1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 50 #define CMA_IBOE_PACKET_LIFETIME 18 51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 52 53 static const char * const cma_events[] = { 54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 62 [RDMA_CM_EVENT_REJECTED] = "rejected", 63 [RDMA_CM_EVENT_ESTABLISHED] = "established", 64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 70 }; 71 72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 73 enum ib_gid_type gid_type); 74 75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 76 { 77 size_t index = event; 78 79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 80 cma_events[index] : "unrecognized event"; 81 } 82 EXPORT_SYMBOL(rdma_event_msg); 83 84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 85 int reason) 86 { 87 if (rdma_ib_or_roce(id->device, id->port_num)) 88 return ibcm_reject_msg(reason); 89 90 if (rdma_protocol_iwarp(id->device, id->port_num)) 91 return iwcm_reject_msg(reason); 92 93 WARN_ON_ONCE(1); 94 return "unrecognized transport"; 95 } 96 EXPORT_SYMBOL(rdma_reject_msg); 97 98 /** 99 * rdma_is_consumer_reject - return true if the consumer rejected the connect 100 * request. 101 * @id: Communication identifier that received the REJECT event. 102 * @reason: Value returned in the REJECT event status field. 103 */ 104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 105 { 106 if (rdma_ib_or_roce(id->device, id->port_num)) 107 return reason == IB_CM_REJ_CONSUMER_DEFINED; 108 109 if (rdma_protocol_iwarp(id->device, id->port_num)) 110 return reason == -ECONNREFUSED; 111 112 WARN_ON_ONCE(1); 113 return false; 114 } 115 116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 117 struct rdma_cm_event *ev, u8 *data_len) 118 { 119 const void *p; 120 121 if (rdma_is_consumer_reject(id, ev->status)) { 122 *data_len = ev->param.conn.private_data_len; 123 p = ev->param.conn.private_data; 124 } else { 125 *data_len = 0; 126 p = NULL; 127 } 128 return p; 129 } 130 EXPORT_SYMBOL(rdma_consumer_reject_data); 131 132 /** 133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 134 * @id: Communication Identifier 135 */ 136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 137 { 138 struct rdma_id_private *id_priv; 139 140 id_priv = container_of(id, struct rdma_id_private, id); 141 if (id->device->node_type == RDMA_NODE_RNIC) 142 return id_priv->cm_id.iw; 143 return NULL; 144 } 145 EXPORT_SYMBOL(rdma_iw_cm_id); 146 147 /** 148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 149 * @res: rdma resource tracking entry pointer 150 */ 151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 152 { 153 struct rdma_id_private *id_priv = 154 container_of(res, struct rdma_id_private, res); 155 156 return &id_priv->id; 157 } 158 EXPORT_SYMBOL(rdma_res_to_id); 159 160 static int cma_add_one(struct ib_device *device); 161 static void cma_remove_one(struct ib_device *device, void *client_data); 162 163 static struct ib_client cma_client = { 164 .name = "cma", 165 .add = cma_add_one, 166 .remove = cma_remove_one 167 }; 168 169 static struct ib_sa_client sa_client; 170 static LIST_HEAD(dev_list); 171 static LIST_HEAD(listen_any_list); 172 static DEFINE_MUTEX(lock); 173 static struct rb_root id_table = RB_ROOT; 174 /* Serialize operations of id_table tree */ 175 static DEFINE_SPINLOCK(id_table_lock); 176 static struct workqueue_struct *cma_wq; 177 static unsigned int cma_pernet_id; 178 179 struct cma_pernet { 180 struct xarray tcp_ps; 181 struct xarray udp_ps; 182 struct xarray ipoib_ps; 183 struct xarray ib_ps; 184 }; 185 186 static struct cma_pernet *cma_pernet(struct net *net) 187 { 188 return net_generic(net, cma_pernet_id); 189 } 190 191 static 192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 193 { 194 struct cma_pernet *pernet = cma_pernet(net); 195 196 switch (ps) { 197 case RDMA_PS_TCP: 198 return &pernet->tcp_ps; 199 case RDMA_PS_UDP: 200 return &pernet->udp_ps; 201 case RDMA_PS_IPOIB: 202 return &pernet->ipoib_ps; 203 case RDMA_PS_IB: 204 return &pernet->ib_ps; 205 default: 206 return NULL; 207 } 208 } 209 210 struct id_table_entry { 211 struct list_head id_list; 212 struct rb_node rb_node; 213 }; 214 215 struct cma_device { 216 struct list_head list; 217 struct ib_device *device; 218 struct completion comp; 219 refcount_t refcount; 220 struct list_head id_list; 221 enum ib_gid_type *default_gid_type; 222 u8 *default_roce_tos; 223 }; 224 225 struct rdma_bind_list { 226 enum rdma_ucm_port_space ps; 227 struct hlist_head owners; 228 unsigned short port; 229 }; 230 231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 232 struct rdma_bind_list *bind_list, int snum) 233 { 234 struct xarray *xa = cma_pernet_xa(net, ps); 235 236 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 237 } 238 239 static struct rdma_bind_list *cma_ps_find(struct net *net, 240 enum rdma_ucm_port_space ps, int snum) 241 { 242 struct xarray *xa = cma_pernet_xa(net, ps); 243 244 return xa_load(xa, snum); 245 } 246 247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 248 int snum) 249 { 250 struct xarray *xa = cma_pernet_xa(net, ps); 251 252 xa_erase(xa, snum); 253 } 254 255 enum { 256 CMA_OPTION_AFONLY, 257 }; 258 259 void cma_dev_get(struct cma_device *cma_dev) 260 { 261 refcount_inc(&cma_dev->refcount); 262 } 263 264 void cma_dev_put(struct cma_device *cma_dev) 265 { 266 if (refcount_dec_and_test(&cma_dev->refcount)) 267 complete(&cma_dev->comp); 268 } 269 270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 271 void *cookie) 272 { 273 struct cma_device *cma_dev; 274 struct cma_device *found_cma_dev = NULL; 275 276 mutex_lock(&lock); 277 278 list_for_each_entry(cma_dev, &dev_list, list) 279 if (filter(cma_dev->device, cookie)) { 280 found_cma_dev = cma_dev; 281 break; 282 } 283 284 if (found_cma_dev) 285 cma_dev_get(found_cma_dev); 286 mutex_unlock(&lock); 287 return found_cma_dev; 288 } 289 290 int cma_get_default_gid_type(struct cma_device *cma_dev, 291 u32 port) 292 { 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 297 } 298 299 int cma_set_default_gid_type(struct cma_device *cma_dev, 300 u32 port, 301 enum ib_gid_type default_gid_type) 302 { 303 unsigned long supported_gids; 304 305 if (!rdma_is_port_valid(cma_dev->device, port)) 306 return -EINVAL; 307 308 if (default_gid_type == IB_GID_TYPE_IB && 309 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 310 default_gid_type = IB_GID_TYPE_ROCE; 311 312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 313 314 if (!(supported_gids & 1 << default_gid_type)) 315 return -EINVAL; 316 317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 318 default_gid_type; 319 320 return 0; 321 } 322 323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 324 { 325 if (!rdma_is_port_valid(cma_dev->device, port)) 326 return -EINVAL; 327 328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 329 } 330 331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 332 u8 default_roce_tos) 333 { 334 if (!rdma_is_port_valid(cma_dev->device, port)) 335 return -EINVAL; 336 337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 338 default_roce_tos; 339 340 return 0; 341 } 342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 343 { 344 return cma_dev->device; 345 } 346 347 /* 348 * Device removal can occur at anytime, so we need extra handling to 349 * serialize notifying the user of device removal with other callbacks. 350 * We do this by disabling removal notification while a callback is in process, 351 * and reporting it after the callback completes. 352 */ 353 354 struct cma_multicast { 355 struct rdma_id_private *id_priv; 356 union { 357 struct ib_sa_multicast *sa_mc; 358 struct { 359 struct work_struct work; 360 struct rdma_cm_event event; 361 } iboe_join; 362 }; 363 struct list_head list; 364 void *context; 365 struct sockaddr_storage addr; 366 u8 join_state; 367 }; 368 369 struct cma_work { 370 struct work_struct work; 371 struct rdma_id_private *id; 372 enum rdma_cm_state old_state; 373 enum rdma_cm_state new_state; 374 struct rdma_cm_event event; 375 }; 376 377 union cma_ip_addr { 378 struct in6_addr ip6; 379 struct { 380 __be32 pad[3]; 381 __be32 addr; 382 } ip4; 383 }; 384 385 struct cma_hdr { 386 u8 cma_version; 387 u8 ip_version; /* IP version: 7:4 */ 388 __be16 port; 389 union cma_ip_addr src_addr; 390 union cma_ip_addr dst_addr; 391 }; 392 393 #define CMA_VERSION 0x00 394 395 struct cma_req_info { 396 struct sockaddr_storage listen_addr_storage; 397 struct sockaddr_storage src_addr_storage; 398 struct ib_device *device; 399 union ib_gid local_gid; 400 __be64 service_id; 401 int port; 402 bool has_gid; 403 u16 pkey; 404 }; 405 406 static int cma_comp_exch(struct rdma_id_private *id_priv, 407 enum rdma_cm_state comp, enum rdma_cm_state exch) 408 { 409 unsigned long flags; 410 int ret; 411 412 /* 413 * The FSM uses a funny double locking where state is protected by both 414 * the handler_mutex and the spinlock. State is not allowed to change 415 * to/from a handler_mutex protected value without also holding 416 * handler_mutex. 417 */ 418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 419 lockdep_assert_held(&id_priv->handler_mutex); 420 421 spin_lock_irqsave(&id_priv->lock, flags); 422 if ((ret = (id_priv->state == comp))) 423 id_priv->state = exch; 424 spin_unlock_irqrestore(&id_priv->lock, flags); 425 return ret; 426 } 427 428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 429 { 430 return hdr->ip_version >> 4; 431 } 432 433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 434 { 435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 436 } 437 438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 439 { 440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 441 } 442 443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 444 { 445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 446 } 447 448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 449 { 450 struct in_device *in_dev = NULL; 451 452 if (ndev) { 453 rtnl_lock(); 454 in_dev = __in_dev_get_rtnl(ndev); 455 if (in_dev) { 456 if (join) 457 ip_mc_inc_group(in_dev, 458 *(__be32 *)(mgid->raw + 12)); 459 else 460 ip_mc_dec_group(in_dev, 461 *(__be32 *)(mgid->raw + 12)); 462 } 463 rtnl_unlock(); 464 } 465 return (in_dev) ? 0 : -ENODEV; 466 } 467 468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 469 struct id_table_entry *entry_b) 470 { 471 struct rdma_id_private *id_priv = list_first_entry( 472 &entry_b->id_list, struct rdma_id_private, id_list_entry); 473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 474 struct sockaddr *sb = cma_dst_addr(id_priv); 475 476 if (ifindex_a != ifindex_b) 477 return (ifindex_a > ifindex_b) ? 1 : -1; 478 479 if (sa->sa_family != sb->sa_family) 480 return sa->sa_family - sb->sa_family; 481 482 if (sa->sa_family == AF_INET) 483 return memcmp((char *)&((struct sockaddr_in *)sa)->sin_addr, 484 (char *)&((struct sockaddr_in *)sb)->sin_addr, 485 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 486 487 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 488 &((struct sockaddr_in6 *)sb)->sin6_addr); 489 } 490 491 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 492 { 493 struct rb_node **new, *parent = NULL; 494 struct id_table_entry *this, *node; 495 unsigned long flags; 496 int result; 497 498 node = kzalloc(sizeof(*node), GFP_KERNEL); 499 if (!node) 500 return -ENOMEM; 501 502 spin_lock_irqsave(&id_table_lock, flags); 503 new = &id_table.rb_node; 504 while (*new) { 505 this = container_of(*new, struct id_table_entry, rb_node); 506 result = compare_netdev_and_ip( 507 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 508 cma_dst_addr(node_id_priv), this); 509 510 parent = *new; 511 if (result < 0) 512 new = &((*new)->rb_left); 513 else if (result > 0) 514 new = &((*new)->rb_right); 515 else { 516 list_add_tail(&node_id_priv->id_list_entry, 517 &this->id_list); 518 kfree(node); 519 goto unlock; 520 } 521 } 522 523 INIT_LIST_HEAD(&node->id_list); 524 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 525 526 rb_link_node(&node->rb_node, parent, new); 527 rb_insert_color(&node->rb_node, &id_table); 528 529 unlock: 530 spin_unlock_irqrestore(&id_table_lock, flags); 531 return 0; 532 } 533 534 static struct id_table_entry * 535 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 536 { 537 struct rb_node *node = root->rb_node; 538 struct id_table_entry *data; 539 int result; 540 541 while (node) { 542 data = container_of(node, struct id_table_entry, rb_node); 543 result = compare_netdev_and_ip(ifindex, sa, data); 544 if (result < 0) 545 node = node->rb_left; 546 else if (result > 0) 547 node = node->rb_right; 548 else 549 return data; 550 } 551 552 return NULL; 553 } 554 555 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 556 { 557 struct id_table_entry *data; 558 unsigned long flags; 559 560 spin_lock_irqsave(&id_table_lock, flags); 561 if (list_empty(&id_priv->id_list_entry)) 562 goto out; 563 564 data = node_from_ndev_ip(&id_table, 565 id_priv->id.route.addr.dev_addr.bound_dev_if, 566 cma_dst_addr(id_priv)); 567 if (!data) 568 goto out; 569 570 list_del_init(&id_priv->id_list_entry); 571 if (list_empty(&data->id_list)) { 572 rb_erase(&data->rb_node, &id_table); 573 kfree(data); 574 } 575 out: 576 spin_unlock_irqrestore(&id_table_lock, flags); 577 } 578 579 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 580 struct cma_device *cma_dev) 581 { 582 cma_dev_get(cma_dev); 583 id_priv->cma_dev = cma_dev; 584 id_priv->id.device = cma_dev->device; 585 id_priv->id.route.addr.dev_addr.transport = 586 rdma_node_get_transport(cma_dev->device->node_type); 587 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 588 589 trace_cm_id_attach(id_priv, cma_dev->device); 590 } 591 592 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 593 struct cma_device *cma_dev) 594 { 595 _cma_attach_to_dev(id_priv, cma_dev); 596 id_priv->gid_type = 597 cma_dev->default_gid_type[id_priv->id.port_num - 598 rdma_start_port(cma_dev->device)]; 599 } 600 601 static void cma_release_dev(struct rdma_id_private *id_priv) 602 { 603 mutex_lock(&lock); 604 list_del_init(&id_priv->device_item); 605 cma_dev_put(id_priv->cma_dev); 606 id_priv->cma_dev = NULL; 607 id_priv->id.device = NULL; 608 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 609 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 610 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 611 } 612 mutex_unlock(&lock); 613 } 614 615 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 616 { 617 return id_priv->id.route.addr.src_addr.ss_family; 618 } 619 620 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 621 { 622 struct ib_sa_mcmember_rec rec; 623 int ret = 0; 624 625 if (id_priv->qkey) { 626 if (qkey && id_priv->qkey != qkey) 627 return -EINVAL; 628 return 0; 629 } 630 631 if (qkey) { 632 id_priv->qkey = qkey; 633 return 0; 634 } 635 636 switch (id_priv->id.ps) { 637 case RDMA_PS_UDP: 638 case RDMA_PS_IB: 639 id_priv->qkey = RDMA_UDP_QKEY; 640 break; 641 case RDMA_PS_IPOIB: 642 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 643 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 644 id_priv->id.port_num, &rec.mgid, 645 &rec); 646 if (!ret) 647 id_priv->qkey = be32_to_cpu(rec.qkey); 648 break; 649 default: 650 break; 651 } 652 return ret; 653 } 654 655 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 656 { 657 dev_addr->dev_type = ARPHRD_INFINIBAND; 658 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 659 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 660 } 661 662 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 663 { 664 int ret; 665 666 if (addr->sa_family != AF_IB) { 667 ret = rdma_translate_ip(addr, dev_addr); 668 } else { 669 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 670 ret = 0; 671 } 672 673 return ret; 674 } 675 676 static const struct ib_gid_attr * 677 cma_validate_port(struct ib_device *device, u32 port, 678 enum ib_gid_type gid_type, 679 union ib_gid *gid, 680 struct rdma_id_private *id_priv) 681 { 682 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 683 int bound_if_index = dev_addr->bound_dev_if; 684 const struct ib_gid_attr *sgid_attr; 685 int dev_type = dev_addr->dev_type; 686 struct net_device *ndev = NULL; 687 688 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 689 return ERR_PTR(-ENODEV); 690 691 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 692 return ERR_PTR(-ENODEV); 693 694 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 695 return ERR_PTR(-ENODEV); 696 697 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 698 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 699 if (!ndev) 700 return ERR_PTR(-ENODEV); 701 } else { 702 gid_type = IB_GID_TYPE_IB; 703 } 704 705 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 706 if (ndev) 707 dev_put(ndev); 708 return sgid_attr; 709 } 710 711 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 712 const struct ib_gid_attr *sgid_attr) 713 { 714 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 715 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 716 } 717 718 /** 719 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 720 * based on source ip address. 721 * @id_priv: cm_id which should be bound to cma device 722 * 723 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 724 * based on source IP address. It returns 0 on success or error code otherwise. 725 * It is applicable to active and passive side cm_id. 726 */ 727 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 728 { 729 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 730 const struct ib_gid_attr *sgid_attr; 731 union ib_gid gid, iboe_gid, *gidp; 732 struct cma_device *cma_dev; 733 enum ib_gid_type gid_type; 734 int ret = -ENODEV; 735 u32 port; 736 737 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 738 id_priv->id.ps == RDMA_PS_IPOIB) 739 return -EINVAL; 740 741 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 742 &iboe_gid); 743 744 memcpy(&gid, dev_addr->src_dev_addr + 745 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 746 747 mutex_lock(&lock); 748 list_for_each_entry(cma_dev, &dev_list, list) { 749 rdma_for_each_port (cma_dev->device, port) { 750 gidp = rdma_protocol_roce(cma_dev->device, port) ? 751 &iboe_gid : &gid; 752 gid_type = cma_dev->default_gid_type[port - 1]; 753 sgid_attr = cma_validate_port(cma_dev->device, port, 754 gid_type, gidp, id_priv); 755 if (!IS_ERR(sgid_attr)) { 756 id_priv->id.port_num = port; 757 cma_bind_sgid_attr(id_priv, sgid_attr); 758 cma_attach_to_dev(id_priv, cma_dev); 759 ret = 0; 760 goto out; 761 } 762 } 763 } 764 out: 765 mutex_unlock(&lock); 766 return ret; 767 } 768 769 /** 770 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 771 * @id_priv: cm id to bind to cma device 772 * @listen_id_priv: listener cm id to match against 773 * @req: Pointer to req structure containaining incoming 774 * request information 775 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 776 * rdma device matches for listen_id and incoming request. It also verifies 777 * that a GID table entry is present for the source address. 778 * Returns 0 on success, or returns error code otherwise. 779 */ 780 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 781 const struct rdma_id_private *listen_id_priv, 782 struct cma_req_info *req) 783 { 784 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 785 const struct ib_gid_attr *sgid_attr; 786 enum ib_gid_type gid_type; 787 union ib_gid gid; 788 789 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 790 id_priv->id.ps == RDMA_PS_IPOIB) 791 return -EINVAL; 792 793 if (rdma_protocol_roce(req->device, req->port)) 794 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 795 &gid); 796 else 797 memcpy(&gid, dev_addr->src_dev_addr + 798 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 799 800 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 801 sgid_attr = cma_validate_port(req->device, req->port, 802 gid_type, &gid, id_priv); 803 if (IS_ERR(sgid_attr)) 804 return PTR_ERR(sgid_attr); 805 806 id_priv->id.port_num = req->port; 807 cma_bind_sgid_attr(id_priv, sgid_attr); 808 /* Need to acquire lock to protect against reader 809 * of cma_dev->id_list such as cma_netdev_callback() and 810 * cma_process_remove(). 811 */ 812 mutex_lock(&lock); 813 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 814 mutex_unlock(&lock); 815 rdma_restrack_add(&id_priv->res); 816 return 0; 817 } 818 819 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 820 const struct rdma_id_private *listen_id_priv) 821 { 822 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 823 const struct ib_gid_attr *sgid_attr; 824 struct cma_device *cma_dev; 825 enum ib_gid_type gid_type; 826 int ret = -ENODEV; 827 union ib_gid gid; 828 u32 port; 829 830 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 831 id_priv->id.ps == RDMA_PS_IPOIB) 832 return -EINVAL; 833 834 memcpy(&gid, dev_addr->src_dev_addr + 835 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 836 837 mutex_lock(&lock); 838 839 cma_dev = listen_id_priv->cma_dev; 840 port = listen_id_priv->id.port_num; 841 gid_type = listen_id_priv->gid_type; 842 sgid_attr = cma_validate_port(cma_dev->device, port, 843 gid_type, &gid, id_priv); 844 if (!IS_ERR(sgid_attr)) { 845 id_priv->id.port_num = port; 846 cma_bind_sgid_attr(id_priv, sgid_attr); 847 ret = 0; 848 goto out; 849 } 850 851 list_for_each_entry(cma_dev, &dev_list, list) { 852 rdma_for_each_port (cma_dev->device, port) { 853 if (listen_id_priv->cma_dev == cma_dev && 854 listen_id_priv->id.port_num == port) 855 continue; 856 857 gid_type = cma_dev->default_gid_type[port - 1]; 858 sgid_attr = cma_validate_port(cma_dev->device, port, 859 gid_type, &gid, id_priv); 860 if (!IS_ERR(sgid_attr)) { 861 id_priv->id.port_num = port; 862 cma_bind_sgid_attr(id_priv, sgid_attr); 863 ret = 0; 864 goto out; 865 } 866 } 867 } 868 869 out: 870 if (!ret) { 871 cma_attach_to_dev(id_priv, cma_dev); 872 rdma_restrack_add(&id_priv->res); 873 } 874 875 mutex_unlock(&lock); 876 return ret; 877 } 878 879 /* 880 * Select the source IB device and address to reach the destination IB address. 881 */ 882 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 883 { 884 struct cma_device *cma_dev, *cur_dev; 885 struct sockaddr_ib *addr; 886 union ib_gid gid, sgid, *dgid; 887 unsigned int p; 888 u16 pkey, index; 889 enum ib_port_state port_state; 890 int ret; 891 int i; 892 893 cma_dev = NULL; 894 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 895 dgid = (union ib_gid *) &addr->sib_addr; 896 pkey = ntohs(addr->sib_pkey); 897 898 mutex_lock(&lock); 899 list_for_each_entry(cur_dev, &dev_list, list) { 900 rdma_for_each_port (cur_dev->device, p) { 901 if (!rdma_cap_af_ib(cur_dev->device, p)) 902 continue; 903 904 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 905 continue; 906 907 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 908 continue; 909 910 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 911 ++i) { 912 ret = rdma_query_gid(cur_dev->device, p, i, 913 &gid); 914 if (ret) 915 continue; 916 917 if (!memcmp(&gid, dgid, sizeof(gid))) { 918 cma_dev = cur_dev; 919 sgid = gid; 920 id_priv->id.port_num = p; 921 goto found; 922 } 923 924 if (!cma_dev && (gid.global.subnet_prefix == 925 dgid->global.subnet_prefix) && 926 port_state == IB_PORT_ACTIVE) { 927 cma_dev = cur_dev; 928 sgid = gid; 929 id_priv->id.port_num = p; 930 goto found; 931 } 932 } 933 } 934 } 935 mutex_unlock(&lock); 936 return -ENODEV; 937 938 found: 939 cma_attach_to_dev(id_priv, cma_dev); 940 rdma_restrack_add(&id_priv->res); 941 mutex_unlock(&lock); 942 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 943 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 944 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 945 return 0; 946 } 947 948 static void cma_id_get(struct rdma_id_private *id_priv) 949 { 950 refcount_inc(&id_priv->refcount); 951 } 952 953 static void cma_id_put(struct rdma_id_private *id_priv) 954 { 955 if (refcount_dec_and_test(&id_priv->refcount)) 956 complete(&id_priv->comp); 957 } 958 959 static struct rdma_id_private * 960 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 961 void *context, enum rdma_ucm_port_space ps, 962 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 963 { 964 struct rdma_id_private *id_priv; 965 966 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 967 if (!id_priv) 968 return ERR_PTR(-ENOMEM); 969 970 id_priv->state = RDMA_CM_IDLE; 971 id_priv->id.context = context; 972 id_priv->id.event_handler = event_handler; 973 id_priv->id.ps = ps; 974 id_priv->id.qp_type = qp_type; 975 id_priv->tos_set = false; 976 id_priv->timeout_set = false; 977 id_priv->min_rnr_timer_set = false; 978 id_priv->gid_type = IB_GID_TYPE_IB; 979 spin_lock_init(&id_priv->lock); 980 mutex_init(&id_priv->qp_mutex); 981 init_completion(&id_priv->comp); 982 refcount_set(&id_priv->refcount, 1); 983 mutex_init(&id_priv->handler_mutex); 984 INIT_LIST_HEAD(&id_priv->device_item); 985 INIT_LIST_HEAD(&id_priv->id_list_entry); 986 INIT_LIST_HEAD(&id_priv->listen_list); 987 INIT_LIST_HEAD(&id_priv->mc_list); 988 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 989 id_priv->id.route.addr.dev_addr.net = get_net(net); 990 id_priv->seq_num &= 0x00ffffff; 991 992 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 993 if (parent) 994 rdma_restrack_parent_name(&id_priv->res, &parent->res); 995 996 return id_priv; 997 } 998 999 struct rdma_cm_id * 1000 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1001 void *context, enum rdma_ucm_port_space ps, 1002 enum ib_qp_type qp_type, const char *caller) 1003 { 1004 struct rdma_id_private *ret; 1005 1006 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1007 if (IS_ERR(ret)) 1008 return ERR_CAST(ret); 1009 1010 rdma_restrack_set_name(&ret->res, caller); 1011 return &ret->id; 1012 } 1013 EXPORT_SYMBOL(__rdma_create_kernel_id); 1014 1015 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1016 void *context, 1017 enum rdma_ucm_port_space ps, 1018 enum ib_qp_type qp_type) 1019 { 1020 struct rdma_id_private *ret; 1021 1022 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1023 ps, qp_type, NULL); 1024 if (IS_ERR(ret)) 1025 return ERR_CAST(ret); 1026 1027 rdma_restrack_set_name(&ret->res, NULL); 1028 return &ret->id; 1029 } 1030 EXPORT_SYMBOL(rdma_create_user_id); 1031 1032 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1033 { 1034 struct ib_qp_attr qp_attr; 1035 int qp_attr_mask, ret; 1036 1037 qp_attr.qp_state = IB_QPS_INIT; 1038 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1039 if (ret) 1040 return ret; 1041 1042 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1043 if (ret) 1044 return ret; 1045 1046 qp_attr.qp_state = IB_QPS_RTR; 1047 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1048 if (ret) 1049 return ret; 1050 1051 qp_attr.qp_state = IB_QPS_RTS; 1052 qp_attr.sq_psn = 0; 1053 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1054 1055 return ret; 1056 } 1057 1058 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1059 { 1060 struct ib_qp_attr qp_attr; 1061 int qp_attr_mask, ret; 1062 1063 qp_attr.qp_state = IB_QPS_INIT; 1064 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1065 if (ret) 1066 return ret; 1067 1068 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1069 } 1070 1071 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1072 struct ib_qp_init_attr *qp_init_attr) 1073 { 1074 struct rdma_id_private *id_priv; 1075 struct ib_qp *qp; 1076 int ret; 1077 1078 id_priv = container_of(id, struct rdma_id_private, id); 1079 if (id->device != pd->device) { 1080 ret = -EINVAL; 1081 goto out_err; 1082 } 1083 1084 qp_init_attr->port_num = id->port_num; 1085 qp = ib_create_qp(pd, qp_init_attr); 1086 if (IS_ERR(qp)) { 1087 ret = PTR_ERR(qp); 1088 goto out_err; 1089 } 1090 1091 if (id->qp_type == IB_QPT_UD) 1092 ret = cma_init_ud_qp(id_priv, qp); 1093 else 1094 ret = cma_init_conn_qp(id_priv, qp); 1095 if (ret) 1096 goto out_destroy; 1097 1098 id->qp = qp; 1099 id_priv->qp_num = qp->qp_num; 1100 id_priv->srq = (qp->srq != NULL); 1101 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1102 return 0; 1103 out_destroy: 1104 ib_destroy_qp(qp); 1105 out_err: 1106 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1107 return ret; 1108 } 1109 EXPORT_SYMBOL(rdma_create_qp); 1110 1111 void rdma_destroy_qp(struct rdma_cm_id *id) 1112 { 1113 struct rdma_id_private *id_priv; 1114 1115 id_priv = container_of(id, struct rdma_id_private, id); 1116 trace_cm_qp_destroy(id_priv); 1117 mutex_lock(&id_priv->qp_mutex); 1118 ib_destroy_qp(id_priv->id.qp); 1119 id_priv->id.qp = NULL; 1120 mutex_unlock(&id_priv->qp_mutex); 1121 } 1122 EXPORT_SYMBOL(rdma_destroy_qp); 1123 1124 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1125 struct rdma_conn_param *conn_param) 1126 { 1127 struct ib_qp_attr qp_attr; 1128 int qp_attr_mask, ret; 1129 1130 mutex_lock(&id_priv->qp_mutex); 1131 if (!id_priv->id.qp) { 1132 ret = 0; 1133 goto out; 1134 } 1135 1136 /* Need to update QP attributes from default values. */ 1137 qp_attr.qp_state = IB_QPS_INIT; 1138 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1139 if (ret) 1140 goto out; 1141 1142 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1143 if (ret) 1144 goto out; 1145 1146 qp_attr.qp_state = IB_QPS_RTR; 1147 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1148 if (ret) 1149 goto out; 1150 1151 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1152 1153 if (conn_param) 1154 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1155 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1156 out: 1157 mutex_unlock(&id_priv->qp_mutex); 1158 return ret; 1159 } 1160 1161 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1162 struct rdma_conn_param *conn_param) 1163 { 1164 struct ib_qp_attr qp_attr; 1165 int qp_attr_mask, ret; 1166 1167 mutex_lock(&id_priv->qp_mutex); 1168 if (!id_priv->id.qp) { 1169 ret = 0; 1170 goto out; 1171 } 1172 1173 qp_attr.qp_state = IB_QPS_RTS; 1174 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1175 if (ret) 1176 goto out; 1177 1178 if (conn_param) 1179 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1180 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1181 out: 1182 mutex_unlock(&id_priv->qp_mutex); 1183 return ret; 1184 } 1185 1186 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1187 { 1188 struct ib_qp_attr qp_attr; 1189 int ret; 1190 1191 mutex_lock(&id_priv->qp_mutex); 1192 if (!id_priv->id.qp) { 1193 ret = 0; 1194 goto out; 1195 } 1196 1197 qp_attr.qp_state = IB_QPS_ERR; 1198 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1199 out: 1200 mutex_unlock(&id_priv->qp_mutex); 1201 return ret; 1202 } 1203 1204 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1205 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1206 { 1207 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1208 int ret; 1209 u16 pkey; 1210 1211 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1212 pkey = 0xffff; 1213 else 1214 pkey = ib_addr_get_pkey(dev_addr); 1215 1216 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1217 pkey, &qp_attr->pkey_index); 1218 if (ret) 1219 return ret; 1220 1221 qp_attr->port_num = id_priv->id.port_num; 1222 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1223 1224 if (id_priv->id.qp_type == IB_QPT_UD) { 1225 ret = cma_set_qkey(id_priv, 0); 1226 if (ret) 1227 return ret; 1228 1229 qp_attr->qkey = id_priv->qkey; 1230 *qp_attr_mask |= IB_QP_QKEY; 1231 } else { 1232 qp_attr->qp_access_flags = 0; 1233 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1234 } 1235 return 0; 1236 } 1237 1238 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1239 int *qp_attr_mask) 1240 { 1241 struct rdma_id_private *id_priv; 1242 int ret = 0; 1243 1244 id_priv = container_of(id, struct rdma_id_private, id); 1245 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1246 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1247 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1248 else 1249 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1250 qp_attr_mask); 1251 1252 if (qp_attr->qp_state == IB_QPS_RTR) 1253 qp_attr->rq_psn = id_priv->seq_num; 1254 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1255 if (!id_priv->cm_id.iw) { 1256 qp_attr->qp_access_flags = 0; 1257 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1258 } else 1259 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1260 qp_attr_mask); 1261 qp_attr->port_num = id_priv->id.port_num; 1262 *qp_attr_mask |= IB_QP_PORT; 1263 } else { 1264 ret = -ENOSYS; 1265 } 1266 1267 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1268 qp_attr->timeout = id_priv->timeout; 1269 1270 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1271 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1272 1273 return ret; 1274 } 1275 EXPORT_SYMBOL(rdma_init_qp_attr); 1276 1277 static inline bool cma_zero_addr(const struct sockaddr *addr) 1278 { 1279 switch (addr->sa_family) { 1280 case AF_INET: 1281 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1282 case AF_INET6: 1283 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1284 case AF_IB: 1285 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1286 default: 1287 return false; 1288 } 1289 } 1290 1291 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1292 { 1293 switch (addr->sa_family) { 1294 case AF_INET: 1295 return ipv4_is_loopback( 1296 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1297 case AF_INET6: 1298 return ipv6_addr_loopback( 1299 &((struct sockaddr_in6 *)addr)->sin6_addr); 1300 case AF_IB: 1301 return ib_addr_loopback( 1302 &((struct sockaddr_ib *)addr)->sib_addr); 1303 default: 1304 return false; 1305 } 1306 } 1307 1308 static inline bool cma_any_addr(const struct sockaddr *addr) 1309 { 1310 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1311 } 1312 1313 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1314 { 1315 if (src->sa_family != dst->sa_family) 1316 return -1; 1317 1318 switch (src->sa_family) { 1319 case AF_INET: 1320 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1321 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1322 case AF_INET6: { 1323 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1324 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1325 bool link_local; 1326 1327 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1328 &dst_addr6->sin6_addr)) 1329 return 1; 1330 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1331 IPV6_ADDR_LINKLOCAL; 1332 /* Link local must match their scope_ids */ 1333 return link_local ? (src_addr6->sin6_scope_id != 1334 dst_addr6->sin6_scope_id) : 1335 0; 1336 } 1337 1338 default: 1339 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1340 &((struct sockaddr_ib *) dst)->sib_addr); 1341 } 1342 } 1343 1344 static __be16 cma_port(const struct sockaddr *addr) 1345 { 1346 struct sockaddr_ib *sib; 1347 1348 switch (addr->sa_family) { 1349 case AF_INET: 1350 return ((struct sockaddr_in *) addr)->sin_port; 1351 case AF_INET6: 1352 return ((struct sockaddr_in6 *) addr)->sin6_port; 1353 case AF_IB: 1354 sib = (struct sockaddr_ib *) addr; 1355 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1356 be64_to_cpu(sib->sib_sid_mask))); 1357 default: 1358 return 0; 1359 } 1360 } 1361 1362 static inline int cma_any_port(const struct sockaddr *addr) 1363 { 1364 return !cma_port(addr); 1365 } 1366 1367 static void cma_save_ib_info(struct sockaddr *src_addr, 1368 struct sockaddr *dst_addr, 1369 const struct rdma_cm_id *listen_id, 1370 const struct sa_path_rec *path) 1371 { 1372 struct sockaddr_ib *listen_ib, *ib; 1373 1374 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1375 if (src_addr) { 1376 ib = (struct sockaddr_ib *)src_addr; 1377 ib->sib_family = AF_IB; 1378 if (path) { 1379 ib->sib_pkey = path->pkey; 1380 ib->sib_flowinfo = path->flow_label; 1381 memcpy(&ib->sib_addr, &path->sgid, 16); 1382 ib->sib_sid = path->service_id; 1383 ib->sib_scope_id = 0; 1384 } else { 1385 ib->sib_pkey = listen_ib->sib_pkey; 1386 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1387 ib->sib_addr = listen_ib->sib_addr; 1388 ib->sib_sid = listen_ib->sib_sid; 1389 ib->sib_scope_id = listen_ib->sib_scope_id; 1390 } 1391 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1392 } 1393 if (dst_addr) { 1394 ib = (struct sockaddr_ib *)dst_addr; 1395 ib->sib_family = AF_IB; 1396 if (path) { 1397 ib->sib_pkey = path->pkey; 1398 ib->sib_flowinfo = path->flow_label; 1399 memcpy(&ib->sib_addr, &path->dgid, 16); 1400 } 1401 } 1402 } 1403 1404 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1405 struct sockaddr_in *dst_addr, 1406 struct cma_hdr *hdr, 1407 __be16 local_port) 1408 { 1409 if (src_addr) { 1410 *src_addr = (struct sockaddr_in) { 1411 .sin_family = AF_INET, 1412 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1413 .sin_port = local_port, 1414 }; 1415 } 1416 1417 if (dst_addr) { 1418 *dst_addr = (struct sockaddr_in) { 1419 .sin_family = AF_INET, 1420 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1421 .sin_port = hdr->port, 1422 }; 1423 } 1424 } 1425 1426 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1427 struct sockaddr_in6 *dst_addr, 1428 struct cma_hdr *hdr, 1429 __be16 local_port) 1430 { 1431 if (src_addr) { 1432 *src_addr = (struct sockaddr_in6) { 1433 .sin6_family = AF_INET6, 1434 .sin6_addr = hdr->dst_addr.ip6, 1435 .sin6_port = local_port, 1436 }; 1437 } 1438 1439 if (dst_addr) { 1440 *dst_addr = (struct sockaddr_in6) { 1441 .sin6_family = AF_INET6, 1442 .sin6_addr = hdr->src_addr.ip6, 1443 .sin6_port = hdr->port, 1444 }; 1445 } 1446 } 1447 1448 static u16 cma_port_from_service_id(__be64 service_id) 1449 { 1450 return (u16)be64_to_cpu(service_id); 1451 } 1452 1453 static int cma_save_ip_info(struct sockaddr *src_addr, 1454 struct sockaddr *dst_addr, 1455 const struct ib_cm_event *ib_event, 1456 __be64 service_id) 1457 { 1458 struct cma_hdr *hdr; 1459 __be16 port; 1460 1461 hdr = ib_event->private_data; 1462 if (hdr->cma_version != CMA_VERSION) 1463 return -EINVAL; 1464 1465 port = htons(cma_port_from_service_id(service_id)); 1466 1467 switch (cma_get_ip_ver(hdr)) { 1468 case 4: 1469 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1470 (struct sockaddr_in *)dst_addr, hdr, port); 1471 break; 1472 case 6: 1473 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1474 (struct sockaddr_in6 *)dst_addr, hdr, port); 1475 break; 1476 default: 1477 return -EAFNOSUPPORT; 1478 } 1479 1480 return 0; 1481 } 1482 1483 static int cma_save_net_info(struct sockaddr *src_addr, 1484 struct sockaddr *dst_addr, 1485 const struct rdma_cm_id *listen_id, 1486 const struct ib_cm_event *ib_event, 1487 sa_family_t sa_family, __be64 service_id) 1488 { 1489 if (sa_family == AF_IB) { 1490 if (ib_event->event == IB_CM_REQ_RECEIVED) 1491 cma_save_ib_info(src_addr, dst_addr, listen_id, 1492 ib_event->param.req_rcvd.primary_path); 1493 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1494 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1495 return 0; 1496 } 1497 1498 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1499 } 1500 1501 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1502 struct cma_req_info *req) 1503 { 1504 const struct ib_cm_req_event_param *req_param = 1505 &ib_event->param.req_rcvd; 1506 const struct ib_cm_sidr_req_event_param *sidr_param = 1507 &ib_event->param.sidr_req_rcvd; 1508 1509 switch (ib_event->event) { 1510 case IB_CM_REQ_RECEIVED: 1511 req->device = req_param->listen_id->device; 1512 req->port = req_param->port; 1513 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1514 sizeof(req->local_gid)); 1515 req->has_gid = true; 1516 req->service_id = req_param->primary_path->service_id; 1517 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1518 if (req->pkey != req_param->bth_pkey) 1519 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1520 "RDMA CMA: in the future this may cause the request to be dropped\n", 1521 req_param->bth_pkey, req->pkey); 1522 break; 1523 case IB_CM_SIDR_REQ_RECEIVED: 1524 req->device = sidr_param->listen_id->device; 1525 req->port = sidr_param->port; 1526 req->has_gid = false; 1527 req->service_id = sidr_param->service_id; 1528 req->pkey = sidr_param->pkey; 1529 if (req->pkey != sidr_param->bth_pkey) 1530 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1531 "RDMA CMA: in the future this may cause the request to be dropped\n", 1532 sidr_param->bth_pkey, req->pkey); 1533 break; 1534 default: 1535 return -EINVAL; 1536 } 1537 1538 return 0; 1539 } 1540 1541 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1542 const struct sockaddr_in *dst_addr, 1543 const struct sockaddr_in *src_addr) 1544 { 1545 __be32 daddr = dst_addr->sin_addr.s_addr, 1546 saddr = src_addr->sin_addr.s_addr; 1547 struct fib_result res; 1548 struct flowi4 fl4; 1549 int err; 1550 bool ret; 1551 1552 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1553 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1554 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1555 ipv4_is_loopback(saddr)) 1556 return false; 1557 1558 memset(&fl4, 0, sizeof(fl4)); 1559 fl4.flowi4_iif = net_dev->ifindex; 1560 fl4.daddr = daddr; 1561 fl4.saddr = saddr; 1562 1563 rcu_read_lock(); 1564 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1565 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1566 rcu_read_unlock(); 1567 1568 return ret; 1569 } 1570 1571 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1572 const struct sockaddr_in6 *dst_addr, 1573 const struct sockaddr_in6 *src_addr) 1574 { 1575 #if IS_ENABLED(CONFIG_IPV6) 1576 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1577 IPV6_ADDR_LINKLOCAL; 1578 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1579 &src_addr->sin6_addr, net_dev->ifindex, 1580 NULL, strict); 1581 bool ret; 1582 1583 if (!rt) 1584 return false; 1585 1586 ret = rt->rt6i_idev->dev == net_dev; 1587 ip6_rt_put(rt); 1588 1589 return ret; 1590 #else 1591 return false; 1592 #endif 1593 } 1594 1595 static bool validate_net_dev(struct net_device *net_dev, 1596 const struct sockaddr *daddr, 1597 const struct sockaddr *saddr) 1598 { 1599 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1600 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1601 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1602 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1603 1604 switch (daddr->sa_family) { 1605 case AF_INET: 1606 return saddr->sa_family == AF_INET && 1607 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1608 1609 case AF_INET6: 1610 return saddr->sa_family == AF_INET6 && 1611 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1612 1613 default: 1614 return false; 1615 } 1616 } 1617 1618 static struct net_device * 1619 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1620 { 1621 const struct ib_gid_attr *sgid_attr = NULL; 1622 struct net_device *ndev; 1623 1624 if (ib_event->event == IB_CM_REQ_RECEIVED) 1625 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1626 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1627 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1628 1629 if (!sgid_attr) 1630 return NULL; 1631 1632 rcu_read_lock(); 1633 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1634 if (IS_ERR(ndev)) 1635 ndev = NULL; 1636 else 1637 dev_hold(ndev); 1638 rcu_read_unlock(); 1639 return ndev; 1640 } 1641 1642 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1643 struct cma_req_info *req) 1644 { 1645 struct sockaddr *listen_addr = 1646 (struct sockaddr *)&req->listen_addr_storage; 1647 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1648 struct net_device *net_dev; 1649 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1650 int err; 1651 1652 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1653 req->service_id); 1654 if (err) 1655 return ERR_PTR(err); 1656 1657 if (rdma_protocol_roce(req->device, req->port)) 1658 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1659 else 1660 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1661 req->pkey, 1662 gid, listen_addr); 1663 if (!net_dev) 1664 return ERR_PTR(-ENODEV); 1665 1666 return net_dev; 1667 } 1668 1669 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1670 { 1671 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1672 } 1673 1674 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1675 const struct cma_hdr *hdr) 1676 { 1677 struct sockaddr *addr = cma_src_addr(id_priv); 1678 __be32 ip4_addr; 1679 struct in6_addr ip6_addr; 1680 1681 if (cma_any_addr(addr) && !id_priv->afonly) 1682 return true; 1683 1684 switch (addr->sa_family) { 1685 case AF_INET: 1686 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1687 if (cma_get_ip_ver(hdr) != 4) 1688 return false; 1689 if (!cma_any_addr(addr) && 1690 hdr->dst_addr.ip4.addr != ip4_addr) 1691 return false; 1692 break; 1693 case AF_INET6: 1694 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1695 if (cma_get_ip_ver(hdr) != 6) 1696 return false; 1697 if (!cma_any_addr(addr) && 1698 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1699 return false; 1700 break; 1701 case AF_IB: 1702 return true; 1703 default: 1704 return false; 1705 } 1706 1707 return true; 1708 } 1709 1710 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1711 { 1712 struct ib_device *device = id->device; 1713 const u32 port_num = id->port_num ?: rdma_start_port(device); 1714 1715 return rdma_protocol_roce(device, port_num); 1716 } 1717 1718 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1719 { 1720 const struct sockaddr *daddr = 1721 (const struct sockaddr *)&req->listen_addr_storage; 1722 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1723 1724 /* Returns true if the req is for IPv6 link local */ 1725 return (daddr->sa_family == AF_INET6 && 1726 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1727 } 1728 1729 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1730 const struct net_device *net_dev, 1731 const struct cma_req_info *req) 1732 { 1733 const struct rdma_addr *addr = &id->route.addr; 1734 1735 if (!net_dev) 1736 /* This request is an AF_IB request */ 1737 return (!id->port_num || id->port_num == req->port) && 1738 (addr->src_addr.ss_family == AF_IB); 1739 1740 /* 1741 * If the request is not for IPv6 link local, allow matching 1742 * request to any netdevice of the one or multiport rdma device. 1743 */ 1744 if (!cma_is_req_ipv6_ll(req)) 1745 return true; 1746 /* 1747 * Net namespaces must match, and if the listner is listening 1748 * on a specific netdevice than netdevice must match as well. 1749 */ 1750 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1751 (!!addr->dev_addr.bound_dev_if == 1752 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1753 return true; 1754 else 1755 return false; 1756 } 1757 1758 static struct rdma_id_private *cma_find_listener( 1759 const struct rdma_bind_list *bind_list, 1760 const struct ib_cm_id *cm_id, 1761 const struct ib_cm_event *ib_event, 1762 const struct cma_req_info *req, 1763 const struct net_device *net_dev) 1764 { 1765 struct rdma_id_private *id_priv, *id_priv_dev; 1766 1767 lockdep_assert_held(&lock); 1768 1769 if (!bind_list) 1770 return ERR_PTR(-EINVAL); 1771 1772 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1773 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1774 if (id_priv->id.device == cm_id->device && 1775 cma_match_net_dev(&id_priv->id, net_dev, req)) 1776 return id_priv; 1777 list_for_each_entry(id_priv_dev, 1778 &id_priv->listen_list, 1779 listen_item) { 1780 if (id_priv_dev->id.device == cm_id->device && 1781 cma_match_net_dev(&id_priv_dev->id, 1782 net_dev, req)) 1783 return id_priv_dev; 1784 } 1785 } 1786 } 1787 1788 return ERR_PTR(-EINVAL); 1789 } 1790 1791 static struct rdma_id_private * 1792 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1793 const struct ib_cm_event *ib_event, 1794 struct cma_req_info *req, 1795 struct net_device **net_dev) 1796 { 1797 struct rdma_bind_list *bind_list; 1798 struct rdma_id_private *id_priv; 1799 int err; 1800 1801 err = cma_save_req_info(ib_event, req); 1802 if (err) 1803 return ERR_PTR(err); 1804 1805 *net_dev = cma_get_net_dev(ib_event, req); 1806 if (IS_ERR(*net_dev)) { 1807 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1808 /* Assuming the protocol is AF_IB */ 1809 *net_dev = NULL; 1810 } else { 1811 return ERR_CAST(*net_dev); 1812 } 1813 } 1814 1815 mutex_lock(&lock); 1816 /* 1817 * Net namespace might be getting deleted while route lookup, 1818 * cm_id lookup is in progress. Therefore, perform netdevice 1819 * validation, cm_id lookup under rcu lock. 1820 * RCU lock along with netdevice state check, synchronizes with 1821 * netdevice migrating to different net namespace and also avoids 1822 * case where net namespace doesn't get deleted while lookup is in 1823 * progress. 1824 * If the device state is not IFF_UP, its properties such as ifindex 1825 * and nd_net cannot be trusted to remain valid without rcu lock. 1826 * net/core/dev.c change_net_namespace() ensures to synchronize with 1827 * ongoing operations on net device after device is closed using 1828 * synchronize_net(). 1829 */ 1830 rcu_read_lock(); 1831 if (*net_dev) { 1832 /* 1833 * If netdevice is down, it is likely that it is administratively 1834 * down or it might be migrating to different namespace. 1835 * In that case avoid further processing, as the net namespace 1836 * or ifindex may change. 1837 */ 1838 if (((*net_dev)->flags & IFF_UP) == 0) { 1839 id_priv = ERR_PTR(-EHOSTUNREACH); 1840 goto err; 1841 } 1842 1843 if (!validate_net_dev(*net_dev, 1844 (struct sockaddr *)&req->listen_addr_storage, 1845 (struct sockaddr *)&req->src_addr_storage)) { 1846 id_priv = ERR_PTR(-EHOSTUNREACH); 1847 goto err; 1848 } 1849 } 1850 1851 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1852 rdma_ps_from_service_id(req->service_id), 1853 cma_port_from_service_id(req->service_id)); 1854 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1855 err: 1856 rcu_read_unlock(); 1857 mutex_unlock(&lock); 1858 if (IS_ERR(id_priv) && *net_dev) { 1859 dev_put(*net_dev); 1860 *net_dev = NULL; 1861 } 1862 return id_priv; 1863 } 1864 1865 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1866 { 1867 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1868 } 1869 1870 static void cma_cancel_route(struct rdma_id_private *id_priv) 1871 { 1872 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1873 if (id_priv->query) 1874 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1875 } 1876 } 1877 1878 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1879 { 1880 struct rdma_id_private *dev_id_priv; 1881 1882 lockdep_assert_held(&lock); 1883 1884 /* 1885 * Remove from listen_any_list to prevent added devices from spawning 1886 * additional listen requests. 1887 */ 1888 list_del_init(&id_priv->listen_any_item); 1889 1890 while (!list_empty(&id_priv->listen_list)) { 1891 dev_id_priv = 1892 list_first_entry(&id_priv->listen_list, 1893 struct rdma_id_private, listen_item); 1894 /* sync with device removal to avoid duplicate destruction */ 1895 list_del_init(&dev_id_priv->device_item); 1896 list_del_init(&dev_id_priv->listen_item); 1897 mutex_unlock(&lock); 1898 1899 rdma_destroy_id(&dev_id_priv->id); 1900 mutex_lock(&lock); 1901 } 1902 } 1903 1904 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1905 { 1906 mutex_lock(&lock); 1907 _cma_cancel_listens(id_priv); 1908 mutex_unlock(&lock); 1909 } 1910 1911 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1912 enum rdma_cm_state state) 1913 { 1914 switch (state) { 1915 case RDMA_CM_ADDR_QUERY: 1916 /* 1917 * We can avoid doing the rdma_addr_cancel() based on state, 1918 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1919 * Notice that the addr_handler work could still be exiting 1920 * outside this state, however due to the interaction with the 1921 * handler_mutex the work is guaranteed not to touch id_priv 1922 * during exit. 1923 */ 1924 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1925 break; 1926 case RDMA_CM_ROUTE_QUERY: 1927 cma_cancel_route(id_priv); 1928 break; 1929 case RDMA_CM_LISTEN: 1930 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1931 cma_cancel_listens(id_priv); 1932 break; 1933 default: 1934 break; 1935 } 1936 } 1937 1938 static void cma_release_port(struct rdma_id_private *id_priv) 1939 { 1940 struct rdma_bind_list *bind_list = id_priv->bind_list; 1941 struct net *net = id_priv->id.route.addr.dev_addr.net; 1942 1943 if (!bind_list) 1944 return; 1945 1946 mutex_lock(&lock); 1947 hlist_del(&id_priv->node); 1948 if (hlist_empty(&bind_list->owners)) { 1949 cma_ps_remove(net, bind_list->ps, bind_list->port); 1950 kfree(bind_list); 1951 } 1952 mutex_unlock(&lock); 1953 } 1954 1955 static void destroy_mc(struct rdma_id_private *id_priv, 1956 struct cma_multicast *mc) 1957 { 1958 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1959 1960 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1961 ib_sa_free_multicast(mc->sa_mc); 1962 1963 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1964 struct rdma_dev_addr *dev_addr = 1965 &id_priv->id.route.addr.dev_addr; 1966 struct net_device *ndev = NULL; 1967 1968 if (dev_addr->bound_dev_if) 1969 ndev = dev_get_by_index(dev_addr->net, 1970 dev_addr->bound_dev_if); 1971 if (ndev && !send_only) { 1972 enum ib_gid_type gid_type; 1973 union ib_gid mgid; 1974 1975 gid_type = id_priv->cma_dev->default_gid_type 1976 [id_priv->id.port_num - 1977 rdma_start_port( 1978 id_priv->cma_dev->device)]; 1979 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 1980 gid_type); 1981 cma_igmp_send(ndev, &mgid, false); 1982 } 1983 dev_put(ndev); 1984 1985 cancel_work_sync(&mc->iboe_join.work); 1986 } 1987 kfree(mc); 1988 } 1989 1990 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1991 { 1992 struct cma_multicast *mc; 1993 1994 while (!list_empty(&id_priv->mc_list)) { 1995 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1996 list); 1997 list_del(&mc->list); 1998 destroy_mc(id_priv, mc); 1999 } 2000 } 2001 2002 static void _destroy_id(struct rdma_id_private *id_priv, 2003 enum rdma_cm_state state) 2004 { 2005 cma_cancel_operation(id_priv, state); 2006 2007 rdma_restrack_del(&id_priv->res); 2008 cma_remove_id_from_tree(id_priv); 2009 if (id_priv->cma_dev) { 2010 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2011 if (id_priv->cm_id.ib) 2012 ib_destroy_cm_id(id_priv->cm_id.ib); 2013 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2014 if (id_priv->cm_id.iw) 2015 iw_destroy_cm_id(id_priv->cm_id.iw); 2016 } 2017 cma_leave_mc_groups(id_priv); 2018 cma_release_dev(id_priv); 2019 } 2020 2021 cma_release_port(id_priv); 2022 cma_id_put(id_priv); 2023 wait_for_completion(&id_priv->comp); 2024 2025 if (id_priv->internal_id) 2026 cma_id_put(id_priv->id.context); 2027 2028 kfree(id_priv->id.route.path_rec); 2029 2030 put_net(id_priv->id.route.addr.dev_addr.net); 2031 kfree(id_priv); 2032 } 2033 2034 /* 2035 * destroy an ID from within the handler_mutex. This ensures that no other 2036 * handlers can start running concurrently. 2037 */ 2038 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2039 __releases(&idprv->handler_mutex) 2040 { 2041 enum rdma_cm_state state; 2042 unsigned long flags; 2043 2044 trace_cm_id_destroy(id_priv); 2045 2046 /* 2047 * Setting the state to destroyed under the handler mutex provides a 2048 * fence against calling handler callbacks. If this is invoked due to 2049 * the failure of a handler callback then it guarentees that no future 2050 * handlers will be called. 2051 */ 2052 lockdep_assert_held(&id_priv->handler_mutex); 2053 spin_lock_irqsave(&id_priv->lock, flags); 2054 state = id_priv->state; 2055 id_priv->state = RDMA_CM_DESTROYING; 2056 spin_unlock_irqrestore(&id_priv->lock, flags); 2057 mutex_unlock(&id_priv->handler_mutex); 2058 _destroy_id(id_priv, state); 2059 } 2060 2061 void rdma_destroy_id(struct rdma_cm_id *id) 2062 { 2063 struct rdma_id_private *id_priv = 2064 container_of(id, struct rdma_id_private, id); 2065 2066 mutex_lock(&id_priv->handler_mutex); 2067 destroy_id_handler_unlock(id_priv); 2068 } 2069 EXPORT_SYMBOL(rdma_destroy_id); 2070 2071 static int cma_rep_recv(struct rdma_id_private *id_priv) 2072 { 2073 int ret; 2074 2075 ret = cma_modify_qp_rtr(id_priv, NULL); 2076 if (ret) 2077 goto reject; 2078 2079 ret = cma_modify_qp_rts(id_priv, NULL); 2080 if (ret) 2081 goto reject; 2082 2083 trace_cm_send_rtu(id_priv); 2084 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2085 if (ret) 2086 goto reject; 2087 2088 return 0; 2089 reject: 2090 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2091 cma_modify_qp_err(id_priv); 2092 trace_cm_send_rej(id_priv); 2093 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2094 NULL, 0, NULL, 0); 2095 return ret; 2096 } 2097 2098 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2099 const struct ib_cm_rep_event_param *rep_data, 2100 void *private_data) 2101 { 2102 event->param.conn.private_data = private_data; 2103 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2104 event->param.conn.responder_resources = rep_data->responder_resources; 2105 event->param.conn.initiator_depth = rep_data->initiator_depth; 2106 event->param.conn.flow_control = rep_data->flow_control; 2107 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2108 event->param.conn.srq = rep_data->srq; 2109 event->param.conn.qp_num = rep_data->remote_qpn; 2110 2111 event->ece.vendor_id = rep_data->ece.vendor_id; 2112 event->ece.attr_mod = rep_data->ece.attr_mod; 2113 } 2114 2115 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2116 struct rdma_cm_event *event) 2117 { 2118 int ret; 2119 2120 lockdep_assert_held(&id_priv->handler_mutex); 2121 2122 trace_cm_event_handler(id_priv, event); 2123 ret = id_priv->id.event_handler(&id_priv->id, event); 2124 trace_cm_event_done(id_priv, event, ret); 2125 return ret; 2126 } 2127 2128 static int cma_ib_handler(struct ib_cm_id *cm_id, 2129 const struct ib_cm_event *ib_event) 2130 { 2131 struct rdma_id_private *id_priv = cm_id->context; 2132 struct rdma_cm_event event = {}; 2133 enum rdma_cm_state state; 2134 int ret; 2135 2136 mutex_lock(&id_priv->handler_mutex); 2137 state = READ_ONCE(id_priv->state); 2138 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2139 state != RDMA_CM_CONNECT) || 2140 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2141 state != RDMA_CM_DISCONNECT)) 2142 goto out; 2143 2144 switch (ib_event->event) { 2145 case IB_CM_REQ_ERROR: 2146 case IB_CM_REP_ERROR: 2147 event.event = RDMA_CM_EVENT_UNREACHABLE; 2148 event.status = -ETIMEDOUT; 2149 break; 2150 case IB_CM_REP_RECEIVED: 2151 if (state == RDMA_CM_CONNECT && 2152 (id_priv->id.qp_type != IB_QPT_UD)) { 2153 trace_cm_send_mra(id_priv); 2154 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2155 } 2156 if (id_priv->id.qp) { 2157 event.status = cma_rep_recv(id_priv); 2158 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2159 RDMA_CM_EVENT_ESTABLISHED; 2160 } else { 2161 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2162 } 2163 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2164 ib_event->private_data); 2165 break; 2166 case IB_CM_RTU_RECEIVED: 2167 case IB_CM_USER_ESTABLISHED: 2168 event.event = RDMA_CM_EVENT_ESTABLISHED; 2169 break; 2170 case IB_CM_DREQ_ERROR: 2171 event.status = -ETIMEDOUT; 2172 fallthrough; 2173 case IB_CM_DREQ_RECEIVED: 2174 case IB_CM_DREP_RECEIVED: 2175 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2176 RDMA_CM_DISCONNECT)) 2177 goto out; 2178 event.event = RDMA_CM_EVENT_DISCONNECTED; 2179 break; 2180 case IB_CM_TIMEWAIT_EXIT: 2181 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2182 break; 2183 case IB_CM_MRA_RECEIVED: 2184 /* ignore event */ 2185 goto out; 2186 case IB_CM_REJ_RECEIVED: 2187 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2188 ib_event->param.rej_rcvd.reason)); 2189 cma_modify_qp_err(id_priv); 2190 event.status = ib_event->param.rej_rcvd.reason; 2191 event.event = RDMA_CM_EVENT_REJECTED; 2192 event.param.conn.private_data = ib_event->private_data; 2193 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2194 break; 2195 default: 2196 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2197 ib_event->event); 2198 goto out; 2199 } 2200 2201 ret = cma_cm_event_handler(id_priv, &event); 2202 if (ret) { 2203 /* Destroy the CM ID by returning a non-zero value. */ 2204 id_priv->cm_id.ib = NULL; 2205 destroy_id_handler_unlock(id_priv); 2206 return ret; 2207 } 2208 out: 2209 mutex_unlock(&id_priv->handler_mutex); 2210 return 0; 2211 } 2212 2213 static struct rdma_id_private * 2214 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2215 const struct ib_cm_event *ib_event, 2216 struct net_device *net_dev) 2217 { 2218 struct rdma_id_private *listen_id_priv; 2219 struct rdma_id_private *id_priv; 2220 struct rdma_cm_id *id; 2221 struct rdma_route *rt; 2222 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2223 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2224 const __be64 service_id = 2225 ib_event->param.req_rcvd.primary_path->service_id; 2226 int ret; 2227 2228 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2229 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2230 listen_id->event_handler, listen_id->context, 2231 listen_id->ps, 2232 ib_event->param.req_rcvd.qp_type, 2233 listen_id_priv); 2234 if (IS_ERR(id_priv)) 2235 return NULL; 2236 2237 id = &id_priv->id; 2238 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2239 (struct sockaddr *)&id->route.addr.dst_addr, 2240 listen_id, ib_event, ss_family, service_id)) 2241 goto err; 2242 2243 rt = &id->route; 2244 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2245 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2246 GFP_KERNEL); 2247 if (!rt->path_rec) 2248 goto err; 2249 2250 rt->path_rec[0] = *path; 2251 if (rt->num_paths == 2) 2252 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2253 2254 if (net_dev) { 2255 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2256 } else { 2257 if (!cma_protocol_roce(listen_id) && 2258 cma_any_addr(cma_src_addr(id_priv))) { 2259 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2260 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2261 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2262 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2263 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2264 if (ret) 2265 goto err; 2266 } 2267 } 2268 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2269 2270 id_priv->state = RDMA_CM_CONNECT; 2271 return id_priv; 2272 2273 err: 2274 rdma_destroy_id(id); 2275 return NULL; 2276 } 2277 2278 static struct rdma_id_private * 2279 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2280 const struct ib_cm_event *ib_event, 2281 struct net_device *net_dev) 2282 { 2283 const struct rdma_id_private *listen_id_priv; 2284 struct rdma_id_private *id_priv; 2285 struct rdma_cm_id *id; 2286 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2287 struct net *net = listen_id->route.addr.dev_addr.net; 2288 int ret; 2289 2290 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2291 id_priv = __rdma_create_id(net, listen_id->event_handler, 2292 listen_id->context, listen_id->ps, IB_QPT_UD, 2293 listen_id_priv); 2294 if (IS_ERR(id_priv)) 2295 return NULL; 2296 2297 id = &id_priv->id; 2298 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2299 (struct sockaddr *)&id->route.addr.dst_addr, 2300 listen_id, ib_event, ss_family, 2301 ib_event->param.sidr_req_rcvd.service_id)) 2302 goto err; 2303 2304 if (net_dev) { 2305 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2306 } else { 2307 if (!cma_any_addr(cma_src_addr(id_priv))) { 2308 ret = cma_translate_addr(cma_src_addr(id_priv), 2309 &id->route.addr.dev_addr); 2310 if (ret) 2311 goto err; 2312 } 2313 } 2314 2315 id_priv->state = RDMA_CM_CONNECT; 2316 return id_priv; 2317 err: 2318 rdma_destroy_id(id); 2319 return NULL; 2320 } 2321 2322 static void cma_set_req_event_data(struct rdma_cm_event *event, 2323 const struct ib_cm_req_event_param *req_data, 2324 void *private_data, int offset) 2325 { 2326 event->param.conn.private_data = private_data + offset; 2327 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2328 event->param.conn.responder_resources = req_data->responder_resources; 2329 event->param.conn.initiator_depth = req_data->initiator_depth; 2330 event->param.conn.flow_control = req_data->flow_control; 2331 event->param.conn.retry_count = req_data->retry_count; 2332 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2333 event->param.conn.srq = req_data->srq; 2334 event->param.conn.qp_num = req_data->remote_qpn; 2335 2336 event->ece.vendor_id = req_data->ece.vendor_id; 2337 event->ece.attr_mod = req_data->ece.attr_mod; 2338 } 2339 2340 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2341 const struct ib_cm_event *ib_event) 2342 { 2343 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2344 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2345 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2346 (id->qp_type == IB_QPT_UD)) || 2347 (!id->qp_type)); 2348 } 2349 2350 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2351 const struct ib_cm_event *ib_event) 2352 { 2353 struct rdma_id_private *listen_id, *conn_id = NULL; 2354 struct rdma_cm_event event = {}; 2355 struct cma_req_info req = {}; 2356 struct net_device *net_dev; 2357 u8 offset; 2358 int ret; 2359 2360 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2361 if (IS_ERR(listen_id)) 2362 return PTR_ERR(listen_id); 2363 2364 trace_cm_req_handler(listen_id, ib_event->event); 2365 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2366 ret = -EINVAL; 2367 goto net_dev_put; 2368 } 2369 2370 mutex_lock(&listen_id->handler_mutex); 2371 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2372 ret = -ECONNABORTED; 2373 goto err_unlock; 2374 } 2375 2376 offset = cma_user_data_offset(listen_id); 2377 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2378 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2379 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2380 event.param.ud.private_data = ib_event->private_data + offset; 2381 event.param.ud.private_data_len = 2382 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2383 } else { 2384 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2385 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2386 ib_event->private_data, offset); 2387 } 2388 if (!conn_id) { 2389 ret = -ENOMEM; 2390 goto err_unlock; 2391 } 2392 2393 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2394 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2395 if (ret) { 2396 destroy_id_handler_unlock(conn_id); 2397 goto err_unlock; 2398 } 2399 2400 conn_id->cm_id.ib = cm_id; 2401 cm_id->context = conn_id; 2402 cm_id->cm_handler = cma_ib_handler; 2403 2404 ret = cma_cm_event_handler(conn_id, &event); 2405 if (ret) { 2406 /* Destroy the CM ID by returning a non-zero value. */ 2407 conn_id->cm_id.ib = NULL; 2408 mutex_unlock(&listen_id->handler_mutex); 2409 destroy_id_handler_unlock(conn_id); 2410 goto net_dev_put; 2411 } 2412 2413 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2414 conn_id->id.qp_type != IB_QPT_UD) { 2415 trace_cm_send_mra(cm_id->context); 2416 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2417 } 2418 mutex_unlock(&conn_id->handler_mutex); 2419 2420 err_unlock: 2421 mutex_unlock(&listen_id->handler_mutex); 2422 2423 net_dev_put: 2424 if (net_dev) 2425 dev_put(net_dev); 2426 2427 return ret; 2428 } 2429 2430 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2431 { 2432 if (addr->sa_family == AF_IB) 2433 return ((struct sockaddr_ib *) addr)->sib_sid; 2434 2435 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2436 } 2437 EXPORT_SYMBOL(rdma_get_service_id); 2438 2439 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2440 union ib_gid *dgid) 2441 { 2442 struct rdma_addr *addr = &cm_id->route.addr; 2443 2444 if (!cm_id->device) { 2445 if (sgid) 2446 memset(sgid, 0, sizeof(*sgid)); 2447 if (dgid) 2448 memset(dgid, 0, sizeof(*dgid)); 2449 return; 2450 } 2451 2452 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2453 if (sgid) 2454 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2455 if (dgid) 2456 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2457 } else { 2458 if (sgid) 2459 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2460 if (dgid) 2461 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2462 } 2463 } 2464 EXPORT_SYMBOL(rdma_read_gids); 2465 2466 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2467 { 2468 struct rdma_id_private *id_priv = iw_id->context; 2469 struct rdma_cm_event event = {}; 2470 int ret = 0; 2471 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2472 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2473 2474 mutex_lock(&id_priv->handler_mutex); 2475 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2476 goto out; 2477 2478 switch (iw_event->event) { 2479 case IW_CM_EVENT_CLOSE: 2480 event.event = RDMA_CM_EVENT_DISCONNECTED; 2481 break; 2482 case IW_CM_EVENT_CONNECT_REPLY: 2483 memcpy(cma_src_addr(id_priv), laddr, 2484 rdma_addr_size(laddr)); 2485 memcpy(cma_dst_addr(id_priv), raddr, 2486 rdma_addr_size(raddr)); 2487 switch (iw_event->status) { 2488 case 0: 2489 event.event = RDMA_CM_EVENT_ESTABLISHED; 2490 event.param.conn.initiator_depth = iw_event->ird; 2491 event.param.conn.responder_resources = iw_event->ord; 2492 break; 2493 case -ECONNRESET: 2494 case -ECONNREFUSED: 2495 event.event = RDMA_CM_EVENT_REJECTED; 2496 break; 2497 case -ETIMEDOUT: 2498 event.event = RDMA_CM_EVENT_UNREACHABLE; 2499 break; 2500 default: 2501 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2502 break; 2503 } 2504 break; 2505 case IW_CM_EVENT_ESTABLISHED: 2506 event.event = RDMA_CM_EVENT_ESTABLISHED; 2507 event.param.conn.initiator_depth = iw_event->ird; 2508 event.param.conn.responder_resources = iw_event->ord; 2509 break; 2510 default: 2511 goto out; 2512 } 2513 2514 event.status = iw_event->status; 2515 event.param.conn.private_data = iw_event->private_data; 2516 event.param.conn.private_data_len = iw_event->private_data_len; 2517 ret = cma_cm_event_handler(id_priv, &event); 2518 if (ret) { 2519 /* Destroy the CM ID by returning a non-zero value. */ 2520 id_priv->cm_id.iw = NULL; 2521 destroy_id_handler_unlock(id_priv); 2522 return ret; 2523 } 2524 2525 out: 2526 mutex_unlock(&id_priv->handler_mutex); 2527 return ret; 2528 } 2529 2530 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2531 struct iw_cm_event *iw_event) 2532 { 2533 struct rdma_id_private *listen_id, *conn_id; 2534 struct rdma_cm_event event = {}; 2535 int ret = -ECONNABORTED; 2536 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2537 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2538 2539 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2540 event.param.conn.private_data = iw_event->private_data; 2541 event.param.conn.private_data_len = iw_event->private_data_len; 2542 event.param.conn.initiator_depth = iw_event->ird; 2543 event.param.conn.responder_resources = iw_event->ord; 2544 2545 listen_id = cm_id->context; 2546 2547 mutex_lock(&listen_id->handler_mutex); 2548 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2549 goto out; 2550 2551 /* Create a new RDMA id for the new IW CM ID */ 2552 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2553 listen_id->id.event_handler, 2554 listen_id->id.context, RDMA_PS_TCP, 2555 IB_QPT_RC, listen_id); 2556 if (IS_ERR(conn_id)) { 2557 ret = -ENOMEM; 2558 goto out; 2559 } 2560 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2561 conn_id->state = RDMA_CM_CONNECT; 2562 2563 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2564 if (ret) { 2565 mutex_unlock(&listen_id->handler_mutex); 2566 destroy_id_handler_unlock(conn_id); 2567 return ret; 2568 } 2569 2570 ret = cma_iw_acquire_dev(conn_id, listen_id); 2571 if (ret) { 2572 mutex_unlock(&listen_id->handler_mutex); 2573 destroy_id_handler_unlock(conn_id); 2574 return ret; 2575 } 2576 2577 conn_id->cm_id.iw = cm_id; 2578 cm_id->context = conn_id; 2579 cm_id->cm_handler = cma_iw_handler; 2580 2581 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2582 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2583 2584 ret = cma_cm_event_handler(conn_id, &event); 2585 if (ret) { 2586 /* User wants to destroy the CM ID */ 2587 conn_id->cm_id.iw = NULL; 2588 mutex_unlock(&listen_id->handler_mutex); 2589 destroy_id_handler_unlock(conn_id); 2590 return ret; 2591 } 2592 2593 mutex_unlock(&conn_id->handler_mutex); 2594 2595 out: 2596 mutex_unlock(&listen_id->handler_mutex); 2597 return ret; 2598 } 2599 2600 static int cma_ib_listen(struct rdma_id_private *id_priv) 2601 { 2602 struct sockaddr *addr; 2603 struct ib_cm_id *id; 2604 __be64 svc_id; 2605 2606 addr = cma_src_addr(id_priv); 2607 svc_id = rdma_get_service_id(&id_priv->id, addr); 2608 id = ib_cm_insert_listen(id_priv->id.device, 2609 cma_ib_req_handler, svc_id); 2610 if (IS_ERR(id)) 2611 return PTR_ERR(id); 2612 id_priv->cm_id.ib = id; 2613 2614 return 0; 2615 } 2616 2617 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2618 { 2619 int ret; 2620 struct iw_cm_id *id; 2621 2622 id = iw_create_cm_id(id_priv->id.device, 2623 iw_conn_req_handler, 2624 id_priv); 2625 if (IS_ERR(id)) 2626 return PTR_ERR(id); 2627 2628 mutex_lock(&id_priv->qp_mutex); 2629 id->tos = id_priv->tos; 2630 id->tos_set = id_priv->tos_set; 2631 mutex_unlock(&id_priv->qp_mutex); 2632 id->afonly = id_priv->afonly; 2633 id_priv->cm_id.iw = id; 2634 2635 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2636 rdma_addr_size(cma_src_addr(id_priv))); 2637 2638 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2639 2640 if (ret) { 2641 iw_destroy_cm_id(id_priv->cm_id.iw); 2642 id_priv->cm_id.iw = NULL; 2643 } 2644 2645 return ret; 2646 } 2647 2648 static int cma_listen_handler(struct rdma_cm_id *id, 2649 struct rdma_cm_event *event) 2650 { 2651 struct rdma_id_private *id_priv = id->context; 2652 2653 /* Listening IDs are always destroyed on removal */ 2654 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2655 return -1; 2656 2657 id->context = id_priv->id.context; 2658 id->event_handler = id_priv->id.event_handler; 2659 trace_cm_event_handler(id_priv, event); 2660 return id_priv->id.event_handler(id, event); 2661 } 2662 2663 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2664 struct cma_device *cma_dev, 2665 struct rdma_id_private **to_destroy) 2666 { 2667 struct rdma_id_private *dev_id_priv; 2668 struct net *net = id_priv->id.route.addr.dev_addr.net; 2669 int ret; 2670 2671 lockdep_assert_held(&lock); 2672 2673 *to_destroy = NULL; 2674 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2675 return 0; 2676 2677 dev_id_priv = 2678 __rdma_create_id(net, cma_listen_handler, id_priv, 2679 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2680 if (IS_ERR(dev_id_priv)) 2681 return PTR_ERR(dev_id_priv); 2682 2683 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2684 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2685 rdma_addr_size(cma_src_addr(id_priv))); 2686 2687 _cma_attach_to_dev(dev_id_priv, cma_dev); 2688 rdma_restrack_add(&dev_id_priv->res); 2689 cma_id_get(id_priv); 2690 dev_id_priv->internal_id = 1; 2691 dev_id_priv->afonly = id_priv->afonly; 2692 mutex_lock(&id_priv->qp_mutex); 2693 dev_id_priv->tos_set = id_priv->tos_set; 2694 dev_id_priv->tos = id_priv->tos; 2695 mutex_unlock(&id_priv->qp_mutex); 2696 2697 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2698 if (ret) 2699 goto err_listen; 2700 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2701 return 0; 2702 err_listen: 2703 /* Caller must destroy this after releasing lock */ 2704 *to_destroy = dev_id_priv; 2705 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2706 return ret; 2707 } 2708 2709 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2710 { 2711 struct rdma_id_private *to_destroy; 2712 struct cma_device *cma_dev; 2713 int ret; 2714 2715 mutex_lock(&lock); 2716 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2717 list_for_each_entry(cma_dev, &dev_list, list) { 2718 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2719 if (ret) { 2720 /* Prevent racing with cma_process_remove() */ 2721 if (to_destroy) 2722 list_del_init(&to_destroy->device_item); 2723 goto err_listen; 2724 } 2725 } 2726 mutex_unlock(&lock); 2727 return 0; 2728 2729 err_listen: 2730 _cma_cancel_listens(id_priv); 2731 mutex_unlock(&lock); 2732 if (to_destroy) 2733 rdma_destroy_id(&to_destroy->id); 2734 return ret; 2735 } 2736 2737 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2738 { 2739 struct rdma_id_private *id_priv; 2740 2741 id_priv = container_of(id, struct rdma_id_private, id); 2742 mutex_lock(&id_priv->qp_mutex); 2743 id_priv->tos = (u8) tos; 2744 id_priv->tos_set = true; 2745 mutex_unlock(&id_priv->qp_mutex); 2746 } 2747 EXPORT_SYMBOL(rdma_set_service_type); 2748 2749 /** 2750 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2751 * with a connection identifier. 2752 * @id: Communication identifier to associated with service type. 2753 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2754 * 2755 * This function should be called before rdma_connect() on active side, 2756 * and on passive side before rdma_accept(). It is applicable to primary 2757 * path only. The timeout will affect the local side of the QP, it is not 2758 * negotiated with remote side and zero disables the timer. In case it is 2759 * set before rdma_resolve_route, the value will also be used to determine 2760 * PacketLifeTime for RoCE. 2761 * 2762 * Return: 0 for success 2763 */ 2764 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2765 { 2766 struct rdma_id_private *id_priv; 2767 2768 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2769 return -EINVAL; 2770 2771 id_priv = container_of(id, struct rdma_id_private, id); 2772 mutex_lock(&id_priv->qp_mutex); 2773 id_priv->timeout = timeout; 2774 id_priv->timeout_set = true; 2775 mutex_unlock(&id_priv->qp_mutex); 2776 2777 return 0; 2778 } 2779 EXPORT_SYMBOL(rdma_set_ack_timeout); 2780 2781 /** 2782 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2783 * QP associated with a connection identifier. 2784 * @id: Communication identifier to associated with service type. 2785 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2786 * Timer Field" in the IBTA specification. 2787 * 2788 * This function should be called before rdma_connect() on active 2789 * side, and on passive side before rdma_accept(). The timer value 2790 * will be associated with the local QP. When it receives a send it is 2791 * not read to handle, typically if the receive queue is empty, an RNR 2792 * Retry NAK is returned to the requester with the min_rnr_timer 2793 * encoded. The requester will then wait at least the time specified 2794 * in the NAK before retrying. The default is zero, which translates 2795 * to a minimum RNR Timer value of 655 ms. 2796 * 2797 * Return: 0 for success 2798 */ 2799 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2800 { 2801 struct rdma_id_private *id_priv; 2802 2803 /* It is a five-bit value */ 2804 if (min_rnr_timer & 0xe0) 2805 return -EINVAL; 2806 2807 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2808 return -EINVAL; 2809 2810 id_priv = container_of(id, struct rdma_id_private, id); 2811 mutex_lock(&id_priv->qp_mutex); 2812 id_priv->min_rnr_timer = min_rnr_timer; 2813 id_priv->min_rnr_timer_set = true; 2814 mutex_unlock(&id_priv->qp_mutex); 2815 2816 return 0; 2817 } 2818 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2819 2820 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2821 void *context) 2822 { 2823 struct cma_work *work = context; 2824 struct rdma_route *route; 2825 2826 route = &work->id->id.route; 2827 2828 if (!status) { 2829 route->num_paths = 1; 2830 *route->path_rec = *path_rec; 2831 } else { 2832 work->old_state = RDMA_CM_ROUTE_QUERY; 2833 work->new_state = RDMA_CM_ADDR_RESOLVED; 2834 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2835 work->event.status = status; 2836 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2837 status); 2838 } 2839 2840 queue_work(cma_wq, &work->work); 2841 } 2842 2843 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2844 unsigned long timeout_ms, struct cma_work *work) 2845 { 2846 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2847 struct sa_path_rec path_rec; 2848 ib_sa_comp_mask comp_mask; 2849 struct sockaddr_in6 *sin6; 2850 struct sockaddr_ib *sib; 2851 2852 memset(&path_rec, 0, sizeof path_rec); 2853 2854 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2855 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2856 else 2857 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2858 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2859 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2860 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2861 path_rec.numb_path = 1; 2862 path_rec.reversible = 1; 2863 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2864 cma_dst_addr(id_priv)); 2865 2866 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2867 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2868 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2869 2870 switch (cma_family(id_priv)) { 2871 case AF_INET: 2872 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2873 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2874 break; 2875 case AF_INET6: 2876 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2877 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2878 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2879 break; 2880 case AF_IB: 2881 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2882 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2883 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2884 break; 2885 } 2886 2887 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2888 id_priv->id.port_num, &path_rec, 2889 comp_mask, timeout_ms, 2890 GFP_KERNEL, cma_query_handler, 2891 work, &id_priv->query); 2892 2893 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2894 } 2895 2896 static void cma_iboe_join_work_handler(struct work_struct *work) 2897 { 2898 struct cma_multicast *mc = 2899 container_of(work, struct cma_multicast, iboe_join.work); 2900 struct rdma_cm_event *event = &mc->iboe_join.event; 2901 struct rdma_id_private *id_priv = mc->id_priv; 2902 int ret; 2903 2904 mutex_lock(&id_priv->handler_mutex); 2905 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2906 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2907 goto out_unlock; 2908 2909 ret = cma_cm_event_handler(id_priv, event); 2910 WARN_ON(ret); 2911 2912 out_unlock: 2913 mutex_unlock(&id_priv->handler_mutex); 2914 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2915 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2916 } 2917 2918 static void cma_work_handler(struct work_struct *_work) 2919 { 2920 struct cma_work *work = container_of(_work, struct cma_work, work); 2921 struct rdma_id_private *id_priv = work->id; 2922 2923 mutex_lock(&id_priv->handler_mutex); 2924 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2925 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2926 goto out_unlock; 2927 if (work->old_state != 0 || work->new_state != 0) { 2928 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2929 goto out_unlock; 2930 } 2931 2932 if (cma_cm_event_handler(id_priv, &work->event)) { 2933 cma_id_put(id_priv); 2934 destroy_id_handler_unlock(id_priv); 2935 goto out_free; 2936 } 2937 2938 out_unlock: 2939 mutex_unlock(&id_priv->handler_mutex); 2940 cma_id_put(id_priv); 2941 out_free: 2942 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2943 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2944 kfree(work); 2945 } 2946 2947 static void cma_init_resolve_route_work(struct cma_work *work, 2948 struct rdma_id_private *id_priv) 2949 { 2950 work->id = id_priv; 2951 INIT_WORK(&work->work, cma_work_handler); 2952 work->old_state = RDMA_CM_ROUTE_QUERY; 2953 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2954 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2955 } 2956 2957 static void enqueue_resolve_addr_work(struct cma_work *work, 2958 struct rdma_id_private *id_priv) 2959 { 2960 /* Balances with cma_id_put() in cma_work_handler */ 2961 cma_id_get(id_priv); 2962 2963 work->id = id_priv; 2964 INIT_WORK(&work->work, cma_work_handler); 2965 work->old_state = RDMA_CM_ADDR_QUERY; 2966 work->new_state = RDMA_CM_ADDR_RESOLVED; 2967 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2968 2969 queue_work(cma_wq, &work->work); 2970 } 2971 2972 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2973 unsigned long timeout_ms) 2974 { 2975 struct rdma_route *route = &id_priv->id.route; 2976 struct cma_work *work; 2977 int ret; 2978 2979 work = kzalloc(sizeof *work, GFP_KERNEL); 2980 if (!work) 2981 return -ENOMEM; 2982 2983 cma_init_resolve_route_work(work, id_priv); 2984 2985 if (!route->path_rec) 2986 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2987 if (!route->path_rec) { 2988 ret = -ENOMEM; 2989 goto err1; 2990 } 2991 2992 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2993 if (ret) 2994 goto err2; 2995 2996 return 0; 2997 err2: 2998 kfree(route->path_rec); 2999 route->path_rec = NULL; 3000 err1: 3001 kfree(work); 3002 return ret; 3003 } 3004 3005 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3006 unsigned long supported_gids, 3007 enum ib_gid_type default_gid) 3008 { 3009 if ((network_type == RDMA_NETWORK_IPV4 || 3010 network_type == RDMA_NETWORK_IPV6) && 3011 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3012 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3013 3014 return default_gid; 3015 } 3016 3017 /* 3018 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3019 * path record type based on GID type. 3020 * It also sets up other L2 fields which includes destination mac address 3021 * netdev ifindex, of the path record. 3022 * It returns the netdev of the bound interface for this path record entry. 3023 */ 3024 static struct net_device * 3025 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3026 { 3027 struct rdma_route *route = &id_priv->id.route; 3028 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3029 struct rdma_addr *addr = &route->addr; 3030 unsigned long supported_gids; 3031 struct net_device *ndev; 3032 3033 if (!addr->dev_addr.bound_dev_if) 3034 return NULL; 3035 3036 ndev = dev_get_by_index(addr->dev_addr.net, 3037 addr->dev_addr.bound_dev_if); 3038 if (!ndev) 3039 return NULL; 3040 3041 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3042 id_priv->id.port_num); 3043 gid_type = cma_route_gid_type(addr->dev_addr.network, 3044 supported_gids, 3045 id_priv->gid_type); 3046 /* Use the hint from IP Stack to select GID Type */ 3047 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3048 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3049 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3050 3051 route->path_rec->roce.route_resolved = true; 3052 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3053 return ndev; 3054 } 3055 3056 int rdma_set_ib_path(struct rdma_cm_id *id, 3057 struct sa_path_rec *path_rec) 3058 { 3059 struct rdma_id_private *id_priv; 3060 struct net_device *ndev; 3061 int ret; 3062 3063 id_priv = container_of(id, struct rdma_id_private, id); 3064 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3065 RDMA_CM_ROUTE_RESOLVED)) 3066 return -EINVAL; 3067 3068 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3069 GFP_KERNEL); 3070 if (!id->route.path_rec) { 3071 ret = -ENOMEM; 3072 goto err; 3073 } 3074 3075 if (rdma_protocol_roce(id->device, id->port_num)) { 3076 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3077 if (!ndev) { 3078 ret = -ENODEV; 3079 goto err_free; 3080 } 3081 dev_put(ndev); 3082 } 3083 3084 id->route.num_paths = 1; 3085 return 0; 3086 3087 err_free: 3088 kfree(id->route.path_rec); 3089 id->route.path_rec = NULL; 3090 err: 3091 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3092 return ret; 3093 } 3094 EXPORT_SYMBOL(rdma_set_ib_path); 3095 3096 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3097 { 3098 struct cma_work *work; 3099 3100 work = kzalloc(sizeof *work, GFP_KERNEL); 3101 if (!work) 3102 return -ENOMEM; 3103 3104 cma_init_resolve_route_work(work, id_priv); 3105 queue_work(cma_wq, &work->work); 3106 return 0; 3107 } 3108 3109 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3110 { 3111 struct net_device *dev; 3112 3113 dev = vlan_dev_real_dev(vlan_ndev); 3114 if (dev->num_tc) 3115 return netdev_get_prio_tc_map(dev, prio); 3116 3117 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3118 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3119 } 3120 3121 struct iboe_prio_tc_map { 3122 int input_prio; 3123 int output_tc; 3124 bool found; 3125 }; 3126 3127 static int get_lower_vlan_dev_tc(struct net_device *dev, 3128 struct netdev_nested_priv *priv) 3129 { 3130 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3131 3132 if (is_vlan_dev(dev)) 3133 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3134 else if (dev->num_tc) 3135 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3136 else 3137 map->output_tc = 0; 3138 /* We are interested only in first level VLAN device, so always 3139 * return 1 to stop iterating over next level devices. 3140 */ 3141 map->found = true; 3142 return 1; 3143 } 3144 3145 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3146 { 3147 struct iboe_prio_tc_map prio_tc_map = {}; 3148 int prio = rt_tos2priority(tos); 3149 struct netdev_nested_priv priv; 3150 3151 /* If VLAN device, get it directly from the VLAN netdev */ 3152 if (is_vlan_dev(ndev)) 3153 return get_vlan_ndev_tc(ndev, prio); 3154 3155 prio_tc_map.input_prio = prio; 3156 priv.data = (void *)&prio_tc_map; 3157 rcu_read_lock(); 3158 netdev_walk_all_lower_dev_rcu(ndev, 3159 get_lower_vlan_dev_tc, 3160 &priv); 3161 rcu_read_unlock(); 3162 /* If map is found from lower device, use it; Otherwise 3163 * continue with the current netdevice to get priority to tc map. 3164 */ 3165 if (prio_tc_map.found) 3166 return prio_tc_map.output_tc; 3167 else if (ndev->num_tc) 3168 return netdev_get_prio_tc_map(ndev, prio); 3169 else 3170 return 0; 3171 } 3172 3173 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3174 { 3175 struct sockaddr_in6 *addr6; 3176 u16 dport, sport; 3177 u32 hash, fl; 3178 3179 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3180 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3181 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3182 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3183 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3184 hash = (u32)sport * 31 + dport; 3185 fl = hash & IB_GRH_FLOWLABEL_MASK; 3186 } 3187 3188 return cpu_to_be32(fl); 3189 } 3190 3191 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3192 { 3193 struct rdma_route *route = &id_priv->id.route; 3194 struct rdma_addr *addr = &route->addr; 3195 struct cma_work *work; 3196 int ret; 3197 struct net_device *ndev; 3198 3199 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3200 rdma_start_port(id_priv->cma_dev->device)]; 3201 u8 tos; 3202 3203 mutex_lock(&id_priv->qp_mutex); 3204 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3205 mutex_unlock(&id_priv->qp_mutex); 3206 3207 work = kzalloc(sizeof *work, GFP_KERNEL); 3208 if (!work) 3209 return -ENOMEM; 3210 3211 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3212 if (!route->path_rec) { 3213 ret = -ENOMEM; 3214 goto err1; 3215 } 3216 3217 route->num_paths = 1; 3218 3219 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3220 if (!ndev) { 3221 ret = -ENODEV; 3222 goto err2; 3223 } 3224 3225 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3226 &route->path_rec->sgid); 3227 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3228 &route->path_rec->dgid); 3229 3230 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3231 /* TODO: get the hoplimit from the inet/inet6 device */ 3232 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3233 else 3234 route->path_rec->hop_limit = 1; 3235 route->path_rec->reversible = 1; 3236 route->path_rec->pkey = cpu_to_be16(0xffff); 3237 route->path_rec->mtu_selector = IB_SA_EQ; 3238 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3239 route->path_rec->traffic_class = tos; 3240 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3241 route->path_rec->rate_selector = IB_SA_EQ; 3242 route->path_rec->rate = iboe_get_rate(ndev); 3243 dev_put(ndev); 3244 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3245 /* In case ACK timeout is set, use this value to calculate 3246 * PacketLifeTime. As per IBTA 12.7.34, 3247 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3248 * Assuming a negligible local ACK delay, we can use 3249 * PacketLifeTime = local ACK timeout/2 3250 * as a reasonable approximation for RoCE networks. 3251 */ 3252 mutex_lock(&id_priv->qp_mutex); 3253 if (id_priv->timeout_set && id_priv->timeout) 3254 route->path_rec->packet_life_time = id_priv->timeout - 1; 3255 else 3256 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3257 mutex_unlock(&id_priv->qp_mutex); 3258 3259 if (!route->path_rec->mtu) { 3260 ret = -EINVAL; 3261 goto err2; 3262 } 3263 3264 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3265 id_priv->id.port_num)) 3266 route->path_rec->flow_label = 3267 cma_get_roce_udp_flow_label(id_priv); 3268 3269 cma_init_resolve_route_work(work, id_priv); 3270 queue_work(cma_wq, &work->work); 3271 3272 return 0; 3273 3274 err2: 3275 kfree(route->path_rec); 3276 route->path_rec = NULL; 3277 route->num_paths = 0; 3278 err1: 3279 kfree(work); 3280 return ret; 3281 } 3282 3283 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3284 { 3285 struct rdma_id_private *id_priv; 3286 int ret; 3287 3288 if (!timeout_ms) 3289 return -EINVAL; 3290 3291 id_priv = container_of(id, struct rdma_id_private, id); 3292 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3293 return -EINVAL; 3294 3295 cma_id_get(id_priv); 3296 if (rdma_cap_ib_sa(id->device, id->port_num)) 3297 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3298 else if (rdma_protocol_roce(id->device, id->port_num)) { 3299 ret = cma_resolve_iboe_route(id_priv); 3300 if (!ret) 3301 cma_add_id_to_tree(id_priv); 3302 } 3303 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3304 ret = cma_resolve_iw_route(id_priv); 3305 else 3306 ret = -ENOSYS; 3307 3308 if (ret) 3309 goto err; 3310 3311 return 0; 3312 err: 3313 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3314 cma_id_put(id_priv); 3315 return ret; 3316 } 3317 EXPORT_SYMBOL(rdma_resolve_route); 3318 3319 static void cma_set_loopback(struct sockaddr *addr) 3320 { 3321 switch (addr->sa_family) { 3322 case AF_INET: 3323 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3324 break; 3325 case AF_INET6: 3326 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3327 0, 0, 0, htonl(1)); 3328 break; 3329 default: 3330 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3331 0, 0, 0, htonl(1)); 3332 break; 3333 } 3334 } 3335 3336 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3337 { 3338 struct cma_device *cma_dev, *cur_dev; 3339 union ib_gid gid; 3340 enum ib_port_state port_state; 3341 unsigned int p; 3342 u16 pkey; 3343 int ret; 3344 3345 cma_dev = NULL; 3346 mutex_lock(&lock); 3347 list_for_each_entry(cur_dev, &dev_list, list) { 3348 if (cma_family(id_priv) == AF_IB && 3349 !rdma_cap_ib_cm(cur_dev->device, 1)) 3350 continue; 3351 3352 if (!cma_dev) 3353 cma_dev = cur_dev; 3354 3355 rdma_for_each_port (cur_dev->device, p) { 3356 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3357 port_state == IB_PORT_ACTIVE) { 3358 cma_dev = cur_dev; 3359 goto port_found; 3360 } 3361 } 3362 } 3363 3364 if (!cma_dev) { 3365 ret = -ENODEV; 3366 goto out; 3367 } 3368 3369 p = 1; 3370 3371 port_found: 3372 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3373 if (ret) 3374 goto out; 3375 3376 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3377 if (ret) 3378 goto out; 3379 3380 id_priv->id.route.addr.dev_addr.dev_type = 3381 (rdma_protocol_ib(cma_dev->device, p)) ? 3382 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3383 3384 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3385 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3386 id_priv->id.port_num = p; 3387 cma_attach_to_dev(id_priv, cma_dev); 3388 rdma_restrack_add(&id_priv->res); 3389 cma_set_loopback(cma_src_addr(id_priv)); 3390 out: 3391 mutex_unlock(&lock); 3392 return ret; 3393 } 3394 3395 static void addr_handler(int status, struct sockaddr *src_addr, 3396 struct rdma_dev_addr *dev_addr, void *context) 3397 { 3398 struct rdma_id_private *id_priv = context; 3399 struct rdma_cm_event event = {}; 3400 struct sockaddr *addr; 3401 struct sockaddr_storage old_addr; 3402 3403 mutex_lock(&id_priv->handler_mutex); 3404 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3405 RDMA_CM_ADDR_RESOLVED)) 3406 goto out; 3407 3408 /* 3409 * Store the previous src address, so that if we fail to acquire 3410 * matching rdma device, old address can be restored back, which helps 3411 * to cancel the cma listen operation correctly. 3412 */ 3413 addr = cma_src_addr(id_priv); 3414 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3415 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3416 if (!status && !id_priv->cma_dev) { 3417 status = cma_acquire_dev_by_src_ip(id_priv); 3418 if (status) 3419 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3420 status); 3421 rdma_restrack_add(&id_priv->res); 3422 } else if (status) { 3423 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3424 } 3425 3426 if (status) { 3427 memcpy(addr, &old_addr, 3428 rdma_addr_size((struct sockaddr *)&old_addr)); 3429 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3430 RDMA_CM_ADDR_BOUND)) 3431 goto out; 3432 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3433 event.status = status; 3434 } else 3435 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3436 3437 if (cma_cm_event_handler(id_priv, &event)) { 3438 destroy_id_handler_unlock(id_priv); 3439 return; 3440 } 3441 out: 3442 mutex_unlock(&id_priv->handler_mutex); 3443 } 3444 3445 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3446 { 3447 struct cma_work *work; 3448 union ib_gid gid; 3449 int ret; 3450 3451 work = kzalloc(sizeof *work, GFP_KERNEL); 3452 if (!work) 3453 return -ENOMEM; 3454 3455 if (!id_priv->cma_dev) { 3456 ret = cma_bind_loopback(id_priv); 3457 if (ret) 3458 goto err; 3459 } 3460 3461 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3462 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3463 3464 enqueue_resolve_addr_work(work, id_priv); 3465 return 0; 3466 err: 3467 kfree(work); 3468 return ret; 3469 } 3470 3471 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3472 { 3473 struct cma_work *work; 3474 int ret; 3475 3476 work = kzalloc(sizeof *work, GFP_KERNEL); 3477 if (!work) 3478 return -ENOMEM; 3479 3480 if (!id_priv->cma_dev) { 3481 ret = cma_resolve_ib_dev(id_priv); 3482 if (ret) 3483 goto err; 3484 } 3485 3486 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3487 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3488 3489 enqueue_resolve_addr_work(work, id_priv); 3490 return 0; 3491 err: 3492 kfree(work); 3493 return ret; 3494 } 3495 3496 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3497 const struct sockaddr *dst_addr) 3498 { 3499 struct sockaddr_storage zero_sock = {}; 3500 3501 if (src_addr && src_addr->sa_family) 3502 return rdma_bind_addr(id, src_addr); 3503 3504 /* 3505 * When the src_addr is not specified, automatically supply an any addr 3506 */ 3507 zero_sock.ss_family = dst_addr->sa_family; 3508 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 3509 struct sockaddr_in6 *src_addr6 = 3510 (struct sockaddr_in6 *)&zero_sock; 3511 struct sockaddr_in6 *dst_addr6 = 3512 (struct sockaddr_in6 *)dst_addr; 3513 3514 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3515 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3516 id->route.addr.dev_addr.bound_dev_if = 3517 dst_addr6->sin6_scope_id; 3518 } else if (dst_addr->sa_family == AF_IB) { 3519 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 3520 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 3521 } 3522 return rdma_bind_addr(id, (struct sockaddr *)&zero_sock); 3523 } 3524 3525 /* 3526 * If required, resolve the source address for bind and leave the id_priv in 3527 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3528 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3529 * ignored. 3530 */ 3531 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3532 struct sockaddr *src_addr, 3533 const struct sockaddr *dst_addr) 3534 { 3535 int ret; 3536 3537 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3538 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3539 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3540 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3541 if (ret) 3542 goto err_dst; 3543 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3544 RDMA_CM_ADDR_QUERY))) { 3545 ret = -EINVAL; 3546 goto err_dst; 3547 } 3548 } 3549 3550 if (cma_family(id_priv) != dst_addr->sa_family) { 3551 ret = -EINVAL; 3552 goto err_state; 3553 } 3554 return 0; 3555 3556 err_state: 3557 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3558 err_dst: 3559 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3560 return ret; 3561 } 3562 3563 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3564 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3565 { 3566 struct rdma_id_private *id_priv = 3567 container_of(id, struct rdma_id_private, id); 3568 int ret; 3569 3570 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3571 if (ret) 3572 return ret; 3573 3574 if (cma_any_addr(dst_addr)) { 3575 ret = cma_resolve_loopback(id_priv); 3576 } else { 3577 if (dst_addr->sa_family == AF_IB) { 3578 ret = cma_resolve_ib_addr(id_priv); 3579 } else { 3580 /* 3581 * The FSM can return back to RDMA_CM_ADDR_BOUND after 3582 * rdma_resolve_ip() is called, eg through the error 3583 * path in addr_handler(). If this happens the existing 3584 * request must be canceled before issuing a new one. 3585 * Since canceling a request is a bit slow and this 3586 * oddball path is rare, keep track once a request has 3587 * been issued. The track turns out to be a permanent 3588 * state since this is the only cancel as it is 3589 * immediately before rdma_resolve_ip(). 3590 */ 3591 if (id_priv->used_resolve_ip) 3592 rdma_addr_cancel(&id->route.addr.dev_addr); 3593 else 3594 id_priv->used_resolve_ip = 1; 3595 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3596 &id->route.addr.dev_addr, 3597 timeout_ms, addr_handler, 3598 false, id_priv); 3599 } 3600 } 3601 if (ret) 3602 goto err; 3603 3604 return 0; 3605 err: 3606 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3607 return ret; 3608 } 3609 EXPORT_SYMBOL(rdma_resolve_addr); 3610 3611 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3612 { 3613 struct rdma_id_private *id_priv; 3614 unsigned long flags; 3615 int ret; 3616 3617 id_priv = container_of(id, struct rdma_id_private, id); 3618 spin_lock_irqsave(&id_priv->lock, flags); 3619 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3620 id_priv->state == RDMA_CM_IDLE) { 3621 id_priv->reuseaddr = reuse; 3622 ret = 0; 3623 } else { 3624 ret = -EINVAL; 3625 } 3626 spin_unlock_irqrestore(&id_priv->lock, flags); 3627 return ret; 3628 } 3629 EXPORT_SYMBOL(rdma_set_reuseaddr); 3630 3631 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3632 { 3633 struct rdma_id_private *id_priv; 3634 unsigned long flags; 3635 int ret; 3636 3637 id_priv = container_of(id, struct rdma_id_private, id); 3638 spin_lock_irqsave(&id_priv->lock, flags); 3639 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3640 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3641 id_priv->afonly = afonly; 3642 ret = 0; 3643 } else { 3644 ret = -EINVAL; 3645 } 3646 spin_unlock_irqrestore(&id_priv->lock, flags); 3647 return ret; 3648 } 3649 EXPORT_SYMBOL(rdma_set_afonly); 3650 3651 static void cma_bind_port(struct rdma_bind_list *bind_list, 3652 struct rdma_id_private *id_priv) 3653 { 3654 struct sockaddr *addr; 3655 struct sockaddr_ib *sib; 3656 u64 sid, mask; 3657 __be16 port; 3658 3659 lockdep_assert_held(&lock); 3660 3661 addr = cma_src_addr(id_priv); 3662 port = htons(bind_list->port); 3663 3664 switch (addr->sa_family) { 3665 case AF_INET: 3666 ((struct sockaddr_in *) addr)->sin_port = port; 3667 break; 3668 case AF_INET6: 3669 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3670 break; 3671 case AF_IB: 3672 sib = (struct sockaddr_ib *) addr; 3673 sid = be64_to_cpu(sib->sib_sid); 3674 mask = be64_to_cpu(sib->sib_sid_mask); 3675 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3676 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3677 break; 3678 } 3679 id_priv->bind_list = bind_list; 3680 hlist_add_head(&id_priv->node, &bind_list->owners); 3681 } 3682 3683 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3684 struct rdma_id_private *id_priv, unsigned short snum) 3685 { 3686 struct rdma_bind_list *bind_list; 3687 int ret; 3688 3689 lockdep_assert_held(&lock); 3690 3691 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3692 if (!bind_list) 3693 return -ENOMEM; 3694 3695 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3696 snum); 3697 if (ret < 0) 3698 goto err; 3699 3700 bind_list->ps = ps; 3701 bind_list->port = snum; 3702 cma_bind_port(bind_list, id_priv); 3703 return 0; 3704 err: 3705 kfree(bind_list); 3706 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3707 } 3708 3709 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3710 struct rdma_id_private *id_priv) 3711 { 3712 struct rdma_id_private *cur_id; 3713 struct sockaddr *daddr = cma_dst_addr(id_priv); 3714 struct sockaddr *saddr = cma_src_addr(id_priv); 3715 __be16 dport = cma_port(daddr); 3716 3717 lockdep_assert_held(&lock); 3718 3719 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3720 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3721 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3722 __be16 cur_dport = cma_port(cur_daddr); 3723 3724 if (id_priv == cur_id) 3725 continue; 3726 3727 /* different dest port -> unique */ 3728 if (!cma_any_port(daddr) && 3729 !cma_any_port(cur_daddr) && 3730 (dport != cur_dport)) 3731 continue; 3732 3733 /* different src address -> unique */ 3734 if (!cma_any_addr(saddr) && 3735 !cma_any_addr(cur_saddr) && 3736 cma_addr_cmp(saddr, cur_saddr)) 3737 continue; 3738 3739 /* different dst address -> unique */ 3740 if (!cma_any_addr(daddr) && 3741 !cma_any_addr(cur_daddr) && 3742 cma_addr_cmp(daddr, cur_daddr)) 3743 continue; 3744 3745 return -EADDRNOTAVAIL; 3746 } 3747 return 0; 3748 } 3749 3750 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3751 struct rdma_id_private *id_priv) 3752 { 3753 static unsigned int last_used_port; 3754 int low, high, remaining; 3755 unsigned int rover; 3756 struct net *net = id_priv->id.route.addr.dev_addr.net; 3757 3758 lockdep_assert_held(&lock); 3759 3760 inet_get_local_port_range(net, &low, &high); 3761 remaining = (high - low) + 1; 3762 rover = prandom_u32() % remaining + low; 3763 retry: 3764 if (last_used_port != rover) { 3765 struct rdma_bind_list *bind_list; 3766 int ret; 3767 3768 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3769 3770 if (!bind_list) { 3771 ret = cma_alloc_port(ps, id_priv, rover); 3772 } else { 3773 ret = cma_port_is_unique(bind_list, id_priv); 3774 if (!ret) 3775 cma_bind_port(bind_list, id_priv); 3776 } 3777 /* 3778 * Remember previously used port number in order to avoid 3779 * re-using same port immediately after it is closed. 3780 */ 3781 if (!ret) 3782 last_used_port = rover; 3783 if (ret != -EADDRNOTAVAIL) 3784 return ret; 3785 } 3786 if (--remaining) { 3787 rover++; 3788 if ((rover < low) || (rover > high)) 3789 rover = low; 3790 goto retry; 3791 } 3792 return -EADDRNOTAVAIL; 3793 } 3794 3795 /* 3796 * Check that the requested port is available. This is called when trying to 3797 * bind to a specific port, or when trying to listen on a bound port. In 3798 * the latter case, the provided id_priv may already be on the bind_list, but 3799 * we still need to check that it's okay to start listening. 3800 */ 3801 static int cma_check_port(struct rdma_bind_list *bind_list, 3802 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3803 { 3804 struct rdma_id_private *cur_id; 3805 struct sockaddr *addr, *cur_addr; 3806 3807 lockdep_assert_held(&lock); 3808 3809 addr = cma_src_addr(id_priv); 3810 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3811 if (id_priv == cur_id) 3812 continue; 3813 3814 if (reuseaddr && cur_id->reuseaddr) 3815 continue; 3816 3817 cur_addr = cma_src_addr(cur_id); 3818 if (id_priv->afonly && cur_id->afonly && 3819 (addr->sa_family != cur_addr->sa_family)) 3820 continue; 3821 3822 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3823 return -EADDRNOTAVAIL; 3824 3825 if (!cma_addr_cmp(addr, cur_addr)) 3826 return -EADDRINUSE; 3827 } 3828 return 0; 3829 } 3830 3831 static int cma_use_port(enum rdma_ucm_port_space ps, 3832 struct rdma_id_private *id_priv) 3833 { 3834 struct rdma_bind_list *bind_list; 3835 unsigned short snum; 3836 int ret; 3837 3838 lockdep_assert_held(&lock); 3839 3840 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3841 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3842 return -EACCES; 3843 3844 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3845 if (!bind_list) { 3846 ret = cma_alloc_port(ps, id_priv, snum); 3847 } else { 3848 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3849 if (!ret) 3850 cma_bind_port(bind_list, id_priv); 3851 } 3852 return ret; 3853 } 3854 3855 static enum rdma_ucm_port_space 3856 cma_select_inet_ps(struct rdma_id_private *id_priv) 3857 { 3858 switch (id_priv->id.ps) { 3859 case RDMA_PS_TCP: 3860 case RDMA_PS_UDP: 3861 case RDMA_PS_IPOIB: 3862 case RDMA_PS_IB: 3863 return id_priv->id.ps; 3864 default: 3865 3866 return 0; 3867 } 3868 } 3869 3870 static enum rdma_ucm_port_space 3871 cma_select_ib_ps(struct rdma_id_private *id_priv) 3872 { 3873 enum rdma_ucm_port_space ps = 0; 3874 struct sockaddr_ib *sib; 3875 u64 sid_ps, mask, sid; 3876 3877 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3878 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3879 sid = be64_to_cpu(sib->sib_sid) & mask; 3880 3881 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3882 sid_ps = RDMA_IB_IP_PS_IB; 3883 ps = RDMA_PS_IB; 3884 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3885 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3886 sid_ps = RDMA_IB_IP_PS_TCP; 3887 ps = RDMA_PS_TCP; 3888 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3889 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3890 sid_ps = RDMA_IB_IP_PS_UDP; 3891 ps = RDMA_PS_UDP; 3892 } 3893 3894 if (ps) { 3895 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3896 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3897 be64_to_cpu(sib->sib_sid_mask)); 3898 } 3899 return ps; 3900 } 3901 3902 static int cma_get_port(struct rdma_id_private *id_priv) 3903 { 3904 enum rdma_ucm_port_space ps; 3905 int ret; 3906 3907 if (cma_family(id_priv) != AF_IB) 3908 ps = cma_select_inet_ps(id_priv); 3909 else 3910 ps = cma_select_ib_ps(id_priv); 3911 if (!ps) 3912 return -EPROTONOSUPPORT; 3913 3914 mutex_lock(&lock); 3915 if (cma_any_port(cma_src_addr(id_priv))) 3916 ret = cma_alloc_any_port(ps, id_priv); 3917 else 3918 ret = cma_use_port(ps, id_priv); 3919 mutex_unlock(&lock); 3920 3921 return ret; 3922 } 3923 3924 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3925 struct sockaddr *addr) 3926 { 3927 #if IS_ENABLED(CONFIG_IPV6) 3928 struct sockaddr_in6 *sin6; 3929 3930 if (addr->sa_family != AF_INET6) 3931 return 0; 3932 3933 sin6 = (struct sockaddr_in6 *) addr; 3934 3935 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3936 return 0; 3937 3938 if (!sin6->sin6_scope_id) 3939 return -EINVAL; 3940 3941 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3942 #endif 3943 return 0; 3944 } 3945 3946 int rdma_listen(struct rdma_cm_id *id, int backlog) 3947 { 3948 struct rdma_id_private *id_priv = 3949 container_of(id, struct rdma_id_private, id); 3950 int ret; 3951 3952 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3953 struct sockaddr_in any_in = { 3954 .sin_family = AF_INET, 3955 .sin_addr.s_addr = htonl(INADDR_ANY), 3956 }; 3957 3958 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3959 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3960 if (ret) 3961 return ret; 3962 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3963 RDMA_CM_LISTEN))) 3964 return -EINVAL; 3965 } 3966 3967 /* 3968 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3969 * any more, and has to be unique in the bind list. 3970 */ 3971 if (id_priv->reuseaddr) { 3972 mutex_lock(&lock); 3973 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3974 if (!ret) 3975 id_priv->reuseaddr = 0; 3976 mutex_unlock(&lock); 3977 if (ret) 3978 goto err; 3979 } 3980 3981 id_priv->backlog = backlog; 3982 if (id_priv->cma_dev) { 3983 if (rdma_cap_ib_cm(id->device, 1)) { 3984 ret = cma_ib_listen(id_priv); 3985 if (ret) 3986 goto err; 3987 } else if (rdma_cap_iw_cm(id->device, 1)) { 3988 ret = cma_iw_listen(id_priv, backlog); 3989 if (ret) 3990 goto err; 3991 } else { 3992 ret = -ENOSYS; 3993 goto err; 3994 } 3995 } else { 3996 ret = cma_listen_on_all(id_priv); 3997 if (ret) 3998 goto err; 3999 } 4000 4001 return 0; 4002 err: 4003 id_priv->backlog = 0; 4004 /* 4005 * All the failure paths that lead here will not allow the req_handler's 4006 * to have run. 4007 */ 4008 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 4009 return ret; 4010 } 4011 EXPORT_SYMBOL(rdma_listen); 4012 4013 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4014 { 4015 struct rdma_id_private *id_priv; 4016 int ret; 4017 struct sockaddr *daddr; 4018 4019 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4020 addr->sa_family != AF_IB) 4021 return -EAFNOSUPPORT; 4022 4023 id_priv = container_of(id, struct rdma_id_private, id); 4024 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4025 return -EINVAL; 4026 4027 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 4028 if (ret) 4029 goto err1; 4030 4031 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4032 if (!cma_any_addr(addr)) { 4033 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 4034 if (ret) 4035 goto err1; 4036 4037 ret = cma_acquire_dev_by_src_ip(id_priv); 4038 if (ret) 4039 goto err1; 4040 } 4041 4042 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4043 if (addr->sa_family == AF_INET) 4044 id_priv->afonly = 1; 4045 #if IS_ENABLED(CONFIG_IPV6) 4046 else if (addr->sa_family == AF_INET6) { 4047 struct net *net = id_priv->id.route.addr.dev_addr.net; 4048 4049 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4050 } 4051 #endif 4052 } 4053 daddr = cma_dst_addr(id_priv); 4054 daddr->sa_family = addr->sa_family; 4055 4056 ret = cma_get_port(id_priv); 4057 if (ret) 4058 goto err2; 4059 4060 if (!cma_any_addr(addr)) 4061 rdma_restrack_add(&id_priv->res); 4062 return 0; 4063 err2: 4064 if (id_priv->cma_dev) 4065 cma_release_dev(id_priv); 4066 err1: 4067 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4068 return ret; 4069 } 4070 EXPORT_SYMBOL(rdma_bind_addr); 4071 4072 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4073 { 4074 struct cma_hdr *cma_hdr; 4075 4076 cma_hdr = hdr; 4077 cma_hdr->cma_version = CMA_VERSION; 4078 if (cma_family(id_priv) == AF_INET) { 4079 struct sockaddr_in *src4, *dst4; 4080 4081 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4082 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4083 4084 cma_set_ip_ver(cma_hdr, 4); 4085 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4086 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4087 cma_hdr->port = src4->sin_port; 4088 } else if (cma_family(id_priv) == AF_INET6) { 4089 struct sockaddr_in6 *src6, *dst6; 4090 4091 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4092 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4093 4094 cma_set_ip_ver(cma_hdr, 6); 4095 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4096 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4097 cma_hdr->port = src6->sin6_port; 4098 } 4099 return 0; 4100 } 4101 4102 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4103 const struct ib_cm_event *ib_event) 4104 { 4105 struct rdma_id_private *id_priv = cm_id->context; 4106 struct rdma_cm_event event = {}; 4107 const struct ib_cm_sidr_rep_event_param *rep = 4108 &ib_event->param.sidr_rep_rcvd; 4109 int ret; 4110 4111 mutex_lock(&id_priv->handler_mutex); 4112 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4113 goto out; 4114 4115 switch (ib_event->event) { 4116 case IB_CM_SIDR_REQ_ERROR: 4117 event.event = RDMA_CM_EVENT_UNREACHABLE; 4118 event.status = -ETIMEDOUT; 4119 break; 4120 case IB_CM_SIDR_REP_RECEIVED: 4121 event.param.ud.private_data = ib_event->private_data; 4122 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4123 if (rep->status != IB_SIDR_SUCCESS) { 4124 event.event = RDMA_CM_EVENT_UNREACHABLE; 4125 event.status = ib_event->param.sidr_rep_rcvd.status; 4126 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4127 event.status); 4128 break; 4129 } 4130 ret = cma_set_qkey(id_priv, rep->qkey); 4131 if (ret) { 4132 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4133 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4134 event.status = ret; 4135 break; 4136 } 4137 ib_init_ah_attr_from_path(id_priv->id.device, 4138 id_priv->id.port_num, 4139 id_priv->id.route.path_rec, 4140 &event.param.ud.ah_attr, 4141 rep->sgid_attr); 4142 event.param.ud.qp_num = rep->qpn; 4143 event.param.ud.qkey = rep->qkey; 4144 event.event = RDMA_CM_EVENT_ESTABLISHED; 4145 event.status = 0; 4146 break; 4147 default: 4148 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4149 ib_event->event); 4150 goto out; 4151 } 4152 4153 ret = cma_cm_event_handler(id_priv, &event); 4154 4155 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4156 if (ret) { 4157 /* Destroy the CM ID by returning a non-zero value. */ 4158 id_priv->cm_id.ib = NULL; 4159 destroy_id_handler_unlock(id_priv); 4160 return ret; 4161 } 4162 out: 4163 mutex_unlock(&id_priv->handler_mutex); 4164 return 0; 4165 } 4166 4167 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4168 struct rdma_conn_param *conn_param) 4169 { 4170 struct ib_cm_sidr_req_param req; 4171 struct ib_cm_id *id; 4172 void *private_data; 4173 u8 offset; 4174 int ret; 4175 4176 memset(&req, 0, sizeof req); 4177 offset = cma_user_data_offset(id_priv); 4178 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4179 return -EINVAL; 4180 4181 if (req.private_data_len) { 4182 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4183 if (!private_data) 4184 return -ENOMEM; 4185 } else { 4186 private_data = NULL; 4187 } 4188 4189 if (conn_param->private_data && conn_param->private_data_len) 4190 memcpy(private_data + offset, conn_param->private_data, 4191 conn_param->private_data_len); 4192 4193 if (private_data) { 4194 ret = cma_format_hdr(private_data, id_priv); 4195 if (ret) 4196 goto out; 4197 req.private_data = private_data; 4198 } 4199 4200 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4201 id_priv); 4202 if (IS_ERR(id)) { 4203 ret = PTR_ERR(id); 4204 goto out; 4205 } 4206 id_priv->cm_id.ib = id; 4207 4208 req.path = id_priv->id.route.path_rec; 4209 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4210 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4211 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4212 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4213 4214 trace_cm_send_sidr_req(id_priv); 4215 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4216 if (ret) { 4217 ib_destroy_cm_id(id_priv->cm_id.ib); 4218 id_priv->cm_id.ib = NULL; 4219 } 4220 out: 4221 kfree(private_data); 4222 return ret; 4223 } 4224 4225 static int cma_connect_ib(struct rdma_id_private *id_priv, 4226 struct rdma_conn_param *conn_param) 4227 { 4228 struct ib_cm_req_param req; 4229 struct rdma_route *route; 4230 void *private_data; 4231 struct ib_cm_id *id; 4232 u8 offset; 4233 int ret; 4234 4235 memset(&req, 0, sizeof req); 4236 offset = cma_user_data_offset(id_priv); 4237 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4238 return -EINVAL; 4239 4240 if (req.private_data_len) { 4241 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4242 if (!private_data) 4243 return -ENOMEM; 4244 } else { 4245 private_data = NULL; 4246 } 4247 4248 if (conn_param->private_data && conn_param->private_data_len) 4249 memcpy(private_data + offset, conn_param->private_data, 4250 conn_param->private_data_len); 4251 4252 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4253 if (IS_ERR(id)) { 4254 ret = PTR_ERR(id); 4255 goto out; 4256 } 4257 id_priv->cm_id.ib = id; 4258 4259 route = &id_priv->id.route; 4260 if (private_data) { 4261 ret = cma_format_hdr(private_data, id_priv); 4262 if (ret) 4263 goto out; 4264 req.private_data = private_data; 4265 } 4266 4267 req.primary_path = &route->path_rec[0]; 4268 if (route->num_paths == 2) 4269 req.alternate_path = &route->path_rec[1]; 4270 4271 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4272 /* Alternate path SGID attribute currently unsupported */ 4273 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4274 req.qp_num = id_priv->qp_num; 4275 req.qp_type = id_priv->id.qp_type; 4276 req.starting_psn = id_priv->seq_num; 4277 req.responder_resources = conn_param->responder_resources; 4278 req.initiator_depth = conn_param->initiator_depth; 4279 req.flow_control = conn_param->flow_control; 4280 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4281 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4282 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4283 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4284 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4285 req.srq = id_priv->srq ? 1 : 0; 4286 req.ece.vendor_id = id_priv->ece.vendor_id; 4287 req.ece.attr_mod = id_priv->ece.attr_mod; 4288 4289 trace_cm_send_req(id_priv); 4290 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4291 out: 4292 if (ret && !IS_ERR(id)) { 4293 ib_destroy_cm_id(id); 4294 id_priv->cm_id.ib = NULL; 4295 } 4296 4297 kfree(private_data); 4298 return ret; 4299 } 4300 4301 static int cma_connect_iw(struct rdma_id_private *id_priv, 4302 struct rdma_conn_param *conn_param) 4303 { 4304 struct iw_cm_id *cm_id; 4305 int ret; 4306 struct iw_cm_conn_param iw_param; 4307 4308 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4309 if (IS_ERR(cm_id)) 4310 return PTR_ERR(cm_id); 4311 4312 mutex_lock(&id_priv->qp_mutex); 4313 cm_id->tos = id_priv->tos; 4314 cm_id->tos_set = id_priv->tos_set; 4315 mutex_unlock(&id_priv->qp_mutex); 4316 4317 id_priv->cm_id.iw = cm_id; 4318 4319 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4320 rdma_addr_size(cma_src_addr(id_priv))); 4321 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4322 rdma_addr_size(cma_dst_addr(id_priv))); 4323 4324 ret = cma_modify_qp_rtr(id_priv, conn_param); 4325 if (ret) 4326 goto out; 4327 4328 if (conn_param) { 4329 iw_param.ord = conn_param->initiator_depth; 4330 iw_param.ird = conn_param->responder_resources; 4331 iw_param.private_data = conn_param->private_data; 4332 iw_param.private_data_len = conn_param->private_data_len; 4333 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4334 } else { 4335 memset(&iw_param, 0, sizeof iw_param); 4336 iw_param.qpn = id_priv->qp_num; 4337 } 4338 ret = iw_cm_connect(cm_id, &iw_param); 4339 out: 4340 if (ret) { 4341 iw_destroy_cm_id(cm_id); 4342 id_priv->cm_id.iw = NULL; 4343 } 4344 return ret; 4345 } 4346 4347 /** 4348 * rdma_connect_locked - Initiate an active connection request. 4349 * @id: Connection identifier to connect. 4350 * @conn_param: Connection information used for connected QPs. 4351 * 4352 * Same as rdma_connect() but can only be called from the 4353 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4354 */ 4355 int rdma_connect_locked(struct rdma_cm_id *id, 4356 struct rdma_conn_param *conn_param) 4357 { 4358 struct rdma_id_private *id_priv = 4359 container_of(id, struct rdma_id_private, id); 4360 int ret; 4361 4362 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4363 return -EINVAL; 4364 4365 if (!id->qp) { 4366 id_priv->qp_num = conn_param->qp_num; 4367 id_priv->srq = conn_param->srq; 4368 } 4369 4370 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4371 if (id->qp_type == IB_QPT_UD) 4372 ret = cma_resolve_ib_udp(id_priv, conn_param); 4373 else 4374 ret = cma_connect_ib(id_priv, conn_param); 4375 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4376 ret = cma_connect_iw(id_priv, conn_param); 4377 } else { 4378 ret = -ENOSYS; 4379 } 4380 if (ret) 4381 goto err_state; 4382 return 0; 4383 err_state: 4384 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4385 return ret; 4386 } 4387 EXPORT_SYMBOL(rdma_connect_locked); 4388 4389 /** 4390 * rdma_connect - Initiate an active connection request. 4391 * @id: Connection identifier to connect. 4392 * @conn_param: Connection information used for connected QPs. 4393 * 4394 * Users must have resolved a route for the rdma_cm_id to connect with by having 4395 * called rdma_resolve_route before calling this routine. 4396 * 4397 * This call will either connect to a remote QP or obtain remote QP information 4398 * for unconnected rdma_cm_id's. The actual operation is based on the 4399 * rdma_cm_id's port space. 4400 */ 4401 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4402 { 4403 struct rdma_id_private *id_priv = 4404 container_of(id, struct rdma_id_private, id); 4405 int ret; 4406 4407 mutex_lock(&id_priv->handler_mutex); 4408 ret = rdma_connect_locked(id, conn_param); 4409 mutex_unlock(&id_priv->handler_mutex); 4410 return ret; 4411 } 4412 EXPORT_SYMBOL(rdma_connect); 4413 4414 /** 4415 * rdma_connect_ece - Initiate an active connection request with ECE data. 4416 * @id: Connection identifier to connect. 4417 * @conn_param: Connection information used for connected QPs. 4418 * @ece: ECE parameters 4419 * 4420 * See rdma_connect() explanation. 4421 */ 4422 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4423 struct rdma_ucm_ece *ece) 4424 { 4425 struct rdma_id_private *id_priv = 4426 container_of(id, struct rdma_id_private, id); 4427 4428 id_priv->ece.vendor_id = ece->vendor_id; 4429 id_priv->ece.attr_mod = ece->attr_mod; 4430 4431 return rdma_connect(id, conn_param); 4432 } 4433 EXPORT_SYMBOL(rdma_connect_ece); 4434 4435 static int cma_accept_ib(struct rdma_id_private *id_priv, 4436 struct rdma_conn_param *conn_param) 4437 { 4438 struct ib_cm_rep_param rep; 4439 int ret; 4440 4441 ret = cma_modify_qp_rtr(id_priv, conn_param); 4442 if (ret) 4443 goto out; 4444 4445 ret = cma_modify_qp_rts(id_priv, conn_param); 4446 if (ret) 4447 goto out; 4448 4449 memset(&rep, 0, sizeof rep); 4450 rep.qp_num = id_priv->qp_num; 4451 rep.starting_psn = id_priv->seq_num; 4452 rep.private_data = conn_param->private_data; 4453 rep.private_data_len = conn_param->private_data_len; 4454 rep.responder_resources = conn_param->responder_resources; 4455 rep.initiator_depth = conn_param->initiator_depth; 4456 rep.failover_accepted = 0; 4457 rep.flow_control = conn_param->flow_control; 4458 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4459 rep.srq = id_priv->srq ? 1 : 0; 4460 rep.ece.vendor_id = id_priv->ece.vendor_id; 4461 rep.ece.attr_mod = id_priv->ece.attr_mod; 4462 4463 trace_cm_send_rep(id_priv); 4464 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4465 out: 4466 return ret; 4467 } 4468 4469 static int cma_accept_iw(struct rdma_id_private *id_priv, 4470 struct rdma_conn_param *conn_param) 4471 { 4472 struct iw_cm_conn_param iw_param; 4473 int ret; 4474 4475 if (!conn_param) 4476 return -EINVAL; 4477 4478 ret = cma_modify_qp_rtr(id_priv, conn_param); 4479 if (ret) 4480 return ret; 4481 4482 iw_param.ord = conn_param->initiator_depth; 4483 iw_param.ird = conn_param->responder_resources; 4484 iw_param.private_data = conn_param->private_data; 4485 iw_param.private_data_len = conn_param->private_data_len; 4486 if (id_priv->id.qp) 4487 iw_param.qpn = id_priv->qp_num; 4488 else 4489 iw_param.qpn = conn_param->qp_num; 4490 4491 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4492 } 4493 4494 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4495 enum ib_cm_sidr_status status, u32 qkey, 4496 const void *private_data, int private_data_len) 4497 { 4498 struct ib_cm_sidr_rep_param rep; 4499 int ret; 4500 4501 memset(&rep, 0, sizeof rep); 4502 rep.status = status; 4503 if (status == IB_SIDR_SUCCESS) { 4504 ret = cma_set_qkey(id_priv, qkey); 4505 if (ret) 4506 return ret; 4507 rep.qp_num = id_priv->qp_num; 4508 rep.qkey = id_priv->qkey; 4509 4510 rep.ece.vendor_id = id_priv->ece.vendor_id; 4511 rep.ece.attr_mod = id_priv->ece.attr_mod; 4512 } 4513 4514 rep.private_data = private_data; 4515 rep.private_data_len = private_data_len; 4516 4517 trace_cm_send_sidr_rep(id_priv); 4518 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4519 } 4520 4521 /** 4522 * rdma_accept - Called to accept a connection request or response. 4523 * @id: Connection identifier associated with the request. 4524 * @conn_param: Information needed to establish the connection. This must be 4525 * provided if accepting a connection request. If accepting a connection 4526 * response, this parameter must be NULL. 4527 * 4528 * Typically, this routine is only called by the listener to accept a connection 4529 * request. It must also be called on the active side of a connection if the 4530 * user is performing their own QP transitions. 4531 * 4532 * In the case of error, a reject message is sent to the remote side and the 4533 * state of the qp associated with the id is modified to error, such that any 4534 * previously posted receive buffers would be flushed. 4535 * 4536 * This function is for use by kernel ULPs and must be called from under the 4537 * handler callback. 4538 */ 4539 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4540 { 4541 struct rdma_id_private *id_priv = 4542 container_of(id, struct rdma_id_private, id); 4543 int ret; 4544 4545 lockdep_assert_held(&id_priv->handler_mutex); 4546 4547 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4548 return -EINVAL; 4549 4550 if (!id->qp && conn_param) { 4551 id_priv->qp_num = conn_param->qp_num; 4552 id_priv->srq = conn_param->srq; 4553 } 4554 4555 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4556 if (id->qp_type == IB_QPT_UD) { 4557 if (conn_param) 4558 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4559 conn_param->qkey, 4560 conn_param->private_data, 4561 conn_param->private_data_len); 4562 else 4563 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4564 0, NULL, 0); 4565 } else { 4566 if (conn_param) 4567 ret = cma_accept_ib(id_priv, conn_param); 4568 else 4569 ret = cma_rep_recv(id_priv); 4570 } 4571 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4572 ret = cma_accept_iw(id_priv, conn_param); 4573 } else { 4574 ret = -ENOSYS; 4575 } 4576 if (ret) 4577 goto reject; 4578 4579 return 0; 4580 reject: 4581 cma_modify_qp_err(id_priv); 4582 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4583 return ret; 4584 } 4585 EXPORT_SYMBOL(rdma_accept); 4586 4587 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4588 struct rdma_ucm_ece *ece) 4589 { 4590 struct rdma_id_private *id_priv = 4591 container_of(id, struct rdma_id_private, id); 4592 4593 id_priv->ece.vendor_id = ece->vendor_id; 4594 id_priv->ece.attr_mod = ece->attr_mod; 4595 4596 return rdma_accept(id, conn_param); 4597 } 4598 EXPORT_SYMBOL(rdma_accept_ece); 4599 4600 void rdma_lock_handler(struct rdma_cm_id *id) 4601 { 4602 struct rdma_id_private *id_priv = 4603 container_of(id, struct rdma_id_private, id); 4604 4605 mutex_lock(&id_priv->handler_mutex); 4606 } 4607 EXPORT_SYMBOL(rdma_lock_handler); 4608 4609 void rdma_unlock_handler(struct rdma_cm_id *id) 4610 { 4611 struct rdma_id_private *id_priv = 4612 container_of(id, struct rdma_id_private, id); 4613 4614 mutex_unlock(&id_priv->handler_mutex); 4615 } 4616 EXPORT_SYMBOL(rdma_unlock_handler); 4617 4618 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4619 { 4620 struct rdma_id_private *id_priv; 4621 int ret; 4622 4623 id_priv = container_of(id, struct rdma_id_private, id); 4624 if (!id_priv->cm_id.ib) 4625 return -EINVAL; 4626 4627 switch (id->device->node_type) { 4628 case RDMA_NODE_IB_CA: 4629 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4630 break; 4631 default: 4632 ret = 0; 4633 break; 4634 } 4635 return ret; 4636 } 4637 EXPORT_SYMBOL(rdma_notify); 4638 4639 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4640 u8 private_data_len, u8 reason) 4641 { 4642 struct rdma_id_private *id_priv; 4643 int ret; 4644 4645 id_priv = container_of(id, struct rdma_id_private, id); 4646 if (!id_priv->cm_id.ib) 4647 return -EINVAL; 4648 4649 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4650 if (id->qp_type == IB_QPT_UD) { 4651 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4652 private_data, private_data_len); 4653 } else { 4654 trace_cm_send_rej(id_priv); 4655 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4656 private_data, private_data_len); 4657 } 4658 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4659 ret = iw_cm_reject(id_priv->cm_id.iw, 4660 private_data, private_data_len); 4661 } else { 4662 ret = -ENOSYS; 4663 } 4664 4665 return ret; 4666 } 4667 EXPORT_SYMBOL(rdma_reject); 4668 4669 int rdma_disconnect(struct rdma_cm_id *id) 4670 { 4671 struct rdma_id_private *id_priv; 4672 int ret; 4673 4674 id_priv = container_of(id, struct rdma_id_private, id); 4675 if (!id_priv->cm_id.ib) 4676 return -EINVAL; 4677 4678 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4679 ret = cma_modify_qp_err(id_priv); 4680 if (ret) 4681 goto out; 4682 /* Initiate or respond to a disconnect. */ 4683 trace_cm_disconnect(id_priv); 4684 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4685 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4686 trace_cm_sent_drep(id_priv); 4687 } else { 4688 trace_cm_sent_dreq(id_priv); 4689 } 4690 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4691 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4692 } else 4693 ret = -EINVAL; 4694 4695 out: 4696 return ret; 4697 } 4698 EXPORT_SYMBOL(rdma_disconnect); 4699 4700 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4701 struct ib_sa_multicast *multicast, 4702 struct rdma_cm_event *event, 4703 struct cma_multicast *mc) 4704 { 4705 struct rdma_dev_addr *dev_addr; 4706 enum ib_gid_type gid_type; 4707 struct net_device *ndev; 4708 4709 if (!status) 4710 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4711 else 4712 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4713 status); 4714 4715 event->status = status; 4716 event->param.ud.private_data = mc->context; 4717 if (status) { 4718 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4719 return; 4720 } 4721 4722 dev_addr = &id_priv->id.route.addr.dev_addr; 4723 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4724 gid_type = 4725 id_priv->cma_dev 4726 ->default_gid_type[id_priv->id.port_num - 4727 rdma_start_port( 4728 id_priv->cma_dev->device)]; 4729 4730 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4731 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4732 &multicast->rec, ndev, gid_type, 4733 &event->param.ud.ah_attr)) { 4734 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4735 goto out; 4736 } 4737 4738 event->param.ud.qp_num = 0xFFFFFF; 4739 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4740 4741 out: 4742 if (ndev) 4743 dev_put(ndev); 4744 } 4745 4746 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4747 { 4748 struct cma_multicast *mc = multicast->context; 4749 struct rdma_id_private *id_priv = mc->id_priv; 4750 struct rdma_cm_event event = {}; 4751 int ret = 0; 4752 4753 mutex_lock(&id_priv->handler_mutex); 4754 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4755 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4756 goto out; 4757 4758 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4759 ret = cma_cm_event_handler(id_priv, &event); 4760 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4761 WARN_ON(ret); 4762 4763 out: 4764 mutex_unlock(&id_priv->handler_mutex); 4765 return 0; 4766 } 4767 4768 static void cma_set_mgid(struct rdma_id_private *id_priv, 4769 struct sockaddr *addr, union ib_gid *mgid) 4770 { 4771 unsigned char mc_map[MAX_ADDR_LEN]; 4772 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4773 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4774 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4775 4776 if (cma_any_addr(addr)) { 4777 memset(mgid, 0, sizeof *mgid); 4778 } else if ((addr->sa_family == AF_INET6) && 4779 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4780 0xFF10A01B)) { 4781 /* IPv6 address is an SA assigned MGID. */ 4782 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4783 } else if (addr->sa_family == AF_IB) { 4784 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4785 } else if (addr->sa_family == AF_INET6) { 4786 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4787 if (id_priv->id.ps == RDMA_PS_UDP) 4788 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4789 *mgid = *(union ib_gid *) (mc_map + 4); 4790 } else { 4791 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4792 if (id_priv->id.ps == RDMA_PS_UDP) 4793 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4794 *mgid = *(union ib_gid *) (mc_map + 4); 4795 } 4796 } 4797 4798 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4799 struct cma_multicast *mc) 4800 { 4801 struct ib_sa_mcmember_rec rec; 4802 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4803 ib_sa_comp_mask comp_mask; 4804 int ret; 4805 4806 ib_addr_get_mgid(dev_addr, &rec.mgid); 4807 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4808 &rec.mgid, &rec); 4809 if (ret) 4810 return ret; 4811 4812 ret = cma_set_qkey(id_priv, 0); 4813 if (ret) 4814 return ret; 4815 4816 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4817 rec.qkey = cpu_to_be32(id_priv->qkey); 4818 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4819 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4820 rec.join_state = mc->join_state; 4821 4822 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4823 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4824 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4825 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4826 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4827 4828 if (id_priv->id.ps == RDMA_PS_IPOIB) 4829 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4830 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4831 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4832 IB_SA_MCMEMBER_REC_MTU | 4833 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4834 4835 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4836 id_priv->id.port_num, &rec, comp_mask, 4837 GFP_KERNEL, cma_ib_mc_handler, mc); 4838 return PTR_ERR_OR_ZERO(mc->sa_mc); 4839 } 4840 4841 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4842 enum ib_gid_type gid_type) 4843 { 4844 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4845 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4846 4847 if (cma_any_addr(addr)) { 4848 memset(mgid, 0, sizeof *mgid); 4849 } else if (addr->sa_family == AF_INET6) { 4850 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4851 } else { 4852 mgid->raw[0] = 4853 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4854 mgid->raw[1] = 4855 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4856 mgid->raw[2] = 0; 4857 mgid->raw[3] = 0; 4858 mgid->raw[4] = 0; 4859 mgid->raw[5] = 0; 4860 mgid->raw[6] = 0; 4861 mgid->raw[7] = 0; 4862 mgid->raw[8] = 0; 4863 mgid->raw[9] = 0; 4864 mgid->raw[10] = 0xff; 4865 mgid->raw[11] = 0xff; 4866 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4867 } 4868 } 4869 4870 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4871 struct cma_multicast *mc) 4872 { 4873 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4874 int err = 0; 4875 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4876 struct net_device *ndev = NULL; 4877 struct ib_sa_multicast ib; 4878 enum ib_gid_type gid_type; 4879 bool send_only; 4880 4881 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4882 4883 if (cma_zero_addr(addr)) 4884 return -EINVAL; 4885 4886 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4887 rdma_start_port(id_priv->cma_dev->device)]; 4888 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4889 4890 ib.rec.pkey = cpu_to_be16(0xffff); 4891 if (id_priv->id.ps == RDMA_PS_UDP) 4892 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4893 4894 if (dev_addr->bound_dev_if) 4895 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4896 if (!ndev) 4897 return -ENODEV; 4898 4899 ib.rec.rate = iboe_get_rate(ndev); 4900 ib.rec.hop_limit = 1; 4901 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4902 4903 if (addr->sa_family == AF_INET) { 4904 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4905 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4906 if (!send_only) { 4907 err = cma_igmp_send(ndev, &ib.rec.mgid, 4908 true); 4909 } 4910 } 4911 } else { 4912 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4913 err = -ENOTSUPP; 4914 } 4915 dev_put(ndev); 4916 if (err || !ib.rec.mtu) 4917 return err ?: -EINVAL; 4918 4919 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4920 &ib.rec.port_gid); 4921 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4922 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4923 queue_work(cma_wq, &mc->iboe_join.work); 4924 return 0; 4925 } 4926 4927 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4928 u8 join_state, void *context) 4929 { 4930 struct rdma_id_private *id_priv = 4931 container_of(id, struct rdma_id_private, id); 4932 struct cma_multicast *mc; 4933 int ret; 4934 4935 /* Not supported for kernel QPs */ 4936 if (WARN_ON(id->qp)) 4937 return -EINVAL; 4938 4939 /* ULP is calling this wrong. */ 4940 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4941 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4942 return -EINVAL; 4943 4944 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4945 if (!mc) 4946 return -ENOMEM; 4947 4948 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4949 mc->context = context; 4950 mc->id_priv = id_priv; 4951 mc->join_state = join_state; 4952 4953 if (rdma_protocol_roce(id->device, id->port_num)) { 4954 ret = cma_iboe_join_multicast(id_priv, mc); 4955 if (ret) 4956 goto out_err; 4957 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4958 ret = cma_join_ib_multicast(id_priv, mc); 4959 if (ret) 4960 goto out_err; 4961 } else { 4962 ret = -ENOSYS; 4963 goto out_err; 4964 } 4965 4966 spin_lock(&id_priv->lock); 4967 list_add(&mc->list, &id_priv->mc_list); 4968 spin_unlock(&id_priv->lock); 4969 4970 return 0; 4971 out_err: 4972 kfree(mc); 4973 return ret; 4974 } 4975 EXPORT_SYMBOL(rdma_join_multicast); 4976 4977 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4978 { 4979 struct rdma_id_private *id_priv; 4980 struct cma_multicast *mc; 4981 4982 id_priv = container_of(id, struct rdma_id_private, id); 4983 spin_lock_irq(&id_priv->lock); 4984 list_for_each_entry(mc, &id_priv->mc_list, list) { 4985 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4986 continue; 4987 list_del(&mc->list); 4988 spin_unlock_irq(&id_priv->lock); 4989 4990 WARN_ON(id_priv->cma_dev->device != id->device); 4991 destroy_mc(id_priv, mc); 4992 return; 4993 } 4994 spin_unlock_irq(&id_priv->lock); 4995 } 4996 EXPORT_SYMBOL(rdma_leave_multicast); 4997 4998 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4999 { 5000 struct rdma_dev_addr *dev_addr; 5001 struct cma_work *work; 5002 5003 dev_addr = &id_priv->id.route.addr.dev_addr; 5004 5005 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5006 (net_eq(dev_net(ndev), dev_addr->net)) && 5007 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5008 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5009 ndev->name, &id_priv->id); 5010 work = kzalloc(sizeof *work, GFP_KERNEL); 5011 if (!work) 5012 return -ENOMEM; 5013 5014 INIT_WORK(&work->work, cma_work_handler); 5015 work->id = id_priv; 5016 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5017 cma_id_get(id_priv); 5018 queue_work(cma_wq, &work->work); 5019 } 5020 5021 return 0; 5022 } 5023 5024 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5025 void *ptr) 5026 { 5027 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5028 struct cma_device *cma_dev; 5029 struct rdma_id_private *id_priv; 5030 int ret = NOTIFY_DONE; 5031 5032 if (event != NETDEV_BONDING_FAILOVER) 5033 return NOTIFY_DONE; 5034 5035 if (!netif_is_bond_master(ndev)) 5036 return NOTIFY_DONE; 5037 5038 mutex_lock(&lock); 5039 list_for_each_entry(cma_dev, &dev_list, list) 5040 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5041 ret = cma_netdev_change(ndev, id_priv); 5042 if (ret) 5043 goto out; 5044 } 5045 5046 out: 5047 mutex_unlock(&lock); 5048 return ret; 5049 } 5050 5051 static void cma_netevent_work_handler(struct work_struct *_work) 5052 { 5053 struct rdma_id_private *id_priv = 5054 container_of(_work, struct rdma_id_private, id.net_work); 5055 struct rdma_cm_event event = {}; 5056 5057 mutex_lock(&id_priv->handler_mutex); 5058 5059 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5060 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5061 goto out_unlock; 5062 5063 event.event = RDMA_CM_EVENT_UNREACHABLE; 5064 event.status = -ETIMEDOUT; 5065 5066 if (cma_cm_event_handler(id_priv, &event)) { 5067 __acquire(&id_priv->handler_mutex); 5068 id_priv->cm_id.ib = NULL; 5069 cma_id_put(id_priv); 5070 destroy_id_handler_unlock(id_priv); 5071 return; 5072 } 5073 5074 out_unlock: 5075 mutex_unlock(&id_priv->handler_mutex); 5076 cma_id_put(id_priv); 5077 } 5078 5079 static int cma_netevent_callback(struct notifier_block *self, 5080 unsigned long event, void *ctx) 5081 { 5082 struct id_table_entry *ips_node = NULL; 5083 struct rdma_id_private *current_id; 5084 struct neighbour *neigh = ctx; 5085 unsigned long flags; 5086 5087 if (event != NETEVENT_NEIGH_UPDATE) 5088 return NOTIFY_DONE; 5089 5090 spin_lock_irqsave(&id_table_lock, flags); 5091 if (neigh->tbl->family == AF_INET6) { 5092 struct sockaddr_in6 neigh_sock_6; 5093 5094 neigh_sock_6.sin6_family = AF_INET6; 5095 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5096 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5097 (struct sockaddr *)&neigh_sock_6); 5098 } else if (neigh->tbl->family == AF_INET) { 5099 struct sockaddr_in neigh_sock_4; 5100 5101 neigh_sock_4.sin_family = AF_INET; 5102 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5103 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5104 (struct sockaddr *)&neigh_sock_4); 5105 } else 5106 goto out; 5107 5108 if (!ips_node) 5109 goto out; 5110 5111 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5112 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5113 neigh->ha, ETH_ALEN)) 5114 continue; 5115 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); 5116 cma_id_get(current_id); 5117 queue_work(cma_wq, ¤t_id->id.net_work); 5118 } 5119 out: 5120 spin_unlock_irqrestore(&id_table_lock, flags); 5121 return NOTIFY_DONE; 5122 } 5123 5124 static struct notifier_block cma_nb = { 5125 .notifier_call = cma_netdev_callback 5126 }; 5127 5128 static struct notifier_block cma_netevent_cb = { 5129 .notifier_call = cma_netevent_callback 5130 }; 5131 5132 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5133 { 5134 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5135 enum rdma_cm_state state; 5136 unsigned long flags; 5137 5138 mutex_lock(&id_priv->handler_mutex); 5139 /* Record that we want to remove the device */ 5140 spin_lock_irqsave(&id_priv->lock, flags); 5141 state = id_priv->state; 5142 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5143 spin_unlock_irqrestore(&id_priv->lock, flags); 5144 mutex_unlock(&id_priv->handler_mutex); 5145 cma_id_put(id_priv); 5146 return; 5147 } 5148 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5149 spin_unlock_irqrestore(&id_priv->lock, flags); 5150 5151 if (cma_cm_event_handler(id_priv, &event)) { 5152 /* 5153 * At this point the ULP promises it won't call 5154 * rdma_destroy_id() concurrently 5155 */ 5156 cma_id_put(id_priv); 5157 mutex_unlock(&id_priv->handler_mutex); 5158 trace_cm_id_destroy(id_priv); 5159 _destroy_id(id_priv, state); 5160 return; 5161 } 5162 mutex_unlock(&id_priv->handler_mutex); 5163 5164 /* 5165 * If this races with destroy then the thread that first assigns state 5166 * to a destroying does the cancel. 5167 */ 5168 cma_cancel_operation(id_priv, state); 5169 cma_id_put(id_priv); 5170 } 5171 5172 static void cma_process_remove(struct cma_device *cma_dev) 5173 { 5174 mutex_lock(&lock); 5175 while (!list_empty(&cma_dev->id_list)) { 5176 struct rdma_id_private *id_priv = list_first_entry( 5177 &cma_dev->id_list, struct rdma_id_private, device_item); 5178 5179 list_del_init(&id_priv->listen_item); 5180 list_del_init(&id_priv->device_item); 5181 cma_id_get(id_priv); 5182 mutex_unlock(&lock); 5183 5184 cma_send_device_removal_put(id_priv); 5185 5186 mutex_lock(&lock); 5187 } 5188 mutex_unlock(&lock); 5189 5190 cma_dev_put(cma_dev); 5191 wait_for_completion(&cma_dev->comp); 5192 } 5193 5194 static bool cma_supported(struct ib_device *device) 5195 { 5196 u32 i; 5197 5198 rdma_for_each_port(device, i) { 5199 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5200 return true; 5201 } 5202 return false; 5203 } 5204 5205 static int cma_add_one(struct ib_device *device) 5206 { 5207 struct rdma_id_private *to_destroy; 5208 struct cma_device *cma_dev; 5209 struct rdma_id_private *id_priv; 5210 unsigned long supported_gids = 0; 5211 int ret; 5212 u32 i; 5213 5214 if (!cma_supported(device)) 5215 return -EOPNOTSUPP; 5216 5217 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5218 if (!cma_dev) 5219 return -ENOMEM; 5220 5221 cma_dev->device = device; 5222 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5223 sizeof(*cma_dev->default_gid_type), 5224 GFP_KERNEL); 5225 if (!cma_dev->default_gid_type) { 5226 ret = -ENOMEM; 5227 goto free_cma_dev; 5228 } 5229 5230 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5231 sizeof(*cma_dev->default_roce_tos), 5232 GFP_KERNEL); 5233 if (!cma_dev->default_roce_tos) { 5234 ret = -ENOMEM; 5235 goto free_gid_type; 5236 } 5237 5238 rdma_for_each_port (device, i) { 5239 supported_gids = roce_gid_type_mask_support(device, i); 5240 WARN_ON(!supported_gids); 5241 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5242 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5243 CMA_PREFERRED_ROCE_GID_TYPE; 5244 else 5245 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5246 find_first_bit(&supported_gids, BITS_PER_LONG); 5247 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5248 } 5249 5250 init_completion(&cma_dev->comp); 5251 refcount_set(&cma_dev->refcount, 1); 5252 INIT_LIST_HEAD(&cma_dev->id_list); 5253 ib_set_client_data(device, &cma_client, cma_dev); 5254 5255 mutex_lock(&lock); 5256 list_add_tail(&cma_dev->list, &dev_list); 5257 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5258 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5259 if (ret) 5260 goto free_listen; 5261 } 5262 mutex_unlock(&lock); 5263 5264 trace_cm_add_one(device); 5265 return 0; 5266 5267 free_listen: 5268 list_del(&cma_dev->list); 5269 mutex_unlock(&lock); 5270 5271 /* cma_process_remove() will delete to_destroy */ 5272 cma_process_remove(cma_dev); 5273 kfree(cma_dev->default_roce_tos); 5274 free_gid_type: 5275 kfree(cma_dev->default_gid_type); 5276 5277 free_cma_dev: 5278 kfree(cma_dev); 5279 return ret; 5280 } 5281 5282 static void cma_remove_one(struct ib_device *device, void *client_data) 5283 { 5284 struct cma_device *cma_dev = client_data; 5285 5286 trace_cm_remove_one(device); 5287 5288 mutex_lock(&lock); 5289 list_del(&cma_dev->list); 5290 mutex_unlock(&lock); 5291 5292 cma_process_remove(cma_dev); 5293 kfree(cma_dev->default_roce_tos); 5294 kfree(cma_dev->default_gid_type); 5295 kfree(cma_dev); 5296 } 5297 5298 static int cma_init_net(struct net *net) 5299 { 5300 struct cma_pernet *pernet = cma_pernet(net); 5301 5302 xa_init(&pernet->tcp_ps); 5303 xa_init(&pernet->udp_ps); 5304 xa_init(&pernet->ipoib_ps); 5305 xa_init(&pernet->ib_ps); 5306 5307 return 0; 5308 } 5309 5310 static void cma_exit_net(struct net *net) 5311 { 5312 struct cma_pernet *pernet = cma_pernet(net); 5313 5314 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5315 WARN_ON(!xa_empty(&pernet->udp_ps)); 5316 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5317 WARN_ON(!xa_empty(&pernet->ib_ps)); 5318 } 5319 5320 static struct pernet_operations cma_pernet_operations = { 5321 .init = cma_init_net, 5322 .exit = cma_exit_net, 5323 .id = &cma_pernet_id, 5324 .size = sizeof(struct cma_pernet), 5325 }; 5326 5327 static int __init cma_init(void) 5328 { 5329 int ret; 5330 5331 /* 5332 * There is a rare lock ordering dependency in cma_netdev_callback() 5333 * that only happens when bonding is enabled. Teach lockdep that rtnl 5334 * must never be nested under lock so it can find these without having 5335 * to test with bonding. 5336 */ 5337 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5338 rtnl_lock(); 5339 mutex_lock(&lock); 5340 mutex_unlock(&lock); 5341 rtnl_unlock(); 5342 } 5343 5344 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5345 if (!cma_wq) 5346 return -ENOMEM; 5347 5348 ret = register_pernet_subsys(&cma_pernet_operations); 5349 if (ret) 5350 goto err_wq; 5351 5352 ib_sa_register_client(&sa_client); 5353 register_netdevice_notifier(&cma_nb); 5354 register_netevent_notifier(&cma_netevent_cb); 5355 5356 ret = ib_register_client(&cma_client); 5357 if (ret) 5358 goto err; 5359 5360 ret = cma_configfs_init(); 5361 if (ret) 5362 goto err_ib; 5363 5364 return 0; 5365 5366 err_ib: 5367 ib_unregister_client(&cma_client); 5368 err: 5369 unregister_netevent_notifier(&cma_netevent_cb); 5370 unregister_netdevice_notifier(&cma_nb); 5371 ib_sa_unregister_client(&sa_client); 5372 unregister_pernet_subsys(&cma_pernet_operations); 5373 err_wq: 5374 destroy_workqueue(cma_wq); 5375 return ret; 5376 } 5377 5378 static void __exit cma_cleanup(void) 5379 { 5380 cma_configfs_exit(); 5381 ib_unregister_client(&cma_client); 5382 unregister_netevent_notifier(&cma_netevent_cb); 5383 unregister_netdevice_notifier(&cma_nb); 5384 ib_sa_unregister_client(&sa_client); 5385 unregister_pernet_subsys(&cma_pernet_operations); 5386 destroy_workqueue(cma_wq); 5387 } 5388 5389 module_init(cma_init); 5390 module_exit(cma_cleanup); 5391