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2466 							addr, client_data);
2467 		if (net_dev)
2468 			break;
2469 	}
2470 	up_read(&dev->client_data_rwsem);
2471 
2472 	return net_dev;
2473 }
2474 EXPORT_SYMBOL(ib_get_net_dev_by_params);
2475 
2476 void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2477 {
2478 	struct ib_device_ops *dev_ops = &dev->ops;
2479 #define SET_DEVICE_OP(ptr, name)                                               \
2480 	do {                                                                   \
2481 		if (ops->name)                                                 \
2482 			if (!((ptr)->name))				       \
2483 				(ptr)->name = ops->name;                       \
2484 	} while (0)
2485 
2486 #define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2487 
2488 	if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2489 		WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2490 			dev_ops->driver_id != ops->driver_id);
2491 		dev_ops->driver_id = ops->driver_id;
2492 	}
2493 	if (ops->owner) {
2494 		WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2495 		dev_ops->owner = ops->owner;
2496 	}
2497 	if (ops->uverbs_abi_ver)
2498 		dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2499 
2500 	dev_ops->uverbs_no_driver_id_binding |=
2501 		ops->uverbs_no_driver_id_binding;
2502 
2503 	SET_DEVICE_OP(dev_ops, add_gid);
2504 	SET_DEVICE_OP(dev_ops, advise_mr);
2505 	SET_DEVICE_OP(dev_ops, alloc_dm);
2506 	SET_DEVICE_OP(dev_ops, alloc_fmr);
2507 	SET_DEVICE_OP(dev_ops, alloc_hw_stats);
2508 	SET_DEVICE_OP(dev_ops, alloc_mr);
2509 	SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2510 	SET_DEVICE_OP(dev_ops, alloc_mw);
2511 	SET_DEVICE_OP(dev_ops, alloc_pd);
2512 	SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2513 	SET_DEVICE_OP(dev_ops, alloc_ucontext);
2514 	SET_DEVICE_OP(dev_ops, alloc_xrcd);
2515 	SET_DEVICE_OP(dev_ops, attach_mcast);
2516 	SET_DEVICE_OP(dev_ops, check_mr_status);
2517 	SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2518 	SET_DEVICE_OP(dev_ops, counter_bind_qp);
2519 	SET_DEVICE_OP(dev_ops, counter_dealloc);
2520 	SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2521 	SET_DEVICE_OP(dev_ops, counter_update_stats);
2522 	SET_DEVICE_OP(dev_ops, create_ah);
2523 	SET_DEVICE_OP(dev_ops, create_counters);
2524 	SET_DEVICE_OP(dev_ops, create_cq);
2525 	SET_DEVICE_OP(dev_ops, create_flow);
2526 	SET_DEVICE_OP(dev_ops, create_flow_action_esp);
2527 	SET_DEVICE_OP(dev_ops, create_qp);
2528 	SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2529 	SET_DEVICE_OP(dev_ops, create_srq);
2530 	SET_DEVICE_OP(dev_ops, create_wq);
2531 	SET_DEVICE_OP(dev_ops, dealloc_dm);
2532 	SET_DEVICE_OP(dev_ops, dealloc_driver);
2533 	SET_DEVICE_OP(dev_ops, dealloc_fmr);
2534 	SET_DEVICE_OP(dev_ops, dealloc_mw);
2535 	SET_DEVICE_OP(dev_ops, dealloc_pd);
2536 	SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2537 	SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2538 	SET_DEVICE_OP(dev_ops, del_gid);
2539 	SET_DEVICE_OP(dev_ops, dereg_mr);
2540 	SET_DEVICE_OP(dev_ops, destroy_ah);
2541 	SET_DEVICE_OP(dev_ops, destroy_counters);
2542 	SET_DEVICE_OP(dev_ops, destroy_cq);
2543 	SET_DEVICE_OP(dev_ops, destroy_flow);
2544 	SET_DEVICE_OP(dev_ops, destroy_flow_action);
2545 	SET_DEVICE_OP(dev_ops, destroy_qp);
2546 	SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2547 	SET_DEVICE_OP(dev_ops, destroy_srq);
2548 	SET_DEVICE_OP(dev_ops, destroy_wq);
2549 	SET_DEVICE_OP(dev_ops, detach_mcast);
2550 	SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2551 	SET_DEVICE_OP(dev_ops, drain_rq);
2552 	SET_DEVICE_OP(dev_ops, drain_sq);
2553 	SET_DEVICE_OP(dev_ops, enable_driver);
2554 	SET_DEVICE_OP(dev_ops, fill_res_entry);
2555 	SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2556 	SET_DEVICE_OP(dev_ops, get_dma_mr);
2557 	SET_DEVICE_OP(dev_ops, get_hw_stats);
2558 	SET_DEVICE_OP(dev_ops, get_link_layer);
2559 	SET_DEVICE_OP(dev_ops, get_netdev);
2560 	SET_DEVICE_OP(dev_ops, get_port_immutable);
2561 	SET_DEVICE_OP(dev_ops, get_vector_affinity);
2562 	SET_DEVICE_OP(dev_ops, get_vf_config);
2563 	SET_DEVICE_OP(dev_ops, get_vf_stats);
2564 	SET_DEVICE_OP(dev_ops, init_port);
2565 	SET_DEVICE_OP(dev_ops, iw_accept);
2566 	SET_DEVICE_OP(dev_ops, iw_add_ref);
2567 	SET_DEVICE_OP(dev_ops, iw_connect);
2568 	SET_DEVICE_OP(dev_ops, iw_create_listen);
2569 	SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2570 	SET_DEVICE_OP(dev_ops, iw_get_qp);
2571 	SET_DEVICE_OP(dev_ops, iw_reject);
2572 	SET_DEVICE_OP(dev_ops, iw_rem_ref);
2573 	SET_DEVICE_OP(dev_ops, map_mr_sg);
2574 	SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2575 	SET_DEVICE_OP(dev_ops, map_phys_fmr);
2576 	SET_DEVICE_OP(dev_ops, mmap);
2577 	SET_DEVICE_OP(dev_ops, modify_ah);
2578 	SET_DEVICE_OP(dev_ops, modify_cq);
2579 	SET_DEVICE_OP(dev_ops, modify_device);
2580 	SET_DEVICE_OP(dev_ops, modify_flow_action_esp);
2581 	SET_DEVICE_OP(dev_ops, modify_port);
2582 	SET_DEVICE_OP(dev_ops, modify_qp);
2583 	SET_DEVICE_OP(dev_ops, modify_srq);
2584 	SET_DEVICE_OP(dev_ops, modify_wq);
2585 	SET_DEVICE_OP(dev_ops, peek_cq);
2586 	SET_DEVICE_OP(dev_ops, poll_cq);
2587 	SET_DEVICE_OP(dev_ops, post_recv);
2588 	SET_DEVICE_OP(dev_ops, post_send);
2589 	SET_DEVICE_OP(dev_ops, post_srq_recv);
2590 	SET_DEVICE_OP(dev_ops, process_mad);
2591 	SET_DEVICE_OP(dev_ops, query_ah);
2592 	SET_DEVICE_OP(dev_ops, query_device);
2593 	SET_DEVICE_OP(dev_ops, query_gid);
2594 	SET_DEVICE_OP(dev_ops, query_pkey);
2595 	SET_DEVICE_OP(dev_ops, query_port);
2596 	SET_DEVICE_OP(dev_ops, query_qp);
2597 	SET_DEVICE_OP(dev_ops, query_srq);
2598 	SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2599 	SET_DEVICE_OP(dev_ops, read_counters);
2600 	SET_DEVICE_OP(dev_ops, reg_dm_mr);
2601 	SET_DEVICE_OP(dev_ops, reg_user_mr);
2602 	SET_DEVICE_OP(dev_ops, req_ncomp_notif);
2603 	SET_DEVICE_OP(dev_ops, req_notify_cq);
2604 	SET_DEVICE_OP(dev_ops, rereg_user_mr);
2605 	SET_DEVICE_OP(dev_ops, resize_cq);
2606 	SET_DEVICE_OP(dev_ops, set_vf_guid);
2607 	SET_DEVICE_OP(dev_ops, set_vf_link_state);
2608 	SET_DEVICE_OP(dev_ops, unmap_fmr);
2609 
2610 	SET_OBJ_SIZE(dev_ops, ib_ah);
2611 	SET_OBJ_SIZE(dev_ops, ib_cq);
2612 	SET_OBJ_SIZE(dev_ops, ib_pd);
2613 	SET_OBJ_SIZE(dev_ops, ib_srq);
2614 	SET_OBJ_SIZE(dev_ops, ib_ucontext);
2615 }
2616 EXPORT_SYMBOL(ib_set_device_ops);
2617 
2618 static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2619 	[RDMA_NL_LS_OP_RESOLVE] = {
2620 		.doit = ib_nl_handle_resolve_resp,
2621 		.flags = RDMA_NL_ADMIN_PERM,
2622 	},
2623 	[RDMA_NL_LS_OP_SET_TIMEOUT] = {
2624 		.doit = ib_nl_handle_set_timeout,
2625 		.flags = RDMA_NL_ADMIN_PERM,
2626 	},
2627 	[RDMA_NL_LS_OP_IP_RESOLVE] = {
2628 		.doit = ib_nl_handle_ip_res_resp,
2629 		.flags = RDMA_NL_ADMIN_PERM,
2630 	},
2631 };
2632 
2633 static int __init ib_core_init(void)
2634 {
2635 	int ret;
2636 
2637 	ib_wq = alloc_workqueue("infiniband", 0, 0);
2638 	if (!ib_wq)
2639 		return -ENOMEM;
2640 
2641 	ib_comp_wq = alloc_workqueue("ib-comp-wq",
2642 			WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2643 	if (!ib_comp_wq) {
2644 		ret = -ENOMEM;
2645 		goto err;
2646 	}
2647 
2648 	ib_comp_unbound_wq =
2649 		alloc_workqueue("ib-comp-unb-wq",
2650 				WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2651 				WQ_SYSFS, WQ_UNBOUND_MAX_ACTIVE);
2652 	if (!ib_comp_unbound_wq) {
2653 		ret = -ENOMEM;
2654 		goto err_comp;
2655 	}
2656 
2657 	ret = class_register(&ib_class);
2658 	if (ret) {
2659 		pr_warn("Couldn't create InfiniBand device class\n");
2660 		goto err_comp_unbound;
2661 	}
2662 
2663 	ret = rdma_nl_init();
2664 	if (ret) {
2665 		pr_warn("Couldn't init IB netlink interface: err %d\n", ret);
2666 		goto err_sysfs;
2667 	}
2668 
2669 	ret = addr_init();
2670 	if (ret) {
2671 		pr_warn("Could't init IB address resolution\n");
2672 		goto err_ibnl;
2673 	}
2674 
2675 	ret = ib_mad_init();
2676 	if (ret) {
2677 		pr_warn("Couldn't init IB MAD\n");
2678 		goto err_addr;
2679 	}
2680 
2681 	ret = ib_sa_init();
2682 	if (ret) {
2683 		pr_warn("Couldn't init SA\n");
2684 		goto err_mad;
2685 	}
2686 
2687 	ret = register_blocking_lsm_notifier(&ibdev_lsm_nb);
2688 	if (ret) {
2689 		pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2690 		goto err_sa;
2691 	}
2692 
2693 	ret = register_pernet_device(&rdma_dev_net_ops);
2694 	if (ret) {
2695 		pr_warn("Couldn't init compat dev. ret %d\n", ret);
2696 		goto err_compat;
2697 	}
2698 
2699 	nldev_init();
2700 	rdma_nl_register(RDMA_NL_LS, ibnl_ls_cb_table);
2701 	roce_gid_mgmt_init();
2702 
2703 	return 0;
2704 
2705 err_compat:
2706 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2707 err_sa:
2708 	ib_sa_cleanup();
2709 err_mad:
2710 	ib_mad_cleanup();
2711 err_addr:
2712 	addr_cleanup();
2713 err_ibnl:
2714 	rdma_nl_exit();
2715 err_sysfs:
2716 	class_unregister(&ib_class);
2717 err_comp_unbound:
2718 	destroy_workqueue(ib_comp_unbound_wq);
2719 err_comp:
2720 	destroy_workqueue(ib_comp_wq);
2721 err:
2722 	destroy_workqueue(ib_wq);
2723 	return ret;
2724 }
2725 
2726 static void __exit ib_core_cleanup(void)
2727 {
2728 	roce_gid_mgmt_cleanup();
2729 	nldev_exit();
2730 	rdma_nl_unregister(RDMA_NL_LS);
2731 	unregister_pernet_device(&rdma_dev_net_ops);
2732 	unregister_blocking_lsm_notifier(&ibdev_lsm_nb);
2733 	ib_sa_cleanup();
2734 	ib_mad_cleanup();
2735 	addr_cleanup();
2736 	rdma_nl_exit();
2737 	class_unregister(&ib_class);
2738 	destroy_workqueue(ib_comp_unbound_wq);
2739 	destroy_workqueue(ib_comp_wq);
2740 	/* Make sure that any pending umem accounting work is done. */
2741 	destroy_workqueue(ib_wq);
2742 	flush_workqueue(system_unbound_wq);
2743 	WARN_ON(!xa_empty(&clients));
2744 	WARN_ON(!xa_empty(&devices));
2745 }
2746 
2747 MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2748 
2749 /* ib core relies on netdev stack to first register net_ns_type_operations
2750  * ns kobject type before ib_core initialization.
2751  */
2752 fs_initcall(ib_core_init);
2753 module_exit(ib_core_cleanup);
2754