xref: /openbmc/linux/drivers/infiniband/core/cma.c (revision d58f75de)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/igmp.h>
15 #include <linux/xarray.h>
16 #include <linux/inetdevice.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <net/route.h>
20 
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 #include <net/tcp.h>
24 #include <net/ipv6.h>
25 #include <net/ip_fib.h>
26 #include <net/ip6_route.h>
27 
28 #include <rdma/rdma_cm.h>
29 #include <rdma/rdma_cm_ib.h>
30 #include <rdma/rdma_netlink.h>
31 #include <rdma/ib.h>
32 #include <rdma/ib_cache.h>
33 #include <rdma/ib_cm.h>
34 #include <rdma/ib_sa.h>
35 #include <rdma/iw_cm.h>
36 
37 #include "core_priv.h"
38 #include "cma_priv.h"
39 #include "cma_trace.h"
40 
41 MODULE_AUTHOR("Sean Hefty");
42 MODULE_DESCRIPTION("Generic RDMA CM Agent");
43 MODULE_LICENSE("Dual BSD/GPL");
44 
45 #define CMA_CM_RESPONSE_TIMEOUT 20
46 #define CMA_MAX_CM_RETRIES 15
47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
48 #define CMA_IBOE_PACKET_LIFETIME 18
49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
50 
51 static const char * const cma_events[] = {
52 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
53 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
54 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
55 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
56 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
57 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
58 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
59 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
60 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
61 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
62 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
63 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
64 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
65 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
66 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
67 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
68 };
69 
70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr,
71 			 union ib_gid *mgid);
72 
73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
74 {
75 	size_t index = event;
76 
77 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
78 			cma_events[index] : "unrecognized event";
79 }
80 EXPORT_SYMBOL(rdma_event_msg);
81 
82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
83 						int reason)
84 {
85 	if (rdma_ib_or_roce(id->device, id->port_num))
86 		return ibcm_reject_msg(reason);
87 
88 	if (rdma_protocol_iwarp(id->device, id->port_num))
89 		return iwcm_reject_msg(reason);
90 
91 	WARN_ON_ONCE(1);
92 	return "unrecognized transport";
93 }
94 EXPORT_SYMBOL(rdma_reject_msg);
95 
96 /**
97  * rdma_is_consumer_reject - return true if the consumer rejected the connect
98  *                           request.
99  * @id: Communication identifier that received the REJECT event.
100  * @reason: Value returned in the REJECT event status field.
101  */
102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
103 {
104 	if (rdma_ib_or_roce(id->device, id->port_num))
105 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
106 
107 	if (rdma_protocol_iwarp(id->device, id->port_num))
108 		return reason == -ECONNREFUSED;
109 
110 	WARN_ON_ONCE(1);
111 	return false;
112 }
113 
114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
115 				      struct rdma_cm_event *ev, u8 *data_len)
116 {
117 	const void *p;
118 
119 	if (rdma_is_consumer_reject(id, ev->status)) {
120 		*data_len = ev->param.conn.private_data_len;
121 		p = ev->param.conn.private_data;
122 	} else {
123 		*data_len = 0;
124 		p = NULL;
125 	}
126 	return p;
127 }
128 EXPORT_SYMBOL(rdma_consumer_reject_data);
129 
130 /**
131  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
132  * @id: Communication Identifier
133  */
134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
135 {
136 	struct rdma_id_private *id_priv;
137 
138 	id_priv = container_of(id, struct rdma_id_private, id);
139 	if (id->device->node_type == RDMA_NODE_RNIC)
140 		return id_priv->cm_id.iw;
141 	return NULL;
142 }
143 EXPORT_SYMBOL(rdma_iw_cm_id);
144 
145 /**
146  * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
147  * @res: rdma resource tracking entry pointer
148  */
149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
150 {
151 	struct rdma_id_private *id_priv =
152 		container_of(res, struct rdma_id_private, res);
153 
154 	return &id_priv->id;
155 }
156 EXPORT_SYMBOL(rdma_res_to_id);
157 
158 static int cma_add_one(struct ib_device *device);
159 static void cma_remove_one(struct ib_device *device, void *client_data);
160 
161 static struct ib_client cma_client = {
162 	.name   = "cma",
163 	.add    = cma_add_one,
164 	.remove = cma_remove_one
165 };
166 
167 static struct ib_sa_client sa_client;
168 static LIST_HEAD(dev_list);
169 static LIST_HEAD(listen_any_list);
170 static DEFINE_MUTEX(lock);
171 static struct workqueue_struct *cma_wq;
172 static unsigned int cma_pernet_id;
173 
174 struct cma_pernet {
175 	struct xarray tcp_ps;
176 	struct xarray udp_ps;
177 	struct xarray ipoib_ps;
178 	struct xarray ib_ps;
179 };
180 
181 static struct cma_pernet *cma_pernet(struct net *net)
182 {
183 	return net_generic(net, cma_pernet_id);
184 }
185 
186 static
187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
188 {
189 	struct cma_pernet *pernet = cma_pernet(net);
190 
191 	switch (ps) {
192 	case RDMA_PS_TCP:
193 		return &pernet->tcp_ps;
194 	case RDMA_PS_UDP:
195 		return &pernet->udp_ps;
196 	case RDMA_PS_IPOIB:
197 		return &pernet->ipoib_ps;
198 	case RDMA_PS_IB:
199 		return &pernet->ib_ps;
200 	default:
201 		return NULL;
202 	}
203 }
204 
205 struct cma_device {
206 	struct list_head	list;
207 	struct ib_device	*device;
208 	struct completion	comp;
209 	refcount_t refcount;
210 	struct list_head	id_list;
211 	enum ib_gid_type	*default_gid_type;
212 	u8			*default_roce_tos;
213 };
214 
215 struct rdma_bind_list {
216 	enum rdma_ucm_port_space ps;
217 	struct hlist_head	owners;
218 	unsigned short		port;
219 };
220 
221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
222 			struct rdma_bind_list *bind_list, int snum)
223 {
224 	struct xarray *xa = cma_pernet_xa(net, ps);
225 
226 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
227 }
228 
229 static struct rdma_bind_list *cma_ps_find(struct net *net,
230 					  enum rdma_ucm_port_space ps, int snum)
231 {
232 	struct xarray *xa = cma_pernet_xa(net, ps);
233 
234 	return xa_load(xa, snum);
235 }
236 
237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
238 			  int snum)
239 {
240 	struct xarray *xa = cma_pernet_xa(net, ps);
241 
242 	xa_erase(xa, snum);
243 }
244 
245 enum {
246 	CMA_OPTION_AFONLY,
247 };
248 
249 void cma_dev_get(struct cma_device *cma_dev)
250 {
251 	refcount_inc(&cma_dev->refcount);
252 }
253 
254 void cma_dev_put(struct cma_device *cma_dev)
255 {
256 	if (refcount_dec_and_test(&cma_dev->refcount))
257 		complete(&cma_dev->comp);
258 }
259 
260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
261 					     void		*cookie)
262 {
263 	struct cma_device *cma_dev;
264 	struct cma_device *found_cma_dev = NULL;
265 
266 	mutex_lock(&lock);
267 
268 	list_for_each_entry(cma_dev, &dev_list, list)
269 		if (filter(cma_dev->device, cookie)) {
270 			found_cma_dev = cma_dev;
271 			break;
272 		}
273 
274 	if (found_cma_dev)
275 		cma_dev_get(found_cma_dev);
276 	mutex_unlock(&lock);
277 	return found_cma_dev;
278 }
279 
280 int cma_get_default_gid_type(struct cma_device *cma_dev,
281 			     u32 port)
282 {
283 	if (!rdma_is_port_valid(cma_dev->device, port))
284 		return -EINVAL;
285 
286 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
287 }
288 
289 int cma_set_default_gid_type(struct cma_device *cma_dev,
290 			     u32 port,
291 			     enum ib_gid_type default_gid_type)
292 {
293 	unsigned long supported_gids;
294 
295 	if (!rdma_is_port_valid(cma_dev->device, port))
296 		return -EINVAL;
297 
298 	if (default_gid_type == IB_GID_TYPE_IB &&
299 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
300 		default_gid_type = IB_GID_TYPE_ROCE;
301 
302 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
303 
304 	if (!(supported_gids & 1 << default_gid_type))
305 		return -EINVAL;
306 
307 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
308 		default_gid_type;
309 
310 	return 0;
311 }
312 
313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
314 {
315 	if (!rdma_is_port_valid(cma_dev->device, port))
316 		return -EINVAL;
317 
318 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
319 }
320 
321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
322 			     u8 default_roce_tos)
323 {
324 	if (!rdma_is_port_valid(cma_dev->device, port))
325 		return -EINVAL;
326 
327 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
328 		 default_roce_tos;
329 
330 	return 0;
331 }
332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
333 {
334 	return cma_dev->device;
335 }
336 
337 /*
338  * Device removal can occur at anytime, so we need extra handling to
339  * serialize notifying the user of device removal with other callbacks.
340  * We do this by disabling removal notification while a callback is in process,
341  * and reporting it after the callback completes.
342  */
343 
344 struct cma_multicast {
345 	struct rdma_id_private *id_priv;
346 	union {
347 		struct ib_sa_multicast *sa_mc;
348 		struct {
349 			struct work_struct work;
350 			struct rdma_cm_event event;
351 		} iboe_join;
352 	};
353 	struct list_head	list;
354 	void			*context;
355 	struct sockaddr_storage	addr;
356 	u8			join_state;
357 };
358 
359 struct cma_work {
360 	struct work_struct	work;
361 	struct rdma_id_private	*id;
362 	enum rdma_cm_state	old_state;
363 	enum rdma_cm_state	new_state;
364 	struct rdma_cm_event	event;
365 };
366 
367 union cma_ip_addr {
368 	struct in6_addr ip6;
369 	struct {
370 		__be32 pad[3];
371 		__be32 addr;
372 	} ip4;
373 };
374 
375 struct cma_hdr {
376 	u8 cma_version;
377 	u8 ip_version;	/* IP version: 7:4 */
378 	__be16 port;
379 	union cma_ip_addr src_addr;
380 	union cma_ip_addr dst_addr;
381 };
382 
383 #define CMA_VERSION 0x00
384 
385 struct cma_req_info {
386 	struct sockaddr_storage listen_addr_storage;
387 	struct sockaddr_storage src_addr_storage;
388 	struct ib_device *device;
389 	union ib_gid local_gid;
390 	__be64 service_id;
391 	int port;
392 	bool has_gid;
393 	u16 pkey;
394 };
395 
396 static int cma_comp_exch(struct rdma_id_private *id_priv,
397 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
398 {
399 	unsigned long flags;
400 	int ret;
401 
402 	/*
403 	 * The FSM uses a funny double locking where state is protected by both
404 	 * the handler_mutex and the spinlock. State is not allowed to change
405 	 * to/from a handler_mutex protected value without also holding
406 	 * handler_mutex.
407 	 */
408 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
409 		lockdep_assert_held(&id_priv->handler_mutex);
410 
411 	spin_lock_irqsave(&id_priv->lock, flags);
412 	if ((ret = (id_priv->state == comp)))
413 		id_priv->state = exch;
414 	spin_unlock_irqrestore(&id_priv->lock, flags);
415 	return ret;
416 }
417 
418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
419 {
420 	return hdr->ip_version >> 4;
421 }
422 
423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
424 {
425 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
426 }
427 
428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
429 {
430 	struct in_device *in_dev = NULL;
431 
432 	if (ndev) {
433 		rtnl_lock();
434 		in_dev = __in_dev_get_rtnl(ndev);
435 		if (in_dev) {
436 			if (join)
437 				ip_mc_inc_group(in_dev,
438 						*(__be32 *)(mgid->raw + 12));
439 			else
440 				ip_mc_dec_group(in_dev,
441 						*(__be32 *)(mgid->raw + 12));
442 		}
443 		rtnl_unlock();
444 	}
445 	return (in_dev) ? 0 : -ENODEV;
446 }
447 
448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
449 			       struct cma_device *cma_dev)
450 {
451 	cma_dev_get(cma_dev);
452 	id_priv->cma_dev = cma_dev;
453 	id_priv->id.device = cma_dev->device;
454 	id_priv->id.route.addr.dev_addr.transport =
455 		rdma_node_get_transport(cma_dev->device->node_type);
456 	list_add_tail(&id_priv->list, &cma_dev->id_list);
457 
458 	trace_cm_id_attach(id_priv, cma_dev->device);
459 }
460 
461 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
462 			      struct cma_device *cma_dev)
463 {
464 	_cma_attach_to_dev(id_priv, cma_dev);
465 	id_priv->gid_type =
466 		cma_dev->default_gid_type[id_priv->id.port_num -
467 					  rdma_start_port(cma_dev->device)];
468 }
469 
470 static void cma_release_dev(struct rdma_id_private *id_priv)
471 {
472 	mutex_lock(&lock);
473 	list_del(&id_priv->list);
474 	cma_dev_put(id_priv->cma_dev);
475 	id_priv->cma_dev = NULL;
476 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
477 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
478 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
479 	}
480 	mutex_unlock(&lock);
481 }
482 
483 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
484 {
485 	return (struct sockaddr *) &id_priv->id.route.addr.src_addr;
486 }
487 
488 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
489 {
490 	return (struct sockaddr *) &id_priv->id.route.addr.dst_addr;
491 }
492 
493 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
494 {
495 	return id_priv->id.route.addr.src_addr.ss_family;
496 }
497 
498 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
499 {
500 	struct ib_sa_mcmember_rec rec;
501 	int ret = 0;
502 
503 	if (id_priv->qkey) {
504 		if (qkey && id_priv->qkey != qkey)
505 			return -EINVAL;
506 		return 0;
507 	}
508 
509 	if (qkey) {
510 		id_priv->qkey = qkey;
511 		return 0;
512 	}
513 
514 	switch (id_priv->id.ps) {
515 	case RDMA_PS_UDP:
516 	case RDMA_PS_IB:
517 		id_priv->qkey = RDMA_UDP_QKEY;
518 		break;
519 	case RDMA_PS_IPOIB:
520 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
521 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
522 					     id_priv->id.port_num, &rec.mgid,
523 					     &rec);
524 		if (!ret)
525 			id_priv->qkey = be32_to_cpu(rec.qkey);
526 		break;
527 	default:
528 		break;
529 	}
530 	return ret;
531 }
532 
533 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
534 {
535 	dev_addr->dev_type = ARPHRD_INFINIBAND;
536 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
537 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
538 }
539 
540 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
541 {
542 	int ret;
543 
544 	if (addr->sa_family != AF_IB) {
545 		ret = rdma_translate_ip(addr, dev_addr);
546 	} else {
547 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
548 		ret = 0;
549 	}
550 
551 	return ret;
552 }
553 
554 static const struct ib_gid_attr *
555 cma_validate_port(struct ib_device *device, u32 port,
556 		  enum ib_gid_type gid_type,
557 		  union ib_gid *gid,
558 		  struct rdma_id_private *id_priv)
559 {
560 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
561 	int bound_if_index = dev_addr->bound_dev_if;
562 	const struct ib_gid_attr *sgid_attr;
563 	int dev_type = dev_addr->dev_type;
564 	struct net_device *ndev = NULL;
565 
566 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
567 		return ERR_PTR(-ENODEV);
568 
569 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
570 		return ERR_PTR(-ENODEV);
571 
572 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
573 		return ERR_PTR(-ENODEV);
574 
575 	if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
576 		ndev = dev_get_by_index(dev_addr->net, bound_if_index);
577 		if (!ndev)
578 			return ERR_PTR(-ENODEV);
579 	} else {
580 		gid_type = IB_GID_TYPE_IB;
581 	}
582 
583 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
584 	if (ndev)
585 		dev_put(ndev);
586 	return sgid_attr;
587 }
588 
589 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
590 			       const struct ib_gid_attr *sgid_attr)
591 {
592 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
593 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
594 }
595 
596 /**
597  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
598  * based on source ip address.
599  * @id_priv:	cm_id which should be bound to cma device
600  *
601  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
602  * based on source IP address. It returns 0 on success or error code otherwise.
603  * It is applicable to active and passive side cm_id.
604  */
605 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
606 {
607 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
608 	const struct ib_gid_attr *sgid_attr;
609 	union ib_gid gid, iboe_gid, *gidp;
610 	struct cma_device *cma_dev;
611 	enum ib_gid_type gid_type;
612 	int ret = -ENODEV;
613 	u32 port;
614 
615 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
616 	    id_priv->id.ps == RDMA_PS_IPOIB)
617 		return -EINVAL;
618 
619 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
620 		    &iboe_gid);
621 
622 	memcpy(&gid, dev_addr->src_dev_addr +
623 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
624 
625 	mutex_lock(&lock);
626 	list_for_each_entry(cma_dev, &dev_list, list) {
627 		rdma_for_each_port (cma_dev->device, port) {
628 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
629 			       &iboe_gid : &gid;
630 			gid_type = cma_dev->default_gid_type[port - 1];
631 			sgid_attr = cma_validate_port(cma_dev->device, port,
632 						      gid_type, gidp, id_priv);
633 			if (!IS_ERR(sgid_attr)) {
634 				id_priv->id.port_num = port;
635 				cma_bind_sgid_attr(id_priv, sgid_attr);
636 				cma_attach_to_dev(id_priv, cma_dev);
637 				ret = 0;
638 				goto out;
639 			}
640 		}
641 	}
642 out:
643 	mutex_unlock(&lock);
644 	return ret;
645 }
646 
647 /**
648  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
649  * @id_priv:		cm id to bind to cma device
650  * @listen_id_priv:	listener cm id to match against
651  * @req:		Pointer to req structure containaining incoming
652  *			request information
653  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
654  * rdma device matches for listen_id and incoming request. It also verifies
655  * that a GID table entry is present for the source address.
656  * Returns 0 on success, or returns error code otherwise.
657  */
658 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
659 			      const struct rdma_id_private *listen_id_priv,
660 			      struct cma_req_info *req)
661 {
662 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
663 	const struct ib_gid_attr *sgid_attr;
664 	enum ib_gid_type gid_type;
665 	union ib_gid gid;
666 
667 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
668 	    id_priv->id.ps == RDMA_PS_IPOIB)
669 		return -EINVAL;
670 
671 	if (rdma_protocol_roce(req->device, req->port))
672 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
673 			    &gid);
674 	else
675 		memcpy(&gid, dev_addr->src_dev_addr +
676 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
677 
678 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
679 	sgid_attr = cma_validate_port(req->device, req->port,
680 				      gid_type, &gid, id_priv);
681 	if (IS_ERR(sgid_attr))
682 		return PTR_ERR(sgid_attr);
683 
684 	id_priv->id.port_num = req->port;
685 	cma_bind_sgid_attr(id_priv, sgid_attr);
686 	/* Need to acquire lock to protect against reader
687 	 * of cma_dev->id_list such as cma_netdev_callback() and
688 	 * cma_process_remove().
689 	 */
690 	mutex_lock(&lock);
691 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
692 	mutex_unlock(&lock);
693 	rdma_restrack_add(&id_priv->res);
694 	return 0;
695 }
696 
697 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
698 			      const struct rdma_id_private *listen_id_priv)
699 {
700 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
701 	const struct ib_gid_attr *sgid_attr;
702 	struct cma_device *cma_dev;
703 	enum ib_gid_type gid_type;
704 	int ret = -ENODEV;
705 	union ib_gid gid;
706 	u32 port;
707 
708 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
709 	    id_priv->id.ps == RDMA_PS_IPOIB)
710 		return -EINVAL;
711 
712 	memcpy(&gid, dev_addr->src_dev_addr +
713 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
714 
715 	mutex_lock(&lock);
716 
717 	cma_dev = listen_id_priv->cma_dev;
718 	port = listen_id_priv->id.port_num;
719 	gid_type = listen_id_priv->gid_type;
720 	sgid_attr = cma_validate_port(cma_dev->device, port,
721 				      gid_type, &gid, id_priv);
722 	if (!IS_ERR(sgid_attr)) {
723 		id_priv->id.port_num = port;
724 		cma_bind_sgid_attr(id_priv, sgid_attr);
725 		ret = 0;
726 		goto out;
727 	}
728 
729 	list_for_each_entry(cma_dev, &dev_list, list) {
730 		rdma_for_each_port (cma_dev->device, port) {
731 			if (listen_id_priv->cma_dev == cma_dev &&
732 			    listen_id_priv->id.port_num == port)
733 				continue;
734 
735 			gid_type = cma_dev->default_gid_type[port - 1];
736 			sgid_attr = cma_validate_port(cma_dev->device, port,
737 						      gid_type, &gid, id_priv);
738 			if (!IS_ERR(sgid_attr)) {
739 				id_priv->id.port_num = port;
740 				cma_bind_sgid_attr(id_priv, sgid_attr);
741 				ret = 0;
742 				goto out;
743 			}
744 		}
745 	}
746 
747 out:
748 	if (!ret) {
749 		cma_attach_to_dev(id_priv, cma_dev);
750 		rdma_restrack_add(&id_priv->res);
751 	}
752 
753 	mutex_unlock(&lock);
754 	return ret;
755 }
756 
757 /*
758  * Select the source IB device and address to reach the destination IB address.
759  */
760 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
761 {
762 	struct cma_device *cma_dev, *cur_dev;
763 	struct sockaddr_ib *addr;
764 	union ib_gid gid, sgid, *dgid;
765 	unsigned int p;
766 	u16 pkey, index;
767 	enum ib_port_state port_state;
768 	int i;
769 
770 	cma_dev = NULL;
771 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
772 	dgid = (union ib_gid *) &addr->sib_addr;
773 	pkey = ntohs(addr->sib_pkey);
774 
775 	mutex_lock(&lock);
776 	list_for_each_entry(cur_dev, &dev_list, list) {
777 		rdma_for_each_port (cur_dev->device, p) {
778 			if (!rdma_cap_af_ib(cur_dev->device, p))
779 				continue;
780 
781 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
782 				continue;
783 
784 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
785 				continue;
786 			for (i = 0; !rdma_query_gid(cur_dev->device,
787 						    p, i, &gid);
788 			     i++) {
789 				if (!memcmp(&gid, dgid, sizeof(gid))) {
790 					cma_dev = cur_dev;
791 					sgid = gid;
792 					id_priv->id.port_num = p;
793 					goto found;
794 				}
795 
796 				if (!cma_dev && (gid.global.subnet_prefix ==
797 				    dgid->global.subnet_prefix) &&
798 				    port_state == IB_PORT_ACTIVE) {
799 					cma_dev = cur_dev;
800 					sgid = gid;
801 					id_priv->id.port_num = p;
802 					goto found;
803 				}
804 			}
805 		}
806 	}
807 	mutex_unlock(&lock);
808 	return -ENODEV;
809 
810 found:
811 	cma_attach_to_dev(id_priv, cma_dev);
812 	rdma_restrack_add(&id_priv->res);
813 	mutex_unlock(&lock);
814 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
815 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
816 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
817 	return 0;
818 }
819 
820 static void cma_id_get(struct rdma_id_private *id_priv)
821 {
822 	refcount_inc(&id_priv->refcount);
823 }
824 
825 static void cma_id_put(struct rdma_id_private *id_priv)
826 {
827 	if (refcount_dec_and_test(&id_priv->refcount))
828 		complete(&id_priv->comp);
829 }
830 
831 static struct rdma_id_private *
832 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
833 		 void *context, enum rdma_ucm_port_space ps,
834 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
835 {
836 	struct rdma_id_private *id_priv;
837 
838 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
839 	if (!id_priv)
840 		return ERR_PTR(-ENOMEM);
841 
842 	id_priv->state = RDMA_CM_IDLE;
843 	id_priv->id.context = context;
844 	id_priv->id.event_handler = event_handler;
845 	id_priv->id.ps = ps;
846 	id_priv->id.qp_type = qp_type;
847 	id_priv->tos_set = false;
848 	id_priv->timeout_set = false;
849 	id_priv->min_rnr_timer_set = false;
850 	id_priv->gid_type = IB_GID_TYPE_IB;
851 	spin_lock_init(&id_priv->lock);
852 	mutex_init(&id_priv->qp_mutex);
853 	init_completion(&id_priv->comp);
854 	refcount_set(&id_priv->refcount, 1);
855 	mutex_init(&id_priv->handler_mutex);
856 	INIT_LIST_HEAD(&id_priv->listen_list);
857 	INIT_LIST_HEAD(&id_priv->mc_list);
858 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
859 	id_priv->id.route.addr.dev_addr.net = get_net(net);
860 	id_priv->seq_num &= 0x00ffffff;
861 
862 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
863 	if (parent)
864 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
865 
866 	return id_priv;
867 }
868 
869 struct rdma_cm_id *
870 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
871 			void *context, enum rdma_ucm_port_space ps,
872 			enum ib_qp_type qp_type, const char *caller)
873 {
874 	struct rdma_id_private *ret;
875 
876 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
877 	if (IS_ERR(ret))
878 		return ERR_CAST(ret);
879 
880 	rdma_restrack_set_name(&ret->res, caller);
881 	return &ret->id;
882 }
883 EXPORT_SYMBOL(__rdma_create_kernel_id);
884 
885 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
886 				       void *context,
887 				       enum rdma_ucm_port_space ps,
888 				       enum ib_qp_type qp_type)
889 {
890 	struct rdma_id_private *ret;
891 
892 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
893 			       ps, qp_type, NULL);
894 	if (IS_ERR(ret))
895 		return ERR_CAST(ret);
896 
897 	rdma_restrack_set_name(&ret->res, NULL);
898 	return &ret->id;
899 }
900 EXPORT_SYMBOL(rdma_create_user_id);
901 
902 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
903 {
904 	struct ib_qp_attr qp_attr;
905 	int qp_attr_mask, ret;
906 
907 	qp_attr.qp_state = IB_QPS_INIT;
908 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
909 	if (ret)
910 		return ret;
911 
912 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
913 	if (ret)
914 		return ret;
915 
916 	qp_attr.qp_state = IB_QPS_RTR;
917 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
918 	if (ret)
919 		return ret;
920 
921 	qp_attr.qp_state = IB_QPS_RTS;
922 	qp_attr.sq_psn = 0;
923 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
924 
925 	return ret;
926 }
927 
928 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
929 {
930 	struct ib_qp_attr qp_attr;
931 	int qp_attr_mask, ret;
932 
933 	qp_attr.qp_state = IB_QPS_INIT;
934 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
935 	if (ret)
936 		return ret;
937 
938 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
939 }
940 
941 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
942 		   struct ib_qp_init_attr *qp_init_attr)
943 {
944 	struct rdma_id_private *id_priv;
945 	struct ib_qp *qp;
946 	int ret;
947 
948 	id_priv = container_of(id, struct rdma_id_private, id);
949 	if (id->device != pd->device) {
950 		ret = -EINVAL;
951 		goto out_err;
952 	}
953 
954 	qp_init_attr->port_num = id->port_num;
955 	qp = ib_create_qp(pd, qp_init_attr);
956 	if (IS_ERR(qp)) {
957 		ret = PTR_ERR(qp);
958 		goto out_err;
959 	}
960 
961 	if (id->qp_type == IB_QPT_UD)
962 		ret = cma_init_ud_qp(id_priv, qp);
963 	else
964 		ret = cma_init_conn_qp(id_priv, qp);
965 	if (ret)
966 		goto out_destroy;
967 
968 	id->qp = qp;
969 	id_priv->qp_num = qp->qp_num;
970 	id_priv->srq = (qp->srq != NULL);
971 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
972 	return 0;
973 out_destroy:
974 	ib_destroy_qp(qp);
975 out_err:
976 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
977 	return ret;
978 }
979 EXPORT_SYMBOL(rdma_create_qp);
980 
981 void rdma_destroy_qp(struct rdma_cm_id *id)
982 {
983 	struct rdma_id_private *id_priv;
984 
985 	id_priv = container_of(id, struct rdma_id_private, id);
986 	trace_cm_qp_destroy(id_priv);
987 	mutex_lock(&id_priv->qp_mutex);
988 	ib_destroy_qp(id_priv->id.qp);
989 	id_priv->id.qp = NULL;
990 	mutex_unlock(&id_priv->qp_mutex);
991 }
992 EXPORT_SYMBOL(rdma_destroy_qp);
993 
994 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
995 			     struct rdma_conn_param *conn_param)
996 {
997 	struct ib_qp_attr qp_attr;
998 	int qp_attr_mask, ret;
999 
1000 	mutex_lock(&id_priv->qp_mutex);
1001 	if (!id_priv->id.qp) {
1002 		ret = 0;
1003 		goto out;
1004 	}
1005 
1006 	/* Need to update QP attributes from default values. */
1007 	qp_attr.qp_state = IB_QPS_INIT;
1008 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1009 	if (ret)
1010 		goto out;
1011 
1012 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1013 	if (ret)
1014 		goto out;
1015 
1016 	qp_attr.qp_state = IB_QPS_RTR;
1017 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1018 	if (ret)
1019 		goto out;
1020 
1021 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1022 
1023 	if (conn_param)
1024 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1025 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1026 out:
1027 	mutex_unlock(&id_priv->qp_mutex);
1028 	return ret;
1029 }
1030 
1031 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1032 			     struct rdma_conn_param *conn_param)
1033 {
1034 	struct ib_qp_attr qp_attr;
1035 	int qp_attr_mask, ret;
1036 
1037 	mutex_lock(&id_priv->qp_mutex);
1038 	if (!id_priv->id.qp) {
1039 		ret = 0;
1040 		goto out;
1041 	}
1042 
1043 	qp_attr.qp_state = IB_QPS_RTS;
1044 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1045 	if (ret)
1046 		goto out;
1047 
1048 	if (conn_param)
1049 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1050 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1051 out:
1052 	mutex_unlock(&id_priv->qp_mutex);
1053 	return ret;
1054 }
1055 
1056 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1057 {
1058 	struct ib_qp_attr qp_attr;
1059 	int ret;
1060 
1061 	mutex_lock(&id_priv->qp_mutex);
1062 	if (!id_priv->id.qp) {
1063 		ret = 0;
1064 		goto out;
1065 	}
1066 
1067 	qp_attr.qp_state = IB_QPS_ERR;
1068 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1069 out:
1070 	mutex_unlock(&id_priv->qp_mutex);
1071 	return ret;
1072 }
1073 
1074 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1075 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1076 {
1077 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1078 	int ret;
1079 	u16 pkey;
1080 
1081 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1082 		pkey = 0xffff;
1083 	else
1084 		pkey = ib_addr_get_pkey(dev_addr);
1085 
1086 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1087 				  pkey, &qp_attr->pkey_index);
1088 	if (ret)
1089 		return ret;
1090 
1091 	qp_attr->port_num = id_priv->id.port_num;
1092 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1093 
1094 	if (id_priv->id.qp_type == IB_QPT_UD) {
1095 		ret = cma_set_qkey(id_priv, 0);
1096 		if (ret)
1097 			return ret;
1098 
1099 		qp_attr->qkey = id_priv->qkey;
1100 		*qp_attr_mask |= IB_QP_QKEY;
1101 	} else {
1102 		qp_attr->qp_access_flags = 0;
1103 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1104 	}
1105 	return 0;
1106 }
1107 
1108 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1109 		       int *qp_attr_mask)
1110 {
1111 	struct rdma_id_private *id_priv;
1112 	int ret = 0;
1113 
1114 	id_priv = container_of(id, struct rdma_id_private, id);
1115 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1116 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1117 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1118 		else
1119 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1120 						 qp_attr_mask);
1121 
1122 		if (qp_attr->qp_state == IB_QPS_RTR)
1123 			qp_attr->rq_psn = id_priv->seq_num;
1124 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1125 		if (!id_priv->cm_id.iw) {
1126 			qp_attr->qp_access_flags = 0;
1127 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1128 		} else
1129 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1130 						 qp_attr_mask);
1131 		qp_attr->port_num = id_priv->id.port_num;
1132 		*qp_attr_mask |= IB_QP_PORT;
1133 	} else {
1134 		ret = -ENOSYS;
1135 	}
1136 
1137 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1138 		qp_attr->timeout = id_priv->timeout;
1139 
1140 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1141 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1142 
1143 	return ret;
1144 }
1145 EXPORT_SYMBOL(rdma_init_qp_attr);
1146 
1147 static inline bool cma_zero_addr(const struct sockaddr *addr)
1148 {
1149 	switch (addr->sa_family) {
1150 	case AF_INET:
1151 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1152 	case AF_INET6:
1153 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1154 	case AF_IB:
1155 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1156 	default:
1157 		return false;
1158 	}
1159 }
1160 
1161 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1162 {
1163 	switch (addr->sa_family) {
1164 	case AF_INET:
1165 		return ipv4_is_loopback(
1166 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1167 	case AF_INET6:
1168 		return ipv6_addr_loopback(
1169 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1170 	case AF_IB:
1171 		return ib_addr_loopback(
1172 			&((struct sockaddr_ib *)addr)->sib_addr);
1173 	default:
1174 		return false;
1175 	}
1176 }
1177 
1178 static inline bool cma_any_addr(const struct sockaddr *addr)
1179 {
1180 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1181 }
1182 
1183 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1184 {
1185 	if (src->sa_family != dst->sa_family)
1186 		return -1;
1187 
1188 	switch (src->sa_family) {
1189 	case AF_INET:
1190 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1191 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1192 	case AF_INET6: {
1193 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1194 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1195 		bool link_local;
1196 
1197 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1198 					  &dst_addr6->sin6_addr))
1199 			return 1;
1200 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1201 			     IPV6_ADDR_LINKLOCAL;
1202 		/* Link local must match their scope_ids */
1203 		return link_local ? (src_addr6->sin6_scope_id !=
1204 				     dst_addr6->sin6_scope_id) :
1205 				    0;
1206 	}
1207 
1208 	default:
1209 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1210 				   &((struct sockaddr_ib *) dst)->sib_addr);
1211 	}
1212 }
1213 
1214 static __be16 cma_port(const struct sockaddr *addr)
1215 {
1216 	struct sockaddr_ib *sib;
1217 
1218 	switch (addr->sa_family) {
1219 	case AF_INET:
1220 		return ((struct sockaddr_in *) addr)->sin_port;
1221 	case AF_INET6:
1222 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1223 	case AF_IB:
1224 		sib = (struct sockaddr_ib *) addr;
1225 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1226 				    be64_to_cpu(sib->sib_sid_mask)));
1227 	default:
1228 		return 0;
1229 	}
1230 }
1231 
1232 static inline int cma_any_port(const struct sockaddr *addr)
1233 {
1234 	return !cma_port(addr);
1235 }
1236 
1237 static void cma_save_ib_info(struct sockaddr *src_addr,
1238 			     struct sockaddr *dst_addr,
1239 			     const struct rdma_cm_id *listen_id,
1240 			     const struct sa_path_rec *path)
1241 {
1242 	struct sockaddr_ib *listen_ib, *ib;
1243 
1244 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1245 	if (src_addr) {
1246 		ib = (struct sockaddr_ib *)src_addr;
1247 		ib->sib_family = AF_IB;
1248 		if (path) {
1249 			ib->sib_pkey = path->pkey;
1250 			ib->sib_flowinfo = path->flow_label;
1251 			memcpy(&ib->sib_addr, &path->sgid, 16);
1252 			ib->sib_sid = path->service_id;
1253 			ib->sib_scope_id = 0;
1254 		} else {
1255 			ib->sib_pkey = listen_ib->sib_pkey;
1256 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1257 			ib->sib_addr = listen_ib->sib_addr;
1258 			ib->sib_sid = listen_ib->sib_sid;
1259 			ib->sib_scope_id = listen_ib->sib_scope_id;
1260 		}
1261 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1262 	}
1263 	if (dst_addr) {
1264 		ib = (struct sockaddr_ib *)dst_addr;
1265 		ib->sib_family = AF_IB;
1266 		if (path) {
1267 			ib->sib_pkey = path->pkey;
1268 			ib->sib_flowinfo = path->flow_label;
1269 			memcpy(&ib->sib_addr, &path->dgid, 16);
1270 		}
1271 	}
1272 }
1273 
1274 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1275 			      struct sockaddr_in *dst_addr,
1276 			      struct cma_hdr *hdr,
1277 			      __be16 local_port)
1278 {
1279 	if (src_addr) {
1280 		*src_addr = (struct sockaddr_in) {
1281 			.sin_family = AF_INET,
1282 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1283 			.sin_port = local_port,
1284 		};
1285 	}
1286 
1287 	if (dst_addr) {
1288 		*dst_addr = (struct sockaddr_in) {
1289 			.sin_family = AF_INET,
1290 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1291 			.sin_port = hdr->port,
1292 		};
1293 	}
1294 }
1295 
1296 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1297 			      struct sockaddr_in6 *dst_addr,
1298 			      struct cma_hdr *hdr,
1299 			      __be16 local_port)
1300 {
1301 	if (src_addr) {
1302 		*src_addr = (struct sockaddr_in6) {
1303 			.sin6_family = AF_INET6,
1304 			.sin6_addr = hdr->dst_addr.ip6,
1305 			.sin6_port = local_port,
1306 		};
1307 	}
1308 
1309 	if (dst_addr) {
1310 		*dst_addr = (struct sockaddr_in6) {
1311 			.sin6_family = AF_INET6,
1312 			.sin6_addr = hdr->src_addr.ip6,
1313 			.sin6_port = hdr->port,
1314 		};
1315 	}
1316 }
1317 
1318 static u16 cma_port_from_service_id(__be64 service_id)
1319 {
1320 	return (u16)be64_to_cpu(service_id);
1321 }
1322 
1323 static int cma_save_ip_info(struct sockaddr *src_addr,
1324 			    struct sockaddr *dst_addr,
1325 			    const struct ib_cm_event *ib_event,
1326 			    __be64 service_id)
1327 {
1328 	struct cma_hdr *hdr;
1329 	__be16 port;
1330 
1331 	hdr = ib_event->private_data;
1332 	if (hdr->cma_version != CMA_VERSION)
1333 		return -EINVAL;
1334 
1335 	port = htons(cma_port_from_service_id(service_id));
1336 
1337 	switch (cma_get_ip_ver(hdr)) {
1338 	case 4:
1339 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1340 				  (struct sockaddr_in *)dst_addr, hdr, port);
1341 		break;
1342 	case 6:
1343 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1344 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1345 		break;
1346 	default:
1347 		return -EAFNOSUPPORT;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int cma_save_net_info(struct sockaddr *src_addr,
1354 			     struct sockaddr *dst_addr,
1355 			     const struct rdma_cm_id *listen_id,
1356 			     const struct ib_cm_event *ib_event,
1357 			     sa_family_t sa_family, __be64 service_id)
1358 {
1359 	if (sa_family == AF_IB) {
1360 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1361 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1362 					 ib_event->param.req_rcvd.primary_path);
1363 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1364 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1365 		return 0;
1366 	}
1367 
1368 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1369 }
1370 
1371 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1372 			     struct cma_req_info *req)
1373 {
1374 	const struct ib_cm_req_event_param *req_param =
1375 		&ib_event->param.req_rcvd;
1376 	const struct ib_cm_sidr_req_event_param *sidr_param =
1377 		&ib_event->param.sidr_req_rcvd;
1378 
1379 	switch (ib_event->event) {
1380 	case IB_CM_REQ_RECEIVED:
1381 		req->device	= req_param->listen_id->device;
1382 		req->port	= req_param->port;
1383 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1384 		       sizeof(req->local_gid));
1385 		req->has_gid	= true;
1386 		req->service_id = req_param->primary_path->service_id;
1387 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1388 		if (req->pkey != req_param->bth_pkey)
1389 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1390 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1391 					    req_param->bth_pkey, req->pkey);
1392 		break;
1393 	case IB_CM_SIDR_REQ_RECEIVED:
1394 		req->device	= sidr_param->listen_id->device;
1395 		req->port	= sidr_param->port;
1396 		req->has_gid	= false;
1397 		req->service_id	= sidr_param->service_id;
1398 		req->pkey	= sidr_param->pkey;
1399 		if (req->pkey != sidr_param->bth_pkey)
1400 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1401 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1402 					    sidr_param->bth_pkey, req->pkey);
1403 		break;
1404 	default:
1405 		return -EINVAL;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1412 				  const struct sockaddr_in *dst_addr,
1413 				  const struct sockaddr_in *src_addr)
1414 {
1415 	__be32 daddr = dst_addr->sin_addr.s_addr,
1416 	       saddr = src_addr->sin_addr.s_addr;
1417 	struct fib_result res;
1418 	struct flowi4 fl4;
1419 	int err;
1420 	bool ret;
1421 
1422 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1423 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1424 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1425 	    ipv4_is_loopback(saddr))
1426 		return false;
1427 
1428 	memset(&fl4, 0, sizeof(fl4));
1429 	fl4.flowi4_iif = net_dev->ifindex;
1430 	fl4.daddr = daddr;
1431 	fl4.saddr = saddr;
1432 
1433 	rcu_read_lock();
1434 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1435 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1436 	rcu_read_unlock();
1437 
1438 	return ret;
1439 }
1440 
1441 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1442 				  const struct sockaddr_in6 *dst_addr,
1443 				  const struct sockaddr_in6 *src_addr)
1444 {
1445 #if IS_ENABLED(CONFIG_IPV6)
1446 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1447 			   IPV6_ADDR_LINKLOCAL;
1448 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1449 					 &src_addr->sin6_addr, net_dev->ifindex,
1450 					 NULL, strict);
1451 	bool ret;
1452 
1453 	if (!rt)
1454 		return false;
1455 
1456 	ret = rt->rt6i_idev->dev == net_dev;
1457 	ip6_rt_put(rt);
1458 
1459 	return ret;
1460 #else
1461 	return false;
1462 #endif
1463 }
1464 
1465 static bool validate_net_dev(struct net_device *net_dev,
1466 			     const struct sockaddr *daddr,
1467 			     const struct sockaddr *saddr)
1468 {
1469 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1470 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1471 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1472 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1473 
1474 	switch (daddr->sa_family) {
1475 	case AF_INET:
1476 		return saddr->sa_family == AF_INET &&
1477 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1478 
1479 	case AF_INET6:
1480 		return saddr->sa_family == AF_INET6 &&
1481 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1482 
1483 	default:
1484 		return false;
1485 	}
1486 }
1487 
1488 static struct net_device *
1489 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1490 {
1491 	const struct ib_gid_attr *sgid_attr = NULL;
1492 	struct net_device *ndev;
1493 
1494 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1495 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1496 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1497 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1498 
1499 	if (!sgid_attr)
1500 		return NULL;
1501 
1502 	rcu_read_lock();
1503 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1504 	if (IS_ERR(ndev))
1505 		ndev = NULL;
1506 	else
1507 		dev_hold(ndev);
1508 	rcu_read_unlock();
1509 	return ndev;
1510 }
1511 
1512 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1513 					  struct cma_req_info *req)
1514 {
1515 	struct sockaddr *listen_addr =
1516 			(struct sockaddr *)&req->listen_addr_storage;
1517 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1518 	struct net_device *net_dev;
1519 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1520 	int err;
1521 
1522 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1523 			       req->service_id);
1524 	if (err)
1525 		return ERR_PTR(err);
1526 
1527 	if (rdma_protocol_roce(req->device, req->port))
1528 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1529 	else
1530 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1531 						   req->pkey,
1532 						   gid, listen_addr);
1533 	if (!net_dev)
1534 		return ERR_PTR(-ENODEV);
1535 
1536 	return net_dev;
1537 }
1538 
1539 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1540 {
1541 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1542 }
1543 
1544 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1545 				   const struct cma_hdr *hdr)
1546 {
1547 	struct sockaddr *addr = cma_src_addr(id_priv);
1548 	__be32 ip4_addr;
1549 	struct in6_addr ip6_addr;
1550 
1551 	if (cma_any_addr(addr) && !id_priv->afonly)
1552 		return true;
1553 
1554 	switch (addr->sa_family) {
1555 	case AF_INET:
1556 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1557 		if (cma_get_ip_ver(hdr) != 4)
1558 			return false;
1559 		if (!cma_any_addr(addr) &&
1560 		    hdr->dst_addr.ip4.addr != ip4_addr)
1561 			return false;
1562 		break;
1563 	case AF_INET6:
1564 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1565 		if (cma_get_ip_ver(hdr) != 6)
1566 			return false;
1567 		if (!cma_any_addr(addr) &&
1568 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1569 			return false;
1570 		break;
1571 	case AF_IB:
1572 		return true;
1573 	default:
1574 		return false;
1575 	}
1576 
1577 	return true;
1578 }
1579 
1580 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1581 {
1582 	struct ib_device *device = id->device;
1583 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1584 
1585 	return rdma_protocol_roce(device, port_num);
1586 }
1587 
1588 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1589 {
1590 	const struct sockaddr *daddr =
1591 			(const struct sockaddr *)&req->listen_addr_storage;
1592 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1593 
1594 	/* Returns true if the req is for IPv6 link local */
1595 	return (daddr->sa_family == AF_INET6 &&
1596 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1597 }
1598 
1599 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1600 			      const struct net_device *net_dev,
1601 			      const struct cma_req_info *req)
1602 {
1603 	const struct rdma_addr *addr = &id->route.addr;
1604 
1605 	if (!net_dev)
1606 		/* This request is an AF_IB request */
1607 		return (!id->port_num || id->port_num == req->port) &&
1608 		       (addr->src_addr.ss_family == AF_IB);
1609 
1610 	/*
1611 	 * If the request is not for IPv6 link local, allow matching
1612 	 * request to any netdevice of the one or multiport rdma device.
1613 	 */
1614 	if (!cma_is_req_ipv6_ll(req))
1615 		return true;
1616 	/*
1617 	 * Net namespaces must match, and if the listner is listening
1618 	 * on a specific netdevice than netdevice must match as well.
1619 	 */
1620 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1621 	    (!!addr->dev_addr.bound_dev_if ==
1622 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1623 		return true;
1624 	else
1625 		return false;
1626 }
1627 
1628 static struct rdma_id_private *cma_find_listener(
1629 		const struct rdma_bind_list *bind_list,
1630 		const struct ib_cm_id *cm_id,
1631 		const struct ib_cm_event *ib_event,
1632 		const struct cma_req_info *req,
1633 		const struct net_device *net_dev)
1634 {
1635 	struct rdma_id_private *id_priv, *id_priv_dev;
1636 
1637 	lockdep_assert_held(&lock);
1638 
1639 	if (!bind_list)
1640 		return ERR_PTR(-EINVAL);
1641 
1642 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1643 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1644 			if (id_priv->id.device == cm_id->device &&
1645 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1646 				return id_priv;
1647 			list_for_each_entry(id_priv_dev,
1648 					    &id_priv->listen_list,
1649 					    listen_list) {
1650 				if (id_priv_dev->id.device == cm_id->device &&
1651 				    cma_match_net_dev(&id_priv_dev->id,
1652 						      net_dev, req))
1653 					return id_priv_dev;
1654 			}
1655 		}
1656 	}
1657 
1658 	return ERR_PTR(-EINVAL);
1659 }
1660 
1661 static struct rdma_id_private *
1662 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1663 		     const struct ib_cm_event *ib_event,
1664 		     struct cma_req_info *req,
1665 		     struct net_device **net_dev)
1666 {
1667 	struct rdma_bind_list *bind_list;
1668 	struct rdma_id_private *id_priv;
1669 	int err;
1670 
1671 	err = cma_save_req_info(ib_event, req);
1672 	if (err)
1673 		return ERR_PTR(err);
1674 
1675 	*net_dev = cma_get_net_dev(ib_event, req);
1676 	if (IS_ERR(*net_dev)) {
1677 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1678 			/* Assuming the protocol is AF_IB */
1679 			*net_dev = NULL;
1680 		} else {
1681 			return ERR_CAST(*net_dev);
1682 		}
1683 	}
1684 
1685 	mutex_lock(&lock);
1686 	/*
1687 	 * Net namespace might be getting deleted while route lookup,
1688 	 * cm_id lookup is in progress. Therefore, perform netdevice
1689 	 * validation, cm_id lookup under rcu lock.
1690 	 * RCU lock along with netdevice state check, synchronizes with
1691 	 * netdevice migrating to different net namespace and also avoids
1692 	 * case where net namespace doesn't get deleted while lookup is in
1693 	 * progress.
1694 	 * If the device state is not IFF_UP, its properties such as ifindex
1695 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1696 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1697 	 * ongoing operations on net device after device is closed using
1698 	 * synchronize_net().
1699 	 */
1700 	rcu_read_lock();
1701 	if (*net_dev) {
1702 		/*
1703 		 * If netdevice is down, it is likely that it is administratively
1704 		 * down or it might be migrating to different namespace.
1705 		 * In that case avoid further processing, as the net namespace
1706 		 * or ifindex may change.
1707 		 */
1708 		if (((*net_dev)->flags & IFF_UP) == 0) {
1709 			id_priv = ERR_PTR(-EHOSTUNREACH);
1710 			goto err;
1711 		}
1712 
1713 		if (!validate_net_dev(*net_dev,
1714 				 (struct sockaddr *)&req->listen_addr_storage,
1715 				 (struct sockaddr *)&req->src_addr_storage)) {
1716 			id_priv = ERR_PTR(-EHOSTUNREACH);
1717 			goto err;
1718 		}
1719 	}
1720 
1721 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1722 				rdma_ps_from_service_id(req->service_id),
1723 				cma_port_from_service_id(req->service_id));
1724 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1725 err:
1726 	rcu_read_unlock();
1727 	mutex_unlock(&lock);
1728 	if (IS_ERR(id_priv) && *net_dev) {
1729 		dev_put(*net_dev);
1730 		*net_dev = NULL;
1731 	}
1732 	return id_priv;
1733 }
1734 
1735 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1736 {
1737 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1738 }
1739 
1740 static void cma_cancel_route(struct rdma_id_private *id_priv)
1741 {
1742 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1743 		if (id_priv->query)
1744 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1745 	}
1746 }
1747 
1748 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1749 {
1750 	struct rdma_id_private *dev_id_priv;
1751 
1752 	/*
1753 	 * Remove from listen_any_list to prevent added devices from spawning
1754 	 * additional listen requests.
1755 	 */
1756 	mutex_lock(&lock);
1757 	list_del(&id_priv->list);
1758 
1759 	while (!list_empty(&id_priv->listen_list)) {
1760 		dev_id_priv = list_entry(id_priv->listen_list.next,
1761 					 struct rdma_id_private, listen_list);
1762 		/* sync with device removal to avoid duplicate destruction */
1763 		list_del_init(&dev_id_priv->list);
1764 		list_del(&dev_id_priv->listen_list);
1765 		mutex_unlock(&lock);
1766 
1767 		rdma_destroy_id(&dev_id_priv->id);
1768 		mutex_lock(&lock);
1769 	}
1770 	mutex_unlock(&lock);
1771 }
1772 
1773 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1774 				 enum rdma_cm_state state)
1775 {
1776 	switch (state) {
1777 	case RDMA_CM_ADDR_QUERY:
1778 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1779 		break;
1780 	case RDMA_CM_ROUTE_QUERY:
1781 		cma_cancel_route(id_priv);
1782 		break;
1783 	case RDMA_CM_LISTEN:
1784 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1785 			cma_cancel_listens(id_priv);
1786 		break;
1787 	default:
1788 		break;
1789 	}
1790 }
1791 
1792 static void cma_release_port(struct rdma_id_private *id_priv)
1793 {
1794 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1795 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1796 
1797 	if (!bind_list)
1798 		return;
1799 
1800 	mutex_lock(&lock);
1801 	hlist_del(&id_priv->node);
1802 	if (hlist_empty(&bind_list->owners)) {
1803 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1804 		kfree(bind_list);
1805 	}
1806 	mutex_unlock(&lock);
1807 }
1808 
1809 static void destroy_mc(struct rdma_id_private *id_priv,
1810 		       struct cma_multicast *mc)
1811 {
1812 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
1813 		ib_sa_free_multicast(mc->sa_mc);
1814 
1815 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
1816 		struct rdma_dev_addr *dev_addr =
1817 			&id_priv->id.route.addr.dev_addr;
1818 		struct net_device *ndev = NULL;
1819 
1820 		if (dev_addr->bound_dev_if)
1821 			ndev = dev_get_by_index(dev_addr->net,
1822 						dev_addr->bound_dev_if);
1823 		if (ndev) {
1824 			union ib_gid mgid;
1825 
1826 			cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr,
1827 				     &mgid);
1828 			cma_igmp_send(ndev, &mgid, false);
1829 			dev_put(ndev);
1830 		}
1831 
1832 		cancel_work_sync(&mc->iboe_join.work);
1833 	}
1834 	kfree(mc);
1835 }
1836 
1837 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
1838 {
1839 	struct cma_multicast *mc;
1840 
1841 	while (!list_empty(&id_priv->mc_list)) {
1842 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
1843 				      list);
1844 		list_del(&mc->list);
1845 		destroy_mc(id_priv, mc);
1846 	}
1847 }
1848 
1849 static void _destroy_id(struct rdma_id_private *id_priv,
1850 			enum rdma_cm_state state)
1851 {
1852 	cma_cancel_operation(id_priv, state);
1853 
1854 	if (id_priv->cma_dev) {
1855 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
1856 			if (id_priv->cm_id.ib)
1857 				ib_destroy_cm_id(id_priv->cm_id.ib);
1858 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
1859 			if (id_priv->cm_id.iw)
1860 				iw_destroy_cm_id(id_priv->cm_id.iw);
1861 		}
1862 		cma_leave_mc_groups(id_priv);
1863 		cma_release_dev(id_priv);
1864 	}
1865 
1866 	cma_release_port(id_priv);
1867 	cma_id_put(id_priv);
1868 	wait_for_completion(&id_priv->comp);
1869 
1870 	if (id_priv->internal_id)
1871 		cma_id_put(id_priv->id.context);
1872 
1873 	kfree(id_priv->id.route.path_rec);
1874 
1875 	put_net(id_priv->id.route.addr.dev_addr.net);
1876 	rdma_restrack_del(&id_priv->res);
1877 	kfree(id_priv);
1878 }
1879 
1880 /*
1881  * destroy an ID from within the handler_mutex. This ensures that no other
1882  * handlers can start running concurrently.
1883  */
1884 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
1885 	__releases(&idprv->handler_mutex)
1886 {
1887 	enum rdma_cm_state state;
1888 	unsigned long flags;
1889 
1890 	trace_cm_id_destroy(id_priv);
1891 
1892 	/*
1893 	 * Setting the state to destroyed under the handler mutex provides a
1894 	 * fence against calling handler callbacks. If this is invoked due to
1895 	 * the failure of a handler callback then it guarentees that no future
1896 	 * handlers will be called.
1897 	 */
1898 	lockdep_assert_held(&id_priv->handler_mutex);
1899 	spin_lock_irqsave(&id_priv->lock, flags);
1900 	state = id_priv->state;
1901 	id_priv->state = RDMA_CM_DESTROYING;
1902 	spin_unlock_irqrestore(&id_priv->lock, flags);
1903 	mutex_unlock(&id_priv->handler_mutex);
1904 	_destroy_id(id_priv, state);
1905 }
1906 
1907 void rdma_destroy_id(struct rdma_cm_id *id)
1908 {
1909 	struct rdma_id_private *id_priv =
1910 		container_of(id, struct rdma_id_private, id);
1911 
1912 	mutex_lock(&id_priv->handler_mutex);
1913 	destroy_id_handler_unlock(id_priv);
1914 }
1915 EXPORT_SYMBOL(rdma_destroy_id);
1916 
1917 static int cma_rep_recv(struct rdma_id_private *id_priv)
1918 {
1919 	int ret;
1920 
1921 	ret = cma_modify_qp_rtr(id_priv, NULL);
1922 	if (ret)
1923 		goto reject;
1924 
1925 	ret = cma_modify_qp_rts(id_priv, NULL);
1926 	if (ret)
1927 		goto reject;
1928 
1929 	trace_cm_send_rtu(id_priv);
1930 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
1931 	if (ret)
1932 		goto reject;
1933 
1934 	return 0;
1935 reject:
1936 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
1937 	cma_modify_qp_err(id_priv);
1938 	trace_cm_send_rej(id_priv);
1939 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
1940 		       NULL, 0, NULL, 0);
1941 	return ret;
1942 }
1943 
1944 static void cma_set_rep_event_data(struct rdma_cm_event *event,
1945 				   const struct ib_cm_rep_event_param *rep_data,
1946 				   void *private_data)
1947 {
1948 	event->param.conn.private_data = private_data;
1949 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
1950 	event->param.conn.responder_resources = rep_data->responder_resources;
1951 	event->param.conn.initiator_depth = rep_data->initiator_depth;
1952 	event->param.conn.flow_control = rep_data->flow_control;
1953 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
1954 	event->param.conn.srq = rep_data->srq;
1955 	event->param.conn.qp_num = rep_data->remote_qpn;
1956 
1957 	event->ece.vendor_id = rep_data->ece.vendor_id;
1958 	event->ece.attr_mod = rep_data->ece.attr_mod;
1959 }
1960 
1961 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
1962 				struct rdma_cm_event *event)
1963 {
1964 	int ret;
1965 
1966 	lockdep_assert_held(&id_priv->handler_mutex);
1967 
1968 	trace_cm_event_handler(id_priv, event);
1969 	ret = id_priv->id.event_handler(&id_priv->id, event);
1970 	trace_cm_event_done(id_priv, event, ret);
1971 	return ret;
1972 }
1973 
1974 static int cma_ib_handler(struct ib_cm_id *cm_id,
1975 			  const struct ib_cm_event *ib_event)
1976 {
1977 	struct rdma_id_private *id_priv = cm_id->context;
1978 	struct rdma_cm_event event = {};
1979 	enum rdma_cm_state state;
1980 	int ret;
1981 
1982 	mutex_lock(&id_priv->handler_mutex);
1983 	state = READ_ONCE(id_priv->state);
1984 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
1985 	     state != RDMA_CM_CONNECT) ||
1986 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
1987 	     state != RDMA_CM_DISCONNECT))
1988 		goto out;
1989 
1990 	switch (ib_event->event) {
1991 	case IB_CM_REQ_ERROR:
1992 	case IB_CM_REP_ERROR:
1993 		event.event = RDMA_CM_EVENT_UNREACHABLE;
1994 		event.status = -ETIMEDOUT;
1995 		break;
1996 	case IB_CM_REP_RECEIVED:
1997 		if (state == RDMA_CM_CONNECT &&
1998 		    (id_priv->id.qp_type != IB_QPT_UD)) {
1999 			trace_cm_send_mra(id_priv);
2000 			ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2001 		}
2002 		if (id_priv->id.qp) {
2003 			event.status = cma_rep_recv(id_priv);
2004 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2005 						     RDMA_CM_EVENT_ESTABLISHED;
2006 		} else {
2007 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2008 		}
2009 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2010 				       ib_event->private_data);
2011 		break;
2012 	case IB_CM_RTU_RECEIVED:
2013 	case IB_CM_USER_ESTABLISHED:
2014 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2015 		break;
2016 	case IB_CM_DREQ_ERROR:
2017 		event.status = -ETIMEDOUT;
2018 		fallthrough;
2019 	case IB_CM_DREQ_RECEIVED:
2020 	case IB_CM_DREP_RECEIVED:
2021 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2022 				   RDMA_CM_DISCONNECT))
2023 			goto out;
2024 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2025 		break;
2026 	case IB_CM_TIMEWAIT_EXIT:
2027 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2028 		break;
2029 	case IB_CM_MRA_RECEIVED:
2030 		/* ignore event */
2031 		goto out;
2032 	case IB_CM_REJ_RECEIVED:
2033 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2034 										ib_event->param.rej_rcvd.reason));
2035 		cma_modify_qp_err(id_priv);
2036 		event.status = ib_event->param.rej_rcvd.reason;
2037 		event.event = RDMA_CM_EVENT_REJECTED;
2038 		event.param.conn.private_data = ib_event->private_data;
2039 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2040 		break;
2041 	default:
2042 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2043 		       ib_event->event);
2044 		goto out;
2045 	}
2046 
2047 	ret = cma_cm_event_handler(id_priv, &event);
2048 	if (ret) {
2049 		/* Destroy the CM ID by returning a non-zero value. */
2050 		id_priv->cm_id.ib = NULL;
2051 		destroy_id_handler_unlock(id_priv);
2052 		return ret;
2053 	}
2054 out:
2055 	mutex_unlock(&id_priv->handler_mutex);
2056 	return 0;
2057 }
2058 
2059 static struct rdma_id_private *
2060 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2061 		   const struct ib_cm_event *ib_event,
2062 		   struct net_device *net_dev)
2063 {
2064 	struct rdma_id_private *listen_id_priv;
2065 	struct rdma_id_private *id_priv;
2066 	struct rdma_cm_id *id;
2067 	struct rdma_route *rt;
2068 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2069 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2070 	const __be64 service_id =
2071 		ib_event->param.req_rcvd.primary_path->service_id;
2072 	int ret;
2073 
2074 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2075 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2076 				   listen_id->event_handler, listen_id->context,
2077 				   listen_id->ps,
2078 				   ib_event->param.req_rcvd.qp_type,
2079 				   listen_id_priv);
2080 	if (IS_ERR(id_priv))
2081 		return NULL;
2082 
2083 	id = &id_priv->id;
2084 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2085 			      (struct sockaddr *)&id->route.addr.dst_addr,
2086 			      listen_id, ib_event, ss_family, service_id))
2087 		goto err;
2088 
2089 	rt = &id->route;
2090 	rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2091 	rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec),
2092 				     GFP_KERNEL);
2093 	if (!rt->path_rec)
2094 		goto err;
2095 
2096 	rt->path_rec[0] = *path;
2097 	if (rt->num_paths == 2)
2098 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2099 
2100 	if (net_dev) {
2101 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2102 	} else {
2103 		if (!cma_protocol_roce(listen_id) &&
2104 		    cma_any_addr(cma_src_addr(id_priv))) {
2105 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2106 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2107 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2108 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2109 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2110 			if (ret)
2111 				goto err;
2112 		}
2113 	}
2114 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2115 
2116 	id_priv->state = RDMA_CM_CONNECT;
2117 	return id_priv;
2118 
2119 err:
2120 	rdma_destroy_id(id);
2121 	return NULL;
2122 }
2123 
2124 static struct rdma_id_private *
2125 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2126 		  const struct ib_cm_event *ib_event,
2127 		  struct net_device *net_dev)
2128 {
2129 	const struct rdma_id_private *listen_id_priv;
2130 	struct rdma_id_private *id_priv;
2131 	struct rdma_cm_id *id;
2132 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2133 	struct net *net = listen_id->route.addr.dev_addr.net;
2134 	int ret;
2135 
2136 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2137 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2138 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2139 				   listen_id_priv);
2140 	if (IS_ERR(id_priv))
2141 		return NULL;
2142 
2143 	id = &id_priv->id;
2144 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2145 			      (struct sockaddr *)&id->route.addr.dst_addr,
2146 			      listen_id, ib_event, ss_family,
2147 			      ib_event->param.sidr_req_rcvd.service_id))
2148 		goto err;
2149 
2150 	if (net_dev) {
2151 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2152 	} else {
2153 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2154 			ret = cma_translate_addr(cma_src_addr(id_priv),
2155 						 &id->route.addr.dev_addr);
2156 			if (ret)
2157 				goto err;
2158 		}
2159 	}
2160 
2161 	id_priv->state = RDMA_CM_CONNECT;
2162 	return id_priv;
2163 err:
2164 	rdma_destroy_id(id);
2165 	return NULL;
2166 }
2167 
2168 static void cma_set_req_event_data(struct rdma_cm_event *event,
2169 				   const struct ib_cm_req_event_param *req_data,
2170 				   void *private_data, int offset)
2171 {
2172 	event->param.conn.private_data = private_data + offset;
2173 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2174 	event->param.conn.responder_resources = req_data->responder_resources;
2175 	event->param.conn.initiator_depth = req_data->initiator_depth;
2176 	event->param.conn.flow_control = req_data->flow_control;
2177 	event->param.conn.retry_count = req_data->retry_count;
2178 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2179 	event->param.conn.srq = req_data->srq;
2180 	event->param.conn.qp_num = req_data->remote_qpn;
2181 
2182 	event->ece.vendor_id = req_data->ece.vendor_id;
2183 	event->ece.attr_mod = req_data->ece.attr_mod;
2184 }
2185 
2186 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2187 				    const struct ib_cm_event *ib_event)
2188 {
2189 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2190 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2191 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2192 		 (id->qp_type == IB_QPT_UD)) ||
2193 		(!id->qp_type));
2194 }
2195 
2196 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2197 			      const struct ib_cm_event *ib_event)
2198 {
2199 	struct rdma_id_private *listen_id, *conn_id = NULL;
2200 	struct rdma_cm_event event = {};
2201 	struct cma_req_info req = {};
2202 	struct net_device *net_dev;
2203 	u8 offset;
2204 	int ret;
2205 
2206 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2207 	if (IS_ERR(listen_id))
2208 		return PTR_ERR(listen_id);
2209 
2210 	trace_cm_req_handler(listen_id, ib_event->event);
2211 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2212 		ret = -EINVAL;
2213 		goto net_dev_put;
2214 	}
2215 
2216 	mutex_lock(&listen_id->handler_mutex);
2217 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2218 		ret = -ECONNABORTED;
2219 		goto err_unlock;
2220 	}
2221 
2222 	offset = cma_user_data_offset(listen_id);
2223 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2224 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2225 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2226 		event.param.ud.private_data = ib_event->private_data + offset;
2227 		event.param.ud.private_data_len =
2228 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2229 	} else {
2230 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2231 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2232 				       ib_event->private_data, offset);
2233 	}
2234 	if (!conn_id) {
2235 		ret = -ENOMEM;
2236 		goto err_unlock;
2237 	}
2238 
2239 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2240 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2241 	if (ret) {
2242 		destroy_id_handler_unlock(conn_id);
2243 		goto err_unlock;
2244 	}
2245 
2246 	conn_id->cm_id.ib = cm_id;
2247 	cm_id->context = conn_id;
2248 	cm_id->cm_handler = cma_ib_handler;
2249 
2250 	ret = cma_cm_event_handler(conn_id, &event);
2251 	if (ret) {
2252 		/* Destroy the CM ID by returning a non-zero value. */
2253 		conn_id->cm_id.ib = NULL;
2254 		mutex_unlock(&listen_id->handler_mutex);
2255 		destroy_id_handler_unlock(conn_id);
2256 		goto net_dev_put;
2257 	}
2258 
2259 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2260 	    conn_id->id.qp_type != IB_QPT_UD) {
2261 		trace_cm_send_mra(cm_id->context);
2262 		ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2263 	}
2264 	mutex_unlock(&conn_id->handler_mutex);
2265 
2266 err_unlock:
2267 	mutex_unlock(&listen_id->handler_mutex);
2268 
2269 net_dev_put:
2270 	if (net_dev)
2271 		dev_put(net_dev);
2272 
2273 	return ret;
2274 }
2275 
2276 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2277 {
2278 	if (addr->sa_family == AF_IB)
2279 		return ((struct sockaddr_ib *) addr)->sib_sid;
2280 
2281 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2282 }
2283 EXPORT_SYMBOL(rdma_get_service_id);
2284 
2285 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2286 		    union ib_gid *dgid)
2287 {
2288 	struct rdma_addr *addr = &cm_id->route.addr;
2289 
2290 	if (!cm_id->device) {
2291 		if (sgid)
2292 			memset(sgid, 0, sizeof(*sgid));
2293 		if (dgid)
2294 			memset(dgid, 0, sizeof(*dgid));
2295 		return;
2296 	}
2297 
2298 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2299 		if (sgid)
2300 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2301 		if (dgid)
2302 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2303 	} else {
2304 		if (sgid)
2305 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2306 		if (dgid)
2307 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2308 	}
2309 }
2310 EXPORT_SYMBOL(rdma_read_gids);
2311 
2312 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2313 {
2314 	struct rdma_id_private *id_priv = iw_id->context;
2315 	struct rdma_cm_event event = {};
2316 	int ret = 0;
2317 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2318 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2319 
2320 	mutex_lock(&id_priv->handler_mutex);
2321 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2322 		goto out;
2323 
2324 	switch (iw_event->event) {
2325 	case IW_CM_EVENT_CLOSE:
2326 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2327 		break;
2328 	case IW_CM_EVENT_CONNECT_REPLY:
2329 		memcpy(cma_src_addr(id_priv), laddr,
2330 		       rdma_addr_size(laddr));
2331 		memcpy(cma_dst_addr(id_priv), raddr,
2332 		       rdma_addr_size(raddr));
2333 		switch (iw_event->status) {
2334 		case 0:
2335 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2336 			event.param.conn.initiator_depth = iw_event->ird;
2337 			event.param.conn.responder_resources = iw_event->ord;
2338 			break;
2339 		case -ECONNRESET:
2340 		case -ECONNREFUSED:
2341 			event.event = RDMA_CM_EVENT_REJECTED;
2342 			break;
2343 		case -ETIMEDOUT:
2344 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2345 			break;
2346 		default:
2347 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2348 			break;
2349 		}
2350 		break;
2351 	case IW_CM_EVENT_ESTABLISHED:
2352 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2353 		event.param.conn.initiator_depth = iw_event->ird;
2354 		event.param.conn.responder_resources = iw_event->ord;
2355 		break;
2356 	default:
2357 		goto out;
2358 	}
2359 
2360 	event.status = iw_event->status;
2361 	event.param.conn.private_data = iw_event->private_data;
2362 	event.param.conn.private_data_len = iw_event->private_data_len;
2363 	ret = cma_cm_event_handler(id_priv, &event);
2364 	if (ret) {
2365 		/* Destroy the CM ID by returning a non-zero value. */
2366 		id_priv->cm_id.iw = NULL;
2367 		destroy_id_handler_unlock(id_priv);
2368 		return ret;
2369 	}
2370 
2371 out:
2372 	mutex_unlock(&id_priv->handler_mutex);
2373 	return ret;
2374 }
2375 
2376 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2377 			       struct iw_cm_event *iw_event)
2378 {
2379 	struct rdma_id_private *listen_id, *conn_id;
2380 	struct rdma_cm_event event = {};
2381 	int ret = -ECONNABORTED;
2382 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2383 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2384 
2385 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2386 	event.param.conn.private_data = iw_event->private_data;
2387 	event.param.conn.private_data_len = iw_event->private_data_len;
2388 	event.param.conn.initiator_depth = iw_event->ird;
2389 	event.param.conn.responder_resources = iw_event->ord;
2390 
2391 	listen_id = cm_id->context;
2392 
2393 	mutex_lock(&listen_id->handler_mutex);
2394 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2395 		goto out;
2396 
2397 	/* Create a new RDMA id for the new IW CM ID */
2398 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2399 				   listen_id->id.event_handler,
2400 				   listen_id->id.context, RDMA_PS_TCP,
2401 				   IB_QPT_RC, listen_id);
2402 	if (IS_ERR(conn_id)) {
2403 		ret = -ENOMEM;
2404 		goto out;
2405 	}
2406 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2407 	conn_id->state = RDMA_CM_CONNECT;
2408 
2409 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2410 	if (ret) {
2411 		mutex_unlock(&listen_id->handler_mutex);
2412 		destroy_id_handler_unlock(conn_id);
2413 		return ret;
2414 	}
2415 
2416 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2417 	if (ret) {
2418 		mutex_unlock(&listen_id->handler_mutex);
2419 		destroy_id_handler_unlock(conn_id);
2420 		return ret;
2421 	}
2422 
2423 	conn_id->cm_id.iw = cm_id;
2424 	cm_id->context = conn_id;
2425 	cm_id->cm_handler = cma_iw_handler;
2426 
2427 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2428 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2429 
2430 	ret = cma_cm_event_handler(conn_id, &event);
2431 	if (ret) {
2432 		/* User wants to destroy the CM ID */
2433 		conn_id->cm_id.iw = NULL;
2434 		mutex_unlock(&listen_id->handler_mutex);
2435 		destroy_id_handler_unlock(conn_id);
2436 		return ret;
2437 	}
2438 
2439 	mutex_unlock(&conn_id->handler_mutex);
2440 
2441 out:
2442 	mutex_unlock(&listen_id->handler_mutex);
2443 	return ret;
2444 }
2445 
2446 static int cma_ib_listen(struct rdma_id_private *id_priv)
2447 {
2448 	struct sockaddr *addr;
2449 	struct ib_cm_id	*id;
2450 	__be64 svc_id;
2451 
2452 	addr = cma_src_addr(id_priv);
2453 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2454 	id = ib_cm_insert_listen(id_priv->id.device,
2455 				 cma_ib_req_handler, svc_id);
2456 	if (IS_ERR(id))
2457 		return PTR_ERR(id);
2458 	id_priv->cm_id.ib = id;
2459 
2460 	return 0;
2461 }
2462 
2463 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2464 {
2465 	int ret;
2466 	struct iw_cm_id	*id;
2467 
2468 	id = iw_create_cm_id(id_priv->id.device,
2469 			     iw_conn_req_handler,
2470 			     id_priv);
2471 	if (IS_ERR(id))
2472 		return PTR_ERR(id);
2473 
2474 	id->tos = id_priv->tos;
2475 	id->tos_set = id_priv->tos_set;
2476 	id->afonly = id_priv->afonly;
2477 	id_priv->cm_id.iw = id;
2478 
2479 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2480 	       rdma_addr_size(cma_src_addr(id_priv)));
2481 
2482 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2483 
2484 	if (ret) {
2485 		iw_destroy_cm_id(id_priv->cm_id.iw);
2486 		id_priv->cm_id.iw = NULL;
2487 	}
2488 
2489 	return ret;
2490 }
2491 
2492 static int cma_listen_handler(struct rdma_cm_id *id,
2493 			      struct rdma_cm_event *event)
2494 {
2495 	struct rdma_id_private *id_priv = id->context;
2496 
2497 	/* Listening IDs are always destroyed on removal */
2498 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2499 		return -1;
2500 
2501 	id->context = id_priv->id.context;
2502 	id->event_handler = id_priv->id.event_handler;
2503 	trace_cm_event_handler(id_priv, event);
2504 	return id_priv->id.event_handler(id, event);
2505 }
2506 
2507 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2508 			     struct cma_device *cma_dev,
2509 			     struct rdma_id_private **to_destroy)
2510 {
2511 	struct rdma_id_private *dev_id_priv;
2512 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2513 	int ret;
2514 
2515 	lockdep_assert_held(&lock);
2516 
2517 	*to_destroy = NULL;
2518 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2519 		return 0;
2520 
2521 	dev_id_priv =
2522 		__rdma_create_id(net, cma_listen_handler, id_priv,
2523 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2524 	if (IS_ERR(dev_id_priv))
2525 		return PTR_ERR(dev_id_priv);
2526 
2527 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2528 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2529 	       rdma_addr_size(cma_src_addr(id_priv)));
2530 
2531 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2532 	rdma_restrack_add(&dev_id_priv->res);
2533 	cma_id_get(id_priv);
2534 	dev_id_priv->internal_id = 1;
2535 	dev_id_priv->afonly = id_priv->afonly;
2536 	dev_id_priv->tos_set = id_priv->tos_set;
2537 	dev_id_priv->tos = id_priv->tos;
2538 
2539 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2540 	if (ret)
2541 		goto err_listen;
2542 	list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list);
2543 	return 0;
2544 err_listen:
2545 	/* Caller must destroy this after releasing lock */
2546 	*to_destroy = dev_id_priv;
2547 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2548 	return ret;
2549 }
2550 
2551 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2552 {
2553 	struct rdma_id_private *to_destroy;
2554 	struct cma_device *cma_dev;
2555 	int ret;
2556 
2557 	mutex_lock(&lock);
2558 	list_add_tail(&id_priv->list, &listen_any_list);
2559 	list_for_each_entry(cma_dev, &dev_list, list) {
2560 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2561 		if (ret) {
2562 			/* Prevent racing with cma_process_remove() */
2563 			if (to_destroy)
2564 				list_del_init(&to_destroy->list);
2565 			goto err_listen;
2566 		}
2567 	}
2568 	mutex_unlock(&lock);
2569 	return 0;
2570 
2571 err_listen:
2572 	list_del(&id_priv->list);
2573 	mutex_unlock(&lock);
2574 	if (to_destroy)
2575 		rdma_destroy_id(&to_destroy->id);
2576 	return ret;
2577 }
2578 
2579 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2580 {
2581 	struct rdma_id_private *id_priv;
2582 
2583 	id_priv = container_of(id, struct rdma_id_private, id);
2584 	id_priv->tos = (u8) tos;
2585 	id_priv->tos_set = true;
2586 }
2587 EXPORT_SYMBOL(rdma_set_service_type);
2588 
2589 /**
2590  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2591  *                          with a connection identifier.
2592  * @id: Communication identifier to associated with service type.
2593  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2594  *
2595  * This function should be called before rdma_connect() on active side,
2596  * and on passive side before rdma_accept(). It is applicable to primary
2597  * path only. The timeout will affect the local side of the QP, it is not
2598  * negotiated with remote side and zero disables the timer. In case it is
2599  * set before rdma_resolve_route, the value will also be used to determine
2600  * PacketLifeTime for RoCE.
2601  *
2602  * Return: 0 for success
2603  */
2604 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2605 {
2606 	struct rdma_id_private *id_priv;
2607 
2608 	if (id->qp_type != IB_QPT_RC)
2609 		return -EINVAL;
2610 
2611 	id_priv = container_of(id, struct rdma_id_private, id);
2612 	id_priv->timeout = timeout;
2613 	id_priv->timeout_set = true;
2614 
2615 	return 0;
2616 }
2617 EXPORT_SYMBOL(rdma_set_ack_timeout);
2618 
2619 /**
2620  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2621  *			      QP associated with a connection identifier.
2622  * @id: Communication identifier to associated with service type.
2623  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2624  *		   Timer Field" in the IBTA specification.
2625  *
2626  * This function should be called before rdma_connect() on active
2627  * side, and on passive side before rdma_accept(). The timer value
2628  * will be associated with the local QP. When it receives a send it is
2629  * not read to handle, typically if the receive queue is empty, an RNR
2630  * Retry NAK is returned to the requester with the min_rnr_timer
2631  * encoded. The requester will then wait at least the time specified
2632  * in the NAK before retrying. The default is zero, which translates
2633  * to a minimum RNR Timer value of 655 ms.
2634  *
2635  * Return: 0 for success
2636  */
2637 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2638 {
2639 	struct rdma_id_private *id_priv;
2640 
2641 	/* It is a five-bit value */
2642 	if (min_rnr_timer & 0xe0)
2643 		return -EINVAL;
2644 
2645 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2646 		return -EINVAL;
2647 
2648 	id_priv = container_of(id, struct rdma_id_private, id);
2649 	id_priv->min_rnr_timer = min_rnr_timer;
2650 	id_priv->min_rnr_timer_set = true;
2651 
2652 	return 0;
2653 }
2654 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2655 
2656 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2657 			      void *context)
2658 {
2659 	struct cma_work *work = context;
2660 	struct rdma_route *route;
2661 
2662 	route = &work->id->id.route;
2663 
2664 	if (!status) {
2665 		route->num_paths = 1;
2666 		*route->path_rec = *path_rec;
2667 	} else {
2668 		work->old_state = RDMA_CM_ROUTE_QUERY;
2669 		work->new_state = RDMA_CM_ADDR_RESOLVED;
2670 		work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2671 		work->event.status = status;
2672 		pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2673 				     status);
2674 	}
2675 
2676 	queue_work(cma_wq, &work->work);
2677 }
2678 
2679 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2680 			      unsigned long timeout_ms, struct cma_work *work)
2681 {
2682 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2683 	struct sa_path_rec path_rec;
2684 	ib_sa_comp_mask comp_mask;
2685 	struct sockaddr_in6 *sin6;
2686 	struct sockaddr_ib *sib;
2687 
2688 	memset(&path_rec, 0, sizeof path_rec);
2689 
2690 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2691 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2692 	else
2693 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2694 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2695 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2696 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2697 	path_rec.numb_path = 1;
2698 	path_rec.reversible = 1;
2699 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2700 						  cma_dst_addr(id_priv));
2701 
2702 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2703 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2704 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2705 
2706 	switch (cma_family(id_priv)) {
2707 	case AF_INET:
2708 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2709 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2710 		break;
2711 	case AF_INET6:
2712 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2713 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2714 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2715 		break;
2716 	case AF_IB:
2717 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2718 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2719 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2720 		break;
2721 	}
2722 
2723 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2724 					       id_priv->id.port_num, &path_rec,
2725 					       comp_mask, timeout_ms,
2726 					       GFP_KERNEL, cma_query_handler,
2727 					       work, &id_priv->query);
2728 
2729 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2730 }
2731 
2732 static void cma_iboe_join_work_handler(struct work_struct *work)
2733 {
2734 	struct cma_multicast *mc =
2735 		container_of(work, struct cma_multicast, iboe_join.work);
2736 	struct rdma_cm_event *event = &mc->iboe_join.event;
2737 	struct rdma_id_private *id_priv = mc->id_priv;
2738 	int ret;
2739 
2740 	mutex_lock(&id_priv->handler_mutex);
2741 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2742 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2743 		goto out_unlock;
2744 
2745 	ret = cma_cm_event_handler(id_priv, event);
2746 	WARN_ON(ret);
2747 
2748 out_unlock:
2749 	mutex_unlock(&id_priv->handler_mutex);
2750 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
2751 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
2752 }
2753 
2754 static void cma_work_handler(struct work_struct *_work)
2755 {
2756 	struct cma_work *work = container_of(_work, struct cma_work, work);
2757 	struct rdma_id_private *id_priv = work->id;
2758 
2759 	mutex_lock(&id_priv->handler_mutex);
2760 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
2761 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
2762 		goto out_unlock;
2763 	if (work->old_state != 0 || work->new_state != 0) {
2764 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
2765 			goto out_unlock;
2766 	}
2767 
2768 	if (cma_cm_event_handler(id_priv, &work->event)) {
2769 		cma_id_put(id_priv);
2770 		destroy_id_handler_unlock(id_priv);
2771 		goto out_free;
2772 	}
2773 
2774 out_unlock:
2775 	mutex_unlock(&id_priv->handler_mutex);
2776 	cma_id_put(id_priv);
2777 out_free:
2778 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
2779 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
2780 	kfree(work);
2781 }
2782 
2783 static void cma_init_resolve_route_work(struct cma_work *work,
2784 					struct rdma_id_private *id_priv)
2785 {
2786 	work->id = id_priv;
2787 	INIT_WORK(&work->work, cma_work_handler);
2788 	work->old_state = RDMA_CM_ROUTE_QUERY;
2789 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
2790 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
2791 }
2792 
2793 static void enqueue_resolve_addr_work(struct cma_work *work,
2794 				      struct rdma_id_private *id_priv)
2795 {
2796 	/* Balances with cma_id_put() in cma_work_handler */
2797 	cma_id_get(id_priv);
2798 
2799 	work->id = id_priv;
2800 	INIT_WORK(&work->work, cma_work_handler);
2801 	work->old_state = RDMA_CM_ADDR_QUERY;
2802 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2803 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
2804 
2805 	queue_work(cma_wq, &work->work);
2806 }
2807 
2808 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
2809 				unsigned long timeout_ms)
2810 {
2811 	struct rdma_route *route = &id_priv->id.route;
2812 	struct cma_work *work;
2813 	int ret;
2814 
2815 	work = kzalloc(sizeof *work, GFP_KERNEL);
2816 	if (!work)
2817 		return -ENOMEM;
2818 
2819 	cma_init_resolve_route_work(work, id_priv);
2820 
2821 	route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
2822 	if (!route->path_rec) {
2823 		ret = -ENOMEM;
2824 		goto err1;
2825 	}
2826 
2827 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
2828 	if (ret)
2829 		goto err2;
2830 
2831 	return 0;
2832 err2:
2833 	kfree(route->path_rec);
2834 	route->path_rec = NULL;
2835 err1:
2836 	kfree(work);
2837 	return ret;
2838 }
2839 
2840 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
2841 					   unsigned long supported_gids,
2842 					   enum ib_gid_type default_gid)
2843 {
2844 	if ((network_type == RDMA_NETWORK_IPV4 ||
2845 	     network_type == RDMA_NETWORK_IPV6) &&
2846 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
2847 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
2848 
2849 	return default_gid;
2850 }
2851 
2852 /*
2853  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
2854  * path record type based on GID type.
2855  * It also sets up other L2 fields which includes destination mac address
2856  * netdev ifindex, of the path record.
2857  * It returns the netdev of the bound interface for this path record entry.
2858  */
2859 static struct net_device *
2860 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
2861 {
2862 	struct rdma_route *route = &id_priv->id.route;
2863 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
2864 	struct rdma_addr *addr = &route->addr;
2865 	unsigned long supported_gids;
2866 	struct net_device *ndev;
2867 
2868 	if (!addr->dev_addr.bound_dev_if)
2869 		return NULL;
2870 
2871 	ndev = dev_get_by_index(addr->dev_addr.net,
2872 				addr->dev_addr.bound_dev_if);
2873 	if (!ndev)
2874 		return NULL;
2875 
2876 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
2877 						    id_priv->id.port_num);
2878 	gid_type = cma_route_gid_type(addr->dev_addr.network,
2879 				      supported_gids,
2880 				      id_priv->gid_type);
2881 	/* Use the hint from IP Stack to select GID Type */
2882 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
2883 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
2884 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
2885 
2886 	route->path_rec->roce.route_resolved = true;
2887 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
2888 	return ndev;
2889 }
2890 
2891 int rdma_set_ib_path(struct rdma_cm_id *id,
2892 		     struct sa_path_rec *path_rec)
2893 {
2894 	struct rdma_id_private *id_priv;
2895 	struct net_device *ndev;
2896 	int ret;
2897 
2898 	id_priv = container_of(id, struct rdma_id_private, id);
2899 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
2900 			   RDMA_CM_ROUTE_RESOLVED))
2901 		return -EINVAL;
2902 
2903 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
2904 				     GFP_KERNEL);
2905 	if (!id->route.path_rec) {
2906 		ret = -ENOMEM;
2907 		goto err;
2908 	}
2909 
2910 	if (rdma_protocol_roce(id->device, id->port_num)) {
2911 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
2912 		if (!ndev) {
2913 			ret = -ENODEV;
2914 			goto err_free;
2915 		}
2916 		dev_put(ndev);
2917 	}
2918 
2919 	id->route.num_paths = 1;
2920 	return 0;
2921 
2922 err_free:
2923 	kfree(id->route.path_rec);
2924 	id->route.path_rec = NULL;
2925 err:
2926 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
2927 	return ret;
2928 }
2929 EXPORT_SYMBOL(rdma_set_ib_path);
2930 
2931 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
2932 {
2933 	struct cma_work *work;
2934 
2935 	work = kzalloc(sizeof *work, GFP_KERNEL);
2936 	if (!work)
2937 		return -ENOMEM;
2938 
2939 	cma_init_resolve_route_work(work, id_priv);
2940 	queue_work(cma_wq, &work->work);
2941 	return 0;
2942 }
2943 
2944 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
2945 {
2946 	struct net_device *dev;
2947 
2948 	dev = vlan_dev_real_dev(vlan_ndev);
2949 	if (dev->num_tc)
2950 		return netdev_get_prio_tc_map(dev, prio);
2951 
2952 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
2953 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2954 }
2955 
2956 struct iboe_prio_tc_map {
2957 	int input_prio;
2958 	int output_tc;
2959 	bool found;
2960 };
2961 
2962 static int get_lower_vlan_dev_tc(struct net_device *dev,
2963 				 struct netdev_nested_priv *priv)
2964 {
2965 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
2966 
2967 	if (is_vlan_dev(dev))
2968 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
2969 	else if (dev->num_tc)
2970 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
2971 	else
2972 		map->output_tc = 0;
2973 	/* We are interested only in first level VLAN device, so always
2974 	 * return 1 to stop iterating over next level devices.
2975 	 */
2976 	map->found = true;
2977 	return 1;
2978 }
2979 
2980 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
2981 {
2982 	struct iboe_prio_tc_map prio_tc_map = {};
2983 	int prio = rt_tos2priority(tos);
2984 	struct netdev_nested_priv priv;
2985 
2986 	/* If VLAN device, get it directly from the VLAN netdev */
2987 	if (is_vlan_dev(ndev))
2988 		return get_vlan_ndev_tc(ndev, prio);
2989 
2990 	prio_tc_map.input_prio = prio;
2991 	priv.data = (void *)&prio_tc_map;
2992 	rcu_read_lock();
2993 	netdev_walk_all_lower_dev_rcu(ndev,
2994 				      get_lower_vlan_dev_tc,
2995 				      &priv);
2996 	rcu_read_unlock();
2997 	/* If map is found from lower device, use it; Otherwise
2998 	 * continue with the current netdevice to get priority to tc map.
2999 	 */
3000 	if (prio_tc_map.found)
3001 		return prio_tc_map.output_tc;
3002 	else if (ndev->num_tc)
3003 		return netdev_get_prio_tc_map(ndev, prio);
3004 	else
3005 		return 0;
3006 }
3007 
3008 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3009 {
3010 	struct sockaddr_in6 *addr6;
3011 	u16 dport, sport;
3012 	u32 hash, fl;
3013 
3014 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3015 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3016 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3017 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3018 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3019 		hash = (u32)sport * 31 + dport;
3020 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3021 	}
3022 
3023 	return cpu_to_be32(fl);
3024 }
3025 
3026 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3027 {
3028 	struct rdma_route *route = &id_priv->id.route;
3029 	struct rdma_addr *addr = &route->addr;
3030 	struct cma_work *work;
3031 	int ret;
3032 	struct net_device *ndev;
3033 
3034 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3035 					rdma_start_port(id_priv->cma_dev->device)];
3036 	u8 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3037 
3038 
3039 	work = kzalloc(sizeof *work, GFP_KERNEL);
3040 	if (!work)
3041 		return -ENOMEM;
3042 
3043 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3044 	if (!route->path_rec) {
3045 		ret = -ENOMEM;
3046 		goto err1;
3047 	}
3048 
3049 	route->num_paths = 1;
3050 
3051 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3052 	if (!ndev) {
3053 		ret = -ENODEV;
3054 		goto err2;
3055 	}
3056 
3057 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3058 		    &route->path_rec->sgid);
3059 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3060 		    &route->path_rec->dgid);
3061 
3062 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3063 		/* TODO: get the hoplimit from the inet/inet6 device */
3064 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3065 	else
3066 		route->path_rec->hop_limit = 1;
3067 	route->path_rec->reversible = 1;
3068 	route->path_rec->pkey = cpu_to_be16(0xffff);
3069 	route->path_rec->mtu_selector = IB_SA_EQ;
3070 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3071 	route->path_rec->traffic_class = tos;
3072 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3073 	route->path_rec->rate_selector = IB_SA_EQ;
3074 	route->path_rec->rate = iboe_get_rate(ndev);
3075 	dev_put(ndev);
3076 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3077 	/* In case ACK timeout is set, use this value to calculate
3078 	 * PacketLifeTime.  As per IBTA 12.7.34,
3079 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3080 	 * Assuming a negligible local ACK delay, we can use
3081 	 * PacketLifeTime = local ACK timeout/2
3082 	 * as a reasonable approximation for RoCE networks.
3083 	 */
3084 	route->path_rec->packet_life_time = id_priv->timeout_set ?
3085 		id_priv->timeout - 1 : CMA_IBOE_PACKET_LIFETIME;
3086 
3087 	if (!route->path_rec->mtu) {
3088 		ret = -EINVAL;
3089 		goto err2;
3090 	}
3091 
3092 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3093 					 id_priv->id.port_num))
3094 		route->path_rec->flow_label =
3095 			cma_get_roce_udp_flow_label(id_priv);
3096 
3097 	cma_init_resolve_route_work(work, id_priv);
3098 	queue_work(cma_wq, &work->work);
3099 
3100 	return 0;
3101 
3102 err2:
3103 	kfree(route->path_rec);
3104 	route->path_rec = NULL;
3105 	route->num_paths = 0;
3106 err1:
3107 	kfree(work);
3108 	return ret;
3109 }
3110 
3111 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3112 {
3113 	struct rdma_id_private *id_priv;
3114 	int ret;
3115 
3116 	id_priv = container_of(id, struct rdma_id_private, id);
3117 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3118 		return -EINVAL;
3119 
3120 	cma_id_get(id_priv);
3121 	if (rdma_cap_ib_sa(id->device, id->port_num))
3122 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3123 	else if (rdma_protocol_roce(id->device, id->port_num))
3124 		ret = cma_resolve_iboe_route(id_priv);
3125 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3126 		ret = cma_resolve_iw_route(id_priv);
3127 	else
3128 		ret = -ENOSYS;
3129 
3130 	if (ret)
3131 		goto err;
3132 
3133 	return 0;
3134 err:
3135 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3136 	cma_id_put(id_priv);
3137 	return ret;
3138 }
3139 EXPORT_SYMBOL(rdma_resolve_route);
3140 
3141 static void cma_set_loopback(struct sockaddr *addr)
3142 {
3143 	switch (addr->sa_family) {
3144 	case AF_INET:
3145 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3146 		break;
3147 	case AF_INET6:
3148 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3149 			      0, 0, 0, htonl(1));
3150 		break;
3151 	default:
3152 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3153 			    0, 0, 0, htonl(1));
3154 		break;
3155 	}
3156 }
3157 
3158 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3159 {
3160 	struct cma_device *cma_dev, *cur_dev;
3161 	union ib_gid gid;
3162 	enum ib_port_state port_state;
3163 	unsigned int p;
3164 	u16 pkey;
3165 	int ret;
3166 
3167 	cma_dev = NULL;
3168 	mutex_lock(&lock);
3169 	list_for_each_entry(cur_dev, &dev_list, list) {
3170 		if (cma_family(id_priv) == AF_IB &&
3171 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3172 			continue;
3173 
3174 		if (!cma_dev)
3175 			cma_dev = cur_dev;
3176 
3177 		rdma_for_each_port (cur_dev->device, p) {
3178 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3179 			    port_state == IB_PORT_ACTIVE) {
3180 				cma_dev = cur_dev;
3181 				goto port_found;
3182 			}
3183 		}
3184 	}
3185 
3186 	if (!cma_dev) {
3187 		ret = -ENODEV;
3188 		goto out;
3189 	}
3190 
3191 	p = 1;
3192 
3193 port_found:
3194 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3195 	if (ret)
3196 		goto out;
3197 
3198 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3199 	if (ret)
3200 		goto out;
3201 
3202 	id_priv->id.route.addr.dev_addr.dev_type =
3203 		(rdma_protocol_ib(cma_dev->device, p)) ?
3204 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3205 
3206 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3207 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3208 	id_priv->id.port_num = p;
3209 	cma_attach_to_dev(id_priv, cma_dev);
3210 	rdma_restrack_add(&id_priv->res);
3211 	cma_set_loopback(cma_src_addr(id_priv));
3212 out:
3213 	mutex_unlock(&lock);
3214 	return ret;
3215 }
3216 
3217 static void addr_handler(int status, struct sockaddr *src_addr,
3218 			 struct rdma_dev_addr *dev_addr, void *context)
3219 {
3220 	struct rdma_id_private *id_priv = context;
3221 	struct rdma_cm_event event = {};
3222 	struct sockaddr *addr;
3223 	struct sockaddr_storage old_addr;
3224 
3225 	mutex_lock(&id_priv->handler_mutex);
3226 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3227 			   RDMA_CM_ADDR_RESOLVED))
3228 		goto out;
3229 
3230 	/*
3231 	 * Store the previous src address, so that if we fail to acquire
3232 	 * matching rdma device, old address can be restored back, which helps
3233 	 * to cancel the cma listen operation correctly.
3234 	 */
3235 	addr = cma_src_addr(id_priv);
3236 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3237 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3238 	if (!status && !id_priv->cma_dev) {
3239 		status = cma_acquire_dev_by_src_ip(id_priv);
3240 		if (status)
3241 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3242 					     status);
3243 		rdma_restrack_add(&id_priv->res);
3244 	} else if (status) {
3245 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3246 	}
3247 
3248 	if (status) {
3249 		memcpy(addr, &old_addr,
3250 		       rdma_addr_size((struct sockaddr *)&old_addr));
3251 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3252 				   RDMA_CM_ADDR_BOUND))
3253 			goto out;
3254 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3255 		event.status = status;
3256 	} else
3257 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3258 
3259 	if (cma_cm_event_handler(id_priv, &event)) {
3260 		destroy_id_handler_unlock(id_priv);
3261 		return;
3262 	}
3263 out:
3264 	mutex_unlock(&id_priv->handler_mutex);
3265 }
3266 
3267 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3268 {
3269 	struct cma_work *work;
3270 	union ib_gid gid;
3271 	int ret;
3272 
3273 	work = kzalloc(sizeof *work, GFP_KERNEL);
3274 	if (!work)
3275 		return -ENOMEM;
3276 
3277 	if (!id_priv->cma_dev) {
3278 		ret = cma_bind_loopback(id_priv);
3279 		if (ret)
3280 			goto err;
3281 	}
3282 
3283 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3284 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3285 
3286 	enqueue_resolve_addr_work(work, id_priv);
3287 	return 0;
3288 err:
3289 	kfree(work);
3290 	return ret;
3291 }
3292 
3293 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3294 {
3295 	struct cma_work *work;
3296 	int ret;
3297 
3298 	work = kzalloc(sizeof *work, GFP_KERNEL);
3299 	if (!work)
3300 		return -ENOMEM;
3301 
3302 	if (!id_priv->cma_dev) {
3303 		ret = cma_resolve_ib_dev(id_priv);
3304 		if (ret)
3305 			goto err;
3306 	}
3307 
3308 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3309 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3310 
3311 	enqueue_resolve_addr_work(work, id_priv);
3312 	return 0;
3313 err:
3314 	kfree(work);
3315 	return ret;
3316 }
3317 
3318 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3319 			 const struct sockaddr *dst_addr)
3320 {
3321 	if (!src_addr || !src_addr->sa_family) {
3322 		src_addr = (struct sockaddr *) &id->route.addr.src_addr;
3323 		src_addr->sa_family = dst_addr->sa_family;
3324 		if (IS_ENABLED(CONFIG_IPV6) &&
3325 		    dst_addr->sa_family == AF_INET6) {
3326 			struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr;
3327 			struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr;
3328 			src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
3329 			if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
3330 				id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id;
3331 		} else if (dst_addr->sa_family == AF_IB) {
3332 			((struct sockaddr_ib *) src_addr)->sib_pkey =
3333 				((struct sockaddr_ib *) dst_addr)->sib_pkey;
3334 		}
3335 	}
3336 	return rdma_bind_addr(id, src_addr);
3337 }
3338 
3339 /*
3340  * If required, resolve the source address for bind and leave the id_priv in
3341  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
3342  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
3343  * ignored.
3344  */
3345 static int resolve_prepare_src(struct rdma_id_private *id_priv,
3346 			       struct sockaddr *src_addr,
3347 			       const struct sockaddr *dst_addr)
3348 {
3349 	int ret;
3350 
3351 	memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
3352 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
3353 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3354 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
3355 		if (ret)
3356 			goto err_dst;
3357 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3358 					   RDMA_CM_ADDR_QUERY))) {
3359 			ret = -EINVAL;
3360 			goto err_dst;
3361 		}
3362 	}
3363 
3364 	if (cma_family(id_priv) != dst_addr->sa_family) {
3365 		ret = -EINVAL;
3366 		goto err_state;
3367 	}
3368 	return 0;
3369 
3370 err_state:
3371 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3372 err_dst:
3373 	memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr));
3374 	return ret;
3375 }
3376 
3377 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
3378 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
3379 {
3380 	struct rdma_id_private *id_priv =
3381 		container_of(id, struct rdma_id_private, id);
3382 	int ret;
3383 
3384 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
3385 	if (ret)
3386 		return ret;
3387 
3388 	if (cma_any_addr(dst_addr)) {
3389 		ret = cma_resolve_loopback(id_priv);
3390 	} else {
3391 		if (dst_addr->sa_family == AF_IB) {
3392 			ret = cma_resolve_ib_addr(id_priv);
3393 		} else {
3394 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
3395 					      &id->route.addr.dev_addr,
3396 					      timeout_ms, addr_handler,
3397 					      false, id_priv);
3398 		}
3399 	}
3400 	if (ret)
3401 		goto err;
3402 
3403 	return 0;
3404 err:
3405 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
3406 	return ret;
3407 }
3408 EXPORT_SYMBOL(rdma_resolve_addr);
3409 
3410 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3411 {
3412 	struct rdma_id_private *id_priv;
3413 	unsigned long flags;
3414 	int ret;
3415 
3416 	id_priv = container_of(id, struct rdma_id_private, id);
3417 	spin_lock_irqsave(&id_priv->lock, flags);
3418 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3419 	    id_priv->state == RDMA_CM_IDLE) {
3420 		id_priv->reuseaddr = reuse;
3421 		ret = 0;
3422 	} else {
3423 		ret = -EINVAL;
3424 	}
3425 	spin_unlock_irqrestore(&id_priv->lock, flags);
3426 	return ret;
3427 }
3428 EXPORT_SYMBOL(rdma_set_reuseaddr);
3429 
3430 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3431 {
3432 	struct rdma_id_private *id_priv;
3433 	unsigned long flags;
3434 	int ret;
3435 
3436 	id_priv = container_of(id, struct rdma_id_private, id);
3437 	spin_lock_irqsave(&id_priv->lock, flags);
3438 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3439 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3440 		id_priv->afonly = afonly;
3441 		ret = 0;
3442 	} else {
3443 		ret = -EINVAL;
3444 	}
3445 	spin_unlock_irqrestore(&id_priv->lock, flags);
3446 	return ret;
3447 }
3448 EXPORT_SYMBOL(rdma_set_afonly);
3449 
3450 static void cma_bind_port(struct rdma_bind_list *bind_list,
3451 			  struct rdma_id_private *id_priv)
3452 {
3453 	struct sockaddr *addr;
3454 	struct sockaddr_ib *sib;
3455 	u64 sid, mask;
3456 	__be16 port;
3457 
3458 	lockdep_assert_held(&lock);
3459 
3460 	addr = cma_src_addr(id_priv);
3461 	port = htons(bind_list->port);
3462 
3463 	switch (addr->sa_family) {
3464 	case AF_INET:
3465 		((struct sockaddr_in *) addr)->sin_port = port;
3466 		break;
3467 	case AF_INET6:
3468 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3469 		break;
3470 	case AF_IB:
3471 		sib = (struct sockaddr_ib *) addr;
3472 		sid = be64_to_cpu(sib->sib_sid);
3473 		mask = be64_to_cpu(sib->sib_sid_mask);
3474 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3475 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3476 		break;
3477 	}
3478 	id_priv->bind_list = bind_list;
3479 	hlist_add_head(&id_priv->node, &bind_list->owners);
3480 }
3481 
3482 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3483 			  struct rdma_id_private *id_priv, unsigned short snum)
3484 {
3485 	struct rdma_bind_list *bind_list;
3486 	int ret;
3487 
3488 	lockdep_assert_held(&lock);
3489 
3490 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3491 	if (!bind_list)
3492 		return -ENOMEM;
3493 
3494 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3495 			   snum);
3496 	if (ret < 0)
3497 		goto err;
3498 
3499 	bind_list->ps = ps;
3500 	bind_list->port = snum;
3501 	cma_bind_port(bind_list, id_priv);
3502 	return 0;
3503 err:
3504 	kfree(bind_list);
3505 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3506 }
3507 
3508 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3509 			      struct rdma_id_private *id_priv)
3510 {
3511 	struct rdma_id_private *cur_id;
3512 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3513 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3514 	__be16 dport = cma_port(daddr);
3515 
3516 	lockdep_assert_held(&lock);
3517 
3518 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3519 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3520 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3521 		__be16 cur_dport = cma_port(cur_daddr);
3522 
3523 		if (id_priv == cur_id)
3524 			continue;
3525 
3526 		/* different dest port -> unique */
3527 		if (!cma_any_port(daddr) &&
3528 		    !cma_any_port(cur_daddr) &&
3529 		    (dport != cur_dport))
3530 			continue;
3531 
3532 		/* different src address -> unique */
3533 		if (!cma_any_addr(saddr) &&
3534 		    !cma_any_addr(cur_saddr) &&
3535 		    cma_addr_cmp(saddr, cur_saddr))
3536 			continue;
3537 
3538 		/* different dst address -> unique */
3539 		if (!cma_any_addr(daddr) &&
3540 		    !cma_any_addr(cur_daddr) &&
3541 		    cma_addr_cmp(daddr, cur_daddr))
3542 			continue;
3543 
3544 		return -EADDRNOTAVAIL;
3545 	}
3546 	return 0;
3547 }
3548 
3549 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3550 			      struct rdma_id_private *id_priv)
3551 {
3552 	static unsigned int last_used_port;
3553 	int low, high, remaining;
3554 	unsigned int rover;
3555 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3556 
3557 	lockdep_assert_held(&lock);
3558 
3559 	inet_get_local_port_range(net, &low, &high);
3560 	remaining = (high - low) + 1;
3561 	rover = prandom_u32() % remaining + low;
3562 retry:
3563 	if (last_used_port != rover) {
3564 		struct rdma_bind_list *bind_list;
3565 		int ret;
3566 
3567 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3568 
3569 		if (!bind_list) {
3570 			ret = cma_alloc_port(ps, id_priv, rover);
3571 		} else {
3572 			ret = cma_port_is_unique(bind_list, id_priv);
3573 			if (!ret)
3574 				cma_bind_port(bind_list, id_priv);
3575 		}
3576 		/*
3577 		 * Remember previously used port number in order to avoid
3578 		 * re-using same port immediately after it is closed.
3579 		 */
3580 		if (!ret)
3581 			last_used_port = rover;
3582 		if (ret != -EADDRNOTAVAIL)
3583 			return ret;
3584 	}
3585 	if (--remaining) {
3586 		rover++;
3587 		if ((rover < low) || (rover > high))
3588 			rover = low;
3589 		goto retry;
3590 	}
3591 	return -EADDRNOTAVAIL;
3592 }
3593 
3594 /*
3595  * Check that the requested port is available.  This is called when trying to
3596  * bind to a specific port, or when trying to listen on a bound port.  In
3597  * the latter case, the provided id_priv may already be on the bind_list, but
3598  * we still need to check that it's okay to start listening.
3599  */
3600 static int cma_check_port(struct rdma_bind_list *bind_list,
3601 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3602 {
3603 	struct rdma_id_private *cur_id;
3604 	struct sockaddr *addr, *cur_addr;
3605 
3606 	lockdep_assert_held(&lock);
3607 
3608 	addr = cma_src_addr(id_priv);
3609 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3610 		if (id_priv == cur_id)
3611 			continue;
3612 
3613 		if (reuseaddr && cur_id->reuseaddr)
3614 			continue;
3615 
3616 		cur_addr = cma_src_addr(cur_id);
3617 		if (id_priv->afonly && cur_id->afonly &&
3618 		    (addr->sa_family != cur_addr->sa_family))
3619 			continue;
3620 
3621 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3622 			return -EADDRNOTAVAIL;
3623 
3624 		if (!cma_addr_cmp(addr, cur_addr))
3625 			return -EADDRINUSE;
3626 	}
3627 	return 0;
3628 }
3629 
3630 static int cma_use_port(enum rdma_ucm_port_space ps,
3631 			struct rdma_id_private *id_priv)
3632 {
3633 	struct rdma_bind_list *bind_list;
3634 	unsigned short snum;
3635 	int ret;
3636 
3637 	lockdep_assert_held(&lock);
3638 
3639 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3640 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3641 		return -EACCES;
3642 
3643 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3644 	if (!bind_list) {
3645 		ret = cma_alloc_port(ps, id_priv, snum);
3646 	} else {
3647 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3648 		if (!ret)
3649 			cma_bind_port(bind_list, id_priv);
3650 	}
3651 	return ret;
3652 }
3653 
3654 static enum rdma_ucm_port_space
3655 cma_select_inet_ps(struct rdma_id_private *id_priv)
3656 {
3657 	switch (id_priv->id.ps) {
3658 	case RDMA_PS_TCP:
3659 	case RDMA_PS_UDP:
3660 	case RDMA_PS_IPOIB:
3661 	case RDMA_PS_IB:
3662 		return id_priv->id.ps;
3663 	default:
3664 
3665 		return 0;
3666 	}
3667 }
3668 
3669 static enum rdma_ucm_port_space
3670 cma_select_ib_ps(struct rdma_id_private *id_priv)
3671 {
3672 	enum rdma_ucm_port_space ps = 0;
3673 	struct sockaddr_ib *sib;
3674 	u64 sid_ps, mask, sid;
3675 
3676 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3677 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3678 	sid = be64_to_cpu(sib->sib_sid) & mask;
3679 
3680 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3681 		sid_ps = RDMA_IB_IP_PS_IB;
3682 		ps = RDMA_PS_IB;
3683 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3684 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3685 		sid_ps = RDMA_IB_IP_PS_TCP;
3686 		ps = RDMA_PS_TCP;
3687 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3688 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3689 		sid_ps = RDMA_IB_IP_PS_UDP;
3690 		ps = RDMA_PS_UDP;
3691 	}
3692 
3693 	if (ps) {
3694 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3695 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3696 						be64_to_cpu(sib->sib_sid_mask));
3697 	}
3698 	return ps;
3699 }
3700 
3701 static int cma_get_port(struct rdma_id_private *id_priv)
3702 {
3703 	enum rdma_ucm_port_space ps;
3704 	int ret;
3705 
3706 	if (cma_family(id_priv) != AF_IB)
3707 		ps = cma_select_inet_ps(id_priv);
3708 	else
3709 		ps = cma_select_ib_ps(id_priv);
3710 	if (!ps)
3711 		return -EPROTONOSUPPORT;
3712 
3713 	mutex_lock(&lock);
3714 	if (cma_any_port(cma_src_addr(id_priv)))
3715 		ret = cma_alloc_any_port(ps, id_priv);
3716 	else
3717 		ret = cma_use_port(ps, id_priv);
3718 	mutex_unlock(&lock);
3719 
3720 	return ret;
3721 }
3722 
3723 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3724 			       struct sockaddr *addr)
3725 {
3726 #if IS_ENABLED(CONFIG_IPV6)
3727 	struct sockaddr_in6 *sin6;
3728 
3729 	if (addr->sa_family != AF_INET6)
3730 		return 0;
3731 
3732 	sin6 = (struct sockaddr_in6 *) addr;
3733 
3734 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3735 		return 0;
3736 
3737 	if (!sin6->sin6_scope_id)
3738 			return -EINVAL;
3739 
3740 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3741 #endif
3742 	return 0;
3743 }
3744 
3745 int rdma_listen(struct rdma_cm_id *id, int backlog)
3746 {
3747 	struct rdma_id_private *id_priv =
3748 		container_of(id, struct rdma_id_private, id);
3749 	int ret;
3750 
3751 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3752 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3753 		id->route.addr.src_addr.ss_family = AF_INET;
3754 		ret = rdma_bind_addr(id, cma_src_addr(id_priv));
3755 		if (ret)
3756 			return ret;
3757 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3758 					   RDMA_CM_LISTEN)))
3759 			return -EINVAL;
3760 	}
3761 
3762 	/*
3763 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3764 	 * any more, and has to be unique in the bind list.
3765 	 */
3766 	if (id_priv->reuseaddr) {
3767 		mutex_lock(&lock);
3768 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3769 		if (!ret)
3770 			id_priv->reuseaddr = 0;
3771 		mutex_unlock(&lock);
3772 		if (ret)
3773 			goto err;
3774 	}
3775 
3776 	id_priv->backlog = backlog;
3777 	if (id->device) {
3778 		if (rdma_cap_ib_cm(id->device, 1)) {
3779 			ret = cma_ib_listen(id_priv);
3780 			if (ret)
3781 				goto err;
3782 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3783 			ret = cma_iw_listen(id_priv, backlog);
3784 			if (ret)
3785 				goto err;
3786 		} else {
3787 			ret = -ENOSYS;
3788 			goto err;
3789 		}
3790 	} else {
3791 		ret = cma_listen_on_all(id_priv);
3792 		if (ret)
3793 			goto err;
3794 	}
3795 
3796 	return 0;
3797 err:
3798 	id_priv->backlog = 0;
3799 	/*
3800 	 * All the failure paths that lead here will not allow the req_handler's
3801 	 * to have run.
3802 	 */
3803 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3804 	return ret;
3805 }
3806 EXPORT_SYMBOL(rdma_listen);
3807 
3808 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
3809 {
3810 	struct rdma_id_private *id_priv;
3811 	int ret;
3812 	struct sockaddr  *daddr;
3813 
3814 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
3815 	    addr->sa_family != AF_IB)
3816 		return -EAFNOSUPPORT;
3817 
3818 	id_priv = container_of(id, struct rdma_id_private, id);
3819 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
3820 		return -EINVAL;
3821 
3822 	ret = cma_check_linklocal(&id->route.addr.dev_addr, addr);
3823 	if (ret)
3824 		goto err1;
3825 
3826 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
3827 	if (!cma_any_addr(addr)) {
3828 		ret = cma_translate_addr(addr, &id->route.addr.dev_addr);
3829 		if (ret)
3830 			goto err1;
3831 
3832 		ret = cma_acquire_dev_by_src_ip(id_priv);
3833 		if (ret)
3834 			goto err1;
3835 	}
3836 
3837 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
3838 		if (addr->sa_family == AF_INET)
3839 			id_priv->afonly = 1;
3840 #if IS_ENABLED(CONFIG_IPV6)
3841 		else if (addr->sa_family == AF_INET6) {
3842 			struct net *net = id_priv->id.route.addr.dev_addr.net;
3843 
3844 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
3845 		}
3846 #endif
3847 	}
3848 	daddr = cma_dst_addr(id_priv);
3849 	daddr->sa_family = addr->sa_family;
3850 
3851 	ret = cma_get_port(id_priv);
3852 	if (ret)
3853 		goto err2;
3854 
3855 	if (!cma_any_addr(addr))
3856 		rdma_restrack_add(&id_priv->res);
3857 	return 0;
3858 err2:
3859 	if (id_priv->cma_dev)
3860 		cma_release_dev(id_priv);
3861 err1:
3862 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
3863 	return ret;
3864 }
3865 EXPORT_SYMBOL(rdma_bind_addr);
3866 
3867 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
3868 {
3869 	struct cma_hdr *cma_hdr;
3870 
3871 	cma_hdr = hdr;
3872 	cma_hdr->cma_version = CMA_VERSION;
3873 	if (cma_family(id_priv) == AF_INET) {
3874 		struct sockaddr_in *src4, *dst4;
3875 
3876 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
3877 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
3878 
3879 		cma_set_ip_ver(cma_hdr, 4);
3880 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
3881 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
3882 		cma_hdr->port = src4->sin_port;
3883 	} else if (cma_family(id_priv) == AF_INET6) {
3884 		struct sockaddr_in6 *src6, *dst6;
3885 
3886 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
3887 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
3888 
3889 		cma_set_ip_ver(cma_hdr, 6);
3890 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
3891 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
3892 		cma_hdr->port = src6->sin6_port;
3893 	}
3894 	return 0;
3895 }
3896 
3897 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
3898 				const struct ib_cm_event *ib_event)
3899 {
3900 	struct rdma_id_private *id_priv = cm_id->context;
3901 	struct rdma_cm_event event = {};
3902 	const struct ib_cm_sidr_rep_event_param *rep =
3903 				&ib_event->param.sidr_rep_rcvd;
3904 	int ret;
3905 
3906 	mutex_lock(&id_priv->handler_mutex);
3907 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
3908 		goto out;
3909 
3910 	switch (ib_event->event) {
3911 	case IB_CM_SIDR_REQ_ERROR:
3912 		event.event = RDMA_CM_EVENT_UNREACHABLE;
3913 		event.status = -ETIMEDOUT;
3914 		break;
3915 	case IB_CM_SIDR_REP_RECEIVED:
3916 		event.param.ud.private_data = ib_event->private_data;
3917 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
3918 		if (rep->status != IB_SIDR_SUCCESS) {
3919 			event.event = RDMA_CM_EVENT_UNREACHABLE;
3920 			event.status = ib_event->param.sidr_rep_rcvd.status;
3921 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
3922 					     event.status);
3923 			break;
3924 		}
3925 		ret = cma_set_qkey(id_priv, rep->qkey);
3926 		if (ret) {
3927 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
3928 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
3929 			event.status = ret;
3930 			break;
3931 		}
3932 		ib_init_ah_attr_from_path(id_priv->id.device,
3933 					  id_priv->id.port_num,
3934 					  id_priv->id.route.path_rec,
3935 					  &event.param.ud.ah_attr,
3936 					  rep->sgid_attr);
3937 		event.param.ud.qp_num = rep->qpn;
3938 		event.param.ud.qkey = rep->qkey;
3939 		event.event = RDMA_CM_EVENT_ESTABLISHED;
3940 		event.status = 0;
3941 		break;
3942 	default:
3943 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
3944 		       ib_event->event);
3945 		goto out;
3946 	}
3947 
3948 	ret = cma_cm_event_handler(id_priv, &event);
3949 
3950 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
3951 	if (ret) {
3952 		/* Destroy the CM ID by returning a non-zero value. */
3953 		id_priv->cm_id.ib = NULL;
3954 		destroy_id_handler_unlock(id_priv);
3955 		return ret;
3956 	}
3957 out:
3958 	mutex_unlock(&id_priv->handler_mutex);
3959 	return 0;
3960 }
3961 
3962 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
3963 			      struct rdma_conn_param *conn_param)
3964 {
3965 	struct ib_cm_sidr_req_param req;
3966 	struct ib_cm_id	*id;
3967 	void *private_data;
3968 	u8 offset;
3969 	int ret;
3970 
3971 	memset(&req, 0, sizeof req);
3972 	offset = cma_user_data_offset(id_priv);
3973 	req.private_data_len = offset + conn_param->private_data_len;
3974 	if (req.private_data_len < conn_param->private_data_len)
3975 		return -EINVAL;
3976 
3977 	if (req.private_data_len) {
3978 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
3979 		if (!private_data)
3980 			return -ENOMEM;
3981 	} else {
3982 		private_data = NULL;
3983 	}
3984 
3985 	if (conn_param->private_data && conn_param->private_data_len)
3986 		memcpy(private_data + offset, conn_param->private_data,
3987 		       conn_param->private_data_len);
3988 
3989 	if (private_data) {
3990 		ret = cma_format_hdr(private_data, id_priv);
3991 		if (ret)
3992 			goto out;
3993 		req.private_data = private_data;
3994 	}
3995 
3996 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
3997 			     id_priv);
3998 	if (IS_ERR(id)) {
3999 		ret = PTR_ERR(id);
4000 		goto out;
4001 	}
4002 	id_priv->cm_id.ib = id;
4003 
4004 	req.path = id_priv->id.route.path_rec;
4005 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4006 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4007 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4008 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4009 
4010 	trace_cm_send_sidr_req(id_priv);
4011 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4012 	if (ret) {
4013 		ib_destroy_cm_id(id_priv->cm_id.ib);
4014 		id_priv->cm_id.ib = NULL;
4015 	}
4016 out:
4017 	kfree(private_data);
4018 	return ret;
4019 }
4020 
4021 static int cma_connect_ib(struct rdma_id_private *id_priv,
4022 			  struct rdma_conn_param *conn_param)
4023 {
4024 	struct ib_cm_req_param req;
4025 	struct rdma_route *route;
4026 	void *private_data;
4027 	struct ib_cm_id	*id;
4028 	u8 offset;
4029 	int ret;
4030 
4031 	memset(&req, 0, sizeof req);
4032 	offset = cma_user_data_offset(id_priv);
4033 	req.private_data_len = offset + conn_param->private_data_len;
4034 	if (req.private_data_len < conn_param->private_data_len)
4035 		return -EINVAL;
4036 
4037 	if (req.private_data_len) {
4038 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4039 		if (!private_data)
4040 			return -ENOMEM;
4041 	} else {
4042 		private_data = NULL;
4043 	}
4044 
4045 	if (conn_param->private_data && conn_param->private_data_len)
4046 		memcpy(private_data + offset, conn_param->private_data,
4047 		       conn_param->private_data_len);
4048 
4049 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4050 	if (IS_ERR(id)) {
4051 		ret = PTR_ERR(id);
4052 		goto out;
4053 	}
4054 	id_priv->cm_id.ib = id;
4055 
4056 	route = &id_priv->id.route;
4057 	if (private_data) {
4058 		ret = cma_format_hdr(private_data, id_priv);
4059 		if (ret)
4060 			goto out;
4061 		req.private_data = private_data;
4062 	}
4063 
4064 	req.primary_path = &route->path_rec[0];
4065 	if (route->num_paths == 2)
4066 		req.alternate_path = &route->path_rec[1];
4067 
4068 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4069 	/* Alternate path SGID attribute currently unsupported */
4070 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4071 	req.qp_num = id_priv->qp_num;
4072 	req.qp_type = id_priv->id.qp_type;
4073 	req.starting_psn = id_priv->seq_num;
4074 	req.responder_resources = conn_param->responder_resources;
4075 	req.initiator_depth = conn_param->initiator_depth;
4076 	req.flow_control = conn_param->flow_control;
4077 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4078 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4079 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4080 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4081 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4082 	req.srq = id_priv->srq ? 1 : 0;
4083 	req.ece.vendor_id = id_priv->ece.vendor_id;
4084 	req.ece.attr_mod = id_priv->ece.attr_mod;
4085 
4086 	trace_cm_send_req(id_priv);
4087 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4088 out:
4089 	if (ret && !IS_ERR(id)) {
4090 		ib_destroy_cm_id(id);
4091 		id_priv->cm_id.ib = NULL;
4092 	}
4093 
4094 	kfree(private_data);
4095 	return ret;
4096 }
4097 
4098 static int cma_connect_iw(struct rdma_id_private *id_priv,
4099 			  struct rdma_conn_param *conn_param)
4100 {
4101 	struct iw_cm_id *cm_id;
4102 	int ret;
4103 	struct iw_cm_conn_param iw_param;
4104 
4105 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4106 	if (IS_ERR(cm_id))
4107 		return PTR_ERR(cm_id);
4108 
4109 	cm_id->tos = id_priv->tos;
4110 	cm_id->tos_set = id_priv->tos_set;
4111 	id_priv->cm_id.iw = cm_id;
4112 
4113 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4114 	       rdma_addr_size(cma_src_addr(id_priv)));
4115 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4116 	       rdma_addr_size(cma_dst_addr(id_priv)));
4117 
4118 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4119 	if (ret)
4120 		goto out;
4121 
4122 	if (conn_param) {
4123 		iw_param.ord = conn_param->initiator_depth;
4124 		iw_param.ird = conn_param->responder_resources;
4125 		iw_param.private_data = conn_param->private_data;
4126 		iw_param.private_data_len = conn_param->private_data_len;
4127 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4128 	} else {
4129 		memset(&iw_param, 0, sizeof iw_param);
4130 		iw_param.qpn = id_priv->qp_num;
4131 	}
4132 	ret = iw_cm_connect(cm_id, &iw_param);
4133 out:
4134 	if (ret) {
4135 		iw_destroy_cm_id(cm_id);
4136 		id_priv->cm_id.iw = NULL;
4137 	}
4138 	return ret;
4139 }
4140 
4141 /**
4142  * rdma_connect_locked - Initiate an active connection request.
4143  * @id: Connection identifier to connect.
4144  * @conn_param: Connection information used for connected QPs.
4145  *
4146  * Same as rdma_connect() but can only be called from the
4147  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4148  */
4149 int rdma_connect_locked(struct rdma_cm_id *id,
4150 			struct rdma_conn_param *conn_param)
4151 {
4152 	struct rdma_id_private *id_priv =
4153 		container_of(id, struct rdma_id_private, id);
4154 	int ret;
4155 
4156 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4157 		return -EINVAL;
4158 
4159 	if (!id->qp) {
4160 		id_priv->qp_num = conn_param->qp_num;
4161 		id_priv->srq = conn_param->srq;
4162 	}
4163 
4164 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4165 		if (id->qp_type == IB_QPT_UD)
4166 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4167 		else
4168 			ret = cma_connect_ib(id_priv, conn_param);
4169 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4170 		ret = cma_connect_iw(id_priv, conn_param);
4171 	} else {
4172 		ret = -ENOSYS;
4173 	}
4174 	if (ret)
4175 		goto err_state;
4176 	return 0;
4177 err_state:
4178 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4179 	return ret;
4180 }
4181 EXPORT_SYMBOL(rdma_connect_locked);
4182 
4183 /**
4184  * rdma_connect - Initiate an active connection request.
4185  * @id: Connection identifier to connect.
4186  * @conn_param: Connection information used for connected QPs.
4187  *
4188  * Users must have resolved a route for the rdma_cm_id to connect with by having
4189  * called rdma_resolve_route before calling this routine.
4190  *
4191  * This call will either connect to a remote QP or obtain remote QP information
4192  * for unconnected rdma_cm_id's.  The actual operation is based on the
4193  * rdma_cm_id's port space.
4194  */
4195 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4196 {
4197 	struct rdma_id_private *id_priv =
4198 		container_of(id, struct rdma_id_private, id);
4199 	int ret;
4200 
4201 	mutex_lock(&id_priv->handler_mutex);
4202 	ret = rdma_connect_locked(id, conn_param);
4203 	mutex_unlock(&id_priv->handler_mutex);
4204 	return ret;
4205 }
4206 EXPORT_SYMBOL(rdma_connect);
4207 
4208 /**
4209  * rdma_connect_ece - Initiate an active connection request with ECE data.
4210  * @id: Connection identifier to connect.
4211  * @conn_param: Connection information used for connected QPs.
4212  * @ece: ECE parameters
4213  *
4214  * See rdma_connect() explanation.
4215  */
4216 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4217 		     struct rdma_ucm_ece *ece)
4218 {
4219 	struct rdma_id_private *id_priv =
4220 		container_of(id, struct rdma_id_private, id);
4221 
4222 	id_priv->ece.vendor_id = ece->vendor_id;
4223 	id_priv->ece.attr_mod = ece->attr_mod;
4224 
4225 	return rdma_connect(id, conn_param);
4226 }
4227 EXPORT_SYMBOL(rdma_connect_ece);
4228 
4229 static int cma_accept_ib(struct rdma_id_private *id_priv,
4230 			 struct rdma_conn_param *conn_param)
4231 {
4232 	struct ib_cm_rep_param rep;
4233 	int ret;
4234 
4235 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4236 	if (ret)
4237 		goto out;
4238 
4239 	ret = cma_modify_qp_rts(id_priv, conn_param);
4240 	if (ret)
4241 		goto out;
4242 
4243 	memset(&rep, 0, sizeof rep);
4244 	rep.qp_num = id_priv->qp_num;
4245 	rep.starting_psn = id_priv->seq_num;
4246 	rep.private_data = conn_param->private_data;
4247 	rep.private_data_len = conn_param->private_data_len;
4248 	rep.responder_resources = conn_param->responder_resources;
4249 	rep.initiator_depth = conn_param->initiator_depth;
4250 	rep.failover_accepted = 0;
4251 	rep.flow_control = conn_param->flow_control;
4252 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4253 	rep.srq = id_priv->srq ? 1 : 0;
4254 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4255 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4256 
4257 	trace_cm_send_rep(id_priv);
4258 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4259 out:
4260 	return ret;
4261 }
4262 
4263 static int cma_accept_iw(struct rdma_id_private *id_priv,
4264 		  struct rdma_conn_param *conn_param)
4265 {
4266 	struct iw_cm_conn_param iw_param;
4267 	int ret;
4268 
4269 	if (!conn_param)
4270 		return -EINVAL;
4271 
4272 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4273 	if (ret)
4274 		return ret;
4275 
4276 	iw_param.ord = conn_param->initiator_depth;
4277 	iw_param.ird = conn_param->responder_resources;
4278 	iw_param.private_data = conn_param->private_data;
4279 	iw_param.private_data_len = conn_param->private_data_len;
4280 	if (id_priv->id.qp)
4281 		iw_param.qpn = id_priv->qp_num;
4282 	else
4283 		iw_param.qpn = conn_param->qp_num;
4284 
4285 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4286 }
4287 
4288 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4289 			     enum ib_cm_sidr_status status, u32 qkey,
4290 			     const void *private_data, int private_data_len)
4291 {
4292 	struct ib_cm_sidr_rep_param rep;
4293 	int ret;
4294 
4295 	memset(&rep, 0, sizeof rep);
4296 	rep.status = status;
4297 	if (status == IB_SIDR_SUCCESS) {
4298 		ret = cma_set_qkey(id_priv, qkey);
4299 		if (ret)
4300 			return ret;
4301 		rep.qp_num = id_priv->qp_num;
4302 		rep.qkey = id_priv->qkey;
4303 
4304 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4305 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4306 	}
4307 
4308 	rep.private_data = private_data;
4309 	rep.private_data_len = private_data_len;
4310 
4311 	trace_cm_send_sidr_rep(id_priv);
4312 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4313 }
4314 
4315 /**
4316  * rdma_accept - Called to accept a connection request or response.
4317  * @id: Connection identifier associated with the request.
4318  * @conn_param: Information needed to establish the connection.  This must be
4319  *   provided if accepting a connection request.  If accepting a connection
4320  *   response, this parameter must be NULL.
4321  *
4322  * Typically, this routine is only called by the listener to accept a connection
4323  * request.  It must also be called on the active side of a connection if the
4324  * user is performing their own QP transitions.
4325  *
4326  * In the case of error, a reject message is sent to the remote side and the
4327  * state of the qp associated with the id is modified to error, such that any
4328  * previously posted receive buffers would be flushed.
4329  *
4330  * This function is for use by kernel ULPs and must be called from under the
4331  * handler callback.
4332  */
4333 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4334 {
4335 	struct rdma_id_private *id_priv =
4336 		container_of(id, struct rdma_id_private, id);
4337 	int ret;
4338 
4339 	lockdep_assert_held(&id_priv->handler_mutex);
4340 
4341 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4342 		return -EINVAL;
4343 
4344 	if (!id->qp && conn_param) {
4345 		id_priv->qp_num = conn_param->qp_num;
4346 		id_priv->srq = conn_param->srq;
4347 	}
4348 
4349 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4350 		if (id->qp_type == IB_QPT_UD) {
4351 			if (conn_param)
4352 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4353 							conn_param->qkey,
4354 							conn_param->private_data,
4355 							conn_param->private_data_len);
4356 			else
4357 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4358 							0, NULL, 0);
4359 		} else {
4360 			if (conn_param)
4361 				ret = cma_accept_ib(id_priv, conn_param);
4362 			else
4363 				ret = cma_rep_recv(id_priv);
4364 		}
4365 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4366 		ret = cma_accept_iw(id_priv, conn_param);
4367 	} else {
4368 		ret = -ENOSYS;
4369 	}
4370 	if (ret)
4371 		goto reject;
4372 
4373 	return 0;
4374 reject:
4375 	cma_modify_qp_err(id_priv);
4376 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4377 	return ret;
4378 }
4379 EXPORT_SYMBOL(rdma_accept);
4380 
4381 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4382 		    struct rdma_ucm_ece *ece)
4383 {
4384 	struct rdma_id_private *id_priv =
4385 		container_of(id, struct rdma_id_private, id);
4386 
4387 	id_priv->ece.vendor_id = ece->vendor_id;
4388 	id_priv->ece.attr_mod = ece->attr_mod;
4389 
4390 	return rdma_accept(id, conn_param);
4391 }
4392 EXPORT_SYMBOL(rdma_accept_ece);
4393 
4394 void rdma_lock_handler(struct rdma_cm_id *id)
4395 {
4396 	struct rdma_id_private *id_priv =
4397 		container_of(id, struct rdma_id_private, id);
4398 
4399 	mutex_lock(&id_priv->handler_mutex);
4400 }
4401 EXPORT_SYMBOL(rdma_lock_handler);
4402 
4403 void rdma_unlock_handler(struct rdma_cm_id *id)
4404 {
4405 	struct rdma_id_private *id_priv =
4406 		container_of(id, struct rdma_id_private, id);
4407 
4408 	mutex_unlock(&id_priv->handler_mutex);
4409 }
4410 EXPORT_SYMBOL(rdma_unlock_handler);
4411 
4412 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4413 {
4414 	struct rdma_id_private *id_priv;
4415 	int ret;
4416 
4417 	id_priv = container_of(id, struct rdma_id_private, id);
4418 	if (!id_priv->cm_id.ib)
4419 		return -EINVAL;
4420 
4421 	switch (id->device->node_type) {
4422 	case RDMA_NODE_IB_CA:
4423 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4424 		break;
4425 	default:
4426 		ret = 0;
4427 		break;
4428 	}
4429 	return ret;
4430 }
4431 EXPORT_SYMBOL(rdma_notify);
4432 
4433 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4434 		u8 private_data_len, u8 reason)
4435 {
4436 	struct rdma_id_private *id_priv;
4437 	int ret;
4438 
4439 	id_priv = container_of(id, struct rdma_id_private, id);
4440 	if (!id_priv->cm_id.ib)
4441 		return -EINVAL;
4442 
4443 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4444 		if (id->qp_type == IB_QPT_UD) {
4445 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4446 						private_data, private_data_len);
4447 		} else {
4448 			trace_cm_send_rej(id_priv);
4449 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4450 					     private_data, private_data_len);
4451 		}
4452 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4453 		ret = iw_cm_reject(id_priv->cm_id.iw,
4454 				   private_data, private_data_len);
4455 	} else {
4456 		ret = -ENOSYS;
4457 	}
4458 
4459 	return ret;
4460 }
4461 EXPORT_SYMBOL(rdma_reject);
4462 
4463 int rdma_disconnect(struct rdma_cm_id *id)
4464 {
4465 	struct rdma_id_private *id_priv;
4466 	int ret;
4467 
4468 	id_priv = container_of(id, struct rdma_id_private, id);
4469 	if (!id_priv->cm_id.ib)
4470 		return -EINVAL;
4471 
4472 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4473 		ret = cma_modify_qp_err(id_priv);
4474 		if (ret)
4475 			goto out;
4476 		/* Initiate or respond to a disconnect. */
4477 		trace_cm_disconnect(id_priv);
4478 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4479 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4480 				trace_cm_sent_drep(id_priv);
4481 		} else {
4482 			trace_cm_sent_dreq(id_priv);
4483 		}
4484 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4485 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4486 	} else
4487 		ret = -EINVAL;
4488 
4489 out:
4490 	return ret;
4491 }
4492 EXPORT_SYMBOL(rdma_disconnect);
4493 
4494 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4495 			      struct ib_sa_multicast *multicast,
4496 			      struct rdma_cm_event *event,
4497 			      struct cma_multicast *mc)
4498 {
4499 	struct rdma_dev_addr *dev_addr;
4500 	enum ib_gid_type gid_type;
4501 	struct net_device *ndev;
4502 
4503 	if (!status)
4504 		status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4505 	else
4506 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4507 				     status);
4508 
4509 	event->status = status;
4510 	event->param.ud.private_data = mc->context;
4511 	if (status) {
4512 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4513 		return;
4514 	}
4515 
4516 	dev_addr = &id_priv->id.route.addr.dev_addr;
4517 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4518 	gid_type =
4519 		id_priv->cma_dev
4520 			->default_gid_type[id_priv->id.port_num -
4521 					   rdma_start_port(
4522 						   id_priv->cma_dev->device)];
4523 
4524 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4525 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4526 				     &multicast->rec, ndev, gid_type,
4527 				     &event->param.ud.ah_attr)) {
4528 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4529 		goto out;
4530 	}
4531 
4532 	event->param.ud.qp_num = 0xFFFFFF;
4533 	event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey);
4534 
4535 out:
4536 	if (ndev)
4537 		dev_put(ndev);
4538 }
4539 
4540 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4541 {
4542 	struct cma_multicast *mc = multicast->context;
4543 	struct rdma_id_private *id_priv = mc->id_priv;
4544 	struct rdma_cm_event event = {};
4545 	int ret = 0;
4546 
4547 	mutex_lock(&id_priv->handler_mutex);
4548 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4549 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4550 		goto out;
4551 
4552 	cma_make_mc_event(status, id_priv, multicast, &event, mc);
4553 	ret = cma_cm_event_handler(id_priv, &event);
4554 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4555 	WARN_ON(ret);
4556 
4557 out:
4558 	mutex_unlock(&id_priv->handler_mutex);
4559 	return 0;
4560 }
4561 
4562 static void cma_set_mgid(struct rdma_id_private *id_priv,
4563 			 struct sockaddr *addr, union ib_gid *mgid)
4564 {
4565 	unsigned char mc_map[MAX_ADDR_LEN];
4566 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4567 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4568 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4569 
4570 	if (cma_any_addr(addr)) {
4571 		memset(mgid, 0, sizeof *mgid);
4572 	} else if ((addr->sa_family == AF_INET6) &&
4573 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4574 								 0xFF10A01B)) {
4575 		/* IPv6 address is an SA assigned MGID. */
4576 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4577 	} else if (addr->sa_family == AF_IB) {
4578 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4579 	} else if (addr->sa_family == AF_INET6) {
4580 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4581 		if (id_priv->id.ps == RDMA_PS_UDP)
4582 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4583 		*mgid = *(union ib_gid *) (mc_map + 4);
4584 	} else {
4585 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4586 		if (id_priv->id.ps == RDMA_PS_UDP)
4587 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4588 		*mgid = *(union ib_gid *) (mc_map + 4);
4589 	}
4590 }
4591 
4592 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4593 				 struct cma_multicast *mc)
4594 {
4595 	struct ib_sa_mcmember_rec rec;
4596 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4597 	ib_sa_comp_mask comp_mask;
4598 	int ret;
4599 
4600 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4601 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4602 				     &rec.mgid, &rec);
4603 	if (ret)
4604 		return ret;
4605 
4606 	ret = cma_set_qkey(id_priv, 0);
4607 	if (ret)
4608 		return ret;
4609 
4610 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4611 	rec.qkey = cpu_to_be32(id_priv->qkey);
4612 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4613 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4614 	rec.join_state = mc->join_state;
4615 
4616 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4617 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4618 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4619 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4620 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4621 
4622 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4623 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4624 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4625 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4626 			     IB_SA_MCMEMBER_REC_MTU |
4627 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4628 
4629 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4630 					 id_priv->id.port_num, &rec, comp_mask,
4631 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4632 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4633 }
4634 
4635 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4636 			      enum ib_gid_type gid_type)
4637 {
4638 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4639 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4640 
4641 	if (cma_any_addr(addr)) {
4642 		memset(mgid, 0, sizeof *mgid);
4643 	} else if (addr->sa_family == AF_INET6) {
4644 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4645 	} else {
4646 		mgid->raw[0] =
4647 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4648 		mgid->raw[1] =
4649 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4650 		mgid->raw[2] = 0;
4651 		mgid->raw[3] = 0;
4652 		mgid->raw[4] = 0;
4653 		mgid->raw[5] = 0;
4654 		mgid->raw[6] = 0;
4655 		mgid->raw[7] = 0;
4656 		mgid->raw[8] = 0;
4657 		mgid->raw[9] = 0;
4658 		mgid->raw[10] = 0xff;
4659 		mgid->raw[11] = 0xff;
4660 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4661 	}
4662 }
4663 
4664 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4665 				   struct cma_multicast *mc)
4666 {
4667 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4668 	int err = 0;
4669 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4670 	struct net_device *ndev = NULL;
4671 	struct ib_sa_multicast ib;
4672 	enum ib_gid_type gid_type;
4673 	bool send_only;
4674 
4675 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
4676 
4677 	if (cma_zero_addr(addr))
4678 		return -EINVAL;
4679 
4680 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
4681 		   rdma_start_port(id_priv->cma_dev->device)];
4682 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
4683 
4684 	ib.rec.pkey = cpu_to_be16(0xffff);
4685 	if (id_priv->id.ps == RDMA_PS_UDP)
4686 		ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY);
4687 
4688 	if (dev_addr->bound_dev_if)
4689 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4690 	if (!ndev)
4691 		return -ENODEV;
4692 
4693 	ib.rec.rate = iboe_get_rate(ndev);
4694 	ib.rec.hop_limit = 1;
4695 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
4696 
4697 	if (addr->sa_family == AF_INET) {
4698 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
4699 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
4700 			if (!send_only) {
4701 				err = cma_igmp_send(ndev, &ib.rec.mgid,
4702 						    true);
4703 			}
4704 		}
4705 	} else {
4706 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
4707 			err = -ENOTSUPP;
4708 	}
4709 	dev_put(ndev);
4710 	if (err || !ib.rec.mtu)
4711 		return err ?: -EINVAL;
4712 
4713 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
4714 		    &ib.rec.port_gid);
4715 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
4716 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
4717 	queue_work(cma_wq, &mc->iboe_join.work);
4718 	return 0;
4719 }
4720 
4721 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
4722 			u8 join_state, void *context)
4723 {
4724 	struct rdma_id_private *id_priv =
4725 		container_of(id, struct rdma_id_private, id);
4726 	struct cma_multicast *mc;
4727 	int ret;
4728 
4729 	/* Not supported for kernel QPs */
4730 	if (WARN_ON(id->qp))
4731 		return -EINVAL;
4732 
4733 	/* ULP is calling this wrong. */
4734 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
4735 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
4736 		return -EINVAL;
4737 
4738 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
4739 	if (!mc)
4740 		return -ENOMEM;
4741 
4742 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
4743 	mc->context = context;
4744 	mc->id_priv = id_priv;
4745 	mc->join_state = join_state;
4746 
4747 	if (rdma_protocol_roce(id->device, id->port_num)) {
4748 		ret = cma_iboe_join_multicast(id_priv, mc);
4749 		if (ret)
4750 			goto out_err;
4751 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
4752 		ret = cma_join_ib_multicast(id_priv, mc);
4753 		if (ret)
4754 			goto out_err;
4755 	} else {
4756 		ret = -ENOSYS;
4757 		goto out_err;
4758 	}
4759 
4760 	spin_lock(&id_priv->lock);
4761 	list_add(&mc->list, &id_priv->mc_list);
4762 	spin_unlock(&id_priv->lock);
4763 
4764 	return 0;
4765 out_err:
4766 	kfree(mc);
4767 	return ret;
4768 }
4769 EXPORT_SYMBOL(rdma_join_multicast);
4770 
4771 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
4772 {
4773 	struct rdma_id_private *id_priv;
4774 	struct cma_multicast *mc;
4775 
4776 	id_priv = container_of(id, struct rdma_id_private, id);
4777 	spin_lock_irq(&id_priv->lock);
4778 	list_for_each_entry(mc, &id_priv->mc_list, list) {
4779 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
4780 			continue;
4781 		list_del(&mc->list);
4782 		spin_unlock_irq(&id_priv->lock);
4783 
4784 		WARN_ON(id_priv->cma_dev->device != id->device);
4785 		destroy_mc(id_priv, mc);
4786 		return;
4787 	}
4788 	spin_unlock_irq(&id_priv->lock);
4789 }
4790 EXPORT_SYMBOL(rdma_leave_multicast);
4791 
4792 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
4793 {
4794 	struct rdma_dev_addr *dev_addr;
4795 	struct cma_work *work;
4796 
4797 	dev_addr = &id_priv->id.route.addr.dev_addr;
4798 
4799 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
4800 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
4801 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
4802 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
4803 			ndev->name, &id_priv->id);
4804 		work = kzalloc(sizeof *work, GFP_KERNEL);
4805 		if (!work)
4806 			return -ENOMEM;
4807 
4808 		INIT_WORK(&work->work, cma_work_handler);
4809 		work->id = id_priv;
4810 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
4811 		cma_id_get(id_priv);
4812 		queue_work(cma_wq, &work->work);
4813 	}
4814 
4815 	return 0;
4816 }
4817 
4818 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
4819 			       void *ptr)
4820 {
4821 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
4822 	struct cma_device *cma_dev;
4823 	struct rdma_id_private *id_priv;
4824 	int ret = NOTIFY_DONE;
4825 
4826 	if (event != NETDEV_BONDING_FAILOVER)
4827 		return NOTIFY_DONE;
4828 
4829 	if (!netif_is_bond_master(ndev))
4830 		return NOTIFY_DONE;
4831 
4832 	mutex_lock(&lock);
4833 	list_for_each_entry(cma_dev, &dev_list, list)
4834 		list_for_each_entry(id_priv, &cma_dev->id_list, list) {
4835 			ret = cma_netdev_change(ndev, id_priv);
4836 			if (ret)
4837 				goto out;
4838 		}
4839 
4840 out:
4841 	mutex_unlock(&lock);
4842 	return ret;
4843 }
4844 
4845 static struct notifier_block cma_nb = {
4846 	.notifier_call = cma_netdev_callback
4847 };
4848 
4849 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
4850 {
4851 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
4852 	enum rdma_cm_state state;
4853 	unsigned long flags;
4854 
4855 	mutex_lock(&id_priv->handler_mutex);
4856 	/* Record that we want to remove the device */
4857 	spin_lock_irqsave(&id_priv->lock, flags);
4858 	state = id_priv->state;
4859 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
4860 		spin_unlock_irqrestore(&id_priv->lock, flags);
4861 		mutex_unlock(&id_priv->handler_mutex);
4862 		cma_id_put(id_priv);
4863 		return;
4864 	}
4865 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
4866 	spin_unlock_irqrestore(&id_priv->lock, flags);
4867 
4868 	if (cma_cm_event_handler(id_priv, &event)) {
4869 		/*
4870 		 * At this point the ULP promises it won't call
4871 		 * rdma_destroy_id() concurrently
4872 		 */
4873 		cma_id_put(id_priv);
4874 		mutex_unlock(&id_priv->handler_mutex);
4875 		trace_cm_id_destroy(id_priv);
4876 		_destroy_id(id_priv, state);
4877 		return;
4878 	}
4879 	mutex_unlock(&id_priv->handler_mutex);
4880 
4881 	/*
4882 	 * If this races with destroy then the thread that first assigns state
4883 	 * to a destroying does the cancel.
4884 	 */
4885 	cma_cancel_operation(id_priv, state);
4886 	cma_id_put(id_priv);
4887 }
4888 
4889 static void cma_process_remove(struct cma_device *cma_dev)
4890 {
4891 	mutex_lock(&lock);
4892 	while (!list_empty(&cma_dev->id_list)) {
4893 		struct rdma_id_private *id_priv = list_first_entry(
4894 			&cma_dev->id_list, struct rdma_id_private, list);
4895 
4896 		list_del(&id_priv->listen_list);
4897 		list_del_init(&id_priv->list);
4898 		cma_id_get(id_priv);
4899 		mutex_unlock(&lock);
4900 
4901 		cma_send_device_removal_put(id_priv);
4902 
4903 		mutex_lock(&lock);
4904 	}
4905 	mutex_unlock(&lock);
4906 
4907 	cma_dev_put(cma_dev);
4908 	wait_for_completion(&cma_dev->comp);
4909 }
4910 
4911 static bool cma_supported(struct ib_device *device)
4912 {
4913 	u32 i;
4914 
4915 	rdma_for_each_port(device, i) {
4916 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
4917 			return true;
4918 	}
4919 	return false;
4920 }
4921 
4922 static int cma_add_one(struct ib_device *device)
4923 {
4924 	struct rdma_id_private *to_destroy;
4925 	struct cma_device *cma_dev;
4926 	struct rdma_id_private *id_priv;
4927 	unsigned long supported_gids = 0;
4928 	int ret;
4929 	u32 i;
4930 
4931 	if (!cma_supported(device))
4932 		return -EOPNOTSUPP;
4933 
4934 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
4935 	if (!cma_dev)
4936 		return -ENOMEM;
4937 
4938 	cma_dev->device = device;
4939 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
4940 					    sizeof(*cma_dev->default_gid_type),
4941 					    GFP_KERNEL);
4942 	if (!cma_dev->default_gid_type) {
4943 		ret = -ENOMEM;
4944 		goto free_cma_dev;
4945 	}
4946 
4947 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
4948 					    sizeof(*cma_dev->default_roce_tos),
4949 					    GFP_KERNEL);
4950 	if (!cma_dev->default_roce_tos) {
4951 		ret = -ENOMEM;
4952 		goto free_gid_type;
4953 	}
4954 
4955 	rdma_for_each_port (device, i) {
4956 		supported_gids = roce_gid_type_mask_support(device, i);
4957 		WARN_ON(!supported_gids);
4958 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
4959 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
4960 				CMA_PREFERRED_ROCE_GID_TYPE;
4961 		else
4962 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
4963 				find_first_bit(&supported_gids, BITS_PER_LONG);
4964 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
4965 	}
4966 
4967 	init_completion(&cma_dev->comp);
4968 	refcount_set(&cma_dev->refcount, 1);
4969 	INIT_LIST_HEAD(&cma_dev->id_list);
4970 	ib_set_client_data(device, &cma_client, cma_dev);
4971 
4972 	mutex_lock(&lock);
4973 	list_add_tail(&cma_dev->list, &dev_list);
4974 	list_for_each_entry(id_priv, &listen_any_list, list) {
4975 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
4976 		if (ret)
4977 			goto free_listen;
4978 	}
4979 	mutex_unlock(&lock);
4980 
4981 	trace_cm_add_one(device);
4982 	return 0;
4983 
4984 free_listen:
4985 	list_del(&cma_dev->list);
4986 	mutex_unlock(&lock);
4987 
4988 	/* cma_process_remove() will delete to_destroy */
4989 	cma_process_remove(cma_dev);
4990 	kfree(cma_dev->default_roce_tos);
4991 free_gid_type:
4992 	kfree(cma_dev->default_gid_type);
4993 
4994 free_cma_dev:
4995 	kfree(cma_dev);
4996 	return ret;
4997 }
4998 
4999 static void cma_remove_one(struct ib_device *device, void *client_data)
5000 {
5001 	struct cma_device *cma_dev = client_data;
5002 
5003 	trace_cm_remove_one(device);
5004 
5005 	mutex_lock(&lock);
5006 	list_del(&cma_dev->list);
5007 	mutex_unlock(&lock);
5008 
5009 	cma_process_remove(cma_dev);
5010 	kfree(cma_dev->default_roce_tos);
5011 	kfree(cma_dev->default_gid_type);
5012 	kfree(cma_dev);
5013 }
5014 
5015 static int cma_init_net(struct net *net)
5016 {
5017 	struct cma_pernet *pernet = cma_pernet(net);
5018 
5019 	xa_init(&pernet->tcp_ps);
5020 	xa_init(&pernet->udp_ps);
5021 	xa_init(&pernet->ipoib_ps);
5022 	xa_init(&pernet->ib_ps);
5023 
5024 	return 0;
5025 }
5026 
5027 static void cma_exit_net(struct net *net)
5028 {
5029 	struct cma_pernet *pernet = cma_pernet(net);
5030 
5031 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5032 	WARN_ON(!xa_empty(&pernet->udp_ps));
5033 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5034 	WARN_ON(!xa_empty(&pernet->ib_ps));
5035 }
5036 
5037 static struct pernet_operations cma_pernet_operations = {
5038 	.init = cma_init_net,
5039 	.exit = cma_exit_net,
5040 	.id = &cma_pernet_id,
5041 	.size = sizeof(struct cma_pernet),
5042 };
5043 
5044 static int __init cma_init(void)
5045 {
5046 	int ret;
5047 
5048 	/*
5049 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5050 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5051 	 * must never be nested under lock so it can find these without having
5052 	 * to test with bonding.
5053 	 */
5054 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5055 		rtnl_lock();
5056 		mutex_lock(&lock);
5057 		mutex_unlock(&lock);
5058 		rtnl_unlock();
5059 	}
5060 
5061 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5062 	if (!cma_wq)
5063 		return -ENOMEM;
5064 
5065 	ret = register_pernet_subsys(&cma_pernet_operations);
5066 	if (ret)
5067 		goto err_wq;
5068 
5069 	ib_sa_register_client(&sa_client);
5070 	register_netdevice_notifier(&cma_nb);
5071 
5072 	ret = ib_register_client(&cma_client);
5073 	if (ret)
5074 		goto err;
5075 
5076 	ret = cma_configfs_init();
5077 	if (ret)
5078 		goto err_ib;
5079 
5080 	return 0;
5081 
5082 err_ib:
5083 	ib_unregister_client(&cma_client);
5084 err:
5085 	unregister_netdevice_notifier(&cma_nb);
5086 	ib_sa_unregister_client(&sa_client);
5087 	unregister_pernet_subsys(&cma_pernet_operations);
5088 err_wq:
5089 	destroy_workqueue(cma_wq);
5090 	return ret;
5091 }
5092 
5093 static void __exit cma_cleanup(void)
5094 {
5095 	cma_configfs_exit();
5096 	ib_unregister_client(&cma_client);
5097 	unregister_netdevice_notifier(&cma_nb);
5098 	ib_sa_unregister_client(&sa_client);
5099 	unregister_pernet_subsys(&cma_pernet_operations);
5100 	destroy_workqueue(cma_wq);
5101 }
5102 
5103 module_init(cma_init);
5104 module_exit(cma_cleanup);
5105