1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 71 enum ib_gid_type gid_type); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del_init(&id_priv->device_item); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int ret; 770 int i; 771 772 cma_dev = NULL; 773 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 774 dgid = (union ib_gid *) &addr->sib_addr; 775 pkey = ntohs(addr->sib_pkey); 776 777 mutex_lock(&lock); 778 list_for_each_entry(cur_dev, &dev_list, list) { 779 rdma_for_each_port (cur_dev->device, p) { 780 if (!rdma_cap_af_ib(cur_dev->device, p)) 781 continue; 782 783 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 784 continue; 785 786 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 787 continue; 788 789 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 790 ++i) { 791 ret = rdma_query_gid(cur_dev->device, p, i, 792 &gid); 793 if (ret) 794 continue; 795 796 if (!memcmp(&gid, dgid, sizeof(gid))) { 797 cma_dev = cur_dev; 798 sgid = gid; 799 id_priv->id.port_num = p; 800 goto found; 801 } 802 803 if (!cma_dev && (gid.global.subnet_prefix == 804 dgid->global.subnet_prefix) && 805 port_state == IB_PORT_ACTIVE) { 806 cma_dev = cur_dev; 807 sgid = gid; 808 id_priv->id.port_num = p; 809 goto found; 810 } 811 } 812 } 813 } 814 mutex_unlock(&lock); 815 return -ENODEV; 816 817 found: 818 cma_attach_to_dev(id_priv, cma_dev); 819 rdma_restrack_add(&id_priv->res); 820 mutex_unlock(&lock); 821 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 822 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 823 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 824 return 0; 825 } 826 827 static void cma_id_get(struct rdma_id_private *id_priv) 828 { 829 refcount_inc(&id_priv->refcount); 830 } 831 832 static void cma_id_put(struct rdma_id_private *id_priv) 833 { 834 if (refcount_dec_and_test(&id_priv->refcount)) 835 complete(&id_priv->comp); 836 } 837 838 static struct rdma_id_private * 839 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 840 void *context, enum rdma_ucm_port_space ps, 841 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 842 { 843 struct rdma_id_private *id_priv; 844 845 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 846 if (!id_priv) 847 return ERR_PTR(-ENOMEM); 848 849 id_priv->state = RDMA_CM_IDLE; 850 id_priv->id.context = context; 851 id_priv->id.event_handler = event_handler; 852 id_priv->id.ps = ps; 853 id_priv->id.qp_type = qp_type; 854 id_priv->tos_set = false; 855 id_priv->timeout_set = false; 856 id_priv->min_rnr_timer_set = false; 857 id_priv->gid_type = IB_GID_TYPE_IB; 858 spin_lock_init(&id_priv->lock); 859 mutex_init(&id_priv->qp_mutex); 860 init_completion(&id_priv->comp); 861 refcount_set(&id_priv->refcount, 1); 862 mutex_init(&id_priv->handler_mutex); 863 INIT_LIST_HEAD(&id_priv->device_item); 864 INIT_LIST_HEAD(&id_priv->listen_list); 865 INIT_LIST_HEAD(&id_priv->mc_list); 866 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 867 id_priv->id.route.addr.dev_addr.net = get_net(net); 868 id_priv->seq_num &= 0x00ffffff; 869 870 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 871 if (parent) 872 rdma_restrack_parent_name(&id_priv->res, &parent->res); 873 874 return id_priv; 875 } 876 877 struct rdma_cm_id * 878 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 879 void *context, enum rdma_ucm_port_space ps, 880 enum ib_qp_type qp_type, const char *caller) 881 { 882 struct rdma_id_private *ret; 883 884 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 885 if (IS_ERR(ret)) 886 return ERR_CAST(ret); 887 888 rdma_restrack_set_name(&ret->res, caller); 889 return &ret->id; 890 } 891 EXPORT_SYMBOL(__rdma_create_kernel_id); 892 893 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 894 void *context, 895 enum rdma_ucm_port_space ps, 896 enum ib_qp_type qp_type) 897 { 898 struct rdma_id_private *ret; 899 900 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 901 ps, qp_type, NULL); 902 if (IS_ERR(ret)) 903 return ERR_CAST(ret); 904 905 rdma_restrack_set_name(&ret->res, NULL); 906 return &ret->id; 907 } 908 EXPORT_SYMBOL(rdma_create_user_id); 909 910 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 911 { 912 struct ib_qp_attr qp_attr; 913 int qp_attr_mask, ret; 914 915 qp_attr.qp_state = IB_QPS_INIT; 916 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 917 if (ret) 918 return ret; 919 920 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 921 if (ret) 922 return ret; 923 924 qp_attr.qp_state = IB_QPS_RTR; 925 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 926 if (ret) 927 return ret; 928 929 qp_attr.qp_state = IB_QPS_RTS; 930 qp_attr.sq_psn = 0; 931 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 932 933 return ret; 934 } 935 936 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 937 { 938 struct ib_qp_attr qp_attr; 939 int qp_attr_mask, ret; 940 941 qp_attr.qp_state = IB_QPS_INIT; 942 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 943 if (ret) 944 return ret; 945 946 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 947 } 948 949 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 950 struct ib_qp_init_attr *qp_init_attr) 951 { 952 struct rdma_id_private *id_priv; 953 struct ib_qp *qp; 954 int ret; 955 956 id_priv = container_of(id, struct rdma_id_private, id); 957 if (id->device != pd->device) { 958 ret = -EINVAL; 959 goto out_err; 960 } 961 962 qp_init_attr->port_num = id->port_num; 963 qp = ib_create_qp(pd, qp_init_attr); 964 if (IS_ERR(qp)) { 965 ret = PTR_ERR(qp); 966 goto out_err; 967 } 968 969 if (id->qp_type == IB_QPT_UD) 970 ret = cma_init_ud_qp(id_priv, qp); 971 else 972 ret = cma_init_conn_qp(id_priv, qp); 973 if (ret) 974 goto out_destroy; 975 976 id->qp = qp; 977 id_priv->qp_num = qp->qp_num; 978 id_priv->srq = (qp->srq != NULL); 979 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 980 return 0; 981 out_destroy: 982 ib_destroy_qp(qp); 983 out_err: 984 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 985 return ret; 986 } 987 EXPORT_SYMBOL(rdma_create_qp); 988 989 void rdma_destroy_qp(struct rdma_cm_id *id) 990 { 991 struct rdma_id_private *id_priv; 992 993 id_priv = container_of(id, struct rdma_id_private, id); 994 trace_cm_qp_destroy(id_priv); 995 mutex_lock(&id_priv->qp_mutex); 996 ib_destroy_qp(id_priv->id.qp); 997 id_priv->id.qp = NULL; 998 mutex_unlock(&id_priv->qp_mutex); 999 } 1000 EXPORT_SYMBOL(rdma_destroy_qp); 1001 1002 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1003 struct rdma_conn_param *conn_param) 1004 { 1005 struct ib_qp_attr qp_attr; 1006 int qp_attr_mask, ret; 1007 1008 mutex_lock(&id_priv->qp_mutex); 1009 if (!id_priv->id.qp) { 1010 ret = 0; 1011 goto out; 1012 } 1013 1014 /* Need to update QP attributes from default values. */ 1015 qp_attr.qp_state = IB_QPS_INIT; 1016 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1017 if (ret) 1018 goto out; 1019 1020 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1021 if (ret) 1022 goto out; 1023 1024 qp_attr.qp_state = IB_QPS_RTR; 1025 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1026 if (ret) 1027 goto out; 1028 1029 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1030 1031 if (conn_param) 1032 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1033 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1034 out: 1035 mutex_unlock(&id_priv->qp_mutex); 1036 return ret; 1037 } 1038 1039 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1040 struct rdma_conn_param *conn_param) 1041 { 1042 struct ib_qp_attr qp_attr; 1043 int qp_attr_mask, ret; 1044 1045 mutex_lock(&id_priv->qp_mutex); 1046 if (!id_priv->id.qp) { 1047 ret = 0; 1048 goto out; 1049 } 1050 1051 qp_attr.qp_state = IB_QPS_RTS; 1052 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1053 if (ret) 1054 goto out; 1055 1056 if (conn_param) 1057 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1058 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1059 out: 1060 mutex_unlock(&id_priv->qp_mutex); 1061 return ret; 1062 } 1063 1064 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1065 { 1066 struct ib_qp_attr qp_attr; 1067 int ret; 1068 1069 mutex_lock(&id_priv->qp_mutex); 1070 if (!id_priv->id.qp) { 1071 ret = 0; 1072 goto out; 1073 } 1074 1075 qp_attr.qp_state = IB_QPS_ERR; 1076 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1077 out: 1078 mutex_unlock(&id_priv->qp_mutex); 1079 return ret; 1080 } 1081 1082 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1083 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1084 { 1085 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1086 int ret; 1087 u16 pkey; 1088 1089 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1090 pkey = 0xffff; 1091 else 1092 pkey = ib_addr_get_pkey(dev_addr); 1093 1094 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1095 pkey, &qp_attr->pkey_index); 1096 if (ret) 1097 return ret; 1098 1099 qp_attr->port_num = id_priv->id.port_num; 1100 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1101 1102 if (id_priv->id.qp_type == IB_QPT_UD) { 1103 ret = cma_set_qkey(id_priv, 0); 1104 if (ret) 1105 return ret; 1106 1107 qp_attr->qkey = id_priv->qkey; 1108 *qp_attr_mask |= IB_QP_QKEY; 1109 } else { 1110 qp_attr->qp_access_flags = 0; 1111 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1112 } 1113 return 0; 1114 } 1115 1116 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1117 int *qp_attr_mask) 1118 { 1119 struct rdma_id_private *id_priv; 1120 int ret = 0; 1121 1122 id_priv = container_of(id, struct rdma_id_private, id); 1123 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1124 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1125 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1126 else 1127 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1128 qp_attr_mask); 1129 1130 if (qp_attr->qp_state == IB_QPS_RTR) 1131 qp_attr->rq_psn = id_priv->seq_num; 1132 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1133 if (!id_priv->cm_id.iw) { 1134 qp_attr->qp_access_flags = 0; 1135 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1136 } else 1137 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1138 qp_attr_mask); 1139 qp_attr->port_num = id_priv->id.port_num; 1140 *qp_attr_mask |= IB_QP_PORT; 1141 } else { 1142 ret = -ENOSYS; 1143 } 1144 1145 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1146 qp_attr->timeout = id_priv->timeout; 1147 1148 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1149 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1150 1151 return ret; 1152 } 1153 EXPORT_SYMBOL(rdma_init_qp_attr); 1154 1155 static inline bool cma_zero_addr(const struct sockaddr *addr) 1156 { 1157 switch (addr->sa_family) { 1158 case AF_INET: 1159 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1160 case AF_INET6: 1161 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1162 case AF_IB: 1163 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1164 default: 1165 return false; 1166 } 1167 } 1168 1169 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1170 { 1171 switch (addr->sa_family) { 1172 case AF_INET: 1173 return ipv4_is_loopback( 1174 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1175 case AF_INET6: 1176 return ipv6_addr_loopback( 1177 &((struct sockaddr_in6 *)addr)->sin6_addr); 1178 case AF_IB: 1179 return ib_addr_loopback( 1180 &((struct sockaddr_ib *)addr)->sib_addr); 1181 default: 1182 return false; 1183 } 1184 } 1185 1186 static inline bool cma_any_addr(const struct sockaddr *addr) 1187 { 1188 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1189 } 1190 1191 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1192 { 1193 if (src->sa_family != dst->sa_family) 1194 return -1; 1195 1196 switch (src->sa_family) { 1197 case AF_INET: 1198 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1199 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1200 case AF_INET6: { 1201 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1202 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1203 bool link_local; 1204 1205 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1206 &dst_addr6->sin6_addr)) 1207 return 1; 1208 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1209 IPV6_ADDR_LINKLOCAL; 1210 /* Link local must match their scope_ids */ 1211 return link_local ? (src_addr6->sin6_scope_id != 1212 dst_addr6->sin6_scope_id) : 1213 0; 1214 } 1215 1216 default: 1217 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1218 &((struct sockaddr_ib *) dst)->sib_addr); 1219 } 1220 } 1221 1222 static __be16 cma_port(const struct sockaddr *addr) 1223 { 1224 struct sockaddr_ib *sib; 1225 1226 switch (addr->sa_family) { 1227 case AF_INET: 1228 return ((struct sockaddr_in *) addr)->sin_port; 1229 case AF_INET6: 1230 return ((struct sockaddr_in6 *) addr)->sin6_port; 1231 case AF_IB: 1232 sib = (struct sockaddr_ib *) addr; 1233 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1234 be64_to_cpu(sib->sib_sid_mask))); 1235 default: 1236 return 0; 1237 } 1238 } 1239 1240 static inline int cma_any_port(const struct sockaddr *addr) 1241 { 1242 return !cma_port(addr); 1243 } 1244 1245 static void cma_save_ib_info(struct sockaddr *src_addr, 1246 struct sockaddr *dst_addr, 1247 const struct rdma_cm_id *listen_id, 1248 const struct sa_path_rec *path) 1249 { 1250 struct sockaddr_ib *listen_ib, *ib; 1251 1252 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1253 if (src_addr) { 1254 ib = (struct sockaddr_ib *)src_addr; 1255 ib->sib_family = AF_IB; 1256 if (path) { 1257 ib->sib_pkey = path->pkey; 1258 ib->sib_flowinfo = path->flow_label; 1259 memcpy(&ib->sib_addr, &path->sgid, 16); 1260 ib->sib_sid = path->service_id; 1261 ib->sib_scope_id = 0; 1262 } else { 1263 ib->sib_pkey = listen_ib->sib_pkey; 1264 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1265 ib->sib_addr = listen_ib->sib_addr; 1266 ib->sib_sid = listen_ib->sib_sid; 1267 ib->sib_scope_id = listen_ib->sib_scope_id; 1268 } 1269 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1270 } 1271 if (dst_addr) { 1272 ib = (struct sockaddr_ib *)dst_addr; 1273 ib->sib_family = AF_IB; 1274 if (path) { 1275 ib->sib_pkey = path->pkey; 1276 ib->sib_flowinfo = path->flow_label; 1277 memcpy(&ib->sib_addr, &path->dgid, 16); 1278 } 1279 } 1280 } 1281 1282 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1283 struct sockaddr_in *dst_addr, 1284 struct cma_hdr *hdr, 1285 __be16 local_port) 1286 { 1287 if (src_addr) { 1288 *src_addr = (struct sockaddr_in) { 1289 .sin_family = AF_INET, 1290 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1291 .sin_port = local_port, 1292 }; 1293 } 1294 1295 if (dst_addr) { 1296 *dst_addr = (struct sockaddr_in) { 1297 .sin_family = AF_INET, 1298 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1299 .sin_port = hdr->port, 1300 }; 1301 } 1302 } 1303 1304 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1305 struct sockaddr_in6 *dst_addr, 1306 struct cma_hdr *hdr, 1307 __be16 local_port) 1308 { 1309 if (src_addr) { 1310 *src_addr = (struct sockaddr_in6) { 1311 .sin6_family = AF_INET6, 1312 .sin6_addr = hdr->dst_addr.ip6, 1313 .sin6_port = local_port, 1314 }; 1315 } 1316 1317 if (dst_addr) { 1318 *dst_addr = (struct sockaddr_in6) { 1319 .sin6_family = AF_INET6, 1320 .sin6_addr = hdr->src_addr.ip6, 1321 .sin6_port = hdr->port, 1322 }; 1323 } 1324 } 1325 1326 static u16 cma_port_from_service_id(__be64 service_id) 1327 { 1328 return (u16)be64_to_cpu(service_id); 1329 } 1330 1331 static int cma_save_ip_info(struct sockaddr *src_addr, 1332 struct sockaddr *dst_addr, 1333 const struct ib_cm_event *ib_event, 1334 __be64 service_id) 1335 { 1336 struct cma_hdr *hdr; 1337 __be16 port; 1338 1339 hdr = ib_event->private_data; 1340 if (hdr->cma_version != CMA_VERSION) 1341 return -EINVAL; 1342 1343 port = htons(cma_port_from_service_id(service_id)); 1344 1345 switch (cma_get_ip_ver(hdr)) { 1346 case 4: 1347 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1348 (struct sockaddr_in *)dst_addr, hdr, port); 1349 break; 1350 case 6: 1351 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1352 (struct sockaddr_in6 *)dst_addr, hdr, port); 1353 break; 1354 default: 1355 return -EAFNOSUPPORT; 1356 } 1357 1358 return 0; 1359 } 1360 1361 static int cma_save_net_info(struct sockaddr *src_addr, 1362 struct sockaddr *dst_addr, 1363 const struct rdma_cm_id *listen_id, 1364 const struct ib_cm_event *ib_event, 1365 sa_family_t sa_family, __be64 service_id) 1366 { 1367 if (sa_family == AF_IB) { 1368 if (ib_event->event == IB_CM_REQ_RECEIVED) 1369 cma_save_ib_info(src_addr, dst_addr, listen_id, 1370 ib_event->param.req_rcvd.primary_path); 1371 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1372 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1373 return 0; 1374 } 1375 1376 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1377 } 1378 1379 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1380 struct cma_req_info *req) 1381 { 1382 const struct ib_cm_req_event_param *req_param = 1383 &ib_event->param.req_rcvd; 1384 const struct ib_cm_sidr_req_event_param *sidr_param = 1385 &ib_event->param.sidr_req_rcvd; 1386 1387 switch (ib_event->event) { 1388 case IB_CM_REQ_RECEIVED: 1389 req->device = req_param->listen_id->device; 1390 req->port = req_param->port; 1391 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1392 sizeof(req->local_gid)); 1393 req->has_gid = true; 1394 req->service_id = req_param->primary_path->service_id; 1395 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1396 if (req->pkey != req_param->bth_pkey) 1397 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1398 "RDMA CMA: in the future this may cause the request to be dropped\n", 1399 req_param->bth_pkey, req->pkey); 1400 break; 1401 case IB_CM_SIDR_REQ_RECEIVED: 1402 req->device = sidr_param->listen_id->device; 1403 req->port = sidr_param->port; 1404 req->has_gid = false; 1405 req->service_id = sidr_param->service_id; 1406 req->pkey = sidr_param->pkey; 1407 if (req->pkey != sidr_param->bth_pkey) 1408 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1409 "RDMA CMA: in the future this may cause the request to be dropped\n", 1410 sidr_param->bth_pkey, req->pkey); 1411 break; 1412 default: 1413 return -EINVAL; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1420 const struct sockaddr_in *dst_addr, 1421 const struct sockaddr_in *src_addr) 1422 { 1423 __be32 daddr = dst_addr->sin_addr.s_addr, 1424 saddr = src_addr->sin_addr.s_addr; 1425 struct fib_result res; 1426 struct flowi4 fl4; 1427 int err; 1428 bool ret; 1429 1430 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1431 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1432 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1433 ipv4_is_loopback(saddr)) 1434 return false; 1435 1436 memset(&fl4, 0, sizeof(fl4)); 1437 fl4.flowi4_iif = net_dev->ifindex; 1438 fl4.daddr = daddr; 1439 fl4.saddr = saddr; 1440 1441 rcu_read_lock(); 1442 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1443 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1444 rcu_read_unlock(); 1445 1446 return ret; 1447 } 1448 1449 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1450 const struct sockaddr_in6 *dst_addr, 1451 const struct sockaddr_in6 *src_addr) 1452 { 1453 #if IS_ENABLED(CONFIG_IPV6) 1454 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1455 IPV6_ADDR_LINKLOCAL; 1456 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1457 &src_addr->sin6_addr, net_dev->ifindex, 1458 NULL, strict); 1459 bool ret; 1460 1461 if (!rt) 1462 return false; 1463 1464 ret = rt->rt6i_idev->dev == net_dev; 1465 ip6_rt_put(rt); 1466 1467 return ret; 1468 #else 1469 return false; 1470 #endif 1471 } 1472 1473 static bool validate_net_dev(struct net_device *net_dev, 1474 const struct sockaddr *daddr, 1475 const struct sockaddr *saddr) 1476 { 1477 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1478 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1479 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1480 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1481 1482 switch (daddr->sa_family) { 1483 case AF_INET: 1484 return saddr->sa_family == AF_INET && 1485 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1486 1487 case AF_INET6: 1488 return saddr->sa_family == AF_INET6 && 1489 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1490 1491 default: 1492 return false; 1493 } 1494 } 1495 1496 static struct net_device * 1497 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1498 { 1499 const struct ib_gid_attr *sgid_attr = NULL; 1500 struct net_device *ndev; 1501 1502 if (ib_event->event == IB_CM_REQ_RECEIVED) 1503 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1504 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1505 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1506 1507 if (!sgid_attr) 1508 return NULL; 1509 1510 rcu_read_lock(); 1511 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1512 if (IS_ERR(ndev)) 1513 ndev = NULL; 1514 else 1515 dev_hold(ndev); 1516 rcu_read_unlock(); 1517 return ndev; 1518 } 1519 1520 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1521 struct cma_req_info *req) 1522 { 1523 struct sockaddr *listen_addr = 1524 (struct sockaddr *)&req->listen_addr_storage; 1525 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1526 struct net_device *net_dev; 1527 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1528 int err; 1529 1530 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1531 req->service_id); 1532 if (err) 1533 return ERR_PTR(err); 1534 1535 if (rdma_protocol_roce(req->device, req->port)) 1536 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1537 else 1538 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1539 req->pkey, 1540 gid, listen_addr); 1541 if (!net_dev) 1542 return ERR_PTR(-ENODEV); 1543 1544 return net_dev; 1545 } 1546 1547 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1548 { 1549 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1550 } 1551 1552 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1553 const struct cma_hdr *hdr) 1554 { 1555 struct sockaddr *addr = cma_src_addr(id_priv); 1556 __be32 ip4_addr; 1557 struct in6_addr ip6_addr; 1558 1559 if (cma_any_addr(addr) && !id_priv->afonly) 1560 return true; 1561 1562 switch (addr->sa_family) { 1563 case AF_INET: 1564 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1565 if (cma_get_ip_ver(hdr) != 4) 1566 return false; 1567 if (!cma_any_addr(addr) && 1568 hdr->dst_addr.ip4.addr != ip4_addr) 1569 return false; 1570 break; 1571 case AF_INET6: 1572 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1573 if (cma_get_ip_ver(hdr) != 6) 1574 return false; 1575 if (!cma_any_addr(addr) && 1576 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1577 return false; 1578 break; 1579 case AF_IB: 1580 return true; 1581 default: 1582 return false; 1583 } 1584 1585 return true; 1586 } 1587 1588 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1589 { 1590 struct ib_device *device = id->device; 1591 const u32 port_num = id->port_num ?: rdma_start_port(device); 1592 1593 return rdma_protocol_roce(device, port_num); 1594 } 1595 1596 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1597 { 1598 const struct sockaddr *daddr = 1599 (const struct sockaddr *)&req->listen_addr_storage; 1600 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1601 1602 /* Returns true if the req is for IPv6 link local */ 1603 return (daddr->sa_family == AF_INET6 && 1604 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1605 } 1606 1607 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1608 const struct net_device *net_dev, 1609 const struct cma_req_info *req) 1610 { 1611 const struct rdma_addr *addr = &id->route.addr; 1612 1613 if (!net_dev) 1614 /* This request is an AF_IB request */ 1615 return (!id->port_num || id->port_num == req->port) && 1616 (addr->src_addr.ss_family == AF_IB); 1617 1618 /* 1619 * If the request is not for IPv6 link local, allow matching 1620 * request to any netdevice of the one or multiport rdma device. 1621 */ 1622 if (!cma_is_req_ipv6_ll(req)) 1623 return true; 1624 /* 1625 * Net namespaces must match, and if the listner is listening 1626 * on a specific netdevice than netdevice must match as well. 1627 */ 1628 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1629 (!!addr->dev_addr.bound_dev_if == 1630 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1631 return true; 1632 else 1633 return false; 1634 } 1635 1636 static struct rdma_id_private *cma_find_listener( 1637 const struct rdma_bind_list *bind_list, 1638 const struct ib_cm_id *cm_id, 1639 const struct ib_cm_event *ib_event, 1640 const struct cma_req_info *req, 1641 const struct net_device *net_dev) 1642 { 1643 struct rdma_id_private *id_priv, *id_priv_dev; 1644 1645 lockdep_assert_held(&lock); 1646 1647 if (!bind_list) 1648 return ERR_PTR(-EINVAL); 1649 1650 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1651 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1652 if (id_priv->id.device == cm_id->device && 1653 cma_match_net_dev(&id_priv->id, net_dev, req)) 1654 return id_priv; 1655 list_for_each_entry(id_priv_dev, 1656 &id_priv->listen_list, 1657 listen_item) { 1658 if (id_priv_dev->id.device == cm_id->device && 1659 cma_match_net_dev(&id_priv_dev->id, 1660 net_dev, req)) 1661 return id_priv_dev; 1662 } 1663 } 1664 } 1665 1666 return ERR_PTR(-EINVAL); 1667 } 1668 1669 static struct rdma_id_private * 1670 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1671 const struct ib_cm_event *ib_event, 1672 struct cma_req_info *req, 1673 struct net_device **net_dev) 1674 { 1675 struct rdma_bind_list *bind_list; 1676 struct rdma_id_private *id_priv; 1677 int err; 1678 1679 err = cma_save_req_info(ib_event, req); 1680 if (err) 1681 return ERR_PTR(err); 1682 1683 *net_dev = cma_get_net_dev(ib_event, req); 1684 if (IS_ERR(*net_dev)) { 1685 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1686 /* Assuming the protocol is AF_IB */ 1687 *net_dev = NULL; 1688 } else { 1689 return ERR_CAST(*net_dev); 1690 } 1691 } 1692 1693 mutex_lock(&lock); 1694 /* 1695 * Net namespace might be getting deleted while route lookup, 1696 * cm_id lookup is in progress. Therefore, perform netdevice 1697 * validation, cm_id lookup under rcu lock. 1698 * RCU lock along with netdevice state check, synchronizes with 1699 * netdevice migrating to different net namespace and also avoids 1700 * case where net namespace doesn't get deleted while lookup is in 1701 * progress. 1702 * If the device state is not IFF_UP, its properties such as ifindex 1703 * and nd_net cannot be trusted to remain valid without rcu lock. 1704 * net/core/dev.c change_net_namespace() ensures to synchronize with 1705 * ongoing operations on net device after device is closed using 1706 * synchronize_net(). 1707 */ 1708 rcu_read_lock(); 1709 if (*net_dev) { 1710 /* 1711 * If netdevice is down, it is likely that it is administratively 1712 * down or it might be migrating to different namespace. 1713 * In that case avoid further processing, as the net namespace 1714 * or ifindex may change. 1715 */ 1716 if (((*net_dev)->flags & IFF_UP) == 0) { 1717 id_priv = ERR_PTR(-EHOSTUNREACH); 1718 goto err; 1719 } 1720 1721 if (!validate_net_dev(*net_dev, 1722 (struct sockaddr *)&req->listen_addr_storage, 1723 (struct sockaddr *)&req->src_addr_storage)) { 1724 id_priv = ERR_PTR(-EHOSTUNREACH); 1725 goto err; 1726 } 1727 } 1728 1729 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1730 rdma_ps_from_service_id(req->service_id), 1731 cma_port_from_service_id(req->service_id)); 1732 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1733 err: 1734 rcu_read_unlock(); 1735 mutex_unlock(&lock); 1736 if (IS_ERR(id_priv) && *net_dev) { 1737 dev_put(*net_dev); 1738 *net_dev = NULL; 1739 } 1740 return id_priv; 1741 } 1742 1743 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1744 { 1745 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1746 } 1747 1748 static void cma_cancel_route(struct rdma_id_private *id_priv) 1749 { 1750 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1751 if (id_priv->query) 1752 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1753 } 1754 } 1755 1756 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1757 { 1758 struct rdma_id_private *dev_id_priv; 1759 1760 lockdep_assert_held(&lock); 1761 1762 /* 1763 * Remove from listen_any_list to prevent added devices from spawning 1764 * additional listen requests. 1765 */ 1766 list_del_init(&id_priv->listen_any_item); 1767 1768 while (!list_empty(&id_priv->listen_list)) { 1769 dev_id_priv = 1770 list_first_entry(&id_priv->listen_list, 1771 struct rdma_id_private, listen_item); 1772 /* sync with device removal to avoid duplicate destruction */ 1773 list_del_init(&dev_id_priv->device_item); 1774 list_del_init(&dev_id_priv->listen_item); 1775 mutex_unlock(&lock); 1776 1777 rdma_destroy_id(&dev_id_priv->id); 1778 mutex_lock(&lock); 1779 } 1780 } 1781 1782 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1783 { 1784 mutex_lock(&lock); 1785 _cma_cancel_listens(id_priv); 1786 mutex_unlock(&lock); 1787 } 1788 1789 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1790 enum rdma_cm_state state) 1791 { 1792 switch (state) { 1793 case RDMA_CM_ADDR_QUERY: 1794 /* 1795 * We can avoid doing the rdma_addr_cancel() based on state, 1796 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1797 * Notice that the addr_handler work could still be exiting 1798 * outside this state, however due to the interaction with the 1799 * handler_mutex the work is guaranteed not to touch id_priv 1800 * during exit. 1801 */ 1802 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1803 break; 1804 case RDMA_CM_ROUTE_QUERY: 1805 cma_cancel_route(id_priv); 1806 break; 1807 case RDMA_CM_LISTEN: 1808 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1809 cma_cancel_listens(id_priv); 1810 break; 1811 default: 1812 break; 1813 } 1814 } 1815 1816 static void cma_release_port(struct rdma_id_private *id_priv) 1817 { 1818 struct rdma_bind_list *bind_list = id_priv->bind_list; 1819 struct net *net = id_priv->id.route.addr.dev_addr.net; 1820 1821 if (!bind_list) 1822 return; 1823 1824 mutex_lock(&lock); 1825 hlist_del(&id_priv->node); 1826 if (hlist_empty(&bind_list->owners)) { 1827 cma_ps_remove(net, bind_list->ps, bind_list->port); 1828 kfree(bind_list); 1829 } 1830 mutex_unlock(&lock); 1831 } 1832 1833 static void destroy_mc(struct rdma_id_private *id_priv, 1834 struct cma_multicast *mc) 1835 { 1836 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1837 1838 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1839 ib_sa_free_multicast(mc->sa_mc); 1840 1841 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1842 struct rdma_dev_addr *dev_addr = 1843 &id_priv->id.route.addr.dev_addr; 1844 struct net_device *ndev = NULL; 1845 1846 if (dev_addr->bound_dev_if) 1847 ndev = dev_get_by_index(dev_addr->net, 1848 dev_addr->bound_dev_if); 1849 if (ndev && !send_only) { 1850 enum ib_gid_type gid_type; 1851 union ib_gid mgid; 1852 1853 gid_type = id_priv->cma_dev->default_gid_type 1854 [id_priv->id.port_num - 1855 rdma_start_port( 1856 id_priv->cma_dev->device)]; 1857 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 1858 gid_type); 1859 cma_igmp_send(ndev, &mgid, false); 1860 } 1861 dev_put(ndev); 1862 1863 cancel_work_sync(&mc->iboe_join.work); 1864 } 1865 kfree(mc); 1866 } 1867 1868 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1869 { 1870 struct cma_multicast *mc; 1871 1872 while (!list_empty(&id_priv->mc_list)) { 1873 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1874 list); 1875 list_del(&mc->list); 1876 destroy_mc(id_priv, mc); 1877 } 1878 } 1879 1880 static void _destroy_id(struct rdma_id_private *id_priv, 1881 enum rdma_cm_state state) 1882 { 1883 cma_cancel_operation(id_priv, state); 1884 1885 rdma_restrack_del(&id_priv->res); 1886 if (id_priv->cma_dev) { 1887 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1888 if (id_priv->cm_id.ib) 1889 ib_destroy_cm_id(id_priv->cm_id.ib); 1890 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1891 if (id_priv->cm_id.iw) 1892 iw_destroy_cm_id(id_priv->cm_id.iw); 1893 } 1894 cma_leave_mc_groups(id_priv); 1895 cma_release_dev(id_priv); 1896 } 1897 1898 cma_release_port(id_priv); 1899 cma_id_put(id_priv); 1900 wait_for_completion(&id_priv->comp); 1901 1902 if (id_priv->internal_id) 1903 cma_id_put(id_priv->id.context); 1904 1905 kfree(id_priv->id.route.path_rec); 1906 1907 put_net(id_priv->id.route.addr.dev_addr.net); 1908 kfree(id_priv); 1909 } 1910 1911 /* 1912 * destroy an ID from within the handler_mutex. This ensures that no other 1913 * handlers can start running concurrently. 1914 */ 1915 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1916 __releases(&idprv->handler_mutex) 1917 { 1918 enum rdma_cm_state state; 1919 unsigned long flags; 1920 1921 trace_cm_id_destroy(id_priv); 1922 1923 /* 1924 * Setting the state to destroyed under the handler mutex provides a 1925 * fence against calling handler callbacks. If this is invoked due to 1926 * the failure of a handler callback then it guarentees that no future 1927 * handlers will be called. 1928 */ 1929 lockdep_assert_held(&id_priv->handler_mutex); 1930 spin_lock_irqsave(&id_priv->lock, flags); 1931 state = id_priv->state; 1932 id_priv->state = RDMA_CM_DESTROYING; 1933 spin_unlock_irqrestore(&id_priv->lock, flags); 1934 mutex_unlock(&id_priv->handler_mutex); 1935 _destroy_id(id_priv, state); 1936 } 1937 1938 void rdma_destroy_id(struct rdma_cm_id *id) 1939 { 1940 struct rdma_id_private *id_priv = 1941 container_of(id, struct rdma_id_private, id); 1942 1943 mutex_lock(&id_priv->handler_mutex); 1944 destroy_id_handler_unlock(id_priv); 1945 } 1946 EXPORT_SYMBOL(rdma_destroy_id); 1947 1948 static int cma_rep_recv(struct rdma_id_private *id_priv) 1949 { 1950 int ret; 1951 1952 ret = cma_modify_qp_rtr(id_priv, NULL); 1953 if (ret) 1954 goto reject; 1955 1956 ret = cma_modify_qp_rts(id_priv, NULL); 1957 if (ret) 1958 goto reject; 1959 1960 trace_cm_send_rtu(id_priv); 1961 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1962 if (ret) 1963 goto reject; 1964 1965 return 0; 1966 reject: 1967 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1968 cma_modify_qp_err(id_priv); 1969 trace_cm_send_rej(id_priv); 1970 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1971 NULL, 0, NULL, 0); 1972 return ret; 1973 } 1974 1975 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1976 const struct ib_cm_rep_event_param *rep_data, 1977 void *private_data) 1978 { 1979 event->param.conn.private_data = private_data; 1980 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1981 event->param.conn.responder_resources = rep_data->responder_resources; 1982 event->param.conn.initiator_depth = rep_data->initiator_depth; 1983 event->param.conn.flow_control = rep_data->flow_control; 1984 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1985 event->param.conn.srq = rep_data->srq; 1986 event->param.conn.qp_num = rep_data->remote_qpn; 1987 1988 event->ece.vendor_id = rep_data->ece.vendor_id; 1989 event->ece.attr_mod = rep_data->ece.attr_mod; 1990 } 1991 1992 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1993 struct rdma_cm_event *event) 1994 { 1995 int ret; 1996 1997 lockdep_assert_held(&id_priv->handler_mutex); 1998 1999 trace_cm_event_handler(id_priv, event); 2000 ret = id_priv->id.event_handler(&id_priv->id, event); 2001 trace_cm_event_done(id_priv, event, ret); 2002 return ret; 2003 } 2004 2005 static int cma_ib_handler(struct ib_cm_id *cm_id, 2006 const struct ib_cm_event *ib_event) 2007 { 2008 struct rdma_id_private *id_priv = cm_id->context; 2009 struct rdma_cm_event event = {}; 2010 enum rdma_cm_state state; 2011 int ret; 2012 2013 mutex_lock(&id_priv->handler_mutex); 2014 state = READ_ONCE(id_priv->state); 2015 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2016 state != RDMA_CM_CONNECT) || 2017 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2018 state != RDMA_CM_DISCONNECT)) 2019 goto out; 2020 2021 switch (ib_event->event) { 2022 case IB_CM_REQ_ERROR: 2023 case IB_CM_REP_ERROR: 2024 event.event = RDMA_CM_EVENT_UNREACHABLE; 2025 event.status = -ETIMEDOUT; 2026 break; 2027 case IB_CM_REP_RECEIVED: 2028 if (state == RDMA_CM_CONNECT && 2029 (id_priv->id.qp_type != IB_QPT_UD)) { 2030 trace_cm_send_mra(id_priv); 2031 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2032 } 2033 if (id_priv->id.qp) { 2034 event.status = cma_rep_recv(id_priv); 2035 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2036 RDMA_CM_EVENT_ESTABLISHED; 2037 } else { 2038 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2039 } 2040 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2041 ib_event->private_data); 2042 break; 2043 case IB_CM_RTU_RECEIVED: 2044 case IB_CM_USER_ESTABLISHED: 2045 event.event = RDMA_CM_EVENT_ESTABLISHED; 2046 break; 2047 case IB_CM_DREQ_ERROR: 2048 event.status = -ETIMEDOUT; 2049 fallthrough; 2050 case IB_CM_DREQ_RECEIVED: 2051 case IB_CM_DREP_RECEIVED: 2052 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2053 RDMA_CM_DISCONNECT)) 2054 goto out; 2055 event.event = RDMA_CM_EVENT_DISCONNECTED; 2056 break; 2057 case IB_CM_TIMEWAIT_EXIT: 2058 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2059 break; 2060 case IB_CM_MRA_RECEIVED: 2061 /* ignore event */ 2062 goto out; 2063 case IB_CM_REJ_RECEIVED: 2064 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2065 ib_event->param.rej_rcvd.reason)); 2066 cma_modify_qp_err(id_priv); 2067 event.status = ib_event->param.rej_rcvd.reason; 2068 event.event = RDMA_CM_EVENT_REJECTED; 2069 event.param.conn.private_data = ib_event->private_data; 2070 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2071 break; 2072 default: 2073 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2074 ib_event->event); 2075 goto out; 2076 } 2077 2078 ret = cma_cm_event_handler(id_priv, &event); 2079 if (ret) { 2080 /* Destroy the CM ID by returning a non-zero value. */ 2081 id_priv->cm_id.ib = NULL; 2082 destroy_id_handler_unlock(id_priv); 2083 return ret; 2084 } 2085 out: 2086 mutex_unlock(&id_priv->handler_mutex); 2087 return 0; 2088 } 2089 2090 static struct rdma_id_private * 2091 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2092 const struct ib_cm_event *ib_event, 2093 struct net_device *net_dev) 2094 { 2095 struct rdma_id_private *listen_id_priv; 2096 struct rdma_id_private *id_priv; 2097 struct rdma_cm_id *id; 2098 struct rdma_route *rt; 2099 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2100 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2101 const __be64 service_id = 2102 ib_event->param.req_rcvd.primary_path->service_id; 2103 int ret; 2104 2105 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2106 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2107 listen_id->event_handler, listen_id->context, 2108 listen_id->ps, 2109 ib_event->param.req_rcvd.qp_type, 2110 listen_id_priv); 2111 if (IS_ERR(id_priv)) 2112 return NULL; 2113 2114 id = &id_priv->id; 2115 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2116 (struct sockaddr *)&id->route.addr.dst_addr, 2117 listen_id, ib_event, ss_family, service_id)) 2118 goto err; 2119 2120 rt = &id->route; 2121 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2122 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2123 GFP_KERNEL); 2124 if (!rt->path_rec) 2125 goto err; 2126 2127 rt->path_rec[0] = *path; 2128 if (rt->num_paths == 2) 2129 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2130 2131 if (net_dev) { 2132 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2133 } else { 2134 if (!cma_protocol_roce(listen_id) && 2135 cma_any_addr(cma_src_addr(id_priv))) { 2136 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2137 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2138 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2139 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2140 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2141 if (ret) 2142 goto err; 2143 } 2144 } 2145 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2146 2147 id_priv->state = RDMA_CM_CONNECT; 2148 return id_priv; 2149 2150 err: 2151 rdma_destroy_id(id); 2152 return NULL; 2153 } 2154 2155 static struct rdma_id_private * 2156 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2157 const struct ib_cm_event *ib_event, 2158 struct net_device *net_dev) 2159 { 2160 const struct rdma_id_private *listen_id_priv; 2161 struct rdma_id_private *id_priv; 2162 struct rdma_cm_id *id; 2163 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2164 struct net *net = listen_id->route.addr.dev_addr.net; 2165 int ret; 2166 2167 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2168 id_priv = __rdma_create_id(net, listen_id->event_handler, 2169 listen_id->context, listen_id->ps, IB_QPT_UD, 2170 listen_id_priv); 2171 if (IS_ERR(id_priv)) 2172 return NULL; 2173 2174 id = &id_priv->id; 2175 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2176 (struct sockaddr *)&id->route.addr.dst_addr, 2177 listen_id, ib_event, ss_family, 2178 ib_event->param.sidr_req_rcvd.service_id)) 2179 goto err; 2180 2181 if (net_dev) { 2182 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2183 } else { 2184 if (!cma_any_addr(cma_src_addr(id_priv))) { 2185 ret = cma_translate_addr(cma_src_addr(id_priv), 2186 &id->route.addr.dev_addr); 2187 if (ret) 2188 goto err; 2189 } 2190 } 2191 2192 id_priv->state = RDMA_CM_CONNECT; 2193 return id_priv; 2194 err: 2195 rdma_destroy_id(id); 2196 return NULL; 2197 } 2198 2199 static void cma_set_req_event_data(struct rdma_cm_event *event, 2200 const struct ib_cm_req_event_param *req_data, 2201 void *private_data, int offset) 2202 { 2203 event->param.conn.private_data = private_data + offset; 2204 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2205 event->param.conn.responder_resources = req_data->responder_resources; 2206 event->param.conn.initiator_depth = req_data->initiator_depth; 2207 event->param.conn.flow_control = req_data->flow_control; 2208 event->param.conn.retry_count = req_data->retry_count; 2209 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2210 event->param.conn.srq = req_data->srq; 2211 event->param.conn.qp_num = req_data->remote_qpn; 2212 2213 event->ece.vendor_id = req_data->ece.vendor_id; 2214 event->ece.attr_mod = req_data->ece.attr_mod; 2215 } 2216 2217 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2218 const struct ib_cm_event *ib_event) 2219 { 2220 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2221 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2222 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2223 (id->qp_type == IB_QPT_UD)) || 2224 (!id->qp_type)); 2225 } 2226 2227 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2228 const struct ib_cm_event *ib_event) 2229 { 2230 struct rdma_id_private *listen_id, *conn_id = NULL; 2231 struct rdma_cm_event event = {}; 2232 struct cma_req_info req = {}; 2233 struct net_device *net_dev; 2234 u8 offset; 2235 int ret; 2236 2237 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2238 if (IS_ERR(listen_id)) 2239 return PTR_ERR(listen_id); 2240 2241 trace_cm_req_handler(listen_id, ib_event->event); 2242 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2243 ret = -EINVAL; 2244 goto net_dev_put; 2245 } 2246 2247 mutex_lock(&listen_id->handler_mutex); 2248 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2249 ret = -ECONNABORTED; 2250 goto err_unlock; 2251 } 2252 2253 offset = cma_user_data_offset(listen_id); 2254 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2255 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2256 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2257 event.param.ud.private_data = ib_event->private_data + offset; 2258 event.param.ud.private_data_len = 2259 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2260 } else { 2261 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2262 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2263 ib_event->private_data, offset); 2264 } 2265 if (!conn_id) { 2266 ret = -ENOMEM; 2267 goto err_unlock; 2268 } 2269 2270 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2271 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2272 if (ret) { 2273 destroy_id_handler_unlock(conn_id); 2274 goto err_unlock; 2275 } 2276 2277 conn_id->cm_id.ib = cm_id; 2278 cm_id->context = conn_id; 2279 cm_id->cm_handler = cma_ib_handler; 2280 2281 ret = cma_cm_event_handler(conn_id, &event); 2282 if (ret) { 2283 /* Destroy the CM ID by returning a non-zero value. */ 2284 conn_id->cm_id.ib = NULL; 2285 mutex_unlock(&listen_id->handler_mutex); 2286 destroy_id_handler_unlock(conn_id); 2287 goto net_dev_put; 2288 } 2289 2290 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2291 conn_id->id.qp_type != IB_QPT_UD) { 2292 trace_cm_send_mra(cm_id->context); 2293 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2294 } 2295 mutex_unlock(&conn_id->handler_mutex); 2296 2297 err_unlock: 2298 mutex_unlock(&listen_id->handler_mutex); 2299 2300 net_dev_put: 2301 if (net_dev) 2302 dev_put(net_dev); 2303 2304 return ret; 2305 } 2306 2307 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2308 { 2309 if (addr->sa_family == AF_IB) 2310 return ((struct sockaddr_ib *) addr)->sib_sid; 2311 2312 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2313 } 2314 EXPORT_SYMBOL(rdma_get_service_id); 2315 2316 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2317 union ib_gid *dgid) 2318 { 2319 struct rdma_addr *addr = &cm_id->route.addr; 2320 2321 if (!cm_id->device) { 2322 if (sgid) 2323 memset(sgid, 0, sizeof(*sgid)); 2324 if (dgid) 2325 memset(dgid, 0, sizeof(*dgid)); 2326 return; 2327 } 2328 2329 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2330 if (sgid) 2331 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2332 if (dgid) 2333 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2334 } else { 2335 if (sgid) 2336 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2337 if (dgid) 2338 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2339 } 2340 } 2341 EXPORT_SYMBOL(rdma_read_gids); 2342 2343 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2344 { 2345 struct rdma_id_private *id_priv = iw_id->context; 2346 struct rdma_cm_event event = {}; 2347 int ret = 0; 2348 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2349 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2350 2351 mutex_lock(&id_priv->handler_mutex); 2352 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2353 goto out; 2354 2355 switch (iw_event->event) { 2356 case IW_CM_EVENT_CLOSE: 2357 event.event = RDMA_CM_EVENT_DISCONNECTED; 2358 break; 2359 case IW_CM_EVENT_CONNECT_REPLY: 2360 memcpy(cma_src_addr(id_priv), laddr, 2361 rdma_addr_size(laddr)); 2362 memcpy(cma_dst_addr(id_priv), raddr, 2363 rdma_addr_size(raddr)); 2364 switch (iw_event->status) { 2365 case 0: 2366 event.event = RDMA_CM_EVENT_ESTABLISHED; 2367 event.param.conn.initiator_depth = iw_event->ird; 2368 event.param.conn.responder_resources = iw_event->ord; 2369 break; 2370 case -ECONNRESET: 2371 case -ECONNREFUSED: 2372 event.event = RDMA_CM_EVENT_REJECTED; 2373 break; 2374 case -ETIMEDOUT: 2375 event.event = RDMA_CM_EVENT_UNREACHABLE; 2376 break; 2377 default: 2378 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2379 break; 2380 } 2381 break; 2382 case IW_CM_EVENT_ESTABLISHED: 2383 event.event = RDMA_CM_EVENT_ESTABLISHED; 2384 event.param.conn.initiator_depth = iw_event->ird; 2385 event.param.conn.responder_resources = iw_event->ord; 2386 break; 2387 default: 2388 goto out; 2389 } 2390 2391 event.status = iw_event->status; 2392 event.param.conn.private_data = iw_event->private_data; 2393 event.param.conn.private_data_len = iw_event->private_data_len; 2394 ret = cma_cm_event_handler(id_priv, &event); 2395 if (ret) { 2396 /* Destroy the CM ID by returning a non-zero value. */ 2397 id_priv->cm_id.iw = NULL; 2398 destroy_id_handler_unlock(id_priv); 2399 return ret; 2400 } 2401 2402 out: 2403 mutex_unlock(&id_priv->handler_mutex); 2404 return ret; 2405 } 2406 2407 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2408 struct iw_cm_event *iw_event) 2409 { 2410 struct rdma_id_private *listen_id, *conn_id; 2411 struct rdma_cm_event event = {}; 2412 int ret = -ECONNABORTED; 2413 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2414 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2415 2416 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2417 event.param.conn.private_data = iw_event->private_data; 2418 event.param.conn.private_data_len = iw_event->private_data_len; 2419 event.param.conn.initiator_depth = iw_event->ird; 2420 event.param.conn.responder_resources = iw_event->ord; 2421 2422 listen_id = cm_id->context; 2423 2424 mutex_lock(&listen_id->handler_mutex); 2425 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2426 goto out; 2427 2428 /* Create a new RDMA id for the new IW CM ID */ 2429 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2430 listen_id->id.event_handler, 2431 listen_id->id.context, RDMA_PS_TCP, 2432 IB_QPT_RC, listen_id); 2433 if (IS_ERR(conn_id)) { 2434 ret = -ENOMEM; 2435 goto out; 2436 } 2437 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2438 conn_id->state = RDMA_CM_CONNECT; 2439 2440 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2441 if (ret) { 2442 mutex_unlock(&listen_id->handler_mutex); 2443 destroy_id_handler_unlock(conn_id); 2444 return ret; 2445 } 2446 2447 ret = cma_iw_acquire_dev(conn_id, listen_id); 2448 if (ret) { 2449 mutex_unlock(&listen_id->handler_mutex); 2450 destroy_id_handler_unlock(conn_id); 2451 return ret; 2452 } 2453 2454 conn_id->cm_id.iw = cm_id; 2455 cm_id->context = conn_id; 2456 cm_id->cm_handler = cma_iw_handler; 2457 2458 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2459 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2460 2461 ret = cma_cm_event_handler(conn_id, &event); 2462 if (ret) { 2463 /* User wants to destroy the CM ID */ 2464 conn_id->cm_id.iw = NULL; 2465 mutex_unlock(&listen_id->handler_mutex); 2466 destroy_id_handler_unlock(conn_id); 2467 return ret; 2468 } 2469 2470 mutex_unlock(&conn_id->handler_mutex); 2471 2472 out: 2473 mutex_unlock(&listen_id->handler_mutex); 2474 return ret; 2475 } 2476 2477 static int cma_ib_listen(struct rdma_id_private *id_priv) 2478 { 2479 struct sockaddr *addr; 2480 struct ib_cm_id *id; 2481 __be64 svc_id; 2482 2483 addr = cma_src_addr(id_priv); 2484 svc_id = rdma_get_service_id(&id_priv->id, addr); 2485 id = ib_cm_insert_listen(id_priv->id.device, 2486 cma_ib_req_handler, svc_id); 2487 if (IS_ERR(id)) 2488 return PTR_ERR(id); 2489 id_priv->cm_id.ib = id; 2490 2491 return 0; 2492 } 2493 2494 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2495 { 2496 int ret; 2497 struct iw_cm_id *id; 2498 2499 id = iw_create_cm_id(id_priv->id.device, 2500 iw_conn_req_handler, 2501 id_priv); 2502 if (IS_ERR(id)) 2503 return PTR_ERR(id); 2504 2505 mutex_lock(&id_priv->qp_mutex); 2506 id->tos = id_priv->tos; 2507 id->tos_set = id_priv->tos_set; 2508 mutex_unlock(&id_priv->qp_mutex); 2509 id->afonly = id_priv->afonly; 2510 id_priv->cm_id.iw = id; 2511 2512 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2513 rdma_addr_size(cma_src_addr(id_priv))); 2514 2515 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2516 2517 if (ret) { 2518 iw_destroy_cm_id(id_priv->cm_id.iw); 2519 id_priv->cm_id.iw = NULL; 2520 } 2521 2522 return ret; 2523 } 2524 2525 static int cma_listen_handler(struct rdma_cm_id *id, 2526 struct rdma_cm_event *event) 2527 { 2528 struct rdma_id_private *id_priv = id->context; 2529 2530 /* Listening IDs are always destroyed on removal */ 2531 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2532 return -1; 2533 2534 id->context = id_priv->id.context; 2535 id->event_handler = id_priv->id.event_handler; 2536 trace_cm_event_handler(id_priv, event); 2537 return id_priv->id.event_handler(id, event); 2538 } 2539 2540 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2541 struct cma_device *cma_dev, 2542 struct rdma_id_private **to_destroy) 2543 { 2544 struct rdma_id_private *dev_id_priv; 2545 struct net *net = id_priv->id.route.addr.dev_addr.net; 2546 int ret; 2547 2548 lockdep_assert_held(&lock); 2549 2550 *to_destroy = NULL; 2551 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2552 return 0; 2553 2554 dev_id_priv = 2555 __rdma_create_id(net, cma_listen_handler, id_priv, 2556 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2557 if (IS_ERR(dev_id_priv)) 2558 return PTR_ERR(dev_id_priv); 2559 2560 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2561 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2562 rdma_addr_size(cma_src_addr(id_priv))); 2563 2564 _cma_attach_to_dev(dev_id_priv, cma_dev); 2565 rdma_restrack_add(&dev_id_priv->res); 2566 cma_id_get(id_priv); 2567 dev_id_priv->internal_id = 1; 2568 dev_id_priv->afonly = id_priv->afonly; 2569 mutex_lock(&id_priv->qp_mutex); 2570 dev_id_priv->tos_set = id_priv->tos_set; 2571 dev_id_priv->tos = id_priv->tos; 2572 mutex_unlock(&id_priv->qp_mutex); 2573 2574 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2575 if (ret) 2576 goto err_listen; 2577 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2578 return 0; 2579 err_listen: 2580 /* Caller must destroy this after releasing lock */ 2581 *to_destroy = dev_id_priv; 2582 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2583 return ret; 2584 } 2585 2586 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2587 { 2588 struct rdma_id_private *to_destroy; 2589 struct cma_device *cma_dev; 2590 int ret; 2591 2592 mutex_lock(&lock); 2593 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2594 list_for_each_entry(cma_dev, &dev_list, list) { 2595 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2596 if (ret) { 2597 /* Prevent racing with cma_process_remove() */ 2598 if (to_destroy) 2599 list_del_init(&to_destroy->device_item); 2600 goto err_listen; 2601 } 2602 } 2603 mutex_unlock(&lock); 2604 return 0; 2605 2606 err_listen: 2607 _cma_cancel_listens(id_priv); 2608 mutex_unlock(&lock); 2609 if (to_destroy) 2610 rdma_destroy_id(&to_destroy->id); 2611 return ret; 2612 } 2613 2614 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2615 { 2616 struct rdma_id_private *id_priv; 2617 2618 id_priv = container_of(id, struct rdma_id_private, id); 2619 mutex_lock(&id_priv->qp_mutex); 2620 id_priv->tos = (u8) tos; 2621 id_priv->tos_set = true; 2622 mutex_unlock(&id_priv->qp_mutex); 2623 } 2624 EXPORT_SYMBOL(rdma_set_service_type); 2625 2626 /** 2627 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2628 * with a connection identifier. 2629 * @id: Communication identifier to associated with service type. 2630 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2631 * 2632 * This function should be called before rdma_connect() on active side, 2633 * and on passive side before rdma_accept(). It is applicable to primary 2634 * path only. The timeout will affect the local side of the QP, it is not 2635 * negotiated with remote side and zero disables the timer. In case it is 2636 * set before rdma_resolve_route, the value will also be used to determine 2637 * PacketLifeTime for RoCE. 2638 * 2639 * Return: 0 for success 2640 */ 2641 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2642 { 2643 struct rdma_id_private *id_priv; 2644 2645 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2646 return -EINVAL; 2647 2648 id_priv = container_of(id, struct rdma_id_private, id); 2649 mutex_lock(&id_priv->qp_mutex); 2650 id_priv->timeout = timeout; 2651 id_priv->timeout_set = true; 2652 mutex_unlock(&id_priv->qp_mutex); 2653 2654 return 0; 2655 } 2656 EXPORT_SYMBOL(rdma_set_ack_timeout); 2657 2658 /** 2659 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2660 * QP associated with a connection identifier. 2661 * @id: Communication identifier to associated with service type. 2662 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2663 * Timer Field" in the IBTA specification. 2664 * 2665 * This function should be called before rdma_connect() on active 2666 * side, and on passive side before rdma_accept(). The timer value 2667 * will be associated with the local QP. When it receives a send it is 2668 * not read to handle, typically if the receive queue is empty, an RNR 2669 * Retry NAK is returned to the requester with the min_rnr_timer 2670 * encoded. The requester will then wait at least the time specified 2671 * in the NAK before retrying. The default is zero, which translates 2672 * to a minimum RNR Timer value of 655 ms. 2673 * 2674 * Return: 0 for success 2675 */ 2676 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2677 { 2678 struct rdma_id_private *id_priv; 2679 2680 /* It is a five-bit value */ 2681 if (min_rnr_timer & 0xe0) 2682 return -EINVAL; 2683 2684 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2685 return -EINVAL; 2686 2687 id_priv = container_of(id, struct rdma_id_private, id); 2688 mutex_lock(&id_priv->qp_mutex); 2689 id_priv->min_rnr_timer = min_rnr_timer; 2690 id_priv->min_rnr_timer_set = true; 2691 mutex_unlock(&id_priv->qp_mutex); 2692 2693 return 0; 2694 } 2695 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2696 2697 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2698 void *context) 2699 { 2700 struct cma_work *work = context; 2701 struct rdma_route *route; 2702 2703 route = &work->id->id.route; 2704 2705 if (!status) { 2706 route->num_paths = 1; 2707 *route->path_rec = *path_rec; 2708 } else { 2709 work->old_state = RDMA_CM_ROUTE_QUERY; 2710 work->new_state = RDMA_CM_ADDR_RESOLVED; 2711 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2712 work->event.status = status; 2713 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2714 status); 2715 } 2716 2717 queue_work(cma_wq, &work->work); 2718 } 2719 2720 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2721 unsigned long timeout_ms, struct cma_work *work) 2722 { 2723 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2724 struct sa_path_rec path_rec; 2725 ib_sa_comp_mask comp_mask; 2726 struct sockaddr_in6 *sin6; 2727 struct sockaddr_ib *sib; 2728 2729 memset(&path_rec, 0, sizeof path_rec); 2730 2731 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2732 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2733 else 2734 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2735 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2736 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2737 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2738 path_rec.numb_path = 1; 2739 path_rec.reversible = 1; 2740 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2741 cma_dst_addr(id_priv)); 2742 2743 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2744 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2745 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2746 2747 switch (cma_family(id_priv)) { 2748 case AF_INET: 2749 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2750 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2751 break; 2752 case AF_INET6: 2753 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2754 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2755 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2756 break; 2757 case AF_IB: 2758 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2759 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2760 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2761 break; 2762 } 2763 2764 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2765 id_priv->id.port_num, &path_rec, 2766 comp_mask, timeout_ms, 2767 GFP_KERNEL, cma_query_handler, 2768 work, &id_priv->query); 2769 2770 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2771 } 2772 2773 static void cma_iboe_join_work_handler(struct work_struct *work) 2774 { 2775 struct cma_multicast *mc = 2776 container_of(work, struct cma_multicast, iboe_join.work); 2777 struct rdma_cm_event *event = &mc->iboe_join.event; 2778 struct rdma_id_private *id_priv = mc->id_priv; 2779 int ret; 2780 2781 mutex_lock(&id_priv->handler_mutex); 2782 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2783 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2784 goto out_unlock; 2785 2786 ret = cma_cm_event_handler(id_priv, event); 2787 WARN_ON(ret); 2788 2789 out_unlock: 2790 mutex_unlock(&id_priv->handler_mutex); 2791 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2792 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2793 } 2794 2795 static void cma_work_handler(struct work_struct *_work) 2796 { 2797 struct cma_work *work = container_of(_work, struct cma_work, work); 2798 struct rdma_id_private *id_priv = work->id; 2799 2800 mutex_lock(&id_priv->handler_mutex); 2801 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2802 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2803 goto out_unlock; 2804 if (work->old_state != 0 || work->new_state != 0) { 2805 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2806 goto out_unlock; 2807 } 2808 2809 if (cma_cm_event_handler(id_priv, &work->event)) { 2810 cma_id_put(id_priv); 2811 destroy_id_handler_unlock(id_priv); 2812 goto out_free; 2813 } 2814 2815 out_unlock: 2816 mutex_unlock(&id_priv->handler_mutex); 2817 cma_id_put(id_priv); 2818 out_free: 2819 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2820 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2821 kfree(work); 2822 } 2823 2824 static void cma_init_resolve_route_work(struct cma_work *work, 2825 struct rdma_id_private *id_priv) 2826 { 2827 work->id = id_priv; 2828 INIT_WORK(&work->work, cma_work_handler); 2829 work->old_state = RDMA_CM_ROUTE_QUERY; 2830 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2831 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2832 } 2833 2834 static void enqueue_resolve_addr_work(struct cma_work *work, 2835 struct rdma_id_private *id_priv) 2836 { 2837 /* Balances with cma_id_put() in cma_work_handler */ 2838 cma_id_get(id_priv); 2839 2840 work->id = id_priv; 2841 INIT_WORK(&work->work, cma_work_handler); 2842 work->old_state = RDMA_CM_ADDR_QUERY; 2843 work->new_state = RDMA_CM_ADDR_RESOLVED; 2844 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2845 2846 queue_work(cma_wq, &work->work); 2847 } 2848 2849 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2850 unsigned long timeout_ms) 2851 { 2852 struct rdma_route *route = &id_priv->id.route; 2853 struct cma_work *work; 2854 int ret; 2855 2856 work = kzalloc(sizeof *work, GFP_KERNEL); 2857 if (!work) 2858 return -ENOMEM; 2859 2860 cma_init_resolve_route_work(work, id_priv); 2861 2862 if (!route->path_rec) 2863 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2864 if (!route->path_rec) { 2865 ret = -ENOMEM; 2866 goto err1; 2867 } 2868 2869 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2870 if (ret) 2871 goto err2; 2872 2873 return 0; 2874 err2: 2875 kfree(route->path_rec); 2876 route->path_rec = NULL; 2877 err1: 2878 kfree(work); 2879 return ret; 2880 } 2881 2882 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2883 unsigned long supported_gids, 2884 enum ib_gid_type default_gid) 2885 { 2886 if ((network_type == RDMA_NETWORK_IPV4 || 2887 network_type == RDMA_NETWORK_IPV6) && 2888 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2889 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2890 2891 return default_gid; 2892 } 2893 2894 /* 2895 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2896 * path record type based on GID type. 2897 * It also sets up other L2 fields which includes destination mac address 2898 * netdev ifindex, of the path record. 2899 * It returns the netdev of the bound interface for this path record entry. 2900 */ 2901 static struct net_device * 2902 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2903 { 2904 struct rdma_route *route = &id_priv->id.route; 2905 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2906 struct rdma_addr *addr = &route->addr; 2907 unsigned long supported_gids; 2908 struct net_device *ndev; 2909 2910 if (!addr->dev_addr.bound_dev_if) 2911 return NULL; 2912 2913 ndev = dev_get_by_index(addr->dev_addr.net, 2914 addr->dev_addr.bound_dev_if); 2915 if (!ndev) 2916 return NULL; 2917 2918 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2919 id_priv->id.port_num); 2920 gid_type = cma_route_gid_type(addr->dev_addr.network, 2921 supported_gids, 2922 id_priv->gid_type); 2923 /* Use the hint from IP Stack to select GID Type */ 2924 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2925 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2926 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2927 2928 route->path_rec->roce.route_resolved = true; 2929 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2930 return ndev; 2931 } 2932 2933 int rdma_set_ib_path(struct rdma_cm_id *id, 2934 struct sa_path_rec *path_rec) 2935 { 2936 struct rdma_id_private *id_priv; 2937 struct net_device *ndev; 2938 int ret; 2939 2940 id_priv = container_of(id, struct rdma_id_private, id); 2941 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2942 RDMA_CM_ROUTE_RESOLVED)) 2943 return -EINVAL; 2944 2945 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2946 GFP_KERNEL); 2947 if (!id->route.path_rec) { 2948 ret = -ENOMEM; 2949 goto err; 2950 } 2951 2952 if (rdma_protocol_roce(id->device, id->port_num)) { 2953 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2954 if (!ndev) { 2955 ret = -ENODEV; 2956 goto err_free; 2957 } 2958 dev_put(ndev); 2959 } 2960 2961 id->route.num_paths = 1; 2962 return 0; 2963 2964 err_free: 2965 kfree(id->route.path_rec); 2966 id->route.path_rec = NULL; 2967 err: 2968 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2969 return ret; 2970 } 2971 EXPORT_SYMBOL(rdma_set_ib_path); 2972 2973 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2974 { 2975 struct cma_work *work; 2976 2977 work = kzalloc(sizeof *work, GFP_KERNEL); 2978 if (!work) 2979 return -ENOMEM; 2980 2981 cma_init_resolve_route_work(work, id_priv); 2982 queue_work(cma_wq, &work->work); 2983 return 0; 2984 } 2985 2986 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2987 { 2988 struct net_device *dev; 2989 2990 dev = vlan_dev_real_dev(vlan_ndev); 2991 if (dev->num_tc) 2992 return netdev_get_prio_tc_map(dev, prio); 2993 2994 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2995 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2996 } 2997 2998 struct iboe_prio_tc_map { 2999 int input_prio; 3000 int output_tc; 3001 bool found; 3002 }; 3003 3004 static int get_lower_vlan_dev_tc(struct net_device *dev, 3005 struct netdev_nested_priv *priv) 3006 { 3007 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3008 3009 if (is_vlan_dev(dev)) 3010 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3011 else if (dev->num_tc) 3012 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3013 else 3014 map->output_tc = 0; 3015 /* We are interested only in first level VLAN device, so always 3016 * return 1 to stop iterating over next level devices. 3017 */ 3018 map->found = true; 3019 return 1; 3020 } 3021 3022 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3023 { 3024 struct iboe_prio_tc_map prio_tc_map = {}; 3025 int prio = rt_tos2priority(tos); 3026 struct netdev_nested_priv priv; 3027 3028 /* If VLAN device, get it directly from the VLAN netdev */ 3029 if (is_vlan_dev(ndev)) 3030 return get_vlan_ndev_tc(ndev, prio); 3031 3032 prio_tc_map.input_prio = prio; 3033 priv.data = (void *)&prio_tc_map; 3034 rcu_read_lock(); 3035 netdev_walk_all_lower_dev_rcu(ndev, 3036 get_lower_vlan_dev_tc, 3037 &priv); 3038 rcu_read_unlock(); 3039 /* If map is found from lower device, use it; Otherwise 3040 * continue with the current netdevice to get priority to tc map. 3041 */ 3042 if (prio_tc_map.found) 3043 return prio_tc_map.output_tc; 3044 else if (ndev->num_tc) 3045 return netdev_get_prio_tc_map(ndev, prio); 3046 else 3047 return 0; 3048 } 3049 3050 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3051 { 3052 struct sockaddr_in6 *addr6; 3053 u16 dport, sport; 3054 u32 hash, fl; 3055 3056 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3057 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3058 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3059 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3060 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3061 hash = (u32)sport * 31 + dport; 3062 fl = hash & IB_GRH_FLOWLABEL_MASK; 3063 } 3064 3065 return cpu_to_be32(fl); 3066 } 3067 3068 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3069 { 3070 struct rdma_route *route = &id_priv->id.route; 3071 struct rdma_addr *addr = &route->addr; 3072 struct cma_work *work; 3073 int ret; 3074 struct net_device *ndev; 3075 3076 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3077 rdma_start_port(id_priv->cma_dev->device)]; 3078 u8 tos; 3079 3080 mutex_lock(&id_priv->qp_mutex); 3081 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3082 mutex_unlock(&id_priv->qp_mutex); 3083 3084 work = kzalloc(sizeof *work, GFP_KERNEL); 3085 if (!work) 3086 return -ENOMEM; 3087 3088 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3089 if (!route->path_rec) { 3090 ret = -ENOMEM; 3091 goto err1; 3092 } 3093 3094 route->num_paths = 1; 3095 3096 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3097 if (!ndev) { 3098 ret = -ENODEV; 3099 goto err2; 3100 } 3101 3102 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3103 &route->path_rec->sgid); 3104 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3105 &route->path_rec->dgid); 3106 3107 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3108 /* TODO: get the hoplimit from the inet/inet6 device */ 3109 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3110 else 3111 route->path_rec->hop_limit = 1; 3112 route->path_rec->reversible = 1; 3113 route->path_rec->pkey = cpu_to_be16(0xffff); 3114 route->path_rec->mtu_selector = IB_SA_EQ; 3115 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3116 route->path_rec->traffic_class = tos; 3117 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3118 route->path_rec->rate_selector = IB_SA_EQ; 3119 route->path_rec->rate = iboe_get_rate(ndev); 3120 dev_put(ndev); 3121 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3122 /* In case ACK timeout is set, use this value to calculate 3123 * PacketLifeTime. As per IBTA 12.7.34, 3124 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3125 * Assuming a negligible local ACK delay, we can use 3126 * PacketLifeTime = local ACK timeout/2 3127 * as a reasonable approximation for RoCE networks. 3128 */ 3129 mutex_lock(&id_priv->qp_mutex); 3130 if (id_priv->timeout_set && id_priv->timeout) 3131 route->path_rec->packet_life_time = id_priv->timeout - 1; 3132 else 3133 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3134 mutex_unlock(&id_priv->qp_mutex); 3135 3136 if (!route->path_rec->mtu) { 3137 ret = -EINVAL; 3138 goto err2; 3139 } 3140 3141 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3142 id_priv->id.port_num)) 3143 route->path_rec->flow_label = 3144 cma_get_roce_udp_flow_label(id_priv); 3145 3146 cma_init_resolve_route_work(work, id_priv); 3147 queue_work(cma_wq, &work->work); 3148 3149 return 0; 3150 3151 err2: 3152 kfree(route->path_rec); 3153 route->path_rec = NULL; 3154 route->num_paths = 0; 3155 err1: 3156 kfree(work); 3157 return ret; 3158 } 3159 3160 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3161 { 3162 struct rdma_id_private *id_priv; 3163 int ret; 3164 3165 if (!timeout_ms) 3166 return -EINVAL; 3167 3168 id_priv = container_of(id, struct rdma_id_private, id); 3169 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3170 return -EINVAL; 3171 3172 cma_id_get(id_priv); 3173 if (rdma_cap_ib_sa(id->device, id->port_num)) 3174 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3175 else if (rdma_protocol_roce(id->device, id->port_num)) 3176 ret = cma_resolve_iboe_route(id_priv); 3177 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3178 ret = cma_resolve_iw_route(id_priv); 3179 else 3180 ret = -ENOSYS; 3181 3182 if (ret) 3183 goto err; 3184 3185 return 0; 3186 err: 3187 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3188 cma_id_put(id_priv); 3189 return ret; 3190 } 3191 EXPORT_SYMBOL(rdma_resolve_route); 3192 3193 static void cma_set_loopback(struct sockaddr *addr) 3194 { 3195 switch (addr->sa_family) { 3196 case AF_INET: 3197 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3198 break; 3199 case AF_INET6: 3200 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3201 0, 0, 0, htonl(1)); 3202 break; 3203 default: 3204 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3205 0, 0, 0, htonl(1)); 3206 break; 3207 } 3208 } 3209 3210 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3211 { 3212 struct cma_device *cma_dev, *cur_dev; 3213 union ib_gid gid; 3214 enum ib_port_state port_state; 3215 unsigned int p; 3216 u16 pkey; 3217 int ret; 3218 3219 cma_dev = NULL; 3220 mutex_lock(&lock); 3221 list_for_each_entry(cur_dev, &dev_list, list) { 3222 if (cma_family(id_priv) == AF_IB && 3223 !rdma_cap_ib_cm(cur_dev->device, 1)) 3224 continue; 3225 3226 if (!cma_dev) 3227 cma_dev = cur_dev; 3228 3229 rdma_for_each_port (cur_dev->device, p) { 3230 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3231 port_state == IB_PORT_ACTIVE) { 3232 cma_dev = cur_dev; 3233 goto port_found; 3234 } 3235 } 3236 } 3237 3238 if (!cma_dev) { 3239 ret = -ENODEV; 3240 goto out; 3241 } 3242 3243 p = 1; 3244 3245 port_found: 3246 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3247 if (ret) 3248 goto out; 3249 3250 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3251 if (ret) 3252 goto out; 3253 3254 id_priv->id.route.addr.dev_addr.dev_type = 3255 (rdma_protocol_ib(cma_dev->device, p)) ? 3256 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3257 3258 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3259 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3260 id_priv->id.port_num = p; 3261 cma_attach_to_dev(id_priv, cma_dev); 3262 rdma_restrack_add(&id_priv->res); 3263 cma_set_loopback(cma_src_addr(id_priv)); 3264 out: 3265 mutex_unlock(&lock); 3266 return ret; 3267 } 3268 3269 static void addr_handler(int status, struct sockaddr *src_addr, 3270 struct rdma_dev_addr *dev_addr, void *context) 3271 { 3272 struct rdma_id_private *id_priv = context; 3273 struct rdma_cm_event event = {}; 3274 struct sockaddr *addr; 3275 struct sockaddr_storage old_addr; 3276 3277 mutex_lock(&id_priv->handler_mutex); 3278 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3279 RDMA_CM_ADDR_RESOLVED)) 3280 goto out; 3281 3282 /* 3283 * Store the previous src address, so that if we fail to acquire 3284 * matching rdma device, old address can be restored back, which helps 3285 * to cancel the cma listen operation correctly. 3286 */ 3287 addr = cma_src_addr(id_priv); 3288 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3289 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3290 if (!status && !id_priv->cma_dev) { 3291 status = cma_acquire_dev_by_src_ip(id_priv); 3292 if (status) 3293 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3294 status); 3295 rdma_restrack_add(&id_priv->res); 3296 } else if (status) { 3297 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3298 } 3299 3300 if (status) { 3301 memcpy(addr, &old_addr, 3302 rdma_addr_size((struct sockaddr *)&old_addr)); 3303 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3304 RDMA_CM_ADDR_BOUND)) 3305 goto out; 3306 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3307 event.status = status; 3308 } else 3309 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3310 3311 if (cma_cm_event_handler(id_priv, &event)) { 3312 destroy_id_handler_unlock(id_priv); 3313 return; 3314 } 3315 out: 3316 mutex_unlock(&id_priv->handler_mutex); 3317 } 3318 3319 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3320 { 3321 struct cma_work *work; 3322 union ib_gid gid; 3323 int ret; 3324 3325 work = kzalloc(sizeof *work, GFP_KERNEL); 3326 if (!work) 3327 return -ENOMEM; 3328 3329 if (!id_priv->cma_dev) { 3330 ret = cma_bind_loopback(id_priv); 3331 if (ret) 3332 goto err; 3333 } 3334 3335 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3336 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3337 3338 enqueue_resolve_addr_work(work, id_priv); 3339 return 0; 3340 err: 3341 kfree(work); 3342 return ret; 3343 } 3344 3345 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3346 { 3347 struct cma_work *work; 3348 int ret; 3349 3350 work = kzalloc(sizeof *work, GFP_KERNEL); 3351 if (!work) 3352 return -ENOMEM; 3353 3354 if (!id_priv->cma_dev) { 3355 ret = cma_resolve_ib_dev(id_priv); 3356 if (ret) 3357 goto err; 3358 } 3359 3360 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3361 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3362 3363 enqueue_resolve_addr_work(work, id_priv); 3364 return 0; 3365 err: 3366 kfree(work); 3367 return ret; 3368 } 3369 3370 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3371 const struct sockaddr *dst_addr) 3372 { 3373 struct sockaddr_storage zero_sock = {}; 3374 3375 if (src_addr && src_addr->sa_family) 3376 return rdma_bind_addr(id, src_addr); 3377 3378 /* 3379 * When the src_addr is not specified, automatically supply an any addr 3380 */ 3381 zero_sock.ss_family = dst_addr->sa_family; 3382 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 3383 struct sockaddr_in6 *src_addr6 = 3384 (struct sockaddr_in6 *)&zero_sock; 3385 struct sockaddr_in6 *dst_addr6 = 3386 (struct sockaddr_in6 *)dst_addr; 3387 3388 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3389 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3390 id->route.addr.dev_addr.bound_dev_if = 3391 dst_addr6->sin6_scope_id; 3392 } else if (dst_addr->sa_family == AF_IB) { 3393 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 3394 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 3395 } 3396 return rdma_bind_addr(id, (struct sockaddr *)&zero_sock); 3397 } 3398 3399 /* 3400 * If required, resolve the source address for bind and leave the id_priv in 3401 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3402 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3403 * ignored. 3404 */ 3405 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3406 struct sockaddr *src_addr, 3407 const struct sockaddr *dst_addr) 3408 { 3409 int ret; 3410 3411 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3412 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3413 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3414 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3415 if (ret) 3416 goto err_dst; 3417 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3418 RDMA_CM_ADDR_QUERY))) { 3419 ret = -EINVAL; 3420 goto err_dst; 3421 } 3422 } 3423 3424 if (cma_family(id_priv) != dst_addr->sa_family) { 3425 ret = -EINVAL; 3426 goto err_state; 3427 } 3428 return 0; 3429 3430 err_state: 3431 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3432 err_dst: 3433 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3434 return ret; 3435 } 3436 3437 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3438 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3439 { 3440 struct rdma_id_private *id_priv = 3441 container_of(id, struct rdma_id_private, id); 3442 int ret; 3443 3444 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3445 if (ret) 3446 return ret; 3447 3448 if (cma_any_addr(dst_addr)) { 3449 ret = cma_resolve_loopback(id_priv); 3450 } else { 3451 if (dst_addr->sa_family == AF_IB) { 3452 ret = cma_resolve_ib_addr(id_priv); 3453 } else { 3454 /* 3455 * The FSM can return back to RDMA_CM_ADDR_BOUND after 3456 * rdma_resolve_ip() is called, eg through the error 3457 * path in addr_handler(). If this happens the existing 3458 * request must be canceled before issuing a new one. 3459 * Since canceling a request is a bit slow and this 3460 * oddball path is rare, keep track once a request has 3461 * been issued. The track turns out to be a permanent 3462 * state since this is the only cancel as it is 3463 * immediately before rdma_resolve_ip(). 3464 */ 3465 if (id_priv->used_resolve_ip) 3466 rdma_addr_cancel(&id->route.addr.dev_addr); 3467 else 3468 id_priv->used_resolve_ip = 1; 3469 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3470 &id->route.addr.dev_addr, 3471 timeout_ms, addr_handler, 3472 false, id_priv); 3473 } 3474 } 3475 if (ret) 3476 goto err; 3477 3478 return 0; 3479 err: 3480 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3481 return ret; 3482 } 3483 EXPORT_SYMBOL(rdma_resolve_addr); 3484 3485 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3486 { 3487 struct rdma_id_private *id_priv; 3488 unsigned long flags; 3489 int ret; 3490 3491 id_priv = container_of(id, struct rdma_id_private, id); 3492 spin_lock_irqsave(&id_priv->lock, flags); 3493 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3494 id_priv->state == RDMA_CM_IDLE) { 3495 id_priv->reuseaddr = reuse; 3496 ret = 0; 3497 } else { 3498 ret = -EINVAL; 3499 } 3500 spin_unlock_irqrestore(&id_priv->lock, flags); 3501 return ret; 3502 } 3503 EXPORT_SYMBOL(rdma_set_reuseaddr); 3504 3505 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3506 { 3507 struct rdma_id_private *id_priv; 3508 unsigned long flags; 3509 int ret; 3510 3511 id_priv = container_of(id, struct rdma_id_private, id); 3512 spin_lock_irqsave(&id_priv->lock, flags); 3513 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3514 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3515 id_priv->afonly = afonly; 3516 ret = 0; 3517 } else { 3518 ret = -EINVAL; 3519 } 3520 spin_unlock_irqrestore(&id_priv->lock, flags); 3521 return ret; 3522 } 3523 EXPORT_SYMBOL(rdma_set_afonly); 3524 3525 static void cma_bind_port(struct rdma_bind_list *bind_list, 3526 struct rdma_id_private *id_priv) 3527 { 3528 struct sockaddr *addr; 3529 struct sockaddr_ib *sib; 3530 u64 sid, mask; 3531 __be16 port; 3532 3533 lockdep_assert_held(&lock); 3534 3535 addr = cma_src_addr(id_priv); 3536 port = htons(bind_list->port); 3537 3538 switch (addr->sa_family) { 3539 case AF_INET: 3540 ((struct sockaddr_in *) addr)->sin_port = port; 3541 break; 3542 case AF_INET6: 3543 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3544 break; 3545 case AF_IB: 3546 sib = (struct sockaddr_ib *) addr; 3547 sid = be64_to_cpu(sib->sib_sid); 3548 mask = be64_to_cpu(sib->sib_sid_mask); 3549 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3550 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3551 break; 3552 } 3553 id_priv->bind_list = bind_list; 3554 hlist_add_head(&id_priv->node, &bind_list->owners); 3555 } 3556 3557 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3558 struct rdma_id_private *id_priv, unsigned short snum) 3559 { 3560 struct rdma_bind_list *bind_list; 3561 int ret; 3562 3563 lockdep_assert_held(&lock); 3564 3565 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3566 if (!bind_list) 3567 return -ENOMEM; 3568 3569 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3570 snum); 3571 if (ret < 0) 3572 goto err; 3573 3574 bind_list->ps = ps; 3575 bind_list->port = snum; 3576 cma_bind_port(bind_list, id_priv); 3577 return 0; 3578 err: 3579 kfree(bind_list); 3580 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3581 } 3582 3583 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3584 struct rdma_id_private *id_priv) 3585 { 3586 struct rdma_id_private *cur_id; 3587 struct sockaddr *daddr = cma_dst_addr(id_priv); 3588 struct sockaddr *saddr = cma_src_addr(id_priv); 3589 __be16 dport = cma_port(daddr); 3590 3591 lockdep_assert_held(&lock); 3592 3593 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3594 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3595 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3596 __be16 cur_dport = cma_port(cur_daddr); 3597 3598 if (id_priv == cur_id) 3599 continue; 3600 3601 /* different dest port -> unique */ 3602 if (!cma_any_port(daddr) && 3603 !cma_any_port(cur_daddr) && 3604 (dport != cur_dport)) 3605 continue; 3606 3607 /* different src address -> unique */ 3608 if (!cma_any_addr(saddr) && 3609 !cma_any_addr(cur_saddr) && 3610 cma_addr_cmp(saddr, cur_saddr)) 3611 continue; 3612 3613 /* different dst address -> unique */ 3614 if (!cma_any_addr(daddr) && 3615 !cma_any_addr(cur_daddr) && 3616 cma_addr_cmp(daddr, cur_daddr)) 3617 continue; 3618 3619 return -EADDRNOTAVAIL; 3620 } 3621 return 0; 3622 } 3623 3624 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3625 struct rdma_id_private *id_priv) 3626 { 3627 static unsigned int last_used_port; 3628 int low, high, remaining; 3629 unsigned int rover; 3630 struct net *net = id_priv->id.route.addr.dev_addr.net; 3631 3632 lockdep_assert_held(&lock); 3633 3634 inet_get_local_port_range(net, &low, &high); 3635 remaining = (high - low) + 1; 3636 rover = prandom_u32() % remaining + low; 3637 retry: 3638 if (last_used_port != rover) { 3639 struct rdma_bind_list *bind_list; 3640 int ret; 3641 3642 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3643 3644 if (!bind_list) { 3645 ret = cma_alloc_port(ps, id_priv, rover); 3646 } else { 3647 ret = cma_port_is_unique(bind_list, id_priv); 3648 if (!ret) 3649 cma_bind_port(bind_list, id_priv); 3650 } 3651 /* 3652 * Remember previously used port number in order to avoid 3653 * re-using same port immediately after it is closed. 3654 */ 3655 if (!ret) 3656 last_used_port = rover; 3657 if (ret != -EADDRNOTAVAIL) 3658 return ret; 3659 } 3660 if (--remaining) { 3661 rover++; 3662 if ((rover < low) || (rover > high)) 3663 rover = low; 3664 goto retry; 3665 } 3666 return -EADDRNOTAVAIL; 3667 } 3668 3669 /* 3670 * Check that the requested port is available. This is called when trying to 3671 * bind to a specific port, or when trying to listen on a bound port. In 3672 * the latter case, the provided id_priv may already be on the bind_list, but 3673 * we still need to check that it's okay to start listening. 3674 */ 3675 static int cma_check_port(struct rdma_bind_list *bind_list, 3676 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3677 { 3678 struct rdma_id_private *cur_id; 3679 struct sockaddr *addr, *cur_addr; 3680 3681 lockdep_assert_held(&lock); 3682 3683 addr = cma_src_addr(id_priv); 3684 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3685 if (id_priv == cur_id) 3686 continue; 3687 3688 if (reuseaddr && cur_id->reuseaddr) 3689 continue; 3690 3691 cur_addr = cma_src_addr(cur_id); 3692 if (id_priv->afonly && cur_id->afonly && 3693 (addr->sa_family != cur_addr->sa_family)) 3694 continue; 3695 3696 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3697 return -EADDRNOTAVAIL; 3698 3699 if (!cma_addr_cmp(addr, cur_addr)) 3700 return -EADDRINUSE; 3701 } 3702 return 0; 3703 } 3704 3705 static int cma_use_port(enum rdma_ucm_port_space ps, 3706 struct rdma_id_private *id_priv) 3707 { 3708 struct rdma_bind_list *bind_list; 3709 unsigned short snum; 3710 int ret; 3711 3712 lockdep_assert_held(&lock); 3713 3714 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3715 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3716 return -EACCES; 3717 3718 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3719 if (!bind_list) { 3720 ret = cma_alloc_port(ps, id_priv, snum); 3721 } else { 3722 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3723 if (!ret) 3724 cma_bind_port(bind_list, id_priv); 3725 } 3726 return ret; 3727 } 3728 3729 static enum rdma_ucm_port_space 3730 cma_select_inet_ps(struct rdma_id_private *id_priv) 3731 { 3732 switch (id_priv->id.ps) { 3733 case RDMA_PS_TCP: 3734 case RDMA_PS_UDP: 3735 case RDMA_PS_IPOIB: 3736 case RDMA_PS_IB: 3737 return id_priv->id.ps; 3738 default: 3739 3740 return 0; 3741 } 3742 } 3743 3744 static enum rdma_ucm_port_space 3745 cma_select_ib_ps(struct rdma_id_private *id_priv) 3746 { 3747 enum rdma_ucm_port_space ps = 0; 3748 struct sockaddr_ib *sib; 3749 u64 sid_ps, mask, sid; 3750 3751 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3752 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3753 sid = be64_to_cpu(sib->sib_sid) & mask; 3754 3755 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3756 sid_ps = RDMA_IB_IP_PS_IB; 3757 ps = RDMA_PS_IB; 3758 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3759 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3760 sid_ps = RDMA_IB_IP_PS_TCP; 3761 ps = RDMA_PS_TCP; 3762 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3763 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3764 sid_ps = RDMA_IB_IP_PS_UDP; 3765 ps = RDMA_PS_UDP; 3766 } 3767 3768 if (ps) { 3769 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3770 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3771 be64_to_cpu(sib->sib_sid_mask)); 3772 } 3773 return ps; 3774 } 3775 3776 static int cma_get_port(struct rdma_id_private *id_priv) 3777 { 3778 enum rdma_ucm_port_space ps; 3779 int ret; 3780 3781 if (cma_family(id_priv) != AF_IB) 3782 ps = cma_select_inet_ps(id_priv); 3783 else 3784 ps = cma_select_ib_ps(id_priv); 3785 if (!ps) 3786 return -EPROTONOSUPPORT; 3787 3788 mutex_lock(&lock); 3789 if (cma_any_port(cma_src_addr(id_priv))) 3790 ret = cma_alloc_any_port(ps, id_priv); 3791 else 3792 ret = cma_use_port(ps, id_priv); 3793 mutex_unlock(&lock); 3794 3795 return ret; 3796 } 3797 3798 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3799 struct sockaddr *addr) 3800 { 3801 #if IS_ENABLED(CONFIG_IPV6) 3802 struct sockaddr_in6 *sin6; 3803 3804 if (addr->sa_family != AF_INET6) 3805 return 0; 3806 3807 sin6 = (struct sockaddr_in6 *) addr; 3808 3809 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3810 return 0; 3811 3812 if (!sin6->sin6_scope_id) 3813 return -EINVAL; 3814 3815 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3816 #endif 3817 return 0; 3818 } 3819 3820 int rdma_listen(struct rdma_cm_id *id, int backlog) 3821 { 3822 struct rdma_id_private *id_priv = 3823 container_of(id, struct rdma_id_private, id); 3824 int ret; 3825 3826 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3827 struct sockaddr_in any_in = { 3828 .sin_family = AF_INET, 3829 .sin_addr.s_addr = htonl(INADDR_ANY), 3830 }; 3831 3832 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3833 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3834 if (ret) 3835 return ret; 3836 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3837 RDMA_CM_LISTEN))) 3838 return -EINVAL; 3839 } 3840 3841 /* 3842 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3843 * any more, and has to be unique in the bind list. 3844 */ 3845 if (id_priv->reuseaddr) { 3846 mutex_lock(&lock); 3847 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3848 if (!ret) 3849 id_priv->reuseaddr = 0; 3850 mutex_unlock(&lock); 3851 if (ret) 3852 goto err; 3853 } 3854 3855 id_priv->backlog = backlog; 3856 if (id_priv->cma_dev) { 3857 if (rdma_cap_ib_cm(id->device, 1)) { 3858 ret = cma_ib_listen(id_priv); 3859 if (ret) 3860 goto err; 3861 } else if (rdma_cap_iw_cm(id->device, 1)) { 3862 ret = cma_iw_listen(id_priv, backlog); 3863 if (ret) 3864 goto err; 3865 } else { 3866 ret = -ENOSYS; 3867 goto err; 3868 } 3869 } else { 3870 ret = cma_listen_on_all(id_priv); 3871 if (ret) 3872 goto err; 3873 } 3874 3875 return 0; 3876 err: 3877 id_priv->backlog = 0; 3878 /* 3879 * All the failure paths that lead here will not allow the req_handler's 3880 * to have run. 3881 */ 3882 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3883 return ret; 3884 } 3885 EXPORT_SYMBOL(rdma_listen); 3886 3887 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3888 { 3889 struct rdma_id_private *id_priv; 3890 int ret; 3891 struct sockaddr *daddr; 3892 3893 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3894 addr->sa_family != AF_IB) 3895 return -EAFNOSUPPORT; 3896 3897 id_priv = container_of(id, struct rdma_id_private, id); 3898 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3899 return -EINVAL; 3900 3901 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3902 if (ret) 3903 goto err1; 3904 3905 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3906 if (!cma_any_addr(addr)) { 3907 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3908 if (ret) 3909 goto err1; 3910 3911 ret = cma_acquire_dev_by_src_ip(id_priv); 3912 if (ret) 3913 goto err1; 3914 } 3915 3916 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3917 if (addr->sa_family == AF_INET) 3918 id_priv->afonly = 1; 3919 #if IS_ENABLED(CONFIG_IPV6) 3920 else if (addr->sa_family == AF_INET6) { 3921 struct net *net = id_priv->id.route.addr.dev_addr.net; 3922 3923 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3924 } 3925 #endif 3926 } 3927 daddr = cma_dst_addr(id_priv); 3928 daddr->sa_family = addr->sa_family; 3929 3930 ret = cma_get_port(id_priv); 3931 if (ret) 3932 goto err2; 3933 3934 if (!cma_any_addr(addr)) 3935 rdma_restrack_add(&id_priv->res); 3936 return 0; 3937 err2: 3938 if (id_priv->cma_dev) 3939 cma_release_dev(id_priv); 3940 err1: 3941 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3942 return ret; 3943 } 3944 EXPORT_SYMBOL(rdma_bind_addr); 3945 3946 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3947 { 3948 struct cma_hdr *cma_hdr; 3949 3950 cma_hdr = hdr; 3951 cma_hdr->cma_version = CMA_VERSION; 3952 if (cma_family(id_priv) == AF_INET) { 3953 struct sockaddr_in *src4, *dst4; 3954 3955 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3956 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3957 3958 cma_set_ip_ver(cma_hdr, 4); 3959 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3960 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3961 cma_hdr->port = src4->sin_port; 3962 } else if (cma_family(id_priv) == AF_INET6) { 3963 struct sockaddr_in6 *src6, *dst6; 3964 3965 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3966 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3967 3968 cma_set_ip_ver(cma_hdr, 6); 3969 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3970 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3971 cma_hdr->port = src6->sin6_port; 3972 } 3973 return 0; 3974 } 3975 3976 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3977 const struct ib_cm_event *ib_event) 3978 { 3979 struct rdma_id_private *id_priv = cm_id->context; 3980 struct rdma_cm_event event = {}; 3981 const struct ib_cm_sidr_rep_event_param *rep = 3982 &ib_event->param.sidr_rep_rcvd; 3983 int ret; 3984 3985 mutex_lock(&id_priv->handler_mutex); 3986 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3987 goto out; 3988 3989 switch (ib_event->event) { 3990 case IB_CM_SIDR_REQ_ERROR: 3991 event.event = RDMA_CM_EVENT_UNREACHABLE; 3992 event.status = -ETIMEDOUT; 3993 break; 3994 case IB_CM_SIDR_REP_RECEIVED: 3995 event.param.ud.private_data = ib_event->private_data; 3996 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3997 if (rep->status != IB_SIDR_SUCCESS) { 3998 event.event = RDMA_CM_EVENT_UNREACHABLE; 3999 event.status = ib_event->param.sidr_rep_rcvd.status; 4000 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4001 event.status); 4002 break; 4003 } 4004 ret = cma_set_qkey(id_priv, rep->qkey); 4005 if (ret) { 4006 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4007 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4008 event.status = ret; 4009 break; 4010 } 4011 ib_init_ah_attr_from_path(id_priv->id.device, 4012 id_priv->id.port_num, 4013 id_priv->id.route.path_rec, 4014 &event.param.ud.ah_attr, 4015 rep->sgid_attr); 4016 event.param.ud.qp_num = rep->qpn; 4017 event.param.ud.qkey = rep->qkey; 4018 event.event = RDMA_CM_EVENT_ESTABLISHED; 4019 event.status = 0; 4020 break; 4021 default: 4022 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4023 ib_event->event); 4024 goto out; 4025 } 4026 4027 ret = cma_cm_event_handler(id_priv, &event); 4028 4029 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4030 if (ret) { 4031 /* Destroy the CM ID by returning a non-zero value. */ 4032 id_priv->cm_id.ib = NULL; 4033 destroy_id_handler_unlock(id_priv); 4034 return ret; 4035 } 4036 out: 4037 mutex_unlock(&id_priv->handler_mutex); 4038 return 0; 4039 } 4040 4041 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4042 struct rdma_conn_param *conn_param) 4043 { 4044 struct ib_cm_sidr_req_param req; 4045 struct ib_cm_id *id; 4046 void *private_data; 4047 u8 offset; 4048 int ret; 4049 4050 memset(&req, 0, sizeof req); 4051 offset = cma_user_data_offset(id_priv); 4052 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4053 return -EINVAL; 4054 4055 if (req.private_data_len) { 4056 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4057 if (!private_data) 4058 return -ENOMEM; 4059 } else { 4060 private_data = NULL; 4061 } 4062 4063 if (conn_param->private_data && conn_param->private_data_len) 4064 memcpy(private_data + offset, conn_param->private_data, 4065 conn_param->private_data_len); 4066 4067 if (private_data) { 4068 ret = cma_format_hdr(private_data, id_priv); 4069 if (ret) 4070 goto out; 4071 req.private_data = private_data; 4072 } 4073 4074 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4075 id_priv); 4076 if (IS_ERR(id)) { 4077 ret = PTR_ERR(id); 4078 goto out; 4079 } 4080 id_priv->cm_id.ib = id; 4081 4082 req.path = id_priv->id.route.path_rec; 4083 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4084 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4085 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4086 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4087 4088 trace_cm_send_sidr_req(id_priv); 4089 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4090 if (ret) { 4091 ib_destroy_cm_id(id_priv->cm_id.ib); 4092 id_priv->cm_id.ib = NULL; 4093 } 4094 out: 4095 kfree(private_data); 4096 return ret; 4097 } 4098 4099 static int cma_connect_ib(struct rdma_id_private *id_priv, 4100 struct rdma_conn_param *conn_param) 4101 { 4102 struct ib_cm_req_param req; 4103 struct rdma_route *route; 4104 void *private_data; 4105 struct ib_cm_id *id; 4106 u8 offset; 4107 int ret; 4108 4109 memset(&req, 0, sizeof req); 4110 offset = cma_user_data_offset(id_priv); 4111 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4112 return -EINVAL; 4113 4114 if (req.private_data_len) { 4115 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4116 if (!private_data) 4117 return -ENOMEM; 4118 } else { 4119 private_data = NULL; 4120 } 4121 4122 if (conn_param->private_data && conn_param->private_data_len) 4123 memcpy(private_data + offset, conn_param->private_data, 4124 conn_param->private_data_len); 4125 4126 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4127 if (IS_ERR(id)) { 4128 ret = PTR_ERR(id); 4129 goto out; 4130 } 4131 id_priv->cm_id.ib = id; 4132 4133 route = &id_priv->id.route; 4134 if (private_data) { 4135 ret = cma_format_hdr(private_data, id_priv); 4136 if (ret) 4137 goto out; 4138 req.private_data = private_data; 4139 } 4140 4141 req.primary_path = &route->path_rec[0]; 4142 if (route->num_paths == 2) 4143 req.alternate_path = &route->path_rec[1]; 4144 4145 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4146 /* Alternate path SGID attribute currently unsupported */ 4147 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4148 req.qp_num = id_priv->qp_num; 4149 req.qp_type = id_priv->id.qp_type; 4150 req.starting_psn = id_priv->seq_num; 4151 req.responder_resources = conn_param->responder_resources; 4152 req.initiator_depth = conn_param->initiator_depth; 4153 req.flow_control = conn_param->flow_control; 4154 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4155 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4156 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4157 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4158 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4159 req.srq = id_priv->srq ? 1 : 0; 4160 req.ece.vendor_id = id_priv->ece.vendor_id; 4161 req.ece.attr_mod = id_priv->ece.attr_mod; 4162 4163 trace_cm_send_req(id_priv); 4164 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4165 out: 4166 if (ret && !IS_ERR(id)) { 4167 ib_destroy_cm_id(id); 4168 id_priv->cm_id.ib = NULL; 4169 } 4170 4171 kfree(private_data); 4172 return ret; 4173 } 4174 4175 static int cma_connect_iw(struct rdma_id_private *id_priv, 4176 struct rdma_conn_param *conn_param) 4177 { 4178 struct iw_cm_id *cm_id; 4179 int ret; 4180 struct iw_cm_conn_param iw_param; 4181 4182 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4183 if (IS_ERR(cm_id)) 4184 return PTR_ERR(cm_id); 4185 4186 mutex_lock(&id_priv->qp_mutex); 4187 cm_id->tos = id_priv->tos; 4188 cm_id->tos_set = id_priv->tos_set; 4189 mutex_unlock(&id_priv->qp_mutex); 4190 4191 id_priv->cm_id.iw = cm_id; 4192 4193 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4194 rdma_addr_size(cma_src_addr(id_priv))); 4195 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4196 rdma_addr_size(cma_dst_addr(id_priv))); 4197 4198 ret = cma_modify_qp_rtr(id_priv, conn_param); 4199 if (ret) 4200 goto out; 4201 4202 if (conn_param) { 4203 iw_param.ord = conn_param->initiator_depth; 4204 iw_param.ird = conn_param->responder_resources; 4205 iw_param.private_data = conn_param->private_data; 4206 iw_param.private_data_len = conn_param->private_data_len; 4207 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4208 } else { 4209 memset(&iw_param, 0, sizeof iw_param); 4210 iw_param.qpn = id_priv->qp_num; 4211 } 4212 ret = iw_cm_connect(cm_id, &iw_param); 4213 out: 4214 if (ret) { 4215 iw_destroy_cm_id(cm_id); 4216 id_priv->cm_id.iw = NULL; 4217 } 4218 return ret; 4219 } 4220 4221 /** 4222 * rdma_connect_locked - Initiate an active connection request. 4223 * @id: Connection identifier to connect. 4224 * @conn_param: Connection information used for connected QPs. 4225 * 4226 * Same as rdma_connect() but can only be called from the 4227 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4228 */ 4229 int rdma_connect_locked(struct rdma_cm_id *id, 4230 struct rdma_conn_param *conn_param) 4231 { 4232 struct rdma_id_private *id_priv = 4233 container_of(id, struct rdma_id_private, id); 4234 int ret; 4235 4236 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4237 return -EINVAL; 4238 4239 if (!id->qp) { 4240 id_priv->qp_num = conn_param->qp_num; 4241 id_priv->srq = conn_param->srq; 4242 } 4243 4244 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4245 if (id->qp_type == IB_QPT_UD) 4246 ret = cma_resolve_ib_udp(id_priv, conn_param); 4247 else 4248 ret = cma_connect_ib(id_priv, conn_param); 4249 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4250 ret = cma_connect_iw(id_priv, conn_param); 4251 } else { 4252 ret = -ENOSYS; 4253 } 4254 if (ret) 4255 goto err_state; 4256 return 0; 4257 err_state: 4258 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4259 return ret; 4260 } 4261 EXPORT_SYMBOL(rdma_connect_locked); 4262 4263 /** 4264 * rdma_connect - Initiate an active connection request. 4265 * @id: Connection identifier to connect. 4266 * @conn_param: Connection information used for connected QPs. 4267 * 4268 * Users must have resolved a route for the rdma_cm_id to connect with by having 4269 * called rdma_resolve_route before calling this routine. 4270 * 4271 * This call will either connect to a remote QP or obtain remote QP information 4272 * for unconnected rdma_cm_id's. The actual operation is based on the 4273 * rdma_cm_id's port space. 4274 */ 4275 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4276 { 4277 struct rdma_id_private *id_priv = 4278 container_of(id, struct rdma_id_private, id); 4279 int ret; 4280 4281 mutex_lock(&id_priv->handler_mutex); 4282 ret = rdma_connect_locked(id, conn_param); 4283 mutex_unlock(&id_priv->handler_mutex); 4284 return ret; 4285 } 4286 EXPORT_SYMBOL(rdma_connect); 4287 4288 /** 4289 * rdma_connect_ece - Initiate an active connection request with ECE data. 4290 * @id: Connection identifier to connect. 4291 * @conn_param: Connection information used for connected QPs. 4292 * @ece: ECE parameters 4293 * 4294 * See rdma_connect() explanation. 4295 */ 4296 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4297 struct rdma_ucm_ece *ece) 4298 { 4299 struct rdma_id_private *id_priv = 4300 container_of(id, struct rdma_id_private, id); 4301 4302 id_priv->ece.vendor_id = ece->vendor_id; 4303 id_priv->ece.attr_mod = ece->attr_mod; 4304 4305 return rdma_connect(id, conn_param); 4306 } 4307 EXPORT_SYMBOL(rdma_connect_ece); 4308 4309 static int cma_accept_ib(struct rdma_id_private *id_priv, 4310 struct rdma_conn_param *conn_param) 4311 { 4312 struct ib_cm_rep_param rep; 4313 int ret; 4314 4315 ret = cma_modify_qp_rtr(id_priv, conn_param); 4316 if (ret) 4317 goto out; 4318 4319 ret = cma_modify_qp_rts(id_priv, conn_param); 4320 if (ret) 4321 goto out; 4322 4323 memset(&rep, 0, sizeof rep); 4324 rep.qp_num = id_priv->qp_num; 4325 rep.starting_psn = id_priv->seq_num; 4326 rep.private_data = conn_param->private_data; 4327 rep.private_data_len = conn_param->private_data_len; 4328 rep.responder_resources = conn_param->responder_resources; 4329 rep.initiator_depth = conn_param->initiator_depth; 4330 rep.failover_accepted = 0; 4331 rep.flow_control = conn_param->flow_control; 4332 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4333 rep.srq = id_priv->srq ? 1 : 0; 4334 rep.ece.vendor_id = id_priv->ece.vendor_id; 4335 rep.ece.attr_mod = id_priv->ece.attr_mod; 4336 4337 trace_cm_send_rep(id_priv); 4338 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4339 out: 4340 return ret; 4341 } 4342 4343 static int cma_accept_iw(struct rdma_id_private *id_priv, 4344 struct rdma_conn_param *conn_param) 4345 { 4346 struct iw_cm_conn_param iw_param; 4347 int ret; 4348 4349 if (!conn_param) 4350 return -EINVAL; 4351 4352 ret = cma_modify_qp_rtr(id_priv, conn_param); 4353 if (ret) 4354 return ret; 4355 4356 iw_param.ord = conn_param->initiator_depth; 4357 iw_param.ird = conn_param->responder_resources; 4358 iw_param.private_data = conn_param->private_data; 4359 iw_param.private_data_len = conn_param->private_data_len; 4360 if (id_priv->id.qp) 4361 iw_param.qpn = id_priv->qp_num; 4362 else 4363 iw_param.qpn = conn_param->qp_num; 4364 4365 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4366 } 4367 4368 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4369 enum ib_cm_sidr_status status, u32 qkey, 4370 const void *private_data, int private_data_len) 4371 { 4372 struct ib_cm_sidr_rep_param rep; 4373 int ret; 4374 4375 memset(&rep, 0, sizeof rep); 4376 rep.status = status; 4377 if (status == IB_SIDR_SUCCESS) { 4378 ret = cma_set_qkey(id_priv, qkey); 4379 if (ret) 4380 return ret; 4381 rep.qp_num = id_priv->qp_num; 4382 rep.qkey = id_priv->qkey; 4383 4384 rep.ece.vendor_id = id_priv->ece.vendor_id; 4385 rep.ece.attr_mod = id_priv->ece.attr_mod; 4386 } 4387 4388 rep.private_data = private_data; 4389 rep.private_data_len = private_data_len; 4390 4391 trace_cm_send_sidr_rep(id_priv); 4392 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4393 } 4394 4395 /** 4396 * rdma_accept - Called to accept a connection request or response. 4397 * @id: Connection identifier associated with the request. 4398 * @conn_param: Information needed to establish the connection. This must be 4399 * provided if accepting a connection request. If accepting a connection 4400 * response, this parameter must be NULL. 4401 * 4402 * Typically, this routine is only called by the listener to accept a connection 4403 * request. It must also be called on the active side of a connection if the 4404 * user is performing their own QP transitions. 4405 * 4406 * In the case of error, a reject message is sent to the remote side and the 4407 * state of the qp associated with the id is modified to error, such that any 4408 * previously posted receive buffers would be flushed. 4409 * 4410 * This function is for use by kernel ULPs and must be called from under the 4411 * handler callback. 4412 */ 4413 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4414 { 4415 struct rdma_id_private *id_priv = 4416 container_of(id, struct rdma_id_private, id); 4417 int ret; 4418 4419 lockdep_assert_held(&id_priv->handler_mutex); 4420 4421 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4422 return -EINVAL; 4423 4424 if (!id->qp && conn_param) { 4425 id_priv->qp_num = conn_param->qp_num; 4426 id_priv->srq = conn_param->srq; 4427 } 4428 4429 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4430 if (id->qp_type == IB_QPT_UD) { 4431 if (conn_param) 4432 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4433 conn_param->qkey, 4434 conn_param->private_data, 4435 conn_param->private_data_len); 4436 else 4437 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4438 0, NULL, 0); 4439 } else { 4440 if (conn_param) 4441 ret = cma_accept_ib(id_priv, conn_param); 4442 else 4443 ret = cma_rep_recv(id_priv); 4444 } 4445 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4446 ret = cma_accept_iw(id_priv, conn_param); 4447 } else { 4448 ret = -ENOSYS; 4449 } 4450 if (ret) 4451 goto reject; 4452 4453 return 0; 4454 reject: 4455 cma_modify_qp_err(id_priv); 4456 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4457 return ret; 4458 } 4459 EXPORT_SYMBOL(rdma_accept); 4460 4461 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4462 struct rdma_ucm_ece *ece) 4463 { 4464 struct rdma_id_private *id_priv = 4465 container_of(id, struct rdma_id_private, id); 4466 4467 id_priv->ece.vendor_id = ece->vendor_id; 4468 id_priv->ece.attr_mod = ece->attr_mod; 4469 4470 return rdma_accept(id, conn_param); 4471 } 4472 EXPORT_SYMBOL(rdma_accept_ece); 4473 4474 void rdma_lock_handler(struct rdma_cm_id *id) 4475 { 4476 struct rdma_id_private *id_priv = 4477 container_of(id, struct rdma_id_private, id); 4478 4479 mutex_lock(&id_priv->handler_mutex); 4480 } 4481 EXPORT_SYMBOL(rdma_lock_handler); 4482 4483 void rdma_unlock_handler(struct rdma_cm_id *id) 4484 { 4485 struct rdma_id_private *id_priv = 4486 container_of(id, struct rdma_id_private, id); 4487 4488 mutex_unlock(&id_priv->handler_mutex); 4489 } 4490 EXPORT_SYMBOL(rdma_unlock_handler); 4491 4492 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4493 { 4494 struct rdma_id_private *id_priv; 4495 int ret; 4496 4497 id_priv = container_of(id, struct rdma_id_private, id); 4498 if (!id_priv->cm_id.ib) 4499 return -EINVAL; 4500 4501 switch (id->device->node_type) { 4502 case RDMA_NODE_IB_CA: 4503 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4504 break; 4505 default: 4506 ret = 0; 4507 break; 4508 } 4509 return ret; 4510 } 4511 EXPORT_SYMBOL(rdma_notify); 4512 4513 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4514 u8 private_data_len, u8 reason) 4515 { 4516 struct rdma_id_private *id_priv; 4517 int ret; 4518 4519 id_priv = container_of(id, struct rdma_id_private, id); 4520 if (!id_priv->cm_id.ib) 4521 return -EINVAL; 4522 4523 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4524 if (id->qp_type == IB_QPT_UD) { 4525 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4526 private_data, private_data_len); 4527 } else { 4528 trace_cm_send_rej(id_priv); 4529 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4530 private_data, private_data_len); 4531 } 4532 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4533 ret = iw_cm_reject(id_priv->cm_id.iw, 4534 private_data, private_data_len); 4535 } else { 4536 ret = -ENOSYS; 4537 } 4538 4539 return ret; 4540 } 4541 EXPORT_SYMBOL(rdma_reject); 4542 4543 int rdma_disconnect(struct rdma_cm_id *id) 4544 { 4545 struct rdma_id_private *id_priv; 4546 int ret; 4547 4548 id_priv = container_of(id, struct rdma_id_private, id); 4549 if (!id_priv->cm_id.ib) 4550 return -EINVAL; 4551 4552 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4553 ret = cma_modify_qp_err(id_priv); 4554 if (ret) 4555 goto out; 4556 /* Initiate or respond to a disconnect. */ 4557 trace_cm_disconnect(id_priv); 4558 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4559 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4560 trace_cm_sent_drep(id_priv); 4561 } else { 4562 trace_cm_sent_dreq(id_priv); 4563 } 4564 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4565 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4566 } else 4567 ret = -EINVAL; 4568 4569 out: 4570 return ret; 4571 } 4572 EXPORT_SYMBOL(rdma_disconnect); 4573 4574 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4575 struct ib_sa_multicast *multicast, 4576 struct rdma_cm_event *event, 4577 struct cma_multicast *mc) 4578 { 4579 struct rdma_dev_addr *dev_addr; 4580 enum ib_gid_type gid_type; 4581 struct net_device *ndev; 4582 4583 if (!status) 4584 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4585 else 4586 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4587 status); 4588 4589 event->status = status; 4590 event->param.ud.private_data = mc->context; 4591 if (status) { 4592 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4593 return; 4594 } 4595 4596 dev_addr = &id_priv->id.route.addr.dev_addr; 4597 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4598 gid_type = 4599 id_priv->cma_dev 4600 ->default_gid_type[id_priv->id.port_num - 4601 rdma_start_port( 4602 id_priv->cma_dev->device)]; 4603 4604 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4605 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4606 &multicast->rec, ndev, gid_type, 4607 &event->param.ud.ah_attr)) { 4608 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4609 goto out; 4610 } 4611 4612 event->param.ud.qp_num = 0xFFFFFF; 4613 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4614 4615 out: 4616 if (ndev) 4617 dev_put(ndev); 4618 } 4619 4620 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4621 { 4622 struct cma_multicast *mc = multicast->context; 4623 struct rdma_id_private *id_priv = mc->id_priv; 4624 struct rdma_cm_event event = {}; 4625 int ret = 0; 4626 4627 mutex_lock(&id_priv->handler_mutex); 4628 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4629 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4630 goto out; 4631 4632 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4633 ret = cma_cm_event_handler(id_priv, &event); 4634 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4635 WARN_ON(ret); 4636 4637 out: 4638 mutex_unlock(&id_priv->handler_mutex); 4639 return 0; 4640 } 4641 4642 static void cma_set_mgid(struct rdma_id_private *id_priv, 4643 struct sockaddr *addr, union ib_gid *mgid) 4644 { 4645 unsigned char mc_map[MAX_ADDR_LEN]; 4646 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4647 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4648 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4649 4650 if (cma_any_addr(addr)) { 4651 memset(mgid, 0, sizeof *mgid); 4652 } else if ((addr->sa_family == AF_INET6) && 4653 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4654 0xFF10A01B)) { 4655 /* IPv6 address is an SA assigned MGID. */ 4656 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4657 } else if (addr->sa_family == AF_IB) { 4658 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4659 } else if (addr->sa_family == AF_INET6) { 4660 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4661 if (id_priv->id.ps == RDMA_PS_UDP) 4662 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4663 *mgid = *(union ib_gid *) (mc_map + 4); 4664 } else { 4665 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4666 if (id_priv->id.ps == RDMA_PS_UDP) 4667 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4668 *mgid = *(union ib_gid *) (mc_map + 4); 4669 } 4670 } 4671 4672 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4673 struct cma_multicast *mc) 4674 { 4675 struct ib_sa_mcmember_rec rec; 4676 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4677 ib_sa_comp_mask comp_mask; 4678 int ret; 4679 4680 ib_addr_get_mgid(dev_addr, &rec.mgid); 4681 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4682 &rec.mgid, &rec); 4683 if (ret) 4684 return ret; 4685 4686 ret = cma_set_qkey(id_priv, 0); 4687 if (ret) 4688 return ret; 4689 4690 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4691 rec.qkey = cpu_to_be32(id_priv->qkey); 4692 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4693 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4694 rec.join_state = mc->join_state; 4695 4696 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4697 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4698 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4699 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4700 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4701 4702 if (id_priv->id.ps == RDMA_PS_IPOIB) 4703 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4704 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4705 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4706 IB_SA_MCMEMBER_REC_MTU | 4707 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4708 4709 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4710 id_priv->id.port_num, &rec, comp_mask, 4711 GFP_KERNEL, cma_ib_mc_handler, mc); 4712 return PTR_ERR_OR_ZERO(mc->sa_mc); 4713 } 4714 4715 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4716 enum ib_gid_type gid_type) 4717 { 4718 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4719 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4720 4721 if (cma_any_addr(addr)) { 4722 memset(mgid, 0, sizeof *mgid); 4723 } else if (addr->sa_family == AF_INET6) { 4724 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4725 } else { 4726 mgid->raw[0] = 4727 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4728 mgid->raw[1] = 4729 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4730 mgid->raw[2] = 0; 4731 mgid->raw[3] = 0; 4732 mgid->raw[4] = 0; 4733 mgid->raw[5] = 0; 4734 mgid->raw[6] = 0; 4735 mgid->raw[7] = 0; 4736 mgid->raw[8] = 0; 4737 mgid->raw[9] = 0; 4738 mgid->raw[10] = 0xff; 4739 mgid->raw[11] = 0xff; 4740 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4741 } 4742 } 4743 4744 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4745 struct cma_multicast *mc) 4746 { 4747 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4748 int err = 0; 4749 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4750 struct net_device *ndev = NULL; 4751 struct ib_sa_multicast ib; 4752 enum ib_gid_type gid_type; 4753 bool send_only; 4754 4755 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4756 4757 if (cma_zero_addr(addr)) 4758 return -EINVAL; 4759 4760 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4761 rdma_start_port(id_priv->cma_dev->device)]; 4762 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4763 4764 ib.rec.pkey = cpu_to_be16(0xffff); 4765 if (id_priv->id.ps == RDMA_PS_UDP) 4766 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4767 4768 if (dev_addr->bound_dev_if) 4769 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4770 if (!ndev) 4771 return -ENODEV; 4772 4773 ib.rec.rate = iboe_get_rate(ndev); 4774 ib.rec.hop_limit = 1; 4775 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4776 4777 if (addr->sa_family == AF_INET) { 4778 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4779 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4780 if (!send_only) { 4781 err = cma_igmp_send(ndev, &ib.rec.mgid, 4782 true); 4783 } 4784 } 4785 } else { 4786 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4787 err = -ENOTSUPP; 4788 } 4789 dev_put(ndev); 4790 if (err || !ib.rec.mtu) 4791 return err ?: -EINVAL; 4792 4793 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4794 &ib.rec.port_gid); 4795 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4796 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4797 queue_work(cma_wq, &mc->iboe_join.work); 4798 return 0; 4799 } 4800 4801 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4802 u8 join_state, void *context) 4803 { 4804 struct rdma_id_private *id_priv = 4805 container_of(id, struct rdma_id_private, id); 4806 struct cma_multicast *mc; 4807 int ret; 4808 4809 /* Not supported for kernel QPs */ 4810 if (WARN_ON(id->qp)) 4811 return -EINVAL; 4812 4813 /* ULP is calling this wrong. */ 4814 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4815 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4816 return -EINVAL; 4817 4818 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4819 if (!mc) 4820 return -ENOMEM; 4821 4822 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4823 mc->context = context; 4824 mc->id_priv = id_priv; 4825 mc->join_state = join_state; 4826 4827 if (rdma_protocol_roce(id->device, id->port_num)) { 4828 ret = cma_iboe_join_multicast(id_priv, mc); 4829 if (ret) 4830 goto out_err; 4831 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4832 ret = cma_join_ib_multicast(id_priv, mc); 4833 if (ret) 4834 goto out_err; 4835 } else { 4836 ret = -ENOSYS; 4837 goto out_err; 4838 } 4839 4840 spin_lock(&id_priv->lock); 4841 list_add(&mc->list, &id_priv->mc_list); 4842 spin_unlock(&id_priv->lock); 4843 4844 return 0; 4845 out_err: 4846 kfree(mc); 4847 return ret; 4848 } 4849 EXPORT_SYMBOL(rdma_join_multicast); 4850 4851 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4852 { 4853 struct rdma_id_private *id_priv; 4854 struct cma_multicast *mc; 4855 4856 id_priv = container_of(id, struct rdma_id_private, id); 4857 spin_lock_irq(&id_priv->lock); 4858 list_for_each_entry(mc, &id_priv->mc_list, list) { 4859 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4860 continue; 4861 list_del(&mc->list); 4862 spin_unlock_irq(&id_priv->lock); 4863 4864 WARN_ON(id_priv->cma_dev->device != id->device); 4865 destroy_mc(id_priv, mc); 4866 return; 4867 } 4868 spin_unlock_irq(&id_priv->lock); 4869 } 4870 EXPORT_SYMBOL(rdma_leave_multicast); 4871 4872 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4873 { 4874 struct rdma_dev_addr *dev_addr; 4875 struct cma_work *work; 4876 4877 dev_addr = &id_priv->id.route.addr.dev_addr; 4878 4879 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4880 (net_eq(dev_net(ndev), dev_addr->net)) && 4881 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4882 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4883 ndev->name, &id_priv->id); 4884 work = kzalloc(sizeof *work, GFP_KERNEL); 4885 if (!work) 4886 return -ENOMEM; 4887 4888 INIT_WORK(&work->work, cma_work_handler); 4889 work->id = id_priv; 4890 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4891 cma_id_get(id_priv); 4892 queue_work(cma_wq, &work->work); 4893 } 4894 4895 return 0; 4896 } 4897 4898 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4899 void *ptr) 4900 { 4901 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4902 struct cma_device *cma_dev; 4903 struct rdma_id_private *id_priv; 4904 int ret = NOTIFY_DONE; 4905 4906 if (event != NETDEV_BONDING_FAILOVER) 4907 return NOTIFY_DONE; 4908 4909 if (!netif_is_bond_master(ndev)) 4910 return NOTIFY_DONE; 4911 4912 mutex_lock(&lock); 4913 list_for_each_entry(cma_dev, &dev_list, list) 4914 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 4915 ret = cma_netdev_change(ndev, id_priv); 4916 if (ret) 4917 goto out; 4918 } 4919 4920 out: 4921 mutex_unlock(&lock); 4922 return ret; 4923 } 4924 4925 static struct notifier_block cma_nb = { 4926 .notifier_call = cma_netdev_callback 4927 }; 4928 4929 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4930 { 4931 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4932 enum rdma_cm_state state; 4933 unsigned long flags; 4934 4935 mutex_lock(&id_priv->handler_mutex); 4936 /* Record that we want to remove the device */ 4937 spin_lock_irqsave(&id_priv->lock, flags); 4938 state = id_priv->state; 4939 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4940 spin_unlock_irqrestore(&id_priv->lock, flags); 4941 mutex_unlock(&id_priv->handler_mutex); 4942 cma_id_put(id_priv); 4943 return; 4944 } 4945 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4946 spin_unlock_irqrestore(&id_priv->lock, flags); 4947 4948 if (cma_cm_event_handler(id_priv, &event)) { 4949 /* 4950 * At this point the ULP promises it won't call 4951 * rdma_destroy_id() concurrently 4952 */ 4953 cma_id_put(id_priv); 4954 mutex_unlock(&id_priv->handler_mutex); 4955 trace_cm_id_destroy(id_priv); 4956 _destroy_id(id_priv, state); 4957 return; 4958 } 4959 mutex_unlock(&id_priv->handler_mutex); 4960 4961 /* 4962 * If this races with destroy then the thread that first assigns state 4963 * to a destroying does the cancel. 4964 */ 4965 cma_cancel_operation(id_priv, state); 4966 cma_id_put(id_priv); 4967 } 4968 4969 static void cma_process_remove(struct cma_device *cma_dev) 4970 { 4971 mutex_lock(&lock); 4972 while (!list_empty(&cma_dev->id_list)) { 4973 struct rdma_id_private *id_priv = list_first_entry( 4974 &cma_dev->id_list, struct rdma_id_private, device_item); 4975 4976 list_del_init(&id_priv->listen_item); 4977 list_del_init(&id_priv->device_item); 4978 cma_id_get(id_priv); 4979 mutex_unlock(&lock); 4980 4981 cma_send_device_removal_put(id_priv); 4982 4983 mutex_lock(&lock); 4984 } 4985 mutex_unlock(&lock); 4986 4987 cma_dev_put(cma_dev); 4988 wait_for_completion(&cma_dev->comp); 4989 } 4990 4991 static bool cma_supported(struct ib_device *device) 4992 { 4993 u32 i; 4994 4995 rdma_for_each_port(device, i) { 4996 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4997 return true; 4998 } 4999 return false; 5000 } 5001 5002 static int cma_add_one(struct ib_device *device) 5003 { 5004 struct rdma_id_private *to_destroy; 5005 struct cma_device *cma_dev; 5006 struct rdma_id_private *id_priv; 5007 unsigned long supported_gids = 0; 5008 int ret; 5009 u32 i; 5010 5011 if (!cma_supported(device)) 5012 return -EOPNOTSUPP; 5013 5014 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5015 if (!cma_dev) 5016 return -ENOMEM; 5017 5018 cma_dev->device = device; 5019 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5020 sizeof(*cma_dev->default_gid_type), 5021 GFP_KERNEL); 5022 if (!cma_dev->default_gid_type) { 5023 ret = -ENOMEM; 5024 goto free_cma_dev; 5025 } 5026 5027 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5028 sizeof(*cma_dev->default_roce_tos), 5029 GFP_KERNEL); 5030 if (!cma_dev->default_roce_tos) { 5031 ret = -ENOMEM; 5032 goto free_gid_type; 5033 } 5034 5035 rdma_for_each_port (device, i) { 5036 supported_gids = roce_gid_type_mask_support(device, i); 5037 WARN_ON(!supported_gids); 5038 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5039 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5040 CMA_PREFERRED_ROCE_GID_TYPE; 5041 else 5042 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5043 find_first_bit(&supported_gids, BITS_PER_LONG); 5044 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5045 } 5046 5047 init_completion(&cma_dev->comp); 5048 refcount_set(&cma_dev->refcount, 1); 5049 INIT_LIST_HEAD(&cma_dev->id_list); 5050 ib_set_client_data(device, &cma_client, cma_dev); 5051 5052 mutex_lock(&lock); 5053 list_add_tail(&cma_dev->list, &dev_list); 5054 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5055 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5056 if (ret) 5057 goto free_listen; 5058 } 5059 mutex_unlock(&lock); 5060 5061 trace_cm_add_one(device); 5062 return 0; 5063 5064 free_listen: 5065 list_del(&cma_dev->list); 5066 mutex_unlock(&lock); 5067 5068 /* cma_process_remove() will delete to_destroy */ 5069 cma_process_remove(cma_dev); 5070 kfree(cma_dev->default_roce_tos); 5071 free_gid_type: 5072 kfree(cma_dev->default_gid_type); 5073 5074 free_cma_dev: 5075 kfree(cma_dev); 5076 return ret; 5077 } 5078 5079 static void cma_remove_one(struct ib_device *device, void *client_data) 5080 { 5081 struct cma_device *cma_dev = client_data; 5082 5083 trace_cm_remove_one(device); 5084 5085 mutex_lock(&lock); 5086 list_del(&cma_dev->list); 5087 mutex_unlock(&lock); 5088 5089 cma_process_remove(cma_dev); 5090 kfree(cma_dev->default_roce_tos); 5091 kfree(cma_dev->default_gid_type); 5092 kfree(cma_dev); 5093 } 5094 5095 static int cma_init_net(struct net *net) 5096 { 5097 struct cma_pernet *pernet = cma_pernet(net); 5098 5099 xa_init(&pernet->tcp_ps); 5100 xa_init(&pernet->udp_ps); 5101 xa_init(&pernet->ipoib_ps); 5102 xa_init(&pernet->ib_ps); 5103 5104 return 0; 5105 } 5106 5107 static void cma_exit_net(struct net *net) 5108 { 5109 struct cma_pernet *pernet = cma_pernet(net); 5110 5111 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5112 WARN_ON(!xa_empty(&pernet->udp_ps)); 5113 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5114 WARN_ON(!xa_empty(&pernet->ib_ps)); 5115 } 5116 5117 static struct pernet_operations cma_pernet_operations = { 5118 .init = cma_init_net, 5119 .exit = cma_exit_net, 5120 .id = &cma_pernet_id, 5121 .size = sizeof(struct cma_pernet), 5122 }; 5123 5124 static int __init cma_init(void) 5125 { 5126 int ret; 5127 5128 /* 5129 * There is a rare lock ordering dependency in cma_netdev_callback() 5130 * that only happens when bonding is enabled. Teach lockdep that rtnl 5131 * must never be nested under lock so it can find these without having 5132 * to test with bonding. 5133 */ 5134 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5135 rtnl_lock(); 5136 mutex_lock(&lock); 5137 mutex_unlock(&lock); 5138 rtnl_unlock(); 5139 } 5140 5141 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5142 if (!cma_wq) 5143 return -ENOMEM; 5144 5145 ret = register_pernet_subsys(&cma_pernet_operations); 5146 if (ret) 5147 goto err_wq; 5148 5149 ib_sa_register_client(&sa_client); 5150 register_netdevice_notifier(&cma_nb); 5151 5152 ret = ib_register_client(&cma_client); 5153 if (ret) 5154 goto err; 5155 5156 ret = cma_configfs_init(); 5157 if (ret) 5158 goto err_ib; 5159 5160 return 0; 5161 5162 err_ib: 5163 ib_unregister_client(&cma_client); 5164 err: 5165 unregister_netdevice_notifier(&cma_nb); 5166 ib_sa_unregister_client(&sa_client); 5167 unregister_pernet_subsys(&cma_pernet_operations); 5168 err_wq: 5169 destroy_workqueue(cma_wq); 5170 return ret; 5171 } 5172 5173 static void __exit cma_cleanup(void) 5174 { 5175 cma_configfs_exit(); 5176 ib_unregister_client(&cma_client); 5177 unregister_netdevice_notifier(&cma_nb); 5178 ib_sa_unregister_client(&sa_client); 5179 unregister_pernet_subsys(&cma_pernet_operations); 5180 destroy_workqueue(cma_wq); 5181 } 5182 5183 module_init(cma_init); 5184 module_exit(cma_cleanup); 5185